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1. Introduction

Compositional models describe the simultaneous flow and transport processes of multiple com-
ponents flowing in coexisting phases in porous media [1, 2]. Because each component can transfer
between different phases, the mass of each phase or a component within a particular phase is
no longer conserved. Instead, the total mass of each component among all the phases must be
conserved, leading to strongly coupled systems of transient nonlinear partial differential equa-
tions of convection-diffusion type. These equations are closely coupled to a set of constraining
equations, which are strongly nonlinear, implicit functions of phase pressure, temperature, and
composition. These equations need to be solved in all spatial cells within the two-phase re-
gion at each iterative step of each time step via thermodynamic flash calculation. In industrial
applications, upwind methods have commonly been used to stabilize the numerical approxima-
tions [1, 2]. However, these methods often generate excessive numerical dispersion and serious
spurious effects due to grid orientation.

Eulerian-Lagrangian methods combine the convection and capacity terms in the mass trans-
port equations to carry out the temporal discretization in a Lagrangian coordinate, and dis-
cretize the diffusion-dispersion term on a fixed mesh. Eulerian-Lagrangian methods symmetrize
the mass transport equations and stabilize their numerical approximations. They generate ac-
curate numerical solutions and significantly reduce the numerical diffusion and grid-orientation
effect present in upwind methods, even if large time steps are used. Eulerian-Lagrangian meth-
ods have been successfully applied in single-phase flow [4, 5, 6, 7] and in immiscible two-phase
flow [8, 9].

In this paper we are concerned with the development of an Eulerian-Lagrangian formulation
for two-phase multicomponent flow and transport processes in porous media. Such a formulation
retains the numerical advantages of earlier Eulerian-Lagrangian methods for single or two-phase
flow and transport. The accurate solution of the mass transport equations provides an accurate
initial guess for flash calculation and, thus, speeds up the flash. Conversely, accurate flash
calculation improves the solutions to the mass transport equations in the next iterative or time
step. Finally, larger time steps can be used, leading to further reduction of computational storage
and cost. Because of the complexities and strong nonlinearity and coupling of these processes,
different Eulerian-Lagrangian formulations could be proposed based on different considerations
of the physical and mathematical properties of compositional flow and transport. In this paper,
we explore both component-based approach and phase-based approach.

Preliminary numerical experiments of two-phase multicomponent compositional flow and
transport in a two-dimensional reservoir reveals the following observations: (1) on the same
spatial partition, using a timestep > 100 times larger than that of the upwind method, the
Eulerian-Lagrangian method generates more accurate solutions with steeper fronts than the
upwind method; (2) both the Eulerian-Lagrangian method and upwind methods use comparable
CPU time per time step.
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2. Mathematical model

We consider the simultaneous transport of multiple hydrocarbon components indexed as i =
1, 2, . . . , nc, each of which can exist in a liquid phase l and a vapor phase v, flowing through a
porous medium reservoir Ω. Let φ be the porosity of the medium, ρα and sα be the molar density
and saturation of phase α. Let et cα

i be mole fraction of component i in phase α and rα
i denote

molar mass transfer of component i into phase α. A mass balance equation for component i in
phase α is [1, 10, 2]

∂

∂t
(φsαραcα

i ) +∇ · (uαραcα
i )−∇ · (ραD(uα, sα)∇cα

i ) = rα
i . (1)

The hydrodynamic dispersion tensor D(uα, sα) is of the expression [1, 10]

D(uα, sα) = sαdmφ I + dt|uα| I +
dl − dt

|uα| (uα
i uα

j ). (2)

Here I is the identity tensor, dm is the molecular diffusion coefficient, and dt and dl are the
transverse and longitudinal dispersivities.

Darcy’s law establishes a relationship between Darcy velocity uα and the pressure gradient
∇pα of phase α [1, 10]

uα = −kr,α

µα
K(∇pα − ρ̃αg). (3)

Here kr,α, µα, pα are the relative permeability, viscosity, and pressure of phase α for α = l, v;
g is acceleration due to gravity vector; K = (kij) is the intrinsic permeability tensor of the
medium. ρ̃α is mass density of phase α, which is related to molar mass density ρα by ρ̃α =
(
∑nc

i=1 MWic
α
i ) ρα where MWi is molecular weight of component i for i = 1, 2, . . . , nc.

Compositional modeling requires thermodynamic flash calculation to determine phase parti-
tion and composition and other phase properties. The real gas law is often used to describe the
relationship between molar density ρα, pressure pα of phase α and temperature T of the fluid
mixture [12]

ρα =
pα

ZαRT
. (4)

Here R is the universal gas constant. Zα = Zα(cα
1 , . . . , cα

nc
, pα, T ) is the compressibility factor

of phase α; it measures deviation of phase α from ideality. Zα can be computed, for example,
by using Peng-Robinson equation [13]

Z3 − (1−B)Z2 + (A− 3B2 − 2B)Z − (AB −B2 −B3) = 0. (5)

The coefficients A = Aα = (aαpα)/(R2T 2) and B = Bα = bαpα/(RT ). The constants aα and
bα are calculated from phase composition cα

i , the binary interaction coefficients κij between
components i and j, and the attraction and repulsion parameters ai and bi of component i that
are expressed in terms of critical pressure Pi and critical temperature Ti for i = 1, . . . , nc [12, 13].

Given the fluid composition c1, c2, . . . , cnc of a fluid mixture, pressure pα, and temperature
T , the goal of flash is to compute phase mole fraction Y α and phase composition cα

1 , cα
2 , . . . , cα

nc

for each phase α. The Gibbs free energy of the fluid mixture is at its minimum at an equilibrium
state, leading to the fundamental equations of thermodynamic phase equilibrium [12]

f l
i (c

l
1, . . . , c

l
nc

, pl, T ) = fv
i (cv

1, . . . , c
v
nc

, pv, T ), 1 ≤ i ≤ nc. (6)

Here the fugacity fα
i = fα

i (cα
1 , . . . , cα

nc
, pα, T ) of component i in phase α is given by

fα
i =

cα
i pα

Zα −Bα
exp

[
bi

bα
(Zα − 1)

][
Zα + (

√
2 + 1)Bα

Zα − (
√

2− 1)Bα

]−lαi

,

lαi =
Aα

2
√

2Bα


 2

aα

nc∑

j=1

√
aiaj cα

j (1− κij)− bi

bα


 .

(7)
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3. A component-based Eulerian-Lagrangian formulation

A mathematical model for compositional flow involves a large number of unknown variables.
Different sets of primary variables can be selected based on the physical, mathematical, and
numerical properties of the problem. Due to mass transfer between different phases, mass of
each component within a particular phase or of each phase is not conserved. Thus, rα

i in (1)
accounts for impact of the external sources and sinks as well as mass transfer of component i
into phase α from the other phase. Nevertheless, overall mass of each component in the fluid
mixture is conserved, leading to the system

∂

∂t

∑

α=l,v

(φsαραcα
i ) +∇ ·

∑

α=l,v

(uαραcα
i )−∇ ·

∑

α=l,v

(ραD(uα, sα)∇cα
i ) =

∑

α=l,v

rα
i . (8)

Since we assume an isothermal flow with no intraphase reaction present, the only change of the
overall mass of each component i is from the external supplies of the component. Namely,

rl
i + rv

i = c̄l
iρ̄

l
is

l + c̄v
i ρ̄

v
i s

v. (9)

Here c̄α
i is prescribed at sources and c̄α

i = cα
i at sinks. ρ̄α is determined from thermodynamic

flash calculation at sources and ρ̄α = ρα at sinks.
Equation (8) is expressed as a weighted sum of mole fractions cl

i and cv
i for 1 ≤ i ≤ nc.

Choosing cl
i or cv

i as a primary variable could introduce extra numerical difficulties as the cor-
responding phase vanishes. Thus, we choose overall mole fraction ci as a primary variable

ci =
1
ρ
(slρlcl

i + svρvcv
i l) with ρ = slρl + svρv (10)

being the bulk molar density of the fluid mixture. We rewrite Eq. (1) as

∂

∂t
(φρci) +∇ ·

∑

α=l,v

(uαραcα
i )−∇ ·

∑

α=l,v

(ραD(uα, sα)∇cα
i ) =

∑

α=l,v

c̄α
i ρ̄αqα. (11)

The accumulation term in Eq. (11) is written in terms of ci, but the advective and diffusive
fluxes are expressed as a weighted sum of cl

i and cv
i . To handle the coupling of Eq. (11) due to

the advective and diffusive fluxes, we utilize momentum balance to define a barycentric overall
component velocity ui = 1

ρci
(ρlcl

iu
l + ρvcv

i u
v). ui naturally takes into account for the effect of

gravity segregation since uα includes gravitational effect. This is another important feature of
ui. The introduction of ui also enables us to rewrite Eq. (11) in a similar form to a single-phase
flow [5, 6, 7]

∂

∂t
(φρci) +∇ · (ρuici)−

∑

j

∇ ·
[( ∑

α=l,v

ρα ∂cα
i

∂cj
D(uα, sα)

)
∇cj

]

−∇ ·
[( ∑

α=l,v

ρα ∂cα
i

∂pα
D(uα, sα)

)
∇pα

]
=

∑

α=l,v

ρ̄αc̄α
i qα.

(12)

For simplicity of exposition, we assume a noflow boundary condition. Since many Eulerian-
Lagrangian methods use a time-stepping procedure, we only need to focus on the current time
interval [tn−1, tn]. Let wi(x, t) be space-time test functions with certain regularity (e.g, contin-
uous and piecewise smooth, depending on each individual method). We require wi to vanish
outside the space-time strip Ω× (tn−1, tn] and to be discontinuous in time at time tn−1.

In the ELLAM framework [14], an operator-splitting analysis concludes that the test func-
tions wi(y, θ) should satisfy the hyperbolic part of the adjoint equation of Eq. (12)

φ
∂wi(y, θ)

∂θ
+ ui(y, θ) · ∇wi(y, θ) = 0, y ∈ Ω, θ ∈ [tn−1, tn]. (13)
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Thus, the test functions wi(y, θ) should be constant along the component-based characteristic
curve y = ri(θ;x, tn) defined by the initial-value problem of the ordinary differential equation

dri

dθ
=

ui

φ
, ri(θ;x, t)

∣∣∣
θ=t

= x, θ ∈ [tn−1, tn]. (14)

Therefore, once the test functions wi(x, tn) are defined in Ω at time step tn, they are determined
completely in the space-time strip Ω × (tn−1, tn] by a constant extension of wi(x, tn) along the
characteristic curves ri(θ;x, tn) from time step tn to time step tn−1.

Incorporating the test functions into a space-time weak formulation and applying an Euler
quadrature to evaluate the temporal integral yields an Eulerian-Lagrangian formulation

∫

Ω
φρci(x, tn)wi(x, tn)dx + ∆tn

∑

j

∑

α=l,v

∫

Ω
ρα ∂cα

i

∂cj
D(uα, sα)∇cj(x, tn) · ∇wi(x, tn)dx

+∆tn
∑

α=l,v

∫

Ω
ρα ∂cα

i

∂pα
D(uα, sα)∇pα(x, tn) · ∇wi(x, tn)dx

=
∫

Ω
φρci(x, tn−1)wi(x, t+n−1)dx + ∆tn

∑

α=l,v

∫

Ω
c̄α
i (x, tn)ρ̄αqα(x, tn)wi(x, tn)dx.

(15)

Here wi(x, t+n−1) = limt→tn−1,t>tn−1 wi(x, t) takes into account that wi(x, t) might exhibit dis-
continuity in time at time tn−1. The Eulerian-Lagrangian formulation generate a symmetric and
positive-definite coefficient matrix and stabilize the numerical approximation. Except for the
first term on the right-hand side, all other terms in Eq. (15) are defined on a fixed grid. A char-
acteristic tracking of (14) is carried out only in the evaluation of the test function wi(x, t+n−1),
which does not distort the solution grid that in turn requires mapping the solution back to the
fixed pressure grid as encountered in some particle methods. Numerically, the test functions
w(x, tn) are often chosen to be the same at time step tn for all the components i. Since the
overall component velocity ui is component dependent, wi(x, t+n−1) differs from each other for
different i.

4. A phase-based Eulerian-Lagrangian formulation

In a multiphase, multicomponent flow and transport process, there are two coexisting and closely
coupled dynamic processes. One is the mass transfer of each component i between the liquid
phase l and the vapor phase v. The other is the transport process of each fluid phase. In this
section we present an alternative phase-based Eulerian-Lagrangian formulation by using the
mass balance equation (1).

Let wα(x, t) be space-time test functions defined for phase α. We write a space-time weak
formulation. A similar temporal discretization to (15) yields a phase-based Eulerian-Lagrangian
formulation

∫

Ω
φsαραcα

i (x, tn)wα(x, tn)dx + ∆tn

∫

Ω
ραD(uα, sα)∇cα

i (x, tn) · ∇wα(x, tn)dx

=
∫

Ω
φsαραcα

i (x, tn−1)wα(x, t+n−1)dx + ∆tn

∫

Ω
rα
i (x, tn)wα(x, tn)dx.

(16)

This phase-based formulation has similar properties to the component-based formulation (15),
but is defined for the primary variable cα

i not ci. The evaluation of wα(x, t+n−1) requires tracking
a phase-based characteristic curve rα(θ;x, tn−1) forward from time step tn−1 to time step tn,
where rα(θ;x, tn−1) is defined by the initial-value problem (14) with the right-hand side of the
differential equation being replaced by uα/(φ sα). A phase-based Eulerian-Lagrangian method
was developed in [15] for immiscible two-phase flow, aiming at eventually developing a phase-
based Eulerian-Lagrangian method for compositional flow. Other Eulerian-Lagrangian methods
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developed for immiscible two-phase flow (e.g., [8, 9, 16]) can also be viewed as phase-based
Eulerian-Lagrangian methods. In the context of compositional flow, a crucial issue encountered
in a phase-based formulation is how to evaluate the source term rα

i in Eq. (16), which accounts
for impact of the external sources and sinks as well as intraphase mass transfer of component i.
Unless this issue is resolved, a phase-based Eulerian-Lagrangian formulation cannot be used to
simulate compositional flow and transport process.

We propose a novel approach to circumvent this difficulty by taking the advantages of both
the component-based approach (15) and the phase-based approach (16). We choose the same
test functions w(x, tn) in (16) for both phases at time step tn. We then use the relations (9)
and (10) to sum (16) for α = l and v to obtain a phase-based Eulerian-Lagrangian formulation

∫

Ω
φρci(x, tn)w(x, tn)dx + ∆tn

∑

j

∑

α=l,v

∫

Ω
ρα ∂cα

i

∂cj
D(uα, sα)∇cj(x, tn) · ∇w(x, tn)dx

+∆tn
∑

α=l,v

∫

Ω
ρα ∂cα

i

∂pα
D(uα, sα)∇pα(x, tn) · ∇w(x, tn)dx

=
∑

α=l,v

∫

Ω
φsαραcα

i (x, tn−1)wα(x, t+n−1)dx + ∆tn
∑

α=l,v

∫

Ω
c̄α
i ρ̄αqα(x, tn)w(x, tn)dx.

(17)

We observe that the phase-based Eulerian-Lagrangian formulation (17) naturally eliminates
rα
i , and differs from the component-based formulation (15) only in the first term on the right-

hand side. Nevertheless, this difference may be substantial, especially in the context of complex
flow patterns such as countercurrent flows. In this case, the first term on the right-hand side of
the phase-based formulation (17) propagates the phase composition cα

i forward from time step
tn−1 to time step tn, and requires tracking the base-phased characteristic curves rl(θ;x, tn−1)
and rv(θ;x, tn−1) that could move in opposite directions. So the two integrals in this term are
generally evaluated on different domains for α = l and v. In contrast, the first-term on the
right-hand side of the component-based formulation (15) propagates the composition ci of the
fluid mixture from time step tn−1 to tn with the barycentric component velocity ui, and requires
tracking the component-based characteristic curve ri(θ;x, tn−1). Further research will be carried
out to study the physical, mathematical, and numerical properties of the component-based and
phase-based Eulerian-Lagrangian formulations as well as their comparisons and relations.

5. Numerical experiments

We conduct preliminary numerical experiments to perform an initial assessment on the feasibil-
ity and potential of the Eulerian-Lagrangian formulation. We also compare it with an explicit
upwind scheme and an implicit upwind method to gain a better understanding about the per-
formance of the Eulerian-Lagrangian scheme.

We simulate the transport of methane (CH4), propane (C3H8), and n-hexane (C6H14) flow-
ing in coexisting liquid and vapor phases in a horizontal reservoir Ω = (0, 1000) × (0, 1000) ft2

with a thickness of 1 ft over a time period of 20 years. The problem is for one quarter of a
five-spot pattern with an injection well located at the upper-right corner of Ω with a volumetric
injection rate of Q = 15 ft3/day. The production well is located at the lower-left corner with a
production rate of Q = −15 ft3/day. The porosity φ = 0.1 and the permeability K = 60 md.
The relative permeability kr,l = (sl)2 and kr,v = (1−sl)2. The effect of capillary pressure and the
diffusion-dispersion tensor is neglected. The initial reservoir pressure is 2100 psia and the reser-
voir temperature is 350oK. The composition of the resident fluid is cmethane = 0.5, cpropane = 0.2,
and cn−hexane = 0.3, which is in liquid phase at the given temperature and pressure. The com-
position of the injected fluid is c̄methane = 0.8, c̄propane = 0.15, and c̄n−hexane = 0.05, which is in
vapor phase.

In the numerical example runs, we use a uniform coarse spatial grid of ∆x = ∆y = 25 ft. We
use a time step of ∆tel = 1 year for the Eulerian-Lagrangian method, a time step of ∆tex = 2
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Figure 1: The mole fraction of n-Hexane at 5 and 20 years

(a) by Upwind at Year 5 (b) by ELLAM at Year 5

(c) by Upwind at Year 10 (d) by ELLAM at Year 10

(e) by Upwind at Year 20 (f) by ELLAM at Year 20
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days for the explicit upwind method that is the largest possible due to the CFL constraint, and
a time step of ∆tim = 1 month for the implicit upwind method. To gain a better understanding,
we convert the time steps to a dimensionless form, the pore volume injected (PVI). This is
defined to be the ratio of the volume of fluid injected during one time step over the overall void
space in the porous medium reservoir. The PVIel for the Eulerian-Lagrangian method is 0.054.
Namely, within 19 time steps the injected fluid will fill in the entire reservoir. In contrast, the
PVIex for the explicit upwind method is 0.0003. That is, the explicit upwind simulator needs
to use 3300 time steps for the injected fluid to fill the entire reservoir. The PVIim for implicit
upwind method is 0.0045. That is, the implicit upwind method needs 220 time steps for the
injected fluid to fill the entire reservoir. We present the plots for the overall mole fraction c1 of
methane, which is computed by the explicit upwind method, by the implicit upwind method,
and by the Eulerian-Lagrangian method at t = 5 and 20 years in Figure 1.

These preliminary numerical experiments suggest that the Eulerian-Lagrangian formulation
generates stable and accurate numerical solutions that have preserved physically reasonable
propagation fronts, even if a large time step of ∆tel = 1 year and a coarse spatial grid are used.
In this example run, the largest possible time step for the explicit upwind method is ∆tup = 2
days. With a very fine time step and the same spatial grid, the explicit upwind method generates
qualitatively similar overall mole fractions as the Eulerian-Lagrangian method but with a much
wider propagation front. The front in the diagonal direction from the injection well to the
production well is smeared out due to the transverse numerical diffusion. When we refine the
spatial grid and time step in the upwind method, we obtain numerical solutions that are of
similar qualitative behavior and are closer to the solutions by the Eulerian-Lagrangian method.
The implicit upwind method allows the use of a time step of 1 month. However, it generates
numerical solutions with even more numerical diffusion than the explicit upwind method.

Finally, it is instructive to compare the computational efficiency of the explicit upwind
method, the implicit upwind method, and the Eulerian-Lagrangian method. In the context of
multiphase component flow and transport processes, it is observed that all the three methods
consume comparable CPU time per time step, because all these methods have to solve the same
pressure equation and to conduct the same flash calculations that uses a large portion of CPU
time. These results demonstrate that the Eulerian-Lagrangian approach not only represents
the solutions properly, but also has obvious computational benefits compared to traditional
methods.
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