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Abstract: Using the Liapunov-Schmidt method and symmetry-breaking bi-
furcation theory, we compute and visualize multiple solutions of Lane-Emden
equation on a bounded domain of R2 with a homogeneous Dirichlet bound-
ary condition, which plays an important role in stellar structure and evo-
lution theory. The domains we consider here include the unit square and
the square cut by small square. Along with the nontrivial solution branches
of the corresponding nonlinear bifurcation problem bifurcated from its bi-
furcation points, numerical multiple solutions of Lane-Emden equation with
different symmetry are obtained and visualized.
Key words: Lane-Emden equation, multiple solutions, symmetry-breaking,
bifurcation, Liapunov-Schmidt reduction.

1 Introduction

In this paper, the Lane-Emden equations of index p{
∆u + up = 0, (x, y) ∈ Ω
u|∂Ω = 0, (x, y) ∈ ∂Ω

(1.1)

where Ω is a bounded open domain in R2, p > 0, are concerned. Equation
(1.1) describes the behavior of the density of a gas sphere in hydrostatic
equilibrium in appropriate units. The index p, which is called the polytropic
index in astrophysics, is larger than 1

2 . It means that no polytropic stellar
system can be homogeneous in galactic dynamics([3],[7]).

The critical point theory was applied to prove the existence and multi-
plicity of solutions under various assumptions([2], [10]). But what distribu-
tion and structure they have and how to compute them have attracted the
attention of many mathematicians, physicists and engineers. Due to the mul-
tiplicity, degeneracy and instability of the critical points with higher Morse
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index, the computation of multiple solutions encounters essential difficulties
and is truly challenging. Since 90’s of last century, numerical works to com-
pute numerical solutions of (1.1) appeared in the literature. The mountain-
pass algorithm, the scaling iterative algorithm ,the monotone iteration, the
direct iteration algorithm and the research extension method([4],[5],[6]) are
used to compute the solutions of (1.1). But in these algorithms “ good guess
of solution” of (1.1), which is a difficult task, is needed. Therefore only few
solutions of (1.1) are computed yet.

In this paper, we try to use the bifurcation method to overcome this
difficulty. Our main idea is to embed (1.1) into nonlinear elliptic BVP with
parameter λ of the form{

F (u, λ) = ∆u + λu + up = 0, (x, y) ∈ Ω,
u|∂Ω = 0, (x, y) ∈ ∂Ω.

(1.2)

According to the bifurcation theory (1.2) has nontrivial solution branches
which bifurcate from its bifurcation points, so we can compute the solutions
of (1.1) by using continuation method([1]) along these nontrivial solution
branches of (1.2) until λ = 0. Many new solutions of (1.1) with different
symmetry are computed by the bifurcation method.

An outline of the paper is as follows. In Section 2, the symmetry of
solutions of (1.1) and (1.2) is discussed in detail and the symmetry-breaking
bifurcation theory is used to classify the nontrivial solutions according to
their symmetry. In Section 3, the numerical algorithm is given. Finally, in
Section 4,numerical solutions of (1.1) with different symmetry for different
p and different domain are visualized. Most of numerical results here are
new.

2 Equivariance property of (1.2) and symmetry-
breaking bifurcation

In this section the nonlinear bifurcation problems (1.2) in domains which
have certain symmetry properties are discussed. For simplicity, we illustrate
the procedure with Ω = [0, 1]× [0, 1].

The symmetry group of a square is D4 = {I, R1, R2, R3, S1, S
′
1, S2, S

′
2},

where

Iu(x, y) = u(x, y), S1u(x, y) = u(x, 1− y),
S′

1u(x, y) = u(1− x, y), S2u(x, y) = u(y, x),
S′

2u(x, y) = u(1− y, 1− x), R1u(x, y) = u(1− y, x),
R2u(x, y) = u(1− x, 1− y), R3u(x, y) = u(y, 1− x),
Z2 = {I,−I}, Γ = D4 × Z2.
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Obviously, if p is odd, (1.2) is Γ-equavariant, i.e.

F (γu, λ) = γF (u, λ),∀γ ∈ Γ

and if p is even, (1.2) is D4-equavariant. Notice u ≡ 0 is trivial solution of
(1.2) with Γ-symmetry, ∀λ ∈ R.

The isotropy subgroups of D4-equivariant problem (1.2) are

D4 = {I,R1, R2, R3, S1, S
′
1, S2, S

′
2},

ΣR = {I,R1, R2, R3}, Σr = {I, R2},
Σ1 = {I, S1}, Σ′

1 = {I, S′
1},

Σ2 = {I, S2}, Σ′
2 = {I, S′

2},
Σd = {I,R2, S2, S

′
2}, ΣM = {I, R2, S1, S

′
1}.

The fixed point spaces of these isotropy subgroups and their bases list as
follows:

Fixed point space Orthogonal Bases

XD4
sin(2k − 1)πxsin(2k − 1)πy or

sin(2k1 − 1)πxsin(2k2 − 1)πy + sin(2k1 − 1)πysin(2k2 − 1)πx

XΣd
sin2kπxsin2kπy or

sin2k1πxsin2k2πy + sin2k1πysin2k2πx

XΣ1 sin2k1πxsin(2k2 − 1)πy

XΣ′
1 sin2k1πysin(2k2 − 1)πx

XΣr sin2k1πxsin2k2πy

XΣM sin(2k1 − 1)πxsin(2k2 − 1)πy

XΣ2 or XΣ′
2 sin2k1πxsin(2k2 − 1)πy + sin2k1πysin(2k2 − 1)πx

where k, k1, k2 ∈ Z+, k1 6= k2.
For each subgroup Σ of Γ the fixed point space XΣ of Σ is invariant

under (1.2) leading to the reduced problems

FΣ(u, λ) = 0, (u, λ) ∈ XΣ × R. (2.1)

Solutions of (2.1) are precisely the solutions of(1.2) with at least the symme-
try of XΣ. The symmetry-breaking bifurcation theory([8],[9]) tells us that
if there is a bifurcation point λ = λ0 and the corresponding eigenfunction
ϕ0 ∈ XΣ, then the nontrivial solution branch with Σ symmetry will bifur-
cate from the trivial solution at λ = λ0. The reduced problem (2.1) is very
useful in reducing the computational cost of determining the solution.

The reduced problems (2.1) in the fixed point space XΣ will simplify
the solved domain of the problem (1.1). At the same time, the boundary
conditions should change according to the underlying symmetry Σ. The
following is the table, which describes the solved domain and corresponding
boundary condition for different Σ in the reduced problem (2.1).
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symmetry domain boundary condition
Σ′

1 [0, 1
2 ]× [0, 1] u|x=0 = u|y=0 = u|y=1 = 0, ∂u

∂x |x= 1
2

= 0

Σ1 [0, 1]× [0, 1
2 ] u|x=0 = u|x=1 = u|y=0 = 0, ∂u

∂y |y= 1
2

= 0
Σr [0, 1

2 ]× [0, 1] u|x=0 = u|y=0 = u|y=1 = 0, R2u(x, y) = u(x, y)
ΣM [0, 1

2 ]× [0, 1
2 ] u|x=0 = u|y=0 = u|x= 1

2
= u|x= 1

2
= 0

ΣR [0, 1
2 ]× [0, 1

2 ] u|x=0 = u|y=0 = 0, Riu(x, y) = u(x, y), i = 1, 2, 3

Σ2
0 ≤ x ≤ 1, u|x=1 = u|y=0 = 0
0 ≤ y ≤ x ∂u

∂x |x=y − ∂u
∂y |x=y = 0

Σ′
2

0 ≤ x ≤ 1, u|x=1 = u|y=1 = 0
1− x ≤ y ≤ 1 ∂u

∂x |x+y=1 + ∂u
∂y |x+y=1 = 0

Σd

0 ≤ x ≤ 1, u|x=0 = 0
0 ≤ y ≤ 1

2 , ∂u
∂x |x=y − ∂u

∂y |x=y = 0
y ≤ x, ∂u

∂x |x+y=1 + ∂u
∂y |x+y=1 = 0

y ≤ 1− x,

D4
0 ≤ x ≤ 1

2 u|y=0 = ∂u
∂x |x= 1

2
= 0

0 ≤ y ≤ x ∂u
∂x |x=y − ∂u

∂y |x=y = 0

Table 1 The reduced problems for different Σ

Table 2 shows the numbers of the nontrivial solution branches of (1.2)
bifurcated from the bifurcation points λn,m = (n2 + m2)π2, (n,m=1,2,3,4)
and their symmetry.

bifurcation points
nontrivial solution branches
number symmetry

(2π2,0) 1 D4

(5π2,0) 2 Σ1,Σ2

(8π2,0) 1 Σd

(10π2,0) 2 D4,ΣM

(13π2,0) 2 Σ1,Σ2

(17π2,0) 2 Σ1,Σ2

(18π2,0) 1 D4

(20π2,0) 2 Σd,Σr

(25π2,0) 2 Σ1,Σ2

(32π2,0) 1 Σd

Table 2 Number and symmetry of nontrivial solution branches of (1.2)

3 Numerical algorithms

After discretization of (1.2) by the finite difference method, the Liapunov-
Schmidt reduction and the numerical continuation method can be used to
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solve nontrivial solution of (1.1). In general, these numerical algorithms can
be divided into three steps:

Step 1: The most important thing is to get nontrivial solution branches near
bifurcation points. The Liapunov-Schmidt reduction principle is used
to overcome the difficulty caused by the singularity near the bifurcation
point. Let

u = τ ∗ φ0 + w, η = λ− λ0

where λ0 is a eigenvalue of the operator ∆ on Ω, φ0 is the corresponding
eigenfunction and w has the same symmetry with the eigenfunction
φ0 satisfies 〈φ0, w〉 = 0, τ is small parameter. Next we solve extended
system: 

∆w + (η + λ0)w + ητφ0 + (τφ0 + w)p = 0,
w|∂Ω = 0,
〈φ0, w〉 = 0.

(3.1)

After discretizing (3.1) with the five-points difference scheme on an
equidistant mesh(h = 1

20), we can get the numerical solution of (3.1)
by using the Gauss-Newton method for different τ . Continuing τ until
u is far away from the trivial solution.

Step 2: Choose uend = τendφ0 + wend, λend = λ0 + ηend as a start point, we
solve {

F (u, λ) = ∆hu + λu + up = 0,
u|∂Ω = 0.

directly by the Gauss-Newton iteration, where λ is parameter.

Step 3: Continue λ until λ = 0, we get the solution u of (1.1) with different
symmetry and plot it.

λ0 = λn,m = (n2 + m2)π2 and φ0 = φn,m = sin(nπx)sin(mπy) are
chosen for Ω = [0, 1] × [0, 1]. We have also computed the solutions of (1.1)
in a modified unit square, which is the domain of an unit square cut by a
small square. There λ0 and φ0 must be computed numerically.

4 Numerical results

4.1 p=3

We have computed many solutions of (1.1) with symmetries D4,
∑

2,
∑

1,
∑

d,∑
M ,

∑
rforΩ = [0, 1] × [0, 1]. The solutions are obtained by using continu-

ation method along with the different branches of (1.2) bifurcated from the
different bifurcation points λ0. The solutions of (1.1) with different sym-
metries forΩi(i = 1, 2, ..., 9) are also computed by our methods ,whereΩ1

5



is the domain of Ω cutted by the square [0.25,0.75]×[0.25,0.75], Ω2 is the
domain of Ω cutted by the square[0.15,0.65]×[0.25,0.75], Ω3 is the domain of
Ω cutted by the square [0.15,0.65]×[0.15,0.65],Ω4 is the domain of Ω cutted
by the small square [0.45,0.55]×[0.45,0.55], Ω5 is the domain of Ω cutted
by the small square [0.15,0.25]×[0.15,0.25], Ω6 is the domain of Ω cutted
by the square [0,0.25]×[0,0.25], Ω7 is the domain of Ω cutted by the square
[0,0.5]×[0,0.5], Ω8 is the domain of Ω cutted by the square [0,0.3]×[0.35,0.65],
Ω9 is the domain of Ω cutted by two rectangles [0,0.3]×[0,0.35] and [0,0.3]
×[0.65,1].

4.2 p=1.5

Five solutions of (1.1) are computed for p = 1.5.
TheD4-symmetric solution of (1.1) on Ω,they are the D4-symmetric solution
of (1.1) on Ω1,the Σ1-symmetric solution of (1.1) on Ω8,the Σ1-symmetric
solution of (1.1) on Ω9,the Σ2-symmetric solution of (1.1) on Ω7.

Also, five solutions of (1.1) on different domains Ω, Ω1, Ω8, Ω9 and Ω7

are computed respectively for each case of p = 2, 4, 5.
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