Georg-August-Universitat
Gottingen

An utilization of a rough approximation of a noise covariance
within the framework of multi-parameter regularization

Frank Bauer, Sergei Pereverzev

Preprint Nr. 2005-38

Preprint-Serie des
Instituts fiir Numerische und Angewandte Mathematik
Lotzestr. 16-18
D - 37083 Géttingen




An utilization of a rough approximation of a noise
covariance within the framework of multi-parameter
regularization

FRANK BAUERY AND SERGEI PEREVERZEV?

1) Institute for Numerical and Applied Mathematics
University of Gottingen, Department of Mathematics
Lotzestr. 16-18
37083 Gottingen
Germany
Email: bauer@mathematik.uni-kl.de,

2) Johann Radon Institute for Computational and Applied Mathematics (RICAM)
Austrian Academy of Sciences
Altenbergerstrae 69
A-4040 Linz
Austria
Email: sergei.pereverzyev@oeaw.ac.at

Abstract

Regularization under the assumption of badly known noise covariance operators is a
demanding subject. In order to increase stability we propose a multi parameter regulariza-
tion scheme and a parameter choice rule accordingly. We can show that the new scheme
fulfills the same error bounds as the classically known ones.

Numerically we see that the new scheme is considerably more stable towards misesti-
mations of the covariance operator than the old one-parameter one.

AMS-Classification: Primary 62G05; Secondary 62G20, 65J20

Keywords: Multi-Parameter Regularization, Balancing Principle, Optimal Rates



1 Introduction

In this article we will study ill-posed problems. We want to recover an element zy from some
real Hilbert space X from indirectly observed data near yy = Az where A is an injective
compact linear operator with A : X — ). The space ) is again a real Hilbert space; both are
equipped with inner products (-,-) and norms || - || respectively.

Such inverse problems often arise in scientific context. One possible example is the down-
ward continuation problem [FGS98] arising in satellite geodesy where z( is a gravitational
potential on the Earth’s surface and g, is the same potential observed on some satellite orbit.

In practice indirect observations are measured usually in the presence of some noise, so
that we get y, given by

Ye = A-TO + 55 (1)

where £ is assumed to be a zero mean random element. This specifically means that for every
element f € Y we can observe ye(f) = (Azo, f) + &£(f) where £(f) = (&, f) is a random

variable in a probability space {2, P} with zero mean and variance <K 62 iLf > In this context

an operator Kg is called covariance operator and can be seen as a bounded self-adjoint non-

negative operator from ) — ) sucht that for any f,g € Y it holds E(¢, f) (£, 9) = <K§f,g> =

(K¢f, Keg) where E is the expectation with respect to the probability P.
The observation equation (1) with random noise £ means in fact that y¢ cannot be observed
exactly, but it can only be observed in a discretized form. To be more precise, instead of y;

we only have a vector (y!,vy?,...,y"™) € R™ with coordinates
y Yer Y ¢

yé:<y§afz>:<A$07f2>+<£,fz>a i:1,25"'ama (2)

determined by a design system {f;} C V.
When fixing a design {f;} we may rewrite (2) as

Pmy§ = PpAzo + Ppé, (3)

where P, denotes the orthogonal projection onto span{f;}i=1,..m- Note that (3) can be seen
as a perturbed version of a discretized equation

P Az = Pryo. (4)
A minimal norm solution z{" of (4) has the property

To — zh'|| = inf zo — x|l 5
|l — 20| sespani ATy m|| 0 —zl| (5)

Let



be a singular value decomposition of the operator By, = P, A. Here s;(By,), ¢i* and 9" are
such that

|[PrA|l = s1(Bm) 2 s2(Bm) = -+ 2 sm(Bm) > 0,
and

P AA*Ppp™ = s2(Bp )™, A*PLAp™ = s2(Bp)p™.

i

Moreover {9"}, {¢"} are the orthonormal bases of span{f;}i=i . m and span{A*fi}i=1 _m
respectively. Then

o = 3 57 (B) (W1 w0) (7

When dealing with discretized noisy observations (2) and (3) one can characterize a noise level
||Pr&|| in terms of the trace of P, K. ng which is a covariance operator for P,¢. Indeed

El|[Pné|* = Y By, 67 = Y (K7, i) = tr(PnKEPrn).
i=1 i=1

1/2
Then for € = & (tr(PngPm)) a well-known Chebyshev inequality yields

CEPagI?

P{||Pnéll > €} = P{||Pnéll* > *} o

For example, with 95% confidence

1/2
|1Pagll < 4.5 (tr(PrKEPm)) (®)
where we assume without loss of generality that tr(P, K ng) < 1. Thus to estimate the noise
level in (3) one just needs to know the trace of P,, K ng.
At the same time, in practice a covariance operator Py, K ng is usually used for whitening

or decorrelation of the noisy observations (3) (see e.g. [PP02]). After whitening an estimation
of zg can be found by solving a regularized equation

az + AP KZPp) ' Az = A" (P KEPr) 'y, 9)

which is a simple form of Tikhonov regularization with the regularization parameter a.

However, in practice one cannot expect that a covariance operator P, K ng will be known
exactly. For example in satellite geodesy, as it has been indicated in [KK02], the measure-
ment equipment on board of the satellite has never been validated in orbit. Furthermore
measurements are usually contaminated with an aliasing signal caused by the unmodelled high
frequencies. _

As a result only some approximation P, K ng of a covariance may be available which still
allows to obtain reasonable estimates for ||P,,&||, but its use instead of P, K ng in (9) leads
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to a very poor performance of the Tikhonov regularization as numerical experiments in [PP02]
show.

The objective of the present paper is to discuss a new way of the use of an approximation
P,K ng of the covariance operator which does not involve it in the estimation process, but
provides an almost optimal recovery of zy with a high confidence provided that the traces of
P.K ng and P, K ng are rather similar.

2 Multi-parameter Tikhonov regularization scheme

Using the orthonormal basis {¢;"} from (6) one can represent P, as
m
Pa= Yo u ).
i=1

Moreover, for any finite sequence {my}n=o,..as of integers such that
O:m0<m1<---<mM<mM+1:m (10)

the following orthogonal projections can be introduced (n € {0,...,M})

Mnp+1

Qu=Y_ """,

i=mn+1

which immediately yield

M
Pn=> Qn. (11)
n=0
We will call the traces PngPm and Pml?ng similar if there are two constants dg,d; > 0

and a finite sequence (10) such that for all n € {0,..., M} it holds

A3 tr(QnKZQn) < tr(QnKEQn) < di tr(QnKZQn). (12)

If PngPm is a covariance operator of the random noise P,,¢ and its trace is similar to the
trace of me? ng then it holds

Mp41 Mnp41
ElQuéllP = > E@P, 7= Y (PnKZPu™ ¢") = tr(QnKEQn) < di tr(QnKZQy)
t=mn+1 t=mn+1

Returning to the 95% confidence region the norm [|@,£|| can be estimated in terms of the
trace of P, K ng as

Mnp+1

1/2

t=mp+1



Moreover, with the same confidence we have

M 1/2
|Pnt]| <6, 6= (Z 6,%) : (14)
n=0

Furthermore observe that the solution z{"* of (4) admits a decomposition

M
ag =D ", (15)
n=0
where z{'" is a minimal norm solution of the equation
QnAz = Qnyo. (16)

On the other hand it can be seen from (11) that the discretized observations (2) and (3) allow
to construct a perturbed version of (16) for all n € {0,..., M}

QnAz = Qnye. (17)

Then a Tikhonov regularization scheme with regularization parameter «,, applied to (17) leads
to the equation

ant + A*QnAz = A Qnye. (18)

Its solution z7'™ can also be seen as the unique minimizer of the functional

HQHA'T_QH%HQ+O‘n||Sn$||2, (19)
where
Mnp+1
Su= Y ellelh).
t=mp+1

and {¢["} is a system from (6) which is forming an orthonormal basis in span{A* fi}i=1,..m =
span{A*Y" }i—1 . m. It is easy to see that the vector

T

el3

M
:Z$ZZ’, d = (a,-..,um), (20)
n=0

is the unique minimizer of the quadratic functional

M M
J(ﬁ,x) = Z (HQnAiB - Qny§H2 + O‘nHSMEHQ) = ||[PnAz — Pmy€||2 + Zan”‘snl'HQ-
n=0 n=0

Following [BRZRS03] one can consider a minimization of J(&,z) as a multi-parameter
version of a standard Tikhonov regularization scheme. Several heuristically motivated recipes
for the choice of @ = (aq,...,ans) have been discussed in [BRZRS03]. At the same time,



in the considered case the estimates (13) and (14) together with the special structure of S,
and @, allow to choose «;, independently from each other. We will show that choosing these
parameters in accordance with the strategy proposed recently in [MP03b] and [PS05] one can
obtain an accuracy which is optimal up to some constant factor. One more advantage of our
approach is related with a parallel treatment of the problems (17) that can be used for reducing
computational complexity.

The regularized solution will approximate the true z{* quite well only if the regularization
parameters are properly chosen dependent upon the noise level and the smoothness of z’.
Keeping in mind that z{* should fulfill the equation B,z = P,y it is natural to describe its
smoothness in terms of some smoothness index function ® on the spectrum B;;, B, by

2§ = B(B, B, (21)

as it was suggested in [Heg92], [DES98] and [Tau98]. The function ® here is continuous,
increasing and satisfies ®(0) = 0 and vy" is an element from span{tpgn }izl,___,m.

For later use we will briefly summarize some results from the theory of Tikhonov regular-
ization (see Th. 1, Th. 2, Prop. 3 in [MPO03b])

Lemma 2.1

Let 0(t) = ®(t)v/t. Assume that the function ®2((6%)71(t)) is concave and the function t —
t/®(t) is non-decreasing fort > 0. If z = ®(B*B)wv, ||v|| < 0, and ys is such that || Bz—ys|| < ¢
then

||z — (eI + B*B) ™" B*ys|| < 0®() + (22)

0
20a

and for cgpr = 071 2 balancing the terms in the above estimate it holds
/4 2p

(8
12 = (o] + B*B) " B'ys||? < 4007 ((92) 1 (4—92» -

Remark

Note that the assumptions of lemma 2.1 are satisfied for indez functions ®(t) =t#, 0 < pu < 1,
respectively ®(t) = (ln t_l)_y, v > 0, which are traditionally used in the regularization theory
as smoothness index functions.

For the sequel we will assume that @ fulfills the requirements of lemma 2.1 and consider
a class Py Ag(p) of solutions z* which admit a representation (21) with ||vf*|| = o. If 27 €
P, As(p) then from (6) it follows that

m

m
zg = Z (I'(Sz?(Bm)) (@i v5") i Z <(p§n,'z)6n)2 = 0°. (23)
=1 i=1

Moreover (23) yields that the solution z{'" of (16) can be represented as

Mp+1

zh' = Y B(sH(Bm)) (¢l v ol = B(A*QuA)ug™, (24)

t=mqp+1



where

Mp+1 M
v =Y gheM e g ll=e., Y e =2 (25)
t=mn+1 n=0

In our notation it means that z"" € Q,As(0n)-
Observe that if one applies a standard one parameter Tikhonov regularization to the noisy
equation (3) then from lemma 2.1 it follows that

e o 1 s —1 [ 62
sup s — (ol + BBa) Bl <409 (@) (1)) 9
T €PmAs(0) & ||Pmé||<d Y

Similarly from lemma 2.1 and (17), (24) and (25) with o" = 6! (2‘%) we have

1 82
sup swp [l —am P <ager (@) (1)) e
$6nn€QnA<I>(0n) & 1|Qnl|<0n " On

Then with probability (0.95) the accuracy of the regularized solution z% , where (_x)opt =
op

(ag? t af? . a%}t) given by a multi parameter Tikhonov regularization can be estimated as
M
m m 2 m m 2
s swp e -am P=3  sup sup  [laffn — o™ |
n

T €PnAs(e) & || Png|[<d n—07%0 "€QnAs(en) &[Qnl|<dn

3 (7 (£))
e 407,

< 242 (92)*1 ﬁl: 57%9%
=e 402 0

n=0

v (i (5)

here we use the concavity of ®2((#%)71(¢)), (14) and (25).

Comparing (26) and (28) one can conclude that if ®2((6?)~1(¢)) is strictly concave then
a multi-parameter Tikhonov regularization can potentially guarantee a better accuracy of
estimation than the standard one-parameter one.

Remark

At first glance the last result means that the number of blocks M must not be too big. However
in practice this will not pose too much trouble, we think. First of all, even if we are having
problems in one block it is rather contained there and does not spread to the others and is
comparably small because it is just a finite dimensional problem, i.e. although the likelihood
that something is going wrong increases with the number of blocks, the damage which is imposed
1s decreasing.

With some much more involved treatment along the lines of [BP05] it seems to be possible to get
similar results in expectation instead in probability. However comparing the multi-parameter
Tikhonov with the one-parameter version in this setting would be out of the scope of this article.



Unfortunately an optimal a priori parameter choice E)opt = (0‘1 (2%))”70. can sel-

domly used because the smoothness index function @ is generally unknown.

Therefore, the question is how to choose the regularization parameter without the knowl-
edge of ®. An answer can be found in [PS05] where a general parameter choice strategy has
been proposed. To describe this strategy we would like to remind that in practical applica-
tions the values of the regularization parameters are often selected from some finite geometric
sequence, say

m={an; =062¢",i=0,1,...,T}, g>1,

and corresponding regularized solutions zy'»  are studied online. In the considered case the
strategy from [PS05] consists in the choice of a;f € A as

o} = max{a,; € A} : |z, —zar || < an,] =0,...,i}
Remark
In practice it might be sensible to use instead of 2‘5" the quantity 2k tr(T"QnKQQn(T") ) where
T = (A*QnA — aS,) LA is the Tikhonov opemtor and Kk is some tuning parameter (see e.g.
[BP03]).

The following statement is a direct consequence of Theorem 2.1 from [PS05]

Theorem 2.2
Let (12), (21) and the assumptions of lemma 2.1 be satisfied. Then with probability (0.95)M
the bounds (18), (14) for the noise levels hold for all n and

leg'™ — 272 || < 122, 2(")
and in total

v 1/2
||z — 2% || < 129 (Z 9i¢>2(a%pt)> ,
n=0
where (_Jé>_|_ = (aé’,af,...,a;[).

Remark
Of course, the same adaptive parameter choice strategy can be applied to the one parameter
Tikhonov regularization when

= (al + A*P,A)"" A*Pye.

However, the same argument as in (28) shows that in this case the accuracy of the estimation
cannot be better than for the multi-parameter regularization.



One more issue is also worth to be discussed. Recall that the original goal was to recover a
solution z of the equation Az = yo. So we are interested in estimation of the norm ||z —rg, [|.
This estimation can be derived from [MP03a] and [MP05] under the additional assumption that
the smoothness index function ®(t) is such that ®2(t) is operator monotone on the interval
[0,b] with b > ||A]|%.

Recall that the function ¥ is operator monotone on [0,b] if for any pair of self-adjoint
operators U and V with spectra in [0, 5] such that U < V we also have U(U) < (V). As it
has been observed in [MP05], if 27 = ®(A*P,, A)v]*, ||[v5|| < o and ®? is operator monotone
then zf* = ®(A*A)vy with some ||vg|| < p. Then in view of (5) it is natural to assume that z
can be also represented in the form zy = ®(A*A)w, ||w|| < 1. Moreover it is easy to see that
the smoothness index function ® is operator monotone if ®? is.

Now using the formula (4) from [MP03a] with g,(\) = 1/ and a = s2,(B,,) we obtain

llzo — 23| < € (@(sm(Bm)?) + @ (|| (I = P) Al]*)) < 1@ (|| (1 = Pra) AlI?)
where the constants ¢ and ¢; do not depend on m. In particular we used the fact that
$m(Bm) < sm(A) < || (I — Pn) All.
Combining the estimation of ||zg — z{'|| with theorem 2.2 we obtain

Theorem 2.3

Let the assumptions of lemma 2.1 and theorem 2.2 be satisfied. Assume that ®(t)? is operator
monotone on [0,b] with b > ||A||? and zo = ®(A*A)w, ||w|| < o1. Then with probability
(0.95)M

M 1/2
1)
m 2 2a2(p—1¢ 9n
lzo — 23, || < c [ @(|(I — Pn)All7) + (nE_Oan) (0 (2gn))) ;

where {0} are the bounds for the noise levels (13) and c does neither depend on m nor on the

{0n}-

Before showing some numerical simulations we want to remark that in fact the multi-
parameter Tikhonov is situated somewhere in between classical Tikhonov and Spectral-cutoff.
Therefore we expect that at least in special situations the new method is not prone to saturation
effects which would be another considerable advantage in comparison to standard Tikhonov.

3 Numerics
In order to test the described method we have set up the following example problem:
e A is a diagonal operator with 255 elements and Eigenvalue decay k~*.

e Solution z( is a Gaussian random vector with Fourier coefficients decaying as k=2 along
the Eigen spaces.

e Splitting is chosen along m,, = 2"t! — 1 forn=1,...,M where M =T.



The noise was chosen as a Gaussian random vector with variance p=™ = 47" in the n-th
Block, error level § = 1076

For regularization we used the balancing principle; for more implementation details please
have a look to either [BP05] or with a slightly advanced treatment a forthcoming article
[BMO5].

The estimate of the covariance operator was chosen to be p~™™ in the n-th block where
we tried p € {4.5,5.0,5.5} which means we underestimate the error.

We generate 50 different solutions and for each of them we also generate 10 different
noisy input vectors. So we were treating 500 different problems for each case.

As comparison method we chose the single parameter Tikhonov regularization with co-
variance correction and parameter choice performed as well by the balancing principle.

For each value of p we have displayed in the first bar diagram on the z-axis the logarithm of
the relative error made for multi respectively single parameter Tikhonov; the y-axis contains
the number of problems falling in the particular case. The second plot always shows the
logarithmic ratio between the relative errors of multi- and single parameter Tikhonov.
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Figure 1: Case p = 4.5, log(relative error) Figure 2: Case p = 4.5, log(relative error
(white: multi, black: single) ratio multi/single)

3.1 Discussion

We observe the following facts:

If we just slightly underestimated the error (Case p = 4.5) both methods roughly behave
in the same way; sometimes one a bit better, sometimes the other a bit better but nothing
significant
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e If we underestimate the error considerably (Case p = 5.0) the situation changes com-
pletely. The multi-parameter Tikhonov still works and the one parameter Tikhonov
underregularizes the problem heavily. Therefore there is a difference of about 4 orders
of magnitude between the results. The two bumps are most likely due to the fact that
sometimes all blocks are regularized correctly and sometimes one block fails.

e When we underestimate the error heavily (Case p = 5.5) both methods do not work
any more (as expected). However there is still a qualitative difference between the two
methods. The multi-parameter Tikhonov is about two orders of magnitude better than
the one parameter scheme.

Concluding we have that the newly proposed method works very well, even in expectation.
As long as the estimation of the error is not too bad it is competitive two one of the mostly
widespread used methods. When the error estimation gets worse there is a region where the
new method still works whereas the old one-parameter scheme bails out. Thus, the new method
seems to be much more robust in comparison to the old one.

Interestingly according to our numerical simulations it is likely that the difference between
the solution of the new and the old method is a good indicator whether the estimate of the
covariance is good or not. Every time when it was bad the difference was large, i.e. we had
(statistically seen) no wrong pairs of solutions which were close together.
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