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Abstract

In many geoscientific applications one needs to re-
cover the quantities of interest from indirect obser-
vations blurred by colored noise. Such quantities of
interest often corresponds to the values of bounded
linear functionals defined on the solution of some ob-
servation equation.

For example, various potential quantities are de-
rived from harmonic coefficients of the Earth’s gravity
potential. Each such coefficient is the value of corre-
sponding linear functional.

The goal of the paper is to discuss a new way
to use information about noise covariance structure
which allows to estimate the functionals of interest
with order optimal risk and does not involve a covari-
ance operator directly in the estimation process. It
is done on the base of a balancing principle for the
choice of regularization parameter which is new in
geoscientific applications. A number of tests demon-
strate its applicability.
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1 Introduction

The question addressed in the present paper is:

How can colored observation noise be taken into
account properly without direct access to a noise co-
variance operator?

This question is prompted by satellite missions
such as GRACE(1998) and GOCE [Eur99], launched
or planned, respectively, aiming to develop a model
of the Earth’s gravity field from satellite gravity ob-
servations.

These observations are used to determine the grav-
ity field, which in mathematical terms leads to the
observation equations written as a standard Gauss-
Markov model

Y’ = Az + 5¢ )

Here z is the unknown gravity potential at the Earth’s
surface which should be recovered from noisy observa-
tions y® where ¢ is a Gaussian random variable with
zero expectation B¢ = 0 and covariance cov(&) = Kg;
the a priori variance is denoted by 6.

Due to the huge number of observations and un-
knowns it is reasonable to consider (1) as an opera-
tor equation in Hilbert spaces with compact operator

A mapping from the solution space X into the ob-
servation space ) equipped with the corresponding
inner products (-,-) and norms || - ||, respectively. In
this context the covariance operator is a bounded self-
adjoint non-negative operator K¢ : Y — )Y such that
for all f,ge Y

E(f,£)(9,¢) = (Kif,9) = (Kcf, Keg).  (2)

A much more detailed description of the under-
lying physical and mathematical problem in the case
of satellite-to-satellite tracking (GRACE) and satel-
lite gravity gradiometry (GOCE), respectively, can be
found e.g., in [Fre99].

As A is compact it is not continuously invertible
(see e.g., [EHN96]) and we are facing an ill-posed
problem which in this context is normally referred
to as “downward-continuation”.

1.1 Noise models and regularization

In any discretized version of (1) the ill-posedness is re-
flected in the ill-condition of the corresponding nor-
mal equation matrix. Ill-conditioned normal equa-
tions are not new in Geodesy, especially when satel-
lite observations are used for gravity field estimation,
see e.g., [KK02].

So far, various algorithms for computing a regular-
ized solution have been proposed in connection with
the determination of the gravity filed on the Earth’s
surface from space-borne geodata. Truncated singu-
lar value decomposition, Tikhonov regularization and
least-squares estimation (LS) with stochastic prior in-
formation are among the widely used regularization
methods.

LS-estimators for the gravity field recovery have
been discussed recently by [PP02] and by [KDBO03].
At the same time the authors of the latter paper point
out that this approach can be used only if the covari-
ance operator is known exactly.

Tikhonov regularization and truncated singular
value decomposition are more robust with respect to
misspecification of the noise. The results from [LKBO1]
indicate that the knowledge of just § will not guaran-
tee to obtain a good solution, and the choice of the
regularization parameter for these methods is a severe
topic.

At the same time, for new satellite missions, such
as GOCE, one cannot expect to have a good descrip-
tion of the noise covariance. Indeed, as it has been
indicated by [KK02] the measurement equipment on
board of the GOCE satellite has never been validated
in the orbit and it is likely that it will be contaminated



with an aliasing signal caused by the unmodeled high
frequencies of the gravitational field.

Furthermore numerical experiments as reported
by [PP02] show that the use of a rough approximation
of the covariance operator in the Tikhonov regulariza-
tion scheme leads to a very poor performance.

Therefore one needs algorithms, which are capable
to deal with different noise models. In this study we
shall present one, which intrinsically separates com-
putation and adaptation to unknown noise as well as
to unknown smoothness of the solution to (1).

1.2 Data functional strategy

In some cases one is not interested in completely know-
ing x, but of some derived quantities of it, only. As it
has been pointed out by [And86] such derived quan-
tities often correspond to bounded linear functionals
L(z) of the solution z. For example, for the success
of the GOCE mission it will be sufficient to obtain an
accurate estimation of the Fourier coeflicients of the
gravity potential up to degree 300. Each of these co-
efficients is the value of a corresponding linear func-
tional. Another example is the gravity potential at
some fixed point of some region of interest.

We present a solution to this problem using the
data-functional strategy, as introduced by [And86]

The idea is as follows. Instead of computing an
approximate solution z° for any set of data y’ and
then evaluate L(z?) = (I,2°) where [ is the Ritz
representer of L, we find a suitable Ritz represen-
ter of the functional on the data, say z such that
(I,2°) ~ (2,4°). The advantage is obvious. Once z
has been determined, the evaluation of (z, y5> is fast
and stable.

The original idea by [And86] was to find z from
the equation

l=Az. (3)

However such a z need not exist. Therefore we con-
struct z = z, regularizing (3) by some reasonable
regularization method.

At any parameter a the error can be computed
exactly as

1.3 Outline
The outline of the study is as follows.

e We first present the algorithm in section 2 and
indicate its behavior, which crucially depends
on some known bound on the covariance, but
adapts to the underlying smoothness.

e In section 3 we shall exhibit how the error be-
haves when smoothness is given in terms of gen-
eral source conditions.

e In section 4 we compare the impact of different
kind of error models on the achievable conver-
gence rates.

e In section 5 we will describe how one can esti-
mate the necessary information about the noise
behavior and the impact of estimation errors.

e We present computational results in section 6
and conclude with some discussion in section 7.

2 The adaptive algorithm

2.1 Description of the algorithm

The design of the algorithm starts from the bias-
variance decomposition (4).
The algorithm is based on some ordered set

AM:{ai:0<a0<a1<...<aM}

of regularization parameters, say a for Tikhonov reg-
ularization, or iteration number, say n for some iter-
ative schemes.

To be specific we focus on Tikhonov regulariza-
tion, thus we let z, := (al + AA*)™" Al for the data
functional strategy and compute successively z, along
a € Ay It remains to select a.

We are going to present a method (balancing prin-
ciple) for the adaptive choice of ay € Aps. As we will
see such an a4 can be chosen without any a priori in-
formation concerning the smoothness of the unknown
solution.

The idea of our adaptive principle has its ori-

]E|(l,:c) _ <2a,y5>|2 =|{,z) — (za,Aw)|2+62||K§za||2. gin in the paper by [Lep90] devoted to the statis-

It is well-known and will be crucial in our analysis
below, that the bias |{l,z) — (24, Az)| = 0 as a = 0,
under natural assumptions on the smoothness of [
and the solution z, even when A*z = [ itself has no
solution.

4) tical estimation from direct observation blurred by

Gaussian white noise that corresponds to (1) with A
and K being equal to the identity. In the context
of general statistical estimation this idea was real-
ized in [GP00, Tsy00, Bau04] and [BP05]. But only
the Gaussian white noise model, corresponding to the
case K¢ =1 has been discussed there.



The algorithm requires partial knowledge on the
covariance, specifically a valid bound

[Kezall <1/a),  a€An, ()

for an increasing function 2 which obeys Q(0) = 0.

Remark 2.1 Notice that z, is independent of any
data, and the required bound can be estimated accu-
rately for any underlying model assumption on the
noise as it will be discussed in section 5.

We assume that 0 < § < 1 is sufficiently small.
Choose ¢ > 1, let ag = Q7'(9), M ~ In(1/Q71(3))
and consider Ay = {a; = ao¢’, i =0,1,..., M}

Let A%‘s be the set of all &; € Ay such that

Q(as)
aer{xliaEXAM {|<zaj>yd> - <zaiay6>| s } < 4k,
(6)

where  is a tuning parameter which will be specified
later on.
The regularization parameter o is chosen as

o = max {aj, aj € A?f} . (7)

2.2 Optimality properties of the algo-
rithm

The choice of the parameter a according to (7) has
the following remarkable properties, which will be de-
scribed in terms of admissible functions, introduced
as follows. We start with the bias-variance decom-
position from (4). As discussed there it is natural to
assume that there is a function ®(a) = ®(a, z, 4,1),
which is non-decreasing, continuous and obeys 0 =
®(0) < ®(a) <1 and

|<l_A*ZQJ'Z.)| Sé(a% a>0. (8)
In view of the error representation (4) the quantity

eg (.’L', za: AM)
2

Q(a)?”’

:= inf {<I>(oz)2 + ® admis.,a € AM} , (9)
is the (square of the) best possible accuracy for es-
timating (l,z) by the data functional strategy zq,
a € Ay using the bound (5).

To establish the error behavior we need the fol-
lowing technical assumption on (t), valid in a vast
majority of cases. It increases not faster than with a
power rate, i.e. t72 < Q(t) < t%1. This means in par-

Theorem 2.1 Under the above assumptions on t —
Q(t) we have

E|<l7$> - <za+7y6>|2 S
36p°k’e} (2, 2o, Anr) +co In[1/Q1(5)] exp x7/8),

where cg is an absolute constant.

Proof
Let ® be an admissible function. Consider

Qj, = Otjo(q)) = max{a,- € Ay ‘I)(OLZ) < 5/9(0&,)},
and
aj, = aj, (®) = argmin {<I>(a,-)2 + 52/9(0%)2,041' € AM} .

As in [BP05, MP05] this leads to

E|<l7$> - <za+7y6>|2 S

3652k . K2
SICINE +coIn[1/Q77(d)] exp <_§) ,

and it is enough to prove that

52/9(051'0)2 < p2 ((I)(O‘j1)2 + 52/Q(aj1)2) ’ (10)

because then the statement of the theorem will fol-
low from the fact that ® is an arbitrary admissible
function.

If o, < aj, then 6/Q(aj,) < 6/Q(e;,) and (10) is
obviously satisfied. Otherwise oj, < aj,+1 < oy, and
by definition of a;, it holds true that 6/Q(ajo4+1) <
(ﬁ(ajo+1) and

& < 2 0 <P*®(ajot1)?
Q(aj0)2 =P Q(ajo+1)2 =P Jot
62
Sp2¢a'12§p2(¢a'12+ )7
( J ) ( J ) Q(aj1)2

which completes the proof.

In order to obtain the best possible rate we need to
balance k%e3(z, zo, Apyr) and In[1/Q71(8)] exp (—%2)
This balance will be achieved for different values of
&, depending on different kind of ill-posedness of the
problem.

Arguments as in [Bau04, BP05] give the following
result.

Corollary 2.2 Suppose (1) is a moderately ill-posed

ticular that there is a constant p = max,,ea,, Q(@ir1)/Q(a;problem, i.e., es(z, 24, Ap) = O(G*) for some 0 <



i < 1. Then, for a problem dependent constant d,
and setting k = 44/dIn1/§, we obtain

E|<l,m) — <za+,y6>|2 < ¢ (In1/6) eg(x,za,AM),

where ¢y is independent of 6.

This means in particular that in the power scale the
accuracy of our adaptive data-functional strategy is
of the same order as the best possible one.

Corollary 2.3 If (1) describes a severely ill-posed
problem, i.e., e5(z,zq, Apr) = O (In™* 1/8) for some
i > 0. Then, for a problem dependent constant d,
and with k = 4,/dInln1/d we obtain

]E|(l,x) — (za+,y‘5>|2 < c1 (Inln1/6) e3(x, 24, Anr),

where ¢y is independent of 6.

Again, measured in the logarithmic scale the accuracy
of our adaptive data-functional strategy is of the same
order as the best possible one.

3 Error analysis under general
source conditions

In both cases as discussed in Corollaries 2.2 and 2.3,
up to a lower order factor the quantity es(x, 2o, Aar)
from (9) determines the rate of approximating the
unknown value L(z) based on observations y°. Hence,
it is interesting to discuss this in more detail in some
mathematical framework.

Apart form the noise properties the achievable ac-
curacy for estimating (I, z) is essentially determined
by

e the smoothness of the unknown solution z,
e the smoothness of the Ritz representer | and
o the degree of ill-posedness of the operator in (1).

The benchmark for the smoothness of z is provided by
the Picard-Criterion, which is based on the singular
value decomposition of A from (1) as

oo
Aw:Zaj (vj,x)u;, zek, (11)

j=1
For the sake of simplicity we will assume in the sequel
that the orthonormal systems {u;} and {v;} form
bases in the spaces ) and X, respectively, such that
A is injective and has dense range. This assumption

is satisfied for the satellite gravity gradiometry case,
see e.g. [FP01] and [PS99].

3.1 Measuring smoothness through gen-
eral source conditions

Picard’s criterion asserts that for an operator A with
singular value decomposition (11) and ker(A) = {0}
the equation Az = y has a unique solution z € X if
and only if

o

> Kugsy)f ay? < oo. (12)

=1
In this case the solution is given by

(o9}
(uj,y a v]
Jj=1

One can impose additional smoothness of z by enforc-
ing additional summability properties of |(u;, y)|2

Precisely, let ¢ : [0,]|A*A||] - RJ be a non-
decreasing function with ¢(0) = 0. If

o0
3w, ) /la2e(a2)?] < oo,
Jj=1

then the following expression is finite and gives rise
to

2 {vj, ) (uj, y)
x||% = = < oo, (13)
Il =2 | 5@y | = & fasela
a norm on X. In particular, z = A~ 'y ca (for—
mally) be represented as x = Z;’il p(a3) (vj, )
p(A* A)r, for some
oo
Z ’UJEX with ||r|| = ||z||, < co.

Thus the additional smoothness of x can be expressed
as

2 € A (R) = {v € X v = p(A* A, ||ull < R},
which is called source condition.

Please note that the set A, (R) is just the ball of
radius R in a Hilbert space X, = {v : ||[v]|, < o0}.
The variety of spaces constructed in this way has been
studied frequently, see e.g., [MP03]). In particular we
mention that the dual space of X, is given by &}/,
and X is embedded in A}/, whenever 0 <) < 1/¢p.
Therefore we assume that the solution functional [
obeys | € Ay(Ry) for some 0 < ¢ < 1/¢p, in order to
ensure that the linear functional (I, z) is well-defined
for x € A,.



Remark 3.1 The fact that x belongs to a specific
Sobolev space can be reformulated in terms of general
source conditions, see e.g. [PS99].

3.2 Finding admissible functions ¢

If both the solution z and the solution functional [ are
given in terms of source conditions as in section 3.1,
then we can find admissible functions, bounding (8).

Precisely, let z, = (ol + AA*) " Al = A(al + A*A) 1.

Proposition 3.1 Suppose that x € Ay (R) andl €
Ay(Ra). If X = o(N)Y(X)/ X is non-increasing then
the function a — RRip(a)y(a) is admissible.

Proof
Using spectral calculus we have for z = ¢(A* A)v and
I =y (A*A)u the bound

(I = A*za, ) |

= [((1 - 4" A(al + 4" 4) " )p(A* A)u, (4" A )|

=q« ‘<90(A*A) (al + A*4)" 1/)(A*A)U,1;>‘
< allul| [[o]] [¢(A*A) (ol + A" A) " (A" A)||
<aRR; sup |(a + )\)_lcp()\)w()\)| .
A€[0, ]| A* Al]

For a non-increasing function A — @(A)1p(X)/A it
has been shown in [MPO03] that

a sup |(a+ )oY N)] < pla)p(e),

A€[0,[|A* Al[]

and the proof is complete.

Remark 3.2 If in contrast the function A — @(X)p(N) /A

is non-decreasing there is a constant ¢ = c(||A]|) such
that

[(@+ X)WV < ca,

a  sup
A€[0,]|A*A[]]

where we refer to [MP03], again. Hence in both cases
(8) is satisfied, although with different rates.

Similar results hold for other regularization methods
such as truncated singular value decomposition.

3.3 Finding 2: Bounding the variance

It was mentioned in remark 2.1 that bounds for ||K¢z, ||
can be obtained in many cases. Here we highlight
some particular case, suited to the present setup.

Let K¢ and A be related in such a way that for
some non-decreasing function, known a priori it holds
true that

IIKe fI] < llo(AA™) f1],

Assumption (14) is fulfilled in several important cases
of interest. For p(A) =1, X € [0,||AA*||, this reflects
the boundedness of K¢, as e.g., for Gaussian white
noise.

We denote the set of self-adjoint non-negative op-
erators K¢ which fulfill (14) by K, (A).

Remark 3.3 It has been observed by [Bit05] that the
assumption (14) is equivalent to

forall feY.  (14)

range(K¢) C range (o (AA")).

We discuss condition (14) in some particular case
when the (random) Fourier coefficients (u;,§) are in-
dependent random variables. In this case, for an op-
erator A with singular value decomposition (11) and
for any ¢ # j it holds true that

(K2ui,u;) = E(u; ,€) (uj,€) = 0.

Thus, in the basis {u;} the operator K¢ is diagonal,
and its singular values k; are given by

K =E|(u;,0), j=12,...

Then assumption (14) imposes bounds
kj < Q(a?)7

in terms of the non-decreasing function g. Of course
the above reasoning extends to the situation, when
both K¢ and AA* can be diagonalized in a common
basis.

Furthermore, assuming the independence of the
(random) noise Fourier coefficients for the basis that
diagonalizes some design matrix it is reasonable to
construct a covariance prior using the same basis as
this has been done in [FM02]. Then assumption (14)
is automatically satisfied for some p.

We shall see next, that (14) induces a function ,
required in (5), in a natural way.

Let z4 be obtained using Tikhonov regularization.

Proposition 3.2 Letl € Ay(R1) and K¢ obey (14).

If X = o\ Y(X) [V is non-increasing and v/ Ap(N)ih(\)
is non-decreasing then assumption (5) holds for

Q(e) = Va/ (2R10(a)y(a)) -

j=1,2,... (15)



Proof
For [ from above property (14) yields

K¢ zall <|le(AA™)(al + AA™) Al
=[|(A*4)! /2 o(A* A) (ol + A*A) " p(A* A)ul|

<R sup  |[Vae(N)(a+XN) TN
AE[, [ A% Al

Here we use the fact that for any continuous function
g it holds g(AA*)A = Ag(A*A) and for any f € X
we have [[Af] = [|(A* )2 ||

If we now assume that A — o(A\)¥(\)/v/) is non-
increasing, then from [MP03] it follows that

sup VAW (@ +X) (V)| < 20(@)v(@)/Va,

A€[o,[|A~Al]]

which completes the proof.

3.4 Bounding the error from above

The descriptions of admissible functions given in propo-
sition 3.1 and for Q from proposition 3.2 allow for an
error estimate.

The following function turns out to be important.

Let
8,()) := Vap(N) /o),

Precisely we state

A>0. (16)

Theorem 3.3 Let a = ag be the solution to the equa-
tion p(a) = do(a)//a, ie as = 0,(5). Under
the assumptions of propositions 3.1 and 3.2 there is
a constant C such that as § — 0 we have

2 _ _
E[(l,2) = (zas:4°)|” < Cp*((6,)(8))%*((6,) " (6))-
Proof

Under the conditions on ¢, v and g indicated in propo-
sitions 3.1 and 3.2 for any =z € A,(R), | € Ay(Ry),
and K¢ € K, (A) we have

VE| (1, z)

(2o, Az + 6&) |2
< RiRp(a)p(a) + 2R1d0(a)p(a) /v
< ap(a) (p(a) +do(a)/Vea), a>0,

where z, is the data-functional strategy based on
Tikhonov regularization. The choice of a from above
provides us with the desired upper bound.

This results exhibits the same error behavior as ob-
tained by the Lepskii-type balancing principle, al-
though that works without a priori knowledge of the
smoothness.

3.5 Bounding the error from below

It is interesting to see, that the upper bound provided
in theorem 3.3 cannot be improved, at least asymp-
totically. To avoid degeneracies we have to compute
the supremum over covariances and solution function-
als within the classes described above. Precisely we
introduce the modulus of continuity by letting

T(? ((P, ¥, Q) =
sup sup inf  sup E[(l,z) <z,y5>|2_
K€K, (A)I€Ay(R1) 2 z€AL(R)
(17)

The same arguments as in [Don94] lead to

75(p, ¥, 0) >

B sup {4 )a] s € Ay (R). || el] < 6.

( 4)

The latter sup can be estimated in the same way as
in [MPO03] and provides us with the following lower
bound. Recalling the function 6,(\) from (16) we
get:

Proposition 3.4 Assume that

o there is a constant 0 < o < 1 such that for the
singular values a; of A as described in (11) we
have a;y1/a; >0, i=1,2...,

e the functions ¢ and ¢ fulfill p(2)) ~
P(2X) ~ ¥(N)

o the function @*((62)~
cave.

p(A) and

(X)) is con-

LN ((07)~

Then there is co for which

75(, 9, 0) 2 20((8) ™1 (9)¥((8,) 7 (6)),

We summarize our analysis in the following

as 6 — 0.

Corollary 3.5 Let the assumptions of propositions 3.1—
3.4 be satisfied. Then

75(, 9, 0) < 9((6,) 7 (8))9((6,)7 (),

as § — 0.

The order of the minimaz risk 75(p, 1, 0) is realized by
the data-functional strategy z, with the regularization
parameter a = 0,1 (0) chosen independently of ¢ and
le Ay(Ry).

The same order is attained when choosing the reg-
ularization parameter from (7), adaptively.

We close this section with a specific example, corre-
sponding to a moderately ill-posed problem.



Example

Assume that the singular values of A, cf. (11), are
decaying with a power rate, i.e. a; ~ j~". Assume
also that @(X) ~ A, ¥(u) ~ A and o(A) ~ A4, In
this context z € A, is equivalent to z belonging to
some Sobolev space.

Now we have that 6,(\) ~ A*—A+1/2 and, under
the condition that 8 —1/2 < p, v+ < 1/2 and
—u < v, corollary 3.5 provides us with the order of
the minimax risk as

75(ip, ), 0) = 6T as § — 0. (18)

4 Comparison of Different Noise
Models

4.1 Statistical noise vs. deterministic
one

It is interesting to compare the accuracy of recon-
structing L(z) = (I, z), both under statistical noise,
as this was done here, and under bounded determinis-
tic noise, i.e., when ||£|| < 1, a usual setup for study-
ing ill-posed problems.

For statistical noise it follows from (15) that

o0 o0 o0
Bl =Y Bl (u;, ) P <D % a)) x Y i
j=1 j=1 j=1

(19)
Thus, for § > 1/4r the random element £ has a strong
second moment E||£[|> < oo and can be regarded as
an element from the observation space ), thus suits
the deterministic noise model. For such a noise model
the analogue of the minimax risk at any functional [
is defined as

o, p,0) = inf  sup sup |(I,2) - (2,%°)],
2 zeA,(R) |lg]I<s

and the quantity 78 (p, ) := SUPje 4, (Ry) st (1, p, 1)
must be compared to the modulus from (17). We
know from [EN94, MP02] that

Tget ((,0; ¢) = 6(2u+2u)/(2u+1) .

Again, from (19) and for 8 € [0,1/4r] the noise gen-
erating random process £ does not take values in the
observation space ), a.s.

From this point of view such a noise is stronger
than a deterministic one. Nevertheless, for the Gaus-
sian white noise corresponding to 8 = 0 the order of

the minimax risk (18) coincides with the order of its
deterministic counterpart.

This result is not new. [Don94] observes that the
minimax risk of statistical estimation from observa-
tions blurred by a Gaussian white noise has the same
asymptotic behavior as its deterministic counterpart.

It looks surprisingly enough that for colored noise
& with 8 €]0,1/4r[ it is possible to obtain a bet-
ter order of accuracy than for the deterministic noise
model. This is because in this case it is very improba-
ble that the error concentrates in the high frequencies,
actually it is expected to get smaller there.

So information about the noise covariance struc-
ture, as given by g in (14) is important and can essen-
tially improve the performance of the data processing.

4.2 Local vs. global solutions

One more important fact should be pointed out. Dis-
cussing inverse estimation from noisy observation it
is reasonable to distinguish global and local regular-
ization. Within the global regularization one tries to
recover the whole solution z as an element of some
space X. In the local regularization, as discussed
here, the goal is to specify only some details such as
a point value or some wavelet or Fourier coefficient,
respectively.

For colored observation noise local regularization
allows to obtain better accuracy than for determinis-
tic noise in contrast to global regularization. In [MP05]
it has been shown that under the same assumptions
as above the best possible (global) accuracy for the

deterministic noise model has the orcggr 1) niT while
for colored noise it is of order §2«+1+177=3F for 0 <
B < 1/4r.

This means in particular that colored noise will
not improve recovering the whole solution but it will
enhance recovering some local details.

5 Noise Behavior

For the adaptive choice of the regularization param-
eter oy according to (6) the quantity §/Q is of high
importance. It roughly describes the error behavior
with respect to regularization. First we will give a
couple of possibilities of obtaining § /€2 in practice and
then discuss the impact of estimation errors.

5.1 Estimation

As (5) indicates we need §||Kgz,|| < 6/Q(a) for all
a € Ap. Therefore we will try to estimate 6||K¢za||



instead of §/Q(a).

5.1.1 Knowing K,

If we already know K, by some other means, then we
can directly compute 6||K¢zy|| and hence §/Q(a).

Please note that due to just considering ||Kezq||
this is much more stable towards misspecification of
K, than taking K itself as in other regularization
procedures.

5.1.2 ARMA(p,q) Models

The quantity 6|| K¢z, || can be estimated for ARM A(p, q)

models in a number of cases which have been exten-
sively discussed in [KDBO03].

5.1.3 Several Data Sets

Any method for estimating E| (¢, z,) |? can be used in
order to get the necessary information about ||K¢zq /|-
A particular easy and feasible possibility is the follow-
ing one:

When we regard satellite missions we are often in
the situation that we have a large number of data
points which can be parted into several independent
data sets. If we assume that & and &; are independent
and generated by the same random process, then the
respective data sets y¢ and y3 obey

]E| <Za7yf> - <za7y(25> |2
= 0%E (20, &1 — &)° = 20%||Keza .

5.1.4 Locally known Data

Sometimes we are in the situation that we have a
very accurate knowledge of small parts of x but no
information about the other parts of z, e.g. looking
at terrestrial measurements. Assuming that the noise
situation in this small part I'p,r is the same as on the
whole of I and remembering that

(f,9) = /ng dw

we can define a subset inner product by

(f2 9 part :/r fg dw

This directly leads to
Bl (za, AT + 0&) pary — (Zar AT) pont |?

2 1dw\ 2
= B |z, z(hﬂ—ﬂam&%m

part

Jp ldw

5.2 Estimation Errors

Denote the estimated version of §/Q by 4/Q. Note
that k is also dependent on § and hence we addi-
tionally get an estimated version k. By setting x =
(k0/92)/(k6/Q) we get a modification of the balanc-

ing principle (6). Let A% be the set of all a; € Ay
such that

Q) ~
which is equivalent to
Qo ~
o an?‘eXAM { |<Zaj ’ y6> - <Za,- ’ y6>| (glz) } S 4 (K/X(a_])) ’

(20)
oy € A%}

This means in particular that we can see the ran-
domness in the estimation of /0 as an additional
factor close to 1 which enters our equations as mod-
ification of k. In particular this means that with the
“tuning” parameter kX instead of k theorem 2.1 still
holds.

Now define a maximum Y4z = MaXgeA,, X(Q)
and a minimum X, = mingea,, X(a) and assume
that there exist constants C; and Cs where the second
one can be chosen big enough independent of § such
that the following properties hold:

and ag = max{aj,

P{Xmaz > 7} < C1 exp (=C3 (1 — 1)) (21)
and
P{x,}, > 7} <Ciexp(=Cs(r—1)) (22)

Furthermore X = (Xmaz, Xmin) Shall be uncorrelated
to the noise element £.
Then we have

Lemma 5.1 If (1) describes a severely ill-posed prob-
lem, which means

es5(2, 20, Anr) = O (In"#1/9)



for some 0 < pu, then for a problem dependent con-
stant d (which can be precomputed) and

k=4vVdInlnd-1

we have for § small enough

E, E; ‘(l,w) - <za;,y5>|2 < ¢y (lnln 1/(5)2 eg(:c,za,AM),

where co is independent of 4.

Proof
As x was assumed to be uncorrelated to £ we have

By (B [(,2) = (oo 0)[ ) < B 0D,

where the function II(y) is defined as

TI(x) =C (Ing~1)#o Xmin 100" 4
fonm (ln In 6*1)2 eg(x, Zas Anr)

for some constants C and pg independent of é and
as proved in theorem 2.1.
Now we introduce functions II; and II, as

_1\2ut+po—x2,;, Inlng—?
II; (Xmin) = (1115 1) proTx
and

I, (Xmaw) = X?naz:

hence

(x) = C (In1/8) " Iy (Xmin)
+C (Inln1/6)> e3(, 2o Anr) T2 (Xmaz)-

Using (22) and that > 0 obeys
2u+ po — (1/4)Inln1/4 < 0,

we conclude as in [Bau04] that

]EXHI(sz'n) S E< Q.

Similarly, using (21) we get E, IIs(Xmqz) < € < 00.
Taking into account that es(z, za, Arr) = O (In™* 1/4)
and putting things together the lemma is proved.

This means in particular that our adaptive regu-
larization strategy even works when we estimate the
behavior of §||K¢|| in contrast to e.g. [KDBO03].

We just loose the factor Inln[1/4] which is negli-
gible in the logarithmic scale.

Similar results also hold for moderately ill-posed
problems as has been shown in [Bau04].
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6 Numerics

6.1 Remarks on the Balancing Princi-

ple

One of the most delicate points in practice seems to
be the choice of the tuning parameter k. On the one
hand some estimations in the proof seem to be too
conservative and we just need x to be a function which
is ascending in § much slower than proposed if at all.

On the other hand in practice we are not really
interested in rates but we would like to have the best
possible result where the tuning parameter  is stable
over a large range of error levels 4.

Extensive trials with model problems yield the fol-
lowing qualitative results where the tuning parameter
x was chosen problem dependent (mostly around 0.2
— 0.7) for one instance of the problem and then kept
constant for the whole experiment.

The balancing principle

e is rather insensitive to misspecified noise mod-
els;

e seems to be superior to other parameter choice
regimes, like e.g., the L-curve method, we refer
to [Bau04] for a discussion.

We also observed that Tikhonov regularization is slightly

more stable than truncated singular value decompo-
sition but in general yields slightly worse results.

As one can see it from theorem 3.3 and propo-
sition 3.4, the regularization parameter realizing an
accuracy of optimal order for functional estimation
does not depend on the functional of interest. It gives
a heuristic reason to use the parameter given by bal-
ancing principle also for the whole solution recovery,
especially for the reconstruction of the solutions of
severely ill-posed problems such as satellite gravity
gradiometry. Numerical tests supporting this heuris-
tic reason are described below.

6.2 Case study

As an example we consider a similar case as for the
GOCE mission. We assume to have gravity data at an
orbit height of about 400km and tried to reconstruct
the gravitational field at the height of the Earth’s
surface.

As described in subsection 5.1.4 we use a small
known part of the Earth to generate §/Q which rep-
resents our knowledge about the noise behavior.

In particular we want to show that the balancing
principle exhibits stable behavior under small errors



obtained from estimating 6/€2. Therefore we consid-
ered the same noisy input data set and determined
a regularization parameter chosen by the balancing
principle with respect to a number of different given
small reference data sets.

In particular we carried out the following 28 exper-
iments. The first time we partitioned the Earth’s sur-
face into four, the second time into eight and the third
time into 16 different parts. Later on we will display a
table where we indicate for which of the experiments
which regularization parameter was chosen. We will
denote by ¢F the regularization parameter chosen on
the base of estimating §/Q corresponding to the 1/k
part with number ¢ used as reference set; in the table
it will be put in the row corresponding to its value.

6.2.1 Requirements

The final simulation was designed under the following
requirements:

e noise model with correlated noise,
e possibility to judge the goodness of solutions,

e enough computations to show the reliability of
the method,

e very limited computer resources.
Therefore we decided to use the following setup
e simulated satellite data on an integration grid,

e uncorrelated noise and additionally space cor-
related noise,

e truncated singular value decomposition.

6.2.2 Technical Remarks

We used a Driscoll-Healy grid (as e.g., [May01]) as
data location at an orbit height of 6% of the Earth ra-
dius which roughly corresponds to an average satellite
height of 400 km. For approximation we used spheri-
cal harmonics up to degree 128 and we generated the
data globally on a grid which allows exact integration
up to degree 180 with a stable Clenshaw algorithm (cf.
e.g. [Dea98]). The model EGM96 was always used as
input and reference data. The noise level was chosen
in a way such that theoretically the bias to variance
ratio had to pass 1.0 around the degree of 80; we used
a combination of correlated and uncorrelated noise in
the space domain which was added on the points of
the integration grid.
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Table 1: Results

Degree Va‘f;:zce Reg. Params.
57 0.1726
58 0.2119
59 0.2124
60 0.2500 "
61 0.2808 % , a9
62 0.3016 &, a8, @, dl, af
63 0.3348 4, 45, 4t , @°
64 03940 qf ,q3, 45,8, ai%, qif, dff
65 0.4376 0°
66 0.4363 a4, 4l
67  0.4727 4@, @b, gt
68  0.5192
69  0.5430
70 0.6805
71 0.7270
72 0.6788
73 0.8126 at® , ais
74 0.7578
75 0.9144 q5°
76 1.0299
77 1.0720
78 1.1522
79 1.2194
80 1.3589

81 1.3088

As regularization method we chose the spectral
cut-off scheme cutting at each degree.

For our purposes we observed that reliable results
were obtained for k & 0.25.

After having chosen this parameter we proceeded
with our experiment. Note that this parameter seems
to be strongly dependent from the chosen underly-
ing grid and other model parameters. However, once
adapted to the particular problem it seems to handle
different data situations.

6.2.3 Discussion

We observe that the optimal cut-off point is chosen
reliably and rather near to the optimal one (degree 76
where the bias to variance ratio gets bigger than 1).
Some more results, e.g. regarding the choice by an
L-curve method (yields a cut-off around degree 40)
can be found in [Bau04].

Slightly better results (in average) were produced



by a tuning parameter x = 0.225, however this was
paid by accepting some outliers.

7 Conclusion

The presented adaptive parameter choice is an easy
to use heuristics which allows to choose the regu-
larization parameter robustly even when we have a
very limited knowledge about the underlying noise
structure. It relies on a problem depending tuning
parameter which can be chosen in advance because
the behavior of the chosen regularization parameter
does not change considerably even when we change
the noise level over several orders of magnitude or
change the type of error.

We could show that in theory we can achieve (al-

most) optimal convergence rates and for a data-functional

strategy we can even use the color of the noise as an
advantage which helps to improve the solution. For
this result it suffices to estimate the noise behavior;
this does not spoil the optimal rate result.

From the practical point of view the Lepskii-type
balancing principle works reliably, even when we only
use about 6% of the Earth’s surface as calibration
data, only. The robustness has been shown not just
in the gravity gradiometry case but also for numerous
other inverse problems.
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