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Abstract. We consider the inverse problem to identify coefficient functions
in boundary value problems from noisy measurements of the solutions. Our
estimators are defined as minimizers of a Tikhonov functional, which is the
sum of a nonlinear data misfit term and a quadratic penalty term involving
a Hilbert scale norm. In this abstract framework we derive estimates of the
expected squared error under certain assumptions on the forward operator.
These assumptions are shown to be satisfied for two classes of inverse elliptic
boundary value problems. The theoretical results are confirmed by Monte
Carlo simulations.

1. Introduction

We consider the problem to estimate a quantity a in a separable Hilbert space
X which is not directly observable. We only have access to a vector u in another
Hilbert space Y, and the relation between a and u is described by some nonlinear
operator F : D(F ) ⊂ X → Y:

(1) F (a) = u.

F is assumed to be one-to-one, but the inverse of F is not assumed to be continuous,
i.e. we study the situation that the nonlinear operator equation (1) is ill-posed. The
exact solution will be denoted by a† ∈ D(F ), and the exact data by u† := F (a†).

In this paper we are particularly interested in parameter identification problems
where a is an unknown parameter in an elliptic differential equation, and u is the
solution to this differential equation subject to some boundary conditions. Here
F is the so-called parameter-to-solution operator which is usually nonlinear even if
the differential equation is linear.

We assume that u† is not given exactly, but only a Hilbert-space-valued random
variable û satisfying

(2)
√

E‖û − u†‖2
Y ≤ δ.

û − u† may contain both deterministic errors and random noise, i.e. it is not as-
sumed that Eû 6= u†. We will study the speed of convergence of estimators of a†
constructed from û as δ → 0.
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Usually û is not given immediately in applications, but has to be computed from
the data in a first step. If u describes the solution to a differential equation in a
domain Ω ⊂ Rd, a natural choice for the space Y is L2(Ω). A typical noise model
may look as follows: The given data are described by n random variables

(3) Yi = u†(Xi) + εi, i = 1, .., n

where measurement errors are modeled by independent, identically distributed ran-
dom variables εi satisfying Eεi = 0 and Var(εi) < ∞. The measurement points
Xi ∈ Ω may either be uniformly distributed random variables or deterministic
points satisfying some additional conditions. The regression problem to construct
an estimator û of u† from such data and the speed of convergence δ → 0 as n → ∞
have been studied extensively in the statistical literature (see [28] and references
therein). For theoretical purposes it is often convenient to work with a white noise
model

(4) Y = u† + σξ

where ξ is a white noise process on Y and σ = 1/
√

n. For univariate functions
it can be shown under mild assumptions that for every nonparametric regression
problem there exists a white noise problem which is asymptotically equivalent to it
and conversely (see [3]).

The focus of this paper is on the second step to estimate â from û. A commonly
used procedure known as nonlinear Tikhonov regularization or Method of Regular-
ization consists in adding a stabilizing term weighted by a regularization parameter
α > 0 in a least squares formulation of the problem:

(5) â := argmin a∈D(F )

(
‖F (a) − û‖2

Y + α‖a − a0‖2
X

)

Here a0 ∈ X denotes some initial guess of a†, which offers the possibility to in-
corporate a-priori information. The estimators (5) arise naturally in a Bayesian
description of the problem (see [11]). A global minimum of the functional in (5)
exists if F is weakly sequentially closed, but it is not necessarily unique (see [7]).
However the method is consistent in the sense that for any choice of minimizing
elements â ∈ D(F ) we have E‖â − a†‖2

X → 0 if α → 0 and δ2/α → 0 ([2]). Rates
of convergence have been studied for deterministic noise in [8, 18, 24, 26], and for
random noise in [2, 13, 21]. In particular, it was shown in [2] that the estimators
(5) converge with the rate

(6)
√

E‖â− a†‖2
X = O

(√
δ
)

for the choice α ∼ δ if F has a Fréchet derivative F ′ which is Lipschitz continuous
with constant L and if there exists w ∈ Y such that

(7) a† − a0 = F ′[a†]
∗w and L‖w‖Y < 1.

In this paper we will improve this result in two respects:

• We consider more general smoothness classes than the range of the adjoint
operator F ′(a†)

∗.
• Since F ′[a†]

∗ is typically smoothing, the smallness assumption on ‖w‖ in (7)
typically corresponds to a smallness assumption on a† − a0 in some higher
norm. We will replace this restrictive smallness assumption by a smallness
assumption on ‖a† − a0‖X .
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To achieve these goals we will use Hilbert scales as introduced for linear deterministic
inverse problems by Natterer [16]. By regularization in Hilbert scales the finite
qualification of Tikhonov regularization can be overcome, i.e. the rate of convergence
is not bounded by ‖â−a†‖ = O(δ2/3), but given sufficient smoothness of the solution,
the exponent of δ may be arbitrarily close to 1. Linear statistical inverse problems
with random noise have been studied in a Hilbert scale setting in [15, 14, 20, 10].
Our analysis in section 2, and in particular the second part of the proof of our
general convergence theorem is based on the work of Neubauer [18] on nonlinear
Tikhonov regularization with deterministic noise. Other regularization methods
for nonlinear inverse problems in Hilbert scales with deterministic noise have been
studied in [6, 19, 25].

The plan of this paper is as follows: In the following section we introduce Hilbert
scales and prove a general result on the rates of convergence of nonlinear Tikhonov
regularization in Hilbert scales for random noise. The optimality of the overall
two-step method to estimate a† from data described by (3) or (4) is discussed in
section 3. In sections 4 and 5 we study the reconstruction of a reaction coefficient
and a diffusion coefficient in elliptic differential equation and show that all assump-
tions required by our convergence result are satisfied. The paper is completed by
some numerical experiments discussed in section 6 which verify and illustrate our
theoretical results.

2. General convergence result

First, we briefly recall the definition of Hilbert scales. Let L : D(L) → X be an
unbounded, self-adjoint, strictly positive operator with a dense domain of definition
D(L) ⊂ X . Then Ls : D(Ls) → X is well-defined by spectral theory for s ∈ R, and
the spaces Xs := D(Ls), s ≥ 0 equipped with the inner product

〈x, y〉s := 〈Lsx, Lsy〉X , x, y ∈ Xs

are Hilbert spaces. For s < 0 we define Xs as completion of X under the norm

‖x‖s := 〈x, x〉1/2
s . (Xs)s∈R is called the Hilbert scale induced by L. An important

tool for the following analysis will be the interpolation inequality

(8) ‖x‖r ≤ ‖x‖
s−r
s−t

t ‖x‖
r−t
s−t
s , x ∈ Xs

which holds for any t < r < s. For a more detailed introduction to Hilbert scales
and their use in regularization theory we refer to the monograph [7].

Following [18] we define the estimator â of a† by

(9) â := argmin a∈D(F )∩(a0+Xs)

(
‖F (a) − û‖2

Y + α‖a − a0‖2
s

)

where s ≥ 0 and a0 ∈ X an initial guess. To bound the error E(‖â− a†‖2) we need
the following assumptions:

Assumptions. (1) (assumptions on F ) If F (a) = F (a†) for some a ∈ D(F )∩
(a0 + Xs), then a = a†. Moreover, D(F ) is convex, F : D(F )∩(a0 + Xs) →
Y is weakly sequentially closed, and F : D(F ) ⊂ X → Y has a Fréchet
derivative F ′ : D(F ) → L(X ,Y).

(2) (smoothing properties of F ′) There exist constants p ∈ [0, s] and λ, Λ > 0
such that for all h ∈ X

(10) λ‖h‖−p ≤ ‖F ′(a†)h‖Y ≤ Λ‖h‖−p.
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(3) (Lipschitz continuity of F ′) There exists a constant CL > 0 such that

(11) ‖F ′(a) − F ′(a†)‖Y←X−p ≤ CL‖a − a†‖X ≤ λ2

2Λ

for all a ∈ D(F ) ∩ (a0 + Xs).

If û is deterministic then the norm ‖·‖Y←X−p in (11) can be replaced by ‖·‖Y←X .
A condition similar to (11) has been used in [19] (in fact, condition (iv) in [19,
Assumption 2.1] with β = 1 and b = p is equivalent to the first inequality in (11)).

Theorem 2.1. Let a† ∈ D(F ) be the solution of operator equation F (a†) = u†, and
let û be an estimator of u satisfying (2). If the Assumptions 1–3 hold true and if

(12) a† − a0 ∈ Xq for some q ∈ [s, 2s + p]

then, for the a-priori choice of the regularization parameter α ∼ δ
2(p+s)

p+q , we obtain

(13)
√

E‖â− a†‖2
X = O

(
δ

q
p+q

)
, δ → 0.

Proof. By the definition (9) of â as a solution to the minimization problem we have

‖F (â) − û‖2
Y + α‖â − a0‖2

s ≤ ‖u† − û‖2
Y + α‖a† − a0‖2

s

and hence

‖F (â) − û‖2
Y + α‖â − a†‖2

s

≤ ‖u† − û‖2
Y + α

(
‖a† − a0‖2

s − ‖â − a0‖2
s + ‖â− a†‖2

s

)

= ‖u† − û‖2
Y + 2α 〈a† − a0, a† − â〉s .

Using the hypothesis a† − a0 ∈ Xq we obtain

(14) ‖F (â) − û‖2
Y + α‖â − a†‖2

s ≤ ‖u† − û‖2
Y + 2α‖a† − â‖2s−q‖a† − a0‖q.

Introducing the Taylor remainder etay := F (â) − F (a†) − F ′(a†)(â − a†) we obtain
the inequality

‖F (â) − û‖2
Y = ‖u† − û + etay + F ′(a†)(â − a†)‖2

Y

= ‖u† − û + etay‖2
Y + ‖F ′(a†)(â − a†)‖2

Y + 2 〈F ′(a†)(â − a†), u† − û + etay〉
≥ λ2‖â − a†‖2

−p − 2Λ‖â− a†‖−p (‖u† − û‖Y + ‖etay‖Y) .

Plugging this into (14) yields

λ2‖â − a†‖2
−p + α‖â − a†‖2

s ≤ ‖u† − û‖2
Y + 2α‖a† − â‖2s−q‖a† − a0‖q

+2Λ‖â− a†‖−p‖etay‖Y + 2Λ‖â− a†‖−p‖u† − û‖Y .

By the interpolation inequality (8) for t = −p, r = 2s − q and s = s we have

(15) ‖â − a†‖2s−q ≤ ‖â− a†‖
−s+q
s+p

−p ‖â − a†‖
2s−q+p

s+p
s .

Replacing this term in our estimate and taking the mean in the inequality we get

λ2E‖â− a†‖2
−p + αE‖â − a†‖2

s(16)

≤ E‖u† − û‖2
Y + 2α‖a† − a0‖qE

(
‖â − a†‖

−s+q
s+p

−p ‖â− a†‖
2s−q+p

s+p
s

)

+2ΛE (‖â − a†‖−p‖etay‖Y) + 2ΛE (‖â − a†‖−p‖u† − û‖Y) .
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Using the Cauchy-Schwarz inequality and Jensen’s inequality we obtain

E

(
‖â − a†‖

−s+q
s+p

−p ‖â− a†‖
2s−q+p

s+p
s

)
≤ E

1
2

(
‖â − a†‖

2−s+q
s+p

−p

)
E

1
2

(
‖â − a†‖

2 2s−q+p
s+p

s

)

≤ E
1
2

−s+q
s+p

(
‖â− a†‖2

−p

)
E

1
2

2s−q+p
s+p

(
‖â − a†‖2

s

)

since 0 ≤ −s+q
s+p ≤ 1 and 0 ≤ 2s−q+p

s+p ≤ 1 for s ≤ q ≤ 2s + p.

Next we are going to show that the term involving the Taylor remainder etay in
(16) is dominated by the term on the left hand side for small δ:

(17) 2ΛE (‖â − a†‖−p‖etay‖Y) ≤ λ2

2
E‖â− a†‖2

−p

Using Assumption 3, the Taylor remainder etay can be estimated by

‖etay‖Y = ‖F (â) − F (a†) − F ′(a†) (â − a†) ‖Y

=

∥∥∥∥
∫ 1

0

{F ′ (a† + t (â − a†)) − F ′(a†)} (â − a†) dt

∥∥∥∥
Y

≤
∫ 1

0

‖F ′ (a† + t (â − a†)) − F ′(a†)‖Y←X−p‖â − a†‖−p dt

≤
∫ 1

0

CLt‖â − a†‖0 ‖â − a†‖−p dt ≤ CL

2
‖â − a†‖0 ‖â − a†‖−p,

which implies (17). Altogether, we arrive at the estimate

E‖â− a†‖2
−p + αE‖â − a†‖2

s

= O
(
δ2 + αE

1
2

−s+q
s+p

(
‖â − a†‖2

−p

)
E

1
2

2s−q+p
s+p

(
‖â − a†‖2

s

)
+ δE

1
2

(
‖â− a†‖2

−p

))
.

using also assumption (2). In the following, we will make repeated use of the
implication

(18) cr ≤ e + dct ⇒ cr = O
(
e + d

r
r−t

)

which holds for 0 ≤ t < r and c, d, e > 0. This inequality is applied to the previous
estimate for c = E

1
2 (‖â − a†‖2

−p) and r = 2. First we take t = 1, d = δ and

e = δ2 + αE
1
2

−s+q
s+p

(
‖â − a†‖2

−p

)
E

1
2

2s−q+p
s+p

(
‖â − a†‖2

s

)
and we obtain

E‖â − a†‖2
−p = O

(
δ2 + αE

1
2

−s+q
s+p

(
‖â − a†‖2

−p

)
E

1
2

2s−q+p
s+p

(
‖â − a†‖2

s

))

then we choose t = q−s
p+s , d = αE

1
2

2s−q+p
s+p

(
‖â− a†‖2

s

)
and e = δ2 and we get

E‖â − a†‖2
−p = O

(
δ2 + α

2(s+p)
3s+2p−q E

2s−q+p
3s+2p−q

(
‖â − a†‖2

s

))
.

Replacing the term that contains E‖â− a†‖2
−p on the right hand side and using the

inequality (x + y)r ≤ xr + yr for 0 ≤ r ≤ 1 we obtain

E‖â − a†‖2
s = O

(
α−1δ2 + δα

q−2s−p
3s+2p−q E

p
2

2s−q+p
3s+2p−q

(
‖â − a†‖2

s

)

+δ
−s+q
s+p E

1
2

2s−q+p
s+p

(
‖â − a†‖2

s

)
+ α

−s+q
3s+2p−q E

2s−q+p
3s+2p−q

(
‖â − a†‖2

s

))
.

Applying (18) repeatedly for c = E‖â−a†‖2
s, r = 1 and t = 2s−q+p

2(3s+2p−q) , t = 1
2

2s−q+p
s+p

respectively t = 2s−q+p
3s+2p−q we obtain

E‖â− a†‖2
s = O

(
α−1δ2 + δ

2(3s+2p−q)
4s+3p−q α

2(q−2s−p)
4s+3p−q + δ

2(q−s)
q+p

)
= O

(
δ2 q−s

p+q

)
.
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As α ∼ δ
2(p+s)

p+q it follows that

E‖â− a†‖2
−p = O

(
δ2 + α

2(s+p)
3s+2p−q E

2s−q+p
3s+2p−q

(
‖â − a†‖2

s

))

= O
(

δ2 + δ4 (p+s)2

(p+q)(3s+2p−q)
+2 2s−q+p

3s+2p−q
q−s
p+q

)
= O

(
δ2

)
.

Taking the mean in the squared interpolation inequality (8) and using Jensen’s
inequality we get

E
(
‖â − a†‖2

0

)
≤ E

(
‖â− a†‖

2s
s+p

−p ‖â − a†‖
2p

s+p
s

)

≤ E
(
‖â− a†‖2

−p

) s
s+p E

(
‖â − a†‖2

s

) p
s+p

= O
(
δ

2s
p+s δ2 q−s

q+p
p

s+p

)
= O

(
δ

2q
q+p

)
.

�

Remark 2.2. In some cases the rates of convergence with respect to other norms
in the Hilbert scale are also of interest. Introducing r ∈ [−p, s] as an additional
parameter, a straightforward modification of the very last step of the previous proof
yields the estimate

(19)
√

E‖â− a†‖2
r = O

(
δ

q−r
p+q

)
, δ → 0.

3. Optimality

In the following we show that our two-step method to estimate a† from noisy
data described by (3) of (4) is capable of achieving the optimal rates provided that
the direct regression problem in the first step is solved in an optimal way.

For this end we consider a situation where lower bounds on the expected squared
error are known. Let F = T : X → Y be a linear, compact injective operator with
polynomially decaying singular values. More precisely, we assume that the singular
values σj(T ) decay like

σj(T ) ∼ j−p/d, j ∈ N

for some p, d > 0, i.e. there exists a constant c > 0 such that j−p/d/c ≤ σj(T ) ≤
cj−p/d for all j ∈ N. (Later in our applications where T acts in Sobolev scales, d
will be the space dimension and p the degree of ill-posedness as in (10).) Consider
the Hilbert scale (Xs)s∈R generated by the self-adjoint operator L := (T ∗T )−1/2p

defined on the dense subspace D(L) := (T ∗T )1/2p(X ). Then the eigenvalues of L
behave like

λj(L) ∼ j1/d.

It is well-known that a lower bound on the expected squared error of an estimator â
of a† for the white noise model (4) with u† = Ta† under the smoothness assumption
‖a†‖q ≤ 1 is given by

(20) inf
ba

sup
‖a†‖q≤1

√
E‖â(Y) − a†‖2

X ≥ cσ
q

q+p+d/2

for some c > 0 (see [14, 20]).
To show that this lower bound is achieved by our two-step method, we first study

the direct regression problem to estimate u† from Y. Let {(vj , uj, σj(T )) : j ∈ N}
denote a singular system of T , i.e. Ta =

∑∞
j=1 σj(T ) 〈a, vj〉X uj for a ∈ X . For

theoretical purposes we may assume that T (X ) is dense in Y (otherwise we can use
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the orthogonal projection onto T (X )). Then {uj : j ∈ N} is a complete orthonormal
system in Y. The assumption that a† ∈ Xq and ‖a†‖q ≤ 1 is equivalent to the fact
that w := Lqa† is well-defined and ‖w‖X ≤ 1. The Fourier coefficients of u† satisfy

|〈u†, uj〉Y | = |〈TL−qw, uj〉Y | = |〈w, L−qT ∗uj〉X | ∼ j−(q+p)/d|〈w, vj〉X |.
Therefore, by Pinskers Theorem (see [22, 28]) an optimal estimator û satisfies

(21)
√

E‖û − u†‖2
Y ≤ δ with δ ∼ σ

p+q
p+q+d/2 .

In a second step we can compute the estimator â defined in (9) with the natural
choice a0 = 0. Since

‖Ta‖2
Y = (a, T ∗Ta)X = ‖(T ∗T )1/2a‖2

X = ‖L−pa‖2
X = ‖a‖2

−p

for all a ∈ X , Assumption 2 is satisfied. Moreover, Assumptions 1 and 3 are trivially
satisfied with CL = 0. Therefore, Theorem 2.1 yields

√
E‖â − a†‖2

X = O
(
δ

q
p+q

)
= O

(
σ

q
p+q+d/2

)
.

This coincides with the lower bound (20). Since the two-step procedure described
above yields an order-optimal error bound, in particular the error bound for the
second step in Theorem 2.1 has to be of optimal order under the given assumptions.

Remark 3.1. It seems that for nonlinear problems additional assumptions on F
are required to guarantee that the direct regression problem can be solved with the
accuracy (21). We refrain from discussing this problem in the general functional
analytic setting, but show for the problems considered in the following sections that
this accuracy can be achieved.

4. Reconstruction of a reaction coefficient

We consider the problem of identification of the parameter a ∈ L2(Ω) in the
boundary value problem

(22)

{
−∆u + au = f in Ω

u = g on ∂Ω

where Ω ⊆ Rd, d ∈ {1, 2, 3} is a bounded smooth domain, and f : Ω → R and
g : ∂Ω → R are smooth functions. For a given bound γ > 0 we introduce the set

(23) D(F ) = {a ∈ L2(Ω) : 0 ≤ a ≤ γ}.
It follows from classical results on elliptic partial differential equations (see e.g. [29])

that for a ∈ D(F ) and g ∈ H
3
2 (∂Ω) there exists a unique solution ua ∈ H2(Ω) of the

direct problem (22). The inverse problem which we consider can be formulated as
an operator equation with the parameter-to-solution operator F : D(F ) → L2 (Ω),
F (a) := ua.

In this section the Hilbert scale (Xs)s∈R will be generated by the square root B
1
2

of the positive, self-adjoint operator B defined by

B : H1
0 (Ω) ∩ H2 (Ω) → L2 (Ω) , Bv := −∆v + v.(24)

Remark 4.1. The first elements of this Hilbert scale with integer index are given
by

X1 = H1
0 (Ω), X2 = H2(Ω) ∩ H1

0 (Ω), X3 = {v ∈ H3(Ω) : v, ∆v ∈ H1
0 (Ω)}.
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This sheds some light on role of the initial guess a0 in Theorem 2.1. For condi-
tion (12) to be fulfilled for a large index q, it is not sufficient that a† and a0 be
smooth (e.g. C∞), but additionally the boundary values of a† and its derivatives
must be known a-priori. This a-priori knowledge (if available) must be incorpo-
rated in the initial guess a0. We have observed in numerical experiments that such
a-priori knowledge of the behavior of a† at the boundary is also necessary for fast
convergence.

In the following analysis we will need operators of the form

T (a) :H2(Ω) ∩ H1
0 (Ω) → L2(Ω)

T (a)v = −∆v + av,

with a ∈ D(F ), which are self-adjoint as a densely defined unbounded operators in
L2 (Ω), will play a dominant role. In the following lemma we are going to establish
some properties of these operators, following ideas from [4].

Lemma 4.2. There exist two strictly positive constants k1 and k2 such that

(25a) k1‖v‖X2 ≤ ‖T (a)v‖L2(Ω) ≤ k2‖v‖X2

(25b) k1‖v‖L2(Ω) ≤ ‖T (a)v‖X−2 ≤ k2‖v‖L2(Ω)

for all v ∈ H2(Ω) ∩ H1
0 (Ω) and all a ∈ D(F ).

Furthermore, there exists a positive constant C such that

‖
(
T (a)−1 − T (a)−1

)
ϕ‖X2 ≤ C‖a − a‖L2(Ω)‖ϕ‖L2(Ω).(26)

for any a, a ∈ D(F ), ϕ ∈ L2 (Ω).

Proof. The existence of a constant k2 independent of a in (25a) is easily seen from
the definition of the operator T (a) as

‖T (a)v‖ ≤ ‖ △ v‖L2(Ω) + ‖av‖L2(Ω)

≤ ‖△ v‖L2(Ω) + γ‖v‖L2(Ω)

≤ max(1, γ)‖v‖H2(Ω).

Now we prove the first inequality in (25a) where the constant k1 is also independent
of a ∈ D(F ). The L2-norm of T (a)v can be estimated from below by

‖T (a)v‖2
L2(Ω) =

∫

Ω

(−△ v + av)
2

dx

=

∫

Ω

(
(△v)

2 − 2av △ v + a2v2
)

dx

≥ ‖△ v‖2
L2(Ω) − 2

∫

Ω

|av △ v| dx +

∫

Ω

a2v2 dx.(27)

From the inequality 2|av △ v| ≤ 4a2v2 +
(△v)

2

4
we have that

‖T (a)v‖2
L2(Ω) ≥ ‖△ v‖2

L2(Ω) −
∫

Ω

(△v)
2

4
dx −

∫

Ω

4a2v2 dx +

∫

Ω

a2v2 dx

≥ 3

4
‖ △ v‖2

L2(Ω) − 3

∫

Ω

a2v2 dx

≥ 3

4
‖ △ v‖2

L2(Ω) − 3γ2‖v‖2
L2(Ω)(28)
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On the other hand

〈T (a)v, v〉 =

∫

Ω

(−△ v + av) v dx =

∫

Ω

| ▽ v|2 + av2 dx ≥
∫

Ω

| ▽ v|2 dx ≥ 1

k
‖v‖2

H1 .

where k is the Poincaré constant and is independent of v ∈ H1
0 (Ω). Applying

Cauchy-Schwarz inequality we obtain that

1

k
‖v‖2

L2(Ω) ≤
1

k
‖v‖2

H1 ≤ ‖T (a)v‖L2(Ω)‖v‖L2(Ω)

and hence

1

k
‖v‖L2(Ω) ≤ ‖T (a)v‖L2(Ω).(29)

Multiplying the squared inequality (29) by 3γ2k2 and adding this to (28) yields
(
1 + 3γ2k2

)
‖T (a)v‖2

L2(Ω) ≥ ‖△ v‖2
L2(Ω) ≥ K2‖v‖2

H2(Ω)

using the global regularity result ‖ △ u‖L2(Ω) ≥ K‖u‖H2(Ω) with constant K inde-

pendent of u ∈ H2 (Ω) ∩H1
0 (Ω). This completes the proof of the first inequality in

(25a).
(25b) follows from (25a) and Lemma 4.3 below since T (a) is self- adjoint with respect
to the L2- norm and boundedly invertible from X2 to X0.

In order to prove (26) we consider the difference

v =
(
T (a)−1 − T (a)−1

)
ϕ = va − va

where va = T (a)−1ϕ and va = T (a)−1ϕ. As

T (a)v = ϕ − T (a)va = (T (a) − T (a))va = (a − a) va,

it follows that

‖v‖X2 = ‖T (a)−1 (a − a) va‖X2 ≤ k−1
1 ‖ (a − a) va‖L2(Ω)

≤ k−1
1 ‖a− a‖L2(Ω)‖va‖∞ ≤ ck−1

1 ‖a− a‖L2(Ω)‖va‖X2

≤ ck−2
1 ‖a − a‖L2(Ω)‖ϕ‖L2(Ω).

�

In this section we repeatedly use the following elementary result from functional
analysis:

Lemma 4.3. Let Vj ⊂ Hj ⊂ V ′j ( j = 1, 2) be Gelfand triples and A ∈ L (V1, V2)
an operator with adjoint A∗ ∈ L (V ′2 , V ′1) i.e. 〈Aϕ1, ϕ2〉H2

= 〈ϕ1, A
∗ϕ2〉H1

for all

ϕ1 ∈ V1 and ϕ2 ∈ V ′2 . Then

‖A‖V2←V1 = ‖A∗‖V ′
1←V ′

2
.(30)

Moreover, if A has a bounded inverse A−1 : V2 → V1 then
(
A−1

)∗
= (A∗)

−1
and

‖A−1‖V1←V2 = ‖
(
A−1

)∗ ‖V ′
2←V ′

1
.(31)

We will assume that the exact solution u† = ua†
of the equation (22) fulfills the

condition

cu = inf
x∈Ω

u† (x) > 0(32)

which is satisfied if g > 0 and f ≥ 0 by the maximum principle.

Theorem 4.4. If (32) holds true, then F satisfies Assumption 1 for s ≥ 2.
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Proof. The Fréchet differentiability of F has been established in [4, 5]. Injectivity
follows easily from (32) as the relation ua = u† implies (a − a†)u† = 0 for any
a ∈ D(F ). Since D(F ) ∩ (a0 + Xs) is closed and convex for s ≥ 2, it is weakly
sequentially closed. Hence, for a weakly convergent sequence (an)n∈N in D(F ) ∩
(a0 + Xs) the limit point a belongs to D(F ) ∩ (a0 + Xs). Since d ≤ 3, it follows
from the compactness of the embedding X s →֒ X 7/4 and the continuity of the
embedding X 7/4 →֒ L∞(Ω) that there exists a weakly convergent subsequence (ank

)
in L∞(Ω). Since F is continuous (even Fréchet differentiable) on L∞(Ω), it follows
that ‖F (ank

) − F (a)‖Y → 0 as k → ∞. This shows that F is weakly sequentially
closed. �

Differentiating (22) with respect to a shows that the Fréchet derivative F ′(a)h =
vh is the unique solution vh of the equation

(33) T (a)vh = −hua

where ua is the solution of (22). Hence, the adjoint of the Fréchet derivative is given
by

(34) F ′(a)∗ϕ = −uaT (a)−1ϕ

where ϕ ∈ L2(Ω).

Theorem 4.5. If assumption (32) holds true and (Xs)s∈R is the Hilbert scale gen-

erated by
√

B, then F ′ satisfies Assumption 2 with p = 2. Moreover, Assumption 3
is satisfied if γ in (23) is sufficiently small.

Proof. To prove Assumption 2 we use the chain of inequalities (25b) and the relation
(33). It follows that

‖F ′(a)h‖L2(Ω) = ‖T (a)−1 (−hua) ‖L2(Ω) ∼ ‖hua‖X−2(35)

with constants independent of a. From the Banach algebra property for the Sobolev
space Hm (Ω)(see [1] for details) it holds that

‖vw‖Hm(Ω) ≤ K‖v‖Hm(Ω)‖w‖Hm(Ω)(36)

where u, v ∈ Hm (Ω), Ω is a domain in Rd satisfying the cone condition, 2m > d
and the constant K depends on m, d and the cone determining the cone condition
for Ω. Choosing m = 2 and d = 1, 2, 3 in (36) we have

‖vw‖H2(Ω) ≤ K‖v‖H2(Ω)‖w‖H2(Ω)(37)

and from relation (30) the multiplication operator Mua : h → hua has bounded
norm

(38) ‖Mua‖X−2←X−2 = ‖Mua‖X2←X2 ≤ K‖ua‖H2(Ω).

Due to (32), ‖ 1
ua

‖H2(Ω) is finite, and hence

‖M−1
ua

‖X−2←X−2 = ‖M−1
ua

‖X2←X2 ≤ K‖ 1

ua
‖H2(Ω) < ∞.

This implies ‖hua‖X−2 ∼ ‖h‖X−2. Together with (35) this finishes the proof of
Assumption 2.

Due to (30), it suffices to show Lipschitz continuity of the mapping a → F ′(a)∗

from X0 to L
(
L2 (Ω) ,X2

)
to prove Assumption 3. From eq. (34) we can write

[F ′(a)]∗ = Mua ◦ T (a)−1.
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It is going to be proved now that

‖(Mua ◦ T (a)−1 − Mua ◦ T (a)−1)ϕ‖X2 ≤ c‖ϕ‖L2(Ω)‖a− a‖L2(Ω)

where c is a constant which can vary from now on. We split the difference in two
terms which can be estimated

‖(Mua ◦ T (a)−1 − Mua
◦ T (a)−1)ϕ‖X2

≤‖Mua[T (a)−1 − T (a)−1]ϕ‖X2 + ‖(Mua − Mua
)T (a)−1ϕ‖X2 .(39)

The first term on the right hand side of the inequality (39) can be bounded using

(26) and (38). If Z : H
3
2 (∂Ω) → H2 (Ω) is a right inverse of the trace operator, we

have F (a) = ua = ũa + Zg with ũa = T (a)−1 (f − Zg) and F (a) = ua = ũa + Zg
and ũa = T (a)−1 (f − Zg). It follows from Lemma 4.2 that

‖ua − ua‖X2 = ‖
(
T (a)−1 − T (a)−1

)
(f − Zg) ‖X2

≤ C‖a − a‖L2(Ω)‖f − Zg‖L2(Ω).

Together with the Banach algebra property (37) and (25a) we obtain

‖(Mua − Mua
)T (a)−1ϕ‖X2 = ‖(ua − ua)T (a)−1ϕ‖X2 ≤ K

k1
‖ua − ua‖X2‖ϕ‖L2(Ω)

≤
(

CK

k1
‖f − Zg‖L2(Ω)

)
‖a − a‖L2(Ω)‖ϕ‖L2(Ω).

This proves that our operator satisfies Assumption 3. �

For the direct regression problem in the first step we have to determine the precise
regularity of u†:

Proposition 4.6. If a† ∈ Hq(Ω) with q > d/2, then u† ∈ Hq+2(Ω).

Proof. The regularity result can be derived as follows from standard elliptic regu-
larity estimates where smoothness of a† is measured in terms of L∞ based Sobolev

spaces of integer order: By Sobolev’s embedding theorem we have a† ∈ W q−d/2−ǫ,∞(Ω)

for any ǫ > 0, and in particular a† ∈ W k,∞(Ω) with k := sup{k̃ ∈ N0 : k̃ < q−d/2}
(see [23]). By standard elliptic regularity estimates we get u† ∈ Hk+2(Ω). To
improve this regularity, we rewrite the differential equation as

−∆u = f̃ with f̃ := f − au.

Since f is assumed to be smooth and q, k + 2 > d/2, we have f̃ ∈ Hmin(k+2,q)(Ω)
due to (36). First assume that k + 2 ≥ q. Then u† ∈ Hq+2(Ω) by regularity results
for Poisson’s equation. If k + 2 < q, we have to repeat the last argument to further
improve the regularity of u†. �

Corollary 4.7. Assume the noise model (4), let the assumptions of Theorem 4.5
hold true, let s ≥ 2, q ∈ [s, 2s + 2], and assume that a† − a0 ∈ Xq and a† ∈ Hq(Ω).

Then u† can be estimated such that (2) holds true with δ ∼ σ
q

q+2+d/2 . Moreover, for

the choice α ∼ σ
2q(2+s)

(q+2+d/2)(2+q) we get
√

E‖â − a†‖2
L2(Ω) = O

(
σ

q
q+2+d/2

)
, σ → 0.

Proof. The first statement follows from Proposition 4.6 and general results from
nonparametric regression (see [28]). The second statement is a consequence of
Theorems 2.1, 4.4 and 4.5. �
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5. Reconstruction of a diffusion coefficient

Let us consider now the problem of identifying the parameter a in the boundary
value problem

(40)

{
−(au′)′ = f on (0, 1),

u(0) = g0, u(1) = g1.

Here the parameter a belongs to the set of admissible functions D(F ) = {q ∈
H2((0, 1)) : γ ≤ q, ‖q‖H2 ≤ γ} with strictly positive constants γ and γ and f is a
smooth function. Under these assumptions there exists a unique weak solution ua

to (40) for a given parameter a, and ua belongs to the Sobolev space of functions
H2 = H2 (0, 1) (see [29]). In the following we will always omit the domain (0, 1)
in function spaces. Our inverse problem is formulated as an operator equation (1)
with the parameter-to-solution operator F : D(F ) → L2, F (a) = ua.

It turns out that Assumption 2 is neither satisfied for the Hilbert scale generated
by the Dirichlet Laplacian nor the Hilbert scale generated by the shifted Neumann
Laplacian. Therefore, we introduce a different Hilbert scale starting from the space

L2
⋄ :=

{
v ∈ L2 :

∫ 1

0

v dx = 0

}

and the operator

B : D(B) =

{
u ∈ H2 : u′ (0) = u′ (1) = 0,

∫ 1

0

u dx = 0

}
→ L2

⋄,(41)

Bφ := −φ′′ + φ.

B is well defined as
∫ 1

0

Bφdx =

∫ 1

0

(−φ′′ + φ) dx = −φ′(1) + φ′(0) +

∫ 1

0

φdx = 0.

B is also densely defined, as H2 is dense in L2. It is also easy to see that B is
symmetric, as for any ϕ, φ ∈ D(B) we have

〈Bφ, ϕ〉 =

∫ 1

0

(−φ′′ + φ)ϕdx = (−φ′ϕ) |10 +

∫ 1

0

φ′ϕ′ dx +

∫ 1

0

φϕdx

= (φϕ′) |10 −
∫ 1

0

φϕ′′ dx +

∫ 1

0

φϕdx = 〈φ, Bϕ〉.

It follows that the operator (D(B∗), B∗) is an extension of (D(B), B), so D(B) ⊆
D(B∗). B is self-adjoint if D(B) = D(B∗). As the operator (D(B), B) is bijective
(see [27, Prop. 5.7.5]), it follows from [27, Prop. A 8.3] that B is also self-adjoint.
Moreover, B is strictly positive as

〈Bφ, φ〉 =

∫ 1

0

(φ′2 + φ2) dx ≥ ‖φ‖L2 .

First we consider the Hilbert scale
(
X̂s

)

s∈R
generated by the operator B

1
2 .

However, to prove Assumption 3 we need X to be a subspace of H1, so we choose
the shifted scale

Xs = X̂s+1(42)
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which is also a Hilbert scale (see e.g. [7, Prop. 8.19]). The first integer elements of
this scale are given by

X−1 = L2
⋄, X0 = H1

⋄ := H1 ∩ L2
⋄, X1 = D(B),

X2 = H3 ∩ D(B), X3 = {φ ∈ H4 ∩ D(B) : φ′′′(0) = φ′′′(1) = 0}.
(43)

We introduce the orthogonal projection P⋄ : L2 → L2
⋄, v 7→ v −

∫ 1

0 v dx and the

embedding operator J⋄ : H1
⋄ →֒ L2

⋄. J⋄ is injective and, due to the density of H1

in L2, has also dense range. This also implies that its adjoint J∗⋄ : L2
⋄ → H1

⋄ is
injective and has dense range. By [17, Prop. 2.1] it follows that

(44) J∗⋄ f = B−1f

for f ∈ L2
⋄.

We assume that the exact solution u† of the direct problem (40) fulfills the
condition

(45) inf
x∈(0,1)

|u′† (x) | > 0.

Theorem 5.1. If (45) holds true, then F satisfies Assumption 1 for s ≥ 2.

Proof. Under assumption (45) the injectivity of the operator F follows immediately
from [12, Theorem 2.1]. Due to similar arguments as in section 4 the operator F is
weakly sequentially closed between D(F ) ∩ (a0 + Xs), s ≥ 2 and L2 for s ≥ 2 (see
[2]). The Fréchet differentiability of F has been established in [5]. �

In order to prove the Assumptions 2 and 3 we introduce the operator

T (a) : H2 ∩ H1
0 → L2, T (a)v = − (av′)

′

which is self-adjoint as a densely defined operator on L2. The Fréchet derivative
F ′(a)h = η for a given perturbation h ∈ H1 of a is the weak solution of the equation

{
− (aη′)

′
= (hu′a)

′
,

η (0) = η (1) = 0
(46)

(see [5]). Hence, F ′ can be written in operator form as

(47) F ′(a)h = S(a)DxMu′
a
J⋄h

where Mu′
a

: L2
⋄ → L2, h 7→ u′ah is a multiplication operator, Dx : L2 → H−1 is the

differentiation operator, and S(a) : H−1 → L2 maps f ∈ H−1 to the solution of the
boundary value problem (46) with (hu′a)

′
replaced by f . (Note that actually the

range of S(a) is contained in H1
0 !) To compute F ′(a)∗ : L2 → H1

⋄ we have to find
the adjoint of each factor in (47). Since T (a) is self-adjoint in L2, the adjoint of S(a)
with respect to the Gelfand triple H−1 ⊂ L2 ⊂ H1

0 is given by S(a)∗ : L2 → H1
0 ,

S(a)∗ϕ = T (a)−1ϕ. Moreover, M∗
u′

a
v = P⋄(u

′
a · v). From eq. (44) we get

F ′(a)∗ϕ = −B−1P⋄
{
u′a[T (a)−1ϕ]′

}
, ϕ ∈ L2.(48)

In order to prove the Assumptions 2 and 3 we need the following properties of
T (a).

Lemma 5.2. For all a ∈ H2 ∩ D(F ) there exists two positive constants k1 and k2

such that

k1‖v‖H2 ≤ ‖T (a)v‖L2 ≤ k2‖v‖H2 .(49)
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for v ∈ H2, where k1 and k2 can be chosen independent of a. Furthermore, there
exists a positive constant C such that

‖
(
T (a)−1 − T (a)−1

)
ϕ‖H2 ≤ C‖a − a‖H1‖ϕ‖L2.(50)

for any a, a ∈ D(F ), ϕ ∈ L2 (Ω).

Proof. The second inequality is easily seen from

‖ − (av′)
′ ‖L2 ≤ ‖av′‖H1 ≤ K‖a‖H1‖v′‖H1 ≤ Kγ‖v‖H2

where we used that

‖uv‖H1 ≤ K‖u‖H1‖v‖H1(51)

for u, v ∈ H1 and K > 0 independent of u and v (see (36)). The constant k2 = Kγ
is independent of a.
For the first inequality we use the elliptic a-priori estimate for the solution of equa-
tion T (a)v = f

‖v‖H2 ≤ C (‖v‖H1 + ‖f‖L2) ank

with C depending on γ and ‖a‖W 1,∞ (see e.g. [9, Theorem 8.13]). Since H2 is con-

tinuously embedded in W 1,∞, C depends only on γ and γ, but not on a. Multiplying

in (40) by a test function w ∈ H1
0 and integrating by parts, yields

l(v, w; a) =

∫ 1

0

fw dx(52)

with the bilinear form l(., .; a) : H1
0 × H1

0 → R given by

l(v, w; a) =

∫ 1

0

a (x) v′ · w′ dx.

It follows from Poincaré’s inequality that l satisfies the inequality

k‖v‖2
H1 ≤ l(v, v; a)(53)

for all a ∈ D(F ), v ∈ H1
0 , where k is a constant that depends on γ and the Poincaré

constant. Moreover, l(v, v; a) =
∫ 1

0
fv dx ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖H1 . Hence, the

solution v to (40) fulfills

‖v‖H1 ≤ k−1‖f‖L2

and first statement is proved. (50) can be proved considering the difference

v =
(
T (a)−1 − T (a)−1

)
ϕ = va − va

where va = T (a)−1ϕ and va = T (a)−1ϕ. As

T (a)v = ϕ − T (a)va = (T (a) − T (a))va = ((a − a) v′a)
′

it follows that

‖v‖H2 = ‖T (a)−1 ((a − a) v′a)
′ ‖H2 ≤ k−1

1 ‖ ((a − a) v′a)
′ ‖L2 ≤ Kk−1

1 ‖a − a‖H1‖v′a‖H1

≤ Kk−1
1 ‖a − a‖H1‖va‖H2 ≤ Kk−2

1 ‖a − a‖H1‖ϕ‖L2.

�

As a preparation for the next theorem we rewrite (48) as

F ′(a)∗ϕ = −B−1AT (a)−1ϕ, ϕ ∈ L2(54)
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with the operator

A : H2 ∩ H1
0 → H1

⋄ , v 7→ P⋄(u
′
† · v′).

Lemma 5.3. The operator A is an isomorphism between H2 ∩ H1
0 and H1

⋄ .

Proof. From the definition of A as the composition of three linear and bounded
operators, we have that A is also linear and bounded. We prove now that A is
injective. Let v ∈ H2 ∩ H1

0 be such that Av = 0. It follows that P⋄(u
′
†v
′) = 0,

which means u′†v
′ = c with c :=

∫ 1

0 u′†(x)v′(x) dx. Then v′ = c
u′
†

. But from the

Mean Value Theorem, as v(0) = v(1) = 0 there exists ξ ∈ (0, 1) such that v′(ξ) = 0.
Hence, c = 0, v = 0 and A is injective.
Next we prove that A is a Fredholm operator of index zero. The projection P⋄ :
H1 → H1

⋄ is a Fredholm operator of index 1 since it is surjective and its kernel
consists only of the constant functions. As the operator Mu′

†
is bijective due to

the assumption (45), it is a Fredholm operator, and its index is zero. To prove
that Dx : H2 ∩ H1

0 → H1 is a Fredholm operator we consider the bounded linear
operator

E : H1 → H1
0 ∩ H2, (Ev)(x) :=

∫ x

0

(P⋄v)(t) dt.

Since P⋄Dxu = u′ −
∫ 1

0 u′ dx = u′ − u(1) + u(0) = u′ for u ∈ H2 ∩ H1
0 , we have

EDxu = u, and DxEv = P⋄v

for v ∈ H1. Since E is surjective and its kernel consists of the constant functions,
E is Fredholm with ind(E) = 1. Moreover, E is a Fredholm inverse of Dx, and
hence Dx is Fredholm with ind(Dx) = − ind(Ex) = −1.
As a composition of Fredholm operators A is also a Fredholm operator, and its
index is

ind(A) = ind(P⋄) + ind(Mu′
†
) + ind(Dx) = 1 + 0 − 1 = 0.

Together with the injectivity of A shown in first part of the proof this yields the
assertion. �

Theorem 5.4. If (45) holds true and the Hilbert scale is defined as in (42) then
Assumptions 2 holds true for p = 2. Moreover, Assumption 3 is satisfied if the
diameter of D(F ) ∩ (a0 + Xs) with respect to the X -norm is sufficiently small.

Proof. To prove Assumption 2 we actually show that ‖F ′(a†)∗ϕ‖X2 ∼ ‖ϕ‖L2 using
Lemma (5.3) and (49). As F ′(a†)

∗ is a composition of three isomorphisms, the
norm-equivalence follows immediately. The proof of Assumption 3 follows the steps
of the proof of Theorem 4.5. Using (48) we get

‖F ′(a)∗ϕ − F ′(a∗)ϕ‖X2
=

∥∥∥P⋄u
′
a

(
T (a)−1ϕ

)′ − P⋄u
′
a

(
T (a)−1ϕ

)′∥∥∥
X0

≤ ‖P⋄‖X0←H1

{∥∥∥u′a
(
T (a)−1ϕ − T (a)−1ϕ

)′∥∥∥
X0

+
∥∥∥(u′a − u′a)

(
T (a)−1ϕ

)′∥∥∥
X0

}
.

(55)

Since ua = ũa+g and ua = ũa+g with g(x) := g0+x(g1−g0), ũa := T (a)−1 (f − g),
and ũa := T (a)−1 (f − g), it follows from Lemma 5.2 that

‖u′a − u′a‖H1 ≤ ‖ua − ua‖H2 = ‖
(
T (a)−1 − T (a)−1

)
(f − g) ‖H2

≤ C‖a − a‖H1‖f − g‖L2.
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Therefore, the second term on the right hand side of (55) is bounded by a multiple
of ‖a− a‖H1‖ϕ‖L2 . Using the Banach algebra property (51) and (50) the first term
on the right hand side of (55) can be bounded by c‖a − a‖H1‖ϕ‖L2 as well. �

Proposition 5.5. If a† ∈ Hq+1 with q > 1
2 , then u† ∈ Hq+2.

Proof. It follows from the differential equation (40) that

u′† =
f

a†

where f is a primitive of f . As a† ∈ D(F ) is bounded from below, it follows that

1/a† ∈ Hq+1. Hence, u′† = f/a† ∈ Hq+1 since f is assumed to be smooth (see (36)).

It follows that u† ∈ Hq+2. �

Let us summarize our results:

Corollary 5.6. In the case of the noise model (4), if the assumptions of Theorem
(5.4) hold true and if s ≥ 2, q ∈ [s, 2s + 2], a† − a0 ∈ Xq, and a† ∈ Hq+1, then

u† can be estimated such that (2) holds true with δ ∼ σ
q

q+2+1/2 . Moreover, for the

choice α ∼ σ
2q(2+s)

(q+2+1/2)(2+q) we get
√

E‖â− a†‖2
H1(Ω) = O

(
σ

q
q+2+1/2

)
,

√
E‖â− a†‖2

L2(Ω) = O
(
σ

q+1
q+2+1/2

)
.

Proof. The first statement follows from Proposition 5.5 and well-known results from
nonparametric regression (see [28]). The second statement is a consequence of
Remark 2.2 with r = 0 and r = −1 and Theorems 5.1 and 5.4. �

From the characterization of the elements of the Hilbert scale (Xs)s∈R (see 43),
it follows that for fast rates of convergence a† must be smooth, and additionally
the mean value of a† and its odd derivatives at the boundary must be known and
incorporated in the initial guess a0.

6. Numerical experiments

In this final section we illustrate the influence of the smoothness of the parameter
a† on the rate of convergence of û as shown in Theorem 2.1 by numerical simulation
using the problem studied in section 4. We chose Ω to be the interval [0, 1], and
the unknown parameter a† to be a B-spline of order 2, 3 or 4 which corresponds
to smoothness up to H2.5, H3.5 and H4.5 respectively (as the splines of order q
belong to the intersection of Hr spaces with 0 < r < q). Figure 1 presents the three
different choices of the true parameter a†.

The direct problem was solved by finite differences. We used the noise model
(3) with equidistant points X1, . . .Xn and Gaussian errors ǫi. The direct regression
problem was solved by a local polynomial estimator with Gaussian kernel and an
optimally a-priori chosen bandwidth (see [28]). Fig. 2 shows the exact data u† and
the noisy data with 1% noise for a data sample of size 381 if a† is a spline of order
two.

The estimators â of the parameter a† were computed as solutions to the mini-
mizations problem (9) for the initial guess a0 = 0 with the help of the Levenberg-
Marquardt algorithm. The linearized least squares minimization problems were
solved using the conjugate graduate method. We chose the H2-norm for the reg-
ularization term in the Tikhonov functional so s = 2, p = 2 and q ≈ 2.5, 3.5, and
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Figure 1. Parameter functions a† with different degrees of
smoothness used in the tests
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Figure 2. Illustration of the method for the spline of order 2 and
simulated data with 1% noise. Left: step 1, estimation of the
solution u† to the differential equation, Right: step 2, estimation
of the unknown parameter a†.

4.5, respectively. This norm was calculated using a finite difference approximation
of the Laplacian. The convergence rates for our method are illustrated in Fig. 3,
considering different sample sizes n and 200 simulations for each sample size. We
plot the empirical estimation of the expected square error of â over the empirical
estimation of the square error of û for the three choices of a† shown in Fig. 1. On
both axes a logarithmic scale is used such that according to Theorem 2.1 the plot
are expected to be straight lines. The slopes of these straight lines predicted from
Theorem 2.1 are indicated by triangles. The empirical slopes of the convergence
plots are indeed close to the predicted slopes.
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