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Abstract. We propose an iterative regularization method for the solution of inverse medium
scattering problems which takes advantage of factorizations of the far field operator. Numerical
experiments with two and three dimensional acoustic and electromagnetic medium scattering
problems show that our method is very competitve compared to other iterative regularization
methods.

1. Introduction

Recently factorizations of the far field operator have become popular for the solution of time-
harmonic inverse scattering problems. The far field operator of a scattering problem relates
incoming to outgoing waves, i.e. it is a measurable quantity. It is the given measured data of
the inverse scattering problem, which consists in finding the scatterer. The inverse scattering
problem can therefore be interpreted as a nonlinear operator equation with an operator-valued
nonlinear operator F which maps the unknown scatterer to the far field operator.

Starting with a paper by Kirsch [10] a lot of progress has been made in solving inverse
scattering problems using factorizations of the far field operator into a product of three bounded
linear operators. These methods have the attractive feature that they do not require the solution
of the direct scattering problem. However, for forward medium scattering problems it is only
possible to recover the support of the inhomeniety of the medium by these approaches (see
Kirsch [11, 12, 13] and Haddar & Monk [5] for a similar method).

In this paper we propose an iterative method for the full reconstruction of the refractive
index of a medium given the corresponding far field operator, which also takes advantage of a
factorization of the far field operator into a product of three bounded linear operators. The right
and the left operator are severely ill-posed and independent of the scatterer. We show that the
reconstruction of the acoustic refractive index from the middle operator is a well-posed problem.
Therefore, we only regularize the linear operator which maps the middle operator to the far
field operator. This leads to a significant reduction of the number of forward problem solutions
compared to iterative regularization methods which do not exploit the special structure of the
far field operator (see [8, 6]). Kaczmarz-type algorithms have been used by Bao & Li [2] for
multi-frequency data and by Natterer, Vögeler & Wübbeling [14, 18] for high-frequency data.



The plan of this paper is as follows: In the following section we describe the forward scattering
problems, the corresponding far field operators and their factorizations. Moreover, we show that
the refractive index in acoustic medium scattering problems can be recovered from the middle
operator in a stable way. In section 3 we derive our iterative method for the solution of nonlinear
operator equations for which the image space consists of operators allowing a factorization.
Finally in section 4 we present numerical results for both acoustic and electromagnetic medium
scattering problems.

2. Forward problems and factorization of far field operators

2.1. Acoustic scattering problems

The scattering of time-harmonic acoustic waves is governed by the Helmholtz equation

∆u + k2n(x)u = 0 in R
m. (1a)

Here m ∈ {2, 3} is the space dimension, u denotes a velocity potential, k is the wave number,
and n the refractive index of the medium. We assume that n is a complex valued function of
the form

n = 1 − a, suppa ⊂ Bρ := {x ∈ R
m : |x| < ρ},

which belongs to the Hölder space C0,α(Rm) and satisfies Re(n) > 0 and Im(n) ≥ 0. The set

of all functions a ∈ C0,α
0 (Bρ) for which these conditions are satisfied will be denoted by U . We

look for solutions
u = ui + us (1b)

which are a superposition of a given incident wave ui, which satisfies the homogeneous Helmholtz
equation ∆ui+k2ui = 0 in R

m, and a scattered wave us, which satisfies the Sommerfeld radiation
condition

r
m−1

2

(

∂us

∂r
− ikus

)

→ 0 as r = |x| → ∞ (1c)

uniformly for all directions x̂ = x/|x|. It is well-known (see e.g. Colton & Kress [4]) that this
problem has a unique solution u ∈ C2(Rm) if the refractive index belongs to a Hölder space
n ∈ C0,α(Rm), α > 0.

The forward problem (1) can be formulated equivalently as an integral equation of the second
kind called the Lippmann-Schwinger equation:

u(x) + k2

∫

Bρ

Φ(x − y)a(y)u(y) dy = ui(x), x ∈ R
m. (2)

Here Φ denotes the fundamental solution to the Helmholtz equation in free space, i.e. Φ(x) :=
1
4π

eik|x|

|x| , x 6= 0 for m = 3 and Φ(x) := i
4H

(1)
0 (k|x|), x 6= 0 for m = 2 where H

(1)
0 denotes the

Hankel function of the first kind of order 0.
It is common practice in scattering theory to use far field patterns as data for inverse

problems. The far field pattern u∞ : Sm−1 → C of a scattered field us, which satisfies the
homogeneous Helmholtz equation in R

m \Bρ and the Sommerfeld radiation condition, is defined
by the asymptotic formula

us(x) =
eik|x|

|x|

(

u∞(x̂) + O

(

1

|x|

))

, |x| → ∞.

As a consequence of the asymptotic behavior of the fundamental solution Φ and the Lippmann-
Schwinger equation (2), the far field pattern of the solution us to the scattering problem (1) is
given by

u∞(x̂) = γm

∫

Bρ

e−ikx̂·ya(y)u(y) dy, (3)



with γ2 := −k2eiπ/4√
8π

and γ3 := − k2

4π
.

We will consider the inverse problem to recover the refractive index n from far-field data
for incident plane waves ui(x, d) := e−ikx·d from all directions d ∈ Sm−1. The corresponding
solutions will be denoted by u(x, d), us(x, d), and the far field patterns by u∞(x̂, d). Given
u∞(x̂, d) for all x̂, d ∈ Sm−1 we also know the far-field pattern corresponding to a superposition

ui
g(x) =

∫

Sm−1

ui(x, d)g(d) ds(d), x ∈ R
m (4)

of incident plane waves with a density g ∈ L2(Sm−1). It is given by

(U∞g)(x̂) :=

∫

Sm−1

u∞(x̂, d)g(d) ds(d), x̂ ∈ Sm−1. (5)

It can be shown that the far field pattern u∞ is infinitely smooth in both arguments. Therefore,
U∞ : L2(Sm−1) → L2(Sm−1) is a compact linear operator called the far field operator.

To derive a factorization of the operator U∞, we introduce the operator Zo : L2(Bρ) →
L2(Sm−1),

(Zou)(x̂) :=

∫

Bρ

e−ikx̂·yu(y) dy, x̂ ∈ Sm−1

and its transposed

(Zig)(x) :=

∫

Sm−1

e−ikd·yg(d) ds(d), x ∈ Bρ.

Since ui
g = Zig, the total field ug corresponding to the incident field ui

g satisfies the Lippmann-
Schwinger equation

ug + V Maug = ui
g

with the volume potential operator and the multiplication operator V,Ma : L2(Bρ) → L2(Bρ)
given by (V u)(x) := k2

∫

Bρ
Φ(x − y)u(y) dy and (Mau)(x) := a(x)u(x). Together with eq. (3)

we obtain the factorization
U∞ = γmZoMa(I + V Ma)

−1Zi. (6)

Theorem 2.1 The mapping

G : U → L(L2(Bρ))

a 7→ Ma(I + V Ma)
−1

is one-to-one, and its inverse is continuous with respect to the L∞-norm.

Proof: Let a ∈ U and B := G(a). Then Ma = B + BV Ma or

(I − BV )Ma = B. (7)

To show that the operator I − BV : L2(Bρ) → L2(Bρ) is one to one, assume that

v − BV v = 0 (8)

for v ∈ L2(Bρ). Multiplying from the left by V we obtain that

0 = V v − V Ma(I + V Ma)
−1V v

=
{

(I + V Ma)(I + V Ma)
−1 − V Ma(I + V Ma)

−1
}

V v

= (I + V Ma)
−1V v.



Hence V v = 0. Plugging this into (8), it follows that v = 0, so I − BV is one-to-one.
Now it follows from Riesz theory and the compactness of V ∈ L(L2(Bρ)) that I −BV is onto

and has a bounded inverse. Therefore, (7) is equivalent to

Ma = (I − BV )−1B.

In particular, Ma is uniquely determined by B. Moreover, Ma depends continuously on B since
the composition of bounded linear operators is continuous and (I−BV )−1 depends continuously
on B by a Neumann series argument. Since the mapping L∞(Bρ) → L(L2(Bρ)), a 7→ Ma is
linear and isometric with respect to the L∞-norm, it follows that a is also uniquely determined
by B and depends continuously on B with respect to the L∞-norm.

2.2. electromagnetic scattering problem

We now discuss the scattering of electromagnetic waves in an inhomogeneous, nonmagnetic
medium. Then Maxwell’s equation reduce to the equation

curl curlE− k2n(x)E = 0 in R
3 (9a)

for the space-dependent part E : R
3 → C

3 of the electric field. Here k = ω
√

ε0µ0 denotes the

wave number and n(x) = 1 − a(x) = 1
ε0

(ε(x) + iσ(x)
ω

the refractive index with the standard
notations for the electric permittivity ε > 0, the magnetic permeability µ0, the conductivity
σ > 0, and the angular frequency ω > 0. We assume that suppa ⊂ Bρ and n ∈ C1,α(R3). The
total electric field

E = Ei + Es (9b)

is composed of an incident field Ei and a scattered field Es. The former satisfies the equation
curl curlEi − k2Ei = 0, and the latter the Silver-Müller radiation condition

curlEs(x) × x − ik|x|Es(x) → 0, |x| → ∞ (9c)

uniformly for all directions x̂ = x/|x| ∈ S2. Let Φ(x) := eik|x|/(4π|x|), x 6= 0 denote the
fundamtental solution to the Helmholz equation in R

3. The forward electromagnetic scattering
problem (9) can be formulated equivalently as an integral equation

E(x) + k2

∫

Bρ

Φ(x − y)a(y)E(y) dy (10)

+ grad

∫

Bρ

Φ(x − y)
grad a(y)

1 − a(y)
·E(y) dy = Ei(x), x ∈ R

3,

the electromagnetic Lippmann-Schwinger equation. This equation is known to have a unique
solution E ∈ L2(Bρ) for all right hand sides. It follows that the far field pattern E∞ : S2 → C

3

defined by the asymptotic formula

Es(x) =
eik|x|

|x|

(

E∞(x̂) + O
1

|x|

)

, |x| → ∞

is given by

E∞(x̂) = −k2

∫

Bρ

e−ikx̂·y

4π
a(y)E(y) dy − ikx̂

∫

Bρ

e−ikx̂·y

4π

grad a(y)

1 − a(y)
· E(y) dy.



Since the far field pattern belongs to the set L2
T (S2) := {g ∈ (L2(S2))3 : x̂ × g(x̂) × x̂ = g(x̂}

of tangential fields on the unit sphere, it follows that E∞ = − k2

4π
Zo(aE) with the operator

Zo : L2(Bρ)
3 → L2

T (S2) defined by

(ZoE)(x̂) := x̂ ×
∫

Bρ

e−ikx̂·yE(y) dy × x̂, x̂ ∈ S2. (11)

The transposed Zi : L2
T (S2) → L2(Bρ)

3 of this operator is given by

(Zig)(x) :=

∫

S2

e−ikx̂·yx̂ × g(x̂) × x̂ds(x̂), x ∈ Bρ. (12)

Consider incident fields of the form Ei(x, d; p) = pe−ikx·d with direction d ∈ S2 and polarization
p ∈ C

3 such that d·p = 0, and denote the corresponding far field patterns by E∞(x̂, d). Since the
differential equation (9a) is linear and the far field pattern E∞ depends linearly on the scattered
field Es, we have

E∞(x̂, d; p) = e∞(x̂, d)p

for some 3× 3 matrix e∞(x̂, d), and e∞(x̂, d) is uniquely determined if we impose the additional
condition e∞(x̂, d)·d = 0. With this notation we can define the electromagnetic far field operator

E∞ : L2
T (S2) → L2

T (S2) by

(E∞g)(x̂) :=

∫

S2

e∞(x̂, d)g(d) ds(d), x̂ ∈ S2.

Arguing as in subsection 2.1 we can derive the following factorization of the operator E∞:

E∞ = − k2

4π
ZoMa(I−Wa)

−1Zi. (13)

Here the operators Ma,Wa ∈ L(L2(Bρ)
3) are defined by (MaE)(x) := a(x)E(x) and

(WaE)(x) := k2
∫

Bρ
Φ(x − y)a(y)E(y) dy + grad

∫

Bρ
Φ(x − y) grad a(y)

1−a(y) · E(y) dy.

3. The iterative algorithm

3.1. general regularization methods

We first review some iterative methods for the solutions of general ill-posed operator equations

F (a) = y (14)

with an operator F : D(F ) ⊂ X → Y between Hilbert spaces X and Y which is Fréchet-
differentiable on its domain of definition D(F ). The Fréchet derivative of F at a point a ∈ D(F )
will be denoted by F ′[a] : X → Y. The measured data are yδ ∈ Y where δ denotes a known
error bound, ‖yδ − y‖ ≤ δ. Moreover, let a0 ∈ D(F ) be an initial guess of the solution a.

Landweber iteration is defined by the formula

an+1 = an − µF ′[an]∗(F (an) − yδ), n ∈ N0 (15)

where µ is a scaling parameter satisfying µ < ‖F ′[a]∗F ′[a]‖−1 for all a in a neighborhood of the
solution. Since the speed of convergence of Landweber iteration depends critically on the choice
of µ, it is worth to approximately compute ‖F ′[a0]

∗F ′[a0]‖ by some steps of the power method.
As we will see, the convergence of Landweber iteration is very slow even with an optimal choice



of η. Faster convergence can be achieved by Newton type methods, which compute in the nth
step an update hn = an+1 − an from the linearized operator equation

F ′[an]hn = yδ − F (an). (16)

Since eq. (16) inherits the ill-posedness of the nonlinear operator equation (14), some linear
regularization method has to be used to solve (16) approximately. Such methods can be
described by a family of bounded functions qα : [0,∞) → R satisfying limα↘0 qα(λ) = 1/λ
for all λ > 0. Bounded approximations to the unbounded operator F ′[an]−1 are given by
qα(F ′[an]∗F ′[an])F ′[an]∗, where this expression has to be interpreted in sense of the functional
calculus of bounded self-adjoint operators. This leads to iteration formulas of the form

an+1 = an + qαn(F ′[an]∗F ′[an])F ′[an]∗(yδ − F (an)). (17)

In particular, for Tikhonov regularization we have qα(λ) = 1/(λ + α), and hn is the unique
global minimum of the functional

h 7→ ‖F ′[an]h + F (an) − yδ‖2 + αn‖h‖2, h ∈ X . (18)

The corresponding iteration is known as the Levenberg-Marquardt method. Another class of
iteration formulas is obtained by taking x0 as initial guess for each linearized equation (16):

an+1 = a0 + qαn(F ′[an]∗F ′[an])F ′[an]∗
(

yδ − F (an) + F ′[an](an − a0)
)

This was first suggested for Tikhonov regularization by Bakushinskii [1] and later generalized
by Kaltenbacher [9]. The original method suggested by Bakushinskii is known as iteratively
regularized Gauß-Newton method (short IRGNM). Here an+1 can be characterized as the
minimum of a functional of the form (18) with ‖h‖2 replaced by ‖h + an − a0‖2. In our
experiments we have always chosen the regularization parameters by the simple a-priori rule
αn = α0 ·(2/3)n. The actual regularization parameter is the stopping index, which is determined
by the discrepancy principle.

For large scale problems the computation of the Jacobian F ′[a] can be prohibitively expensive
since typically the computation of one column of the matrix for F ′[a] takes as much time as
one evaluation of the operator F . Therefore, we have to solve the minimization problems (18)
iteratively, e.g. by the conjugate gradient method. However, for small values of αn this requires
a large number of iterations since the systems become ill-conditioned. In [8] we have suggested
a preconditioning technique which uses the close connection between the conjugate gradient
method and the Lanczos iteration. This technique is only efficient for exponentially ill-posed
problems, i.e. it exploits the severe ill-posedness of the problem.

3.2. an iterative method based on factorization of the far field operator

Let us consider the situation that the operator F : D(F ) ⊂ X → Y is a composition of a
nonlinear operator G : D(F ) → Z and a linear operator T : Z → Y such that the inversion of G
is well-posed or at least less severely ill-posed then the inversion of F . We assume that Y and Z
are Hilbert spaces and X is a normed space. A variant of nonlinear Tikhonov regularization for
this situation has been investigated by Chavent & Kunisch [3] who coined the name state space

regularization. Since the ill-posedness of the problem is only (or mainly) due to the operator T ,
it makes sense to regularize only T and consider iterative regularization methods of the form

an+1 := argmina∈D(F ) ‖PN(T )⊥
{

G′[an](a − an) + G(an)
}

− qαn(T ∗T )T ∗yδ‖2 (19)



where PN(T )⊥ : Z → N(T )⊥ is the orthogonal projection.
To fit medium scattering problems in this framework, we assume that both Y and Z are

Hilbert-Schmidt spaces of operators,

Y = HS(L2(Ω1)) and Z = HS(L2(Ω2))

and that T : Z → Y has the form

T : HS(L2(Ω2)) → HS(L2(Ω1))

K 7→ ZoKZi

with compact linear operators Zi : L2(Ω1) → L2(Ω2) and Zo : L2(Ω2) → L2(Ω1). Recall that
Hilbert-Schmidt spaces are Hilbert spaces of operators, and that every K ∈ HS(L2(Ωj)) can
be written as an integral operator with kernel k ∈ L2(Ωj × Ωj), such that ‖K‖HS = ‖k‖L2 (see
e.g. [16]). If we are dealing with L2 spaces of vector-valued functions as for the electromagnetic
medium scattering problem, the kernel k is matrix valued, and we have to take the Frobenius
norm, e.g.

‖E∞‖2
HS =

∫

S2

∫

S2

‖e∞(x̂, d)‖2
F ds(x̂) ds(d).

To keep notation as concise as possible we formulate our algorithm in a discrete setting.
Assume that G and F are matrix-valued functions mapping a subset D(F ) of the space X to
the matrix spaces Mat(Mo,Mi) and Mat(No, Ni) respectively, and assume that these mappings
are related by

F (a) = ZoG(a)Zi, a ∈ D(F )

with Zi ∈ Mat(Mi, Ni) and Zo ∈ Mat(No,Mo). (By Mat(M,N) we denote the set of all M ×N
matrices.) We assume that Mi ≥ Ni and Mo ≥ No (typically Mi � Ni and Mo � No in our
applications!) and that the matrices Zi and Zo have full rank. The spaces Z = Mat(Mo,Mi)
and Y = Mat(No, Ni) are equipped with the Frobenius norm as discrete analog of the Hilbert-
Schmidt norm.

An essential observation for the following algorithm is that a singular value decomposition
of the linear mapping T : K 7→ ZoKZi between the large spaces Mat(Mo,Mi) and Mat(No, Ni)
can be expressed in terms of singular value decompositions of the much smaller matrices Z i and
Zo. More precisely, if {(cj

i , d
j
i , σ

j
i ) : j = 1, . . . , Ni} and {(ck

o , dk
o , σ

k
o ) : k = 1, . . . , No} are singular

systems of Zi and Zo, then

{(dk
odj

i

∗
, ck

ocj
i

∗
, σk

oσj
i ) : j = 1, . . . Ni, k = 1, . . . , No}

is a singular system of T . In all our examples the time required to compute this singular
value decomposition was smaller then the time for one evaluation of the operator F . Since
a singular value decomposition of T is so easy to compute, we choose the truncated singular
value decomposition as regularization method for T in (19). This corresponds to the choice
qα(λ) := 1/λ for λ ≥ α and qα(λ) := 0 else. We will see that this choice significantly reduces
the computational cost compared to other regularization methods. We write

Zi = DiΣiC
∗
i and Zo = CoΣoD

∗
o (20)

where the columns of Dl are the vectors dj
l , the columns of Cl are the vectors cj

l , and the diagonal

entries of Σl are the singular values σj
l , l ∈ {i, o}. We introduce the matrix S ∈ Mat(No, Ni),

Sk,j := σj
i σ

k
o (21)



and the symbol .∗ for the elementwise matrix multiplication, and note that

C∗
oF (a)Ci = (D∗

oG(a)Di).∗ S, a ∈ D(F ).

Analogously, the symbol ./ denotes pointwise division of matrices. With these notations we can
formulate the following algorithm:

iterative regularization method based on factorization

Input: Y δ ∈ Mat(No, Ni) measured data, δ > 0 noise level, a0 ∈ D(F ) initial guess

compute singular value decompositions (20) of Zi and Zo;
n := 0; Define P α0 ∈ Mat(No, Ni)

by P α0

j,k := 1 if σj
i σ

k
o ≥ α0 and P α0

j,k := 0 else;

while ‖F (an).∗ P αn − Y δ‖F > 2δ do
choose αn > 0 (see below!) and define P αn ∈ Mat(No, Ni)

by P αn
j,k := 1 if σj

i σ
k
o ≥ αn and P αn

j,k := 0 else;
an+1 := argmina∈D(F )

∥

∥

{

D∗
o(G

′[an](a − an) + G(an))Di − (C∗
oY δCi)./S

}

.∗ P αn
∥

∥

F
;

n := n + 1;
end

For the medium scattering problems discussed in section 2 we have implemented this method
as follows:

• Each column dj
i of the matrix Di represents a Herglotz wave function, i.e. an incident

wave of the form (4) or (12), rsp. Multiplying G(a) with dj
i essentially means solving the

corresponding forward scattering problem. This was done using a fast iterative solver of
the Lippmann-Schwinger equation based on FFT (see [8, 6, 17]).

• Since we use spectral cut-off as regularization method, we only have to solve a forward
scattering problem for those columns of P αn which contain non-zero entries (see Fig. 3).

• To solve the linearized operator equations we use the conjugate gradient method applied to
the normal equation.

• Choice of the regularization parameters αn: We choose α0 := σ0
i σ

0
o/2. The residual can be

decomposed as follows:

‖F (an).∗ P αn − Y δ‖2
F = ‖(F (an) − Y δ).∗ P αn‖2

F + ‖Y δ.∗ P αn − Y δ‖2
F

If the first term (the “low frequency” components of the error) is larger than the second, we
set αn = αn−1, otherwise we choose αn = αn−1/2. Thus we first fit the stable components
of the data and then gradually the more unstable components.

4. Numerical examples

We first tested 4 different methods on a medium-size problem, the two-dimensional acoustic
scattering problem discussed in subsection 2.1. We used 50 incident waves, the wave number
k = 3, and the refractive index shown in Fig. 1. For all regularization methods the total
computational cost was dominated by the number of pde solutions. This number is shown in
Table 1 for different values of the noise level δ. Landweber iteration was clearly the slowest
methods for all values of δ. For δ = 0.001 we stopped the iteration after 20.000 Landweber steps
corresponding to 1.000.000 pde solutions. The value of the relative residual was roughly 0.004
at the stopping index. The convergence of the IRGNM was much much faster. Even without
preconditioning it outperformed Landweber iteration except for the noise level 10%. The new



Table 1. Comparison of the number of pde solutions required by different methods for different
values of the relative noise level δ. The test problem was a two-dimensional inverse scattering
problem with wave number k = 3, the refractive index shown in Fig. 1 and 50 incident waves at
equidistant angles.

method δ = 0.1 δ = 0.01 δ = 0.001

Landweber 1850 33450 > 2000000
IRGNM with CGNE 2350 6050 24550
preconditioned IRGNM 1850 3050 7350
new method 430 1162 2916

original

-1 -0.5 0 0.5 -1 -0.50
0.5

1

reconstruction with 1% noise

-1 -0.5 0 0.5 -1 -0.50
0.5

0.6

1

Figure 1. The refractive index in test example in Tab. 1.

method suggested in subsection 3.2 was clearly faster than all other methods for all values of δ.
The quality of the final reconstructions was similar for all the methods.

Before proceeding to large scale problems we would like to point out that the degree of
ill-posedness of inverse medium scattering problems depends strongly on the wave number
k, the space dimension, and the pde. This is illustrated at the matrices S defined in (21)
containing the singular values of T (see Fig. 3). For a given noise level one can obtain much
more accurate reconstructions for large than for small wave numbers and better reconstructions
for electromagnetic than for acoustic scattering problems.

We also tested our method for the three-dimensional electromagnetic scattering problem, the
size of which demands a very efficient inversion scheme. The computations were carried out
in parallel on a cluster of 12 Linux PCs. In the example shown in Fig. 2 the preconditioned
IRGNM required the solution of 14200 pde’s whereas the method proposed in section 3 needed
only 4816 pde solutions. This is a remarkable improvement and illustrates the potential of the
proposed method for large scale inverse scattering problems.

5. Conclusion

We have proposed an iterative method for the solution of inverse scattering problems in
inhomogeneous acoustic and electromagnetic media. This method is based on the fact that these
problems can be formulated as operator equations with a nonlinear operator-valued operator F
which permits a factorization of the form F (a) = ZoG(a)Zi with compact linear operators Zo

and Zi. We have shown that the inversion of G is well-posed and that the proposed method
is significantly more efficient than iterative regularization method which do not use the special



Figure 2.

Reconstruction of the refractive index from the electromagnetic far field operator with 1%
noise. Left: true refractive index; middle: reconstruction by the preconditioned IRGNM; right:
reconstruction by the method in subsection 3.2.
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Figure 3. This figure illustrates the degree of ill-posedness of various scattering problems by
showing (parts of) the matrices S containing the singular values of T (see (21)). The singular
values are arranged in decreasing order, σ1

j ≥ σ2
j ≥ . . . , j ∈ {i, o}. The dotted lines enclose the

matrix entries which are ≥ 0.1σ1
i σ1

o, the dashed lines those ≥ 0.01σ1
i σ1

o , and the solid lines the
ones ≥ 0.001σ1

i σ1
o.

structure of the problem.
Since the operator Zi does not have dense range and Zo is not one-to-one, we cannot recover

G(a) from F (a), but only PoG(a)Pi where Pi is the orthogonal projection onto R(Zi), and
Po the orthogonal projection onto N(Zo)

⊥. We do not know if the inversion of the mapping
a 7→ PoG(a)Pi is stable. If this question could be settled, one could possibly obtain a full
convergence proof for the iterative regularization method proposed in this paper. This would be
a remarkable achievement since iterative regularization method are widely used for the solution
of inverse scattering problems, but except for some partial results (see [7, 15]) no convergence
analysis is available so far.
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2005-03 A. Schöbel Set covering problems with consecutive ones
property
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