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Image Reconstruction by Regularized Nonlinear Inversion

The use of parallel imaging for scan time reduction in MRI faces problems

with image degradation when using GRAPPA or SENSE for high acceler-

ation factors. While an inherent loss of SNR in parallel MRI is inevitable

due to the reduced measurement time, the sensitivity to image artifacts

that result from severe undersampling can be ameliorated by alterna-

tive reconstruction methods. While the introduction of GRAPPA and

SENSE extended MRI reconstructions from a simple orthogonal trans-

formation (Fourier transform) to the inversion of an ill-conditioned linear

system, the next logical step is the use of a nonlinear inversion. Here,

a respective algorithm based on a Newton-type method with appropri-

ate regularization terms is demonstrated to improve the performance of

autocalibrating parallel MRI – mainly due to a better estimation of the

coil sensitivity profiles. The approach yields images with considerably

reduced artifacts for high acceleration factors and/or a low number of

reference lines.

Key words: inverse problems; iterative reconstruction; parallel imaging;

nonlinear inversion
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Image Reconstruction by Regularized Nonlinear Inversion

Independent MRI acquisitions from multiple receiver coils may be exploited for en-

coding part of the spatial information of an object by the spatially varying coil

sensitivities. When used in conjunction with conventional phase-encoding by mag-

netic field gradients, coverage of the k-space for image reconstruction may become

undersampled along a suitable phase-encoding dimension which in turn corresponds

to a reduction of overall scan time.

To take full advantage of such parallel imaging techniques the information that

necessarily needs to be derived from the sensitivities of the different receiver coils has

to be known with sufficiently high accuracy. Unfortunately, however, the receiver

sensitivities depend on the dielectric properties of the object under investigation and

reflect even small object movements. To compensate for these effects, autocalibrat-

ing methods have been developed which determine the required information from

reference lines in the center of k-space. The reference lines are usually acquired at

the same time as the actual object-defining lines in k-space.

The common reconstruction methods for autocalibrated parallel imaging are

based on a sequential approach: the determination of the information about the

coil sensitivities from the reference lines is followed by the reconstruction of an im-

age by a linear process. As will be explained later such two-step techniques make

only suboptimal use of the available data. With the help of an alternating mini-

mization method, Ying and Sheng (1) recently proposed to improve this situation

by iteratively optimizing both the coil sensitivities and the image content until a

joint solution is found. Extending these ideas, the purpose of this work is to show

how a regularized nonlinear inversion technique based on a Newton-type method

with appropriate regularization terms provides a generic and convenient framework

for solving this problem in the context of MRI reconstruction.

THEORY

Parallel imaging

The MRI signal obtained for multiple receiver coils is given by

sj(t) =

∫
d~x ei~k(t)~xρ(~x)cj(~x) j = 1, · · · , N .

Here ρ denotes the proton density and cj the sensitivity profiles of the individual

receiver coils. ~k(t) is the chosen k-space trajectory. If the coil sensitivity profiles are

known, this equation represents a linear system which can be solved numerically (2).

Existing direct methods either utilize the decoupling of the equation in image space

for regular sampling patterns like SENSE (3–5) or approximate a sparse inverse by
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Image Reconstruction by Regularized Nonlinear Inversion

using the k-space locality principle as employed for SMASH (6, 7) and its succes-

sors. Unfortunately, the MRI signal equation becomes increasingly ill-conditioned

for large acceleration (or undersampling) factors. As a consequence, the inversion of

the system leads to the amplification of noise that contributes to the left-hand side

of the equation. To counter this effect the inversion has to be regularized (2). If the

receiver sensitivities are not known, it is common practice to compute the necessary

information in a calibration step and then proceed as before (8). For autocalibrat-

ing SENSE the coil sensitivity profiles are determined directly from the reference

lines (9). For GRAPPA (10) the reconstruction weights are obtained by a fit to the

reference lines.

In general, a determination of coil sensitivities from only the center of k-space

does not take advantage of all available information. Although the information

about a smooth coil profile is mostly localized in the k-space center, the measured

data represents the convolution of the coil profiles with the object function which

shifts information from the center of k-space to its outer parts. Because even small

errors in the sensitivity profiles lead to residual aliasing artifacts in the resulting

image, an optimal reconstruction should exploit all available k-space data rather

than only a small part in its center. This can be accomplished by a nonlinear

inversion technique.

Parallel imaging as nonlinear inversion

In order to solve for the object function and the sensitivity profiles at the same

time, the method proposed here applies a regularized nonlinear inversion to the

reconstruction problem. The basic MRI signal equation is understood as a nonlinear

operator equation with an operator F which maps the proton density and the coil

sensitivity profiles to the measured data

F (x) = y with x =


ρ

c1
...

cN

 .

This equation is solved by a Newton-type algoritm, more precisely the Iteratively

Regularized Gauss Newton Method (IRGNM), see (11,12) as general references. In

the following it is assumed that the operator equation is given in a discretized form

where all functions are represented by vectors of point values on a rectangular grid.

– 3 –



Image Reconstruction by Regularized Nonlinear Inversion

Iteratively Regularized Gauss Newton Method

The general idea of the Newton algorithm is as follows. A linearization of the

equation around an initial guess xn yields

F (xn + dx) ≈ DF (xn)dx+ F (xn) .

Here DF (xn) denotes the Fréchet derivative (or Jacobian) of F at the point xn.

This linearized equation is then solved for the update dx

DF (xn)dx+ F (xn) = y .

Under certain conditions updates of xn+1 = xn + dx and an iteration of this scheme

converges to a solution.

To calculate an approximate solution to the linearized problem the conjugate

gradient algorithm can be used. This algorithm needs to be applied to a symmetric

matrix, a condition which can be ensured by multiplying both sides with the adjoint

of DF (xn)

DF (xn)HDF (xn)dx = DF (xn)H(y − F (xn)) .

Due to the bad conditioning of the linearized equations the inversion must be reg-

ularized. Adding a positive definite regularization matrix, e.g. the identity, to the

matrix DF (xn)HDF (xn) yields the well known Levenberg-Marquardt algorithm(
DF (xn)HDF (xn) + αnI

)
dx = DF (xn)(y − F (xn)) .

The regularization parameter αn is reduced in each step. For large values of αn the

algorithm is related to the gradient descent algorithm

(αnI) dx = DF (xn)H(y − F (xn)) .

For low values the algorithm represents the classic Gauss-Newton method

DF (xn)HDF (xn)dx = DF (xn)H(y − F (xn)) .

The Levenberg-Marquardt algorithm takes advantage of both these ideas by using

the more robust gradient descent algorithm at the beginning of the iterative process

(far from the solution) and the faster Gauss-Newton algorithm at the end (near

the solution). Its properties can be understood in a reformulation as a sequence

of quadratic optimization problems where the update dx corresponds to the unique

minimizer of the functional

‖DF (xn)dx− (y − F (xn))‖2 + αn‖dx‖2 .

– 4 –



Image Reconstruction by Regularized Nonlinear Inversion

Although each individual update is regularized to suppress noise, it is still possible

that small residual noise in each update accumulates in the final solution. A more

stable algorithm is given by changing the update rule to minimize

‖DF (xn)dx− (y − F (xn))‖2 + αn‖xn + dx− x0‖2 .

In this case the regularization no longer applies to the update itself but to the result

of the update with respect to the initial guess. A suitably revised algorithm, the

IRGNM, then relates to an update rule

dx = (DF (xn)HDF (xn) + αnI)−1DF (xn)H(y − F (xn) + αn(xn − x0)) .

The regularization parameters are always chosen to be of the form αn = α0q
n with

the same q ∈ (0, 1), usually q = 2
3
.

To apply this IRGNM algorithm to parallel MRI reconstructions, implementa-

tions of the operator, its derivative, and the adjoint of the derivative are needed.

The operator is given by

F : x 7→


PF{c1 · ρ}

...

PF{cN · ρ}

 with x =


ρ

c1
...

cN

 ,

where F is the (multidimensional) Fourier transform and P is the orthogonal projec-

tion onto the trajectory which – for cartesian sampling – is a diagonal matrix with

ones at the positions of the measured data and zeros elsewhere. The derivative of

the operator can easily be calculated by using the linearity of the Fourier transform

and the product rule of derivatives

DF (x)


dρ

dc1
...

dcN

 =


PF{ρ · dc1 + dρ · c1}

...

PF{ρ · dcN + dρ · cN}

 .

Due to the unitarity of F the adjoint is then given by

DFH(x)


y1

...

yN

 =


∑N

j=1 c
?
j · F−1{PHyj}

ρ? · F−1{PHy1}
...

ρ? · F−1{PHyN}

 .

with the star denoting pointwise complex conjugation.
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Once the dependency on the coil sensitivities is removed, that is the coil sen-

sitivities are treated as constants, the resulting operator becomes linear while the

parts corresponding to the update of the coil sensitivities in the derivative and its

adjoint vanish. As a consequence, the algorithm effectively transforms into a conju-

gate gradient (CG) variant of SENSE, as commonly used for non-cartesian MRI (4).

When started with suitable coil sensitivities this modified algorithm produces so-

lutions similar to those obtainable from a CG-SENSE algorithm with decreasing

regularization.

Regularization

A direct application of the described IRGNM algorithm to the problem of auto-

calibrated parallel imaging would yield an unrealistic solution to the MRI signal

equation. Basically, the coil sensitivities would include a substantial portion of the

object information and the object part would not be unfolded correctly. The reason

is that the equation is highly underdetermined – even in the fully sampled case.

This can be seen by the fact that multiplying the object part of a solution (ρ, cj)

by some arbitrary complex function g and dividing the coil sensitivities by the same

function gives another solution (ρ · g, cj/g).

The problem may be overcome by adding a priori knowledge about the object

and the coil sensitivities. For example, while the object may contain edges, the

coil sensitivities are generally rather smooth. This can be ensured by a smoothness

enforcing norm for the coil profiles that is used during the quadratic optimization

problems solved in each Newton step. An appropriate choice is a Sobolev norm

given by

||f ||l = ‖(I−∆)l/2f‖

for some chosen index l. The 2D-Laplacian is given by ∆ = ∂2
x + ∂2

y . This norm

can easily be calculated by weighting the standard L2-norm in Fourier space by an

additional term (1 + ‖~k‖2)l/2. It penalizes high frequencies where the penality is

a polynomial with degree l in the distance to the k-space center. To achieve the

desired regularization, the operator and the representation of the coil profiles are

transformed with a preconditioning matrix W which contains a Fourier transform

of the coil part multiplied by a diagonal weighting matrix
ρ

ĉ1
...

ĉN

 =


I

(1 + ‖~k‖2)l/2F−1

. . .

(1 + ‖~k‖2)l/2F−1




ρ

c1
...

cN

 .
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The IRGNM algorithm is then applied to the following transformed but equivalent

system of equations

x̂ = W−1x

Gx̂ = FWx̂ = y .

Using these definitions the new minimization problem – to be solved in each Newton

step – is given by

‖DG(x̂n)dx̂− (y −G(x̂n))‖2 + αn‖x̂n + dx̂− x̂0‖2 .

A closer look at the regularization term reveals the effect of the above modification

(assuming x0 = ~0 for simplicity)

‖x̂− x̂0‖2 = ‖W−1x−W−1x0‖2

= ‖ρ‖2 +
N∑

j=1

‖ĉj‖2 using x0 = ~0

= ‖ρ‖2 +
N∑

j=1

∥∥∥(1 + ‖~k‖2)l/2Fcj
∥∥∥2

= ‖ρ‖2 +
N∑

j=1

‖cj‖2l .

The L2-norm used in the regularization of the coil part of the transformed system

therefore corresponds to the Sobolev norm in the original space, penalizing high

frequencies and enforcing the smoothness of the coil sensitivities. Flow charts for

the calculation of the modified operator, the derivative, and its adjoint are shown

in Figure 1.

Postprocessing

As mentioned before, the system of equations is underdetermined even in the fully

sampled case. Although this ambiguity may be removed by the choice of the reg-

ularization terms, the result is not necessarily identical to a typical sum-of-squares

reconstruction. This difference manifests itself as slight changes in the large-scale

intensity distribution. By multiplying the resulting image with the root of the sum

of squares of the estimated coil sensitivities and dividing the coil sensitivities by the

same quantity, this difference can be removed in a simple step

ρfinal = ρ ·

√√√√ N∑
j=1

|cj|2 .
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While not strictly necessary, this postprocessing is useful when comparing images

or coil sensitivities to images reconstructed with different regularization parameters,

other parallel imaging algorithms, or from fully sampled data sets.

MATERIALS AND METHODS

Experimental examples were obtained for a water phantom and the brain of healthy

volunteers at 2.9 T (Siemens Magnetom TIM Trio, Erlangen, Germany) using a

12-channel head coil. Written informed consent was obtained from all subjects prior

to the examination.

The proposed algorithm was implemented in a C program using the FFTW3

library. Raw data was acquired, reconstructed offline, and the results were com-

pared to the GRAPPA algorithm implemented on the MRI system (software ver-

sion: VB13) and to an autocalibrated version of SENSE. As confirmed by personal

communication the GRAPPA implementation is based on the algorithm presented

in (10) but contains unpublished proprietary modifications. It may still serve as a

valid reference because it is widely distributed and its characteristics are documented

in numerous studies about parallel imaging methods and applications. The SENSE

algorithm used here relies on the autocalibration technique from (9) – including

an apodization with the Kaiser window (β = 4) – and employs an iterative (CG)

SENSE reconstruction (4) for image reconstruction. This generic SENSE version

was chosen, because it allows for the inclusion of reference lines in the reconstruc-

tion – similar to GRAPPA and the proposed nonlinear inversion algorithm.

Images were acquired with use of a 3D RF-spoiled FLASH sequence (TR/TE

= 10.6/4.2 ms, flip angle = 17◦) with an isotropic spatial resolution of 1 mm and

a 2D fast spin-echo sequence with two groups of 5 echoes each (TR/TE1/TE2 =

7300/15/92 ms, echo spacing 15.4 ms) at 1 mm in-plane resolution and 2 mm section

thickness. Parallel imaging was performed with variable acceleration (undersam-

pling) factors in all phase-encoding directions and with variable numbers of refer-

ence lines. To improve the SNR of the 3D gradient-echo images of the human brain,

the acquisitions employed two accumulations. For demonstration purposes individ-

ual partitions were selected from the 3D data orthogonal to the readout direction,

that is after 1D Fourier transformation along the frequency-encoding axis. These

2D partitions were extracted and subsequently reconstructed using the proposed

algorithm.
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RESULTS

Figure 2 shows 3D MRI partitions of a water phantom obtained for 2D acceleration

factors of 6 = 3×2, 9 = 3×3, and 12 = 4×3 using 24×24 reference lines. All acqui-

sitions employed the 12 channels of the head coil and the images were reconstructed

with GRAPPA, autocalibrated SENSE and nonlinear inversion, respectively. Visual

inspection reveals that GRAPPA and autocalibrated SENSE lead to ghosting arti-

facts for a 2D acceleration factor of 6 that get increasingly worse for higher degrees

of undersampling. In contrast, the proposed nonlinear inversion method is able to

reconstruct almost artifact-free images up to the theoretical maximum of 12, al-

though at this level the quality in central areas of the image begins to deteriorate.

The SENSE reconstructions in the bottom part of Fig. 2 demonstrate that the high

quality of the nonlinear reconstructions is primarily due to an improved estima-

tion of the sensitivity profiles. SENSE reconstructions achieve a similar quality if

the coil sensitivities are not estimated from the reference lines but taken from the

calculations of the nonlinear inversion algorithm.

The above findings are confirmed for in vivo conditions. GRAPPA, autocali-

brated SENSE and nonlinear inversion reconstructions for 3D MRI partitions of the

human brain are compared in Fig. 3 for 2D acceleration factors of 4 = 2 × 2 and

6 = 3×2 using 16×16 reference lines. Again, GRAPPA and autocalibrated SENSE

images yield ghosting artifacts and considerably more noise than reconstructions

by nonlinear inversion (using 14 and 18 iterations). For the nonlinear inversion

reconstruction with 2D acceleration factor 2 × 2, Figs. 4 to 6 detail the extreme

smoothness of the estimated coil sensitivities as well as the influence of the total

number of iterations and the number of iterative updates of the coil information,

respectively. The progressive reduction of the undersampling artifacts by increasing

the number of iterations from 11 to 14 is demonstrated in Fig. 5. Complementary,

Fig. 6 supports the notion that the improved reconstructions by nonlinear inversion

are largely due to the improved estimation of the coil sensitivities. When limiting

the update of the coil information to 8, 10, 12 or 14 iterations, the remaining it-

erations of the image information (up to 14) refer to a linear inversion similar to

CG-SENSE. The comparison of respective reconstructions in Fig. 6 clearly indicates

that an early termination of the coil update leaves the rest of the iterations with

slightly incorrect coil sensitivities which in turn give rise to residual ghosting arti-

facts in the final image. Noteworthy, because these artifacts are related to errors in

the coil sensitivities and not due to the regularization, they cannot be eliminated

by adding further iterations without including an update of the coil information.
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The relevance of the number of reference lines is examined in Fig. 7 which com-

pares 3D FLASH MRI partitions of the human brain reconstructed with GRAPPA,

autocalibrated SENSE and nonlinear inversion (2D acceleration factor 4) for 24×24,

16× 16, and 8× 8 reference lines. While reconstructions by nonlinear inversion ex-

hibit no ghosting artifacts and only a moderate increase of central noise for the

lowest number of reference lines, GRAPPA and SENSE reconstructions are much

more sensitive to accurate estimations of the coil information from a sufficiently high

number of reference lines. Severe undersampling artifacts occur for both 16 × 16

and 8× 8 reference lines.

DISCUSSION

This work introduces a new reconstruction method for autocalibrated parallel imag-

ing which is based on regularized nonlinear inversion. The approach allows for a

simultaneous calculation of the unknown coil sensitivity maps and the unknown spin

density of the object using all available data. At least for the experimental condi-

tions examined here, that is 2D acceleration factors of up to 12, reference lines as

few as 8 × 8, and conventional 2D and 3D MRI sequences, the proposed strategy

yields images with visually reduced artifacts compared to the two-step approaches

GRAPPA and autocalibrated SENSE. These methods first estimate information

about the coil sensitivities (which in the case of GRAPPA is encoded in the recon-

struction weights) from only a part of the data and then solve a linear equation

where the coil information remains fixed.

The necessity to improve the estimation of the coil sensitivity profiles in parallel

image reconstructions has also been recognized by others. As mentioned before,

it has recently been proposed to exploit the bilinear structure of the MRI signal

equation to solve the system of equations for the coil profiles and object functions in

an alternating way (1). In comparison to the alternating minimization scheme, an

advantage of the Newton methods used here is a greater flexibility for incorporating

additional nonlinear constraints and regularization terms. Such options will be

even more important for higher acceleration factors that suffer from increased noise

amplification. A Newton-type method has also been used for parallel MRI in (13),

but the algorithm presented there computes the full Jacobian DF (xn) and uses

a QR decomposition to solve the regularized Newton equations. Therefore, the

time and memory complexity is much higher compared to the method presented

here. Moreover, the use of a small number of basis functions, which ensures the

smoothness of the coil profiles in (1) and (13) seems problematic because it limits
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the accuracy of the profile reconstructions as opposed to the use of Sobolev norms.

Choice of Parameters

The parameters for the proposed nonlinear inversion algorithm were chosen as fol-

lows: As initial guess x0 the object function ρ was set to constant 1 and the coil

profiles c1, . . . , cN to zero. The Sobolev index for the regularization of the coil pro-

files was l = 16. The first regularization parameter was chosen as α0 = 1 and

reduced by a factor q = 2/3 in each Newton step. To our experience the final results

are not sensitive to the choice of any of these parameters. The only critical value is

the regularization parameter αn∗ at the stopping index n∗, and hence the stopping

criterion for the Newton method. The choice of n∗ is a trade-off between small noise

(small n∗) and small undersampling artifact (large n∗).

Although the choice of the stopping index has been studied intensively in the

literature on inverse problems, and a number of methods such as Morozov’s discrep-

ancy principle (12) or Lepskii’s balancing principle (14) are available, no satisfactory

solution for the problem has been described to the best of our knowledge. Part of

the reason is that for images the L2 error does not accurately describe the visual

quality of a reconstruction. For the data presented here, the stopping index was

therefore chosen by visual inspection. Although it may be fixed for repeated mea-

surements with the same MRI protocol, the automatic determination of a robust

stopping criterion is certainly a most desirable feature but outside the scope of this

work.

It should be noted that a choice of the right regularization parameters is not

unique to the present algorithm but a general problem common to all parallel imag-

ing methods. Even some of the GRAPPA or SENSE images shown in this work

could probably be improved by manually optimizing the regularization parameters

(chosen by the vendor). Nevertheless, a simple adjustment of the GRAPPA and

SENSE regularization would not be enough to generate images equivalent to those

obtained by nonlinear inversion. For example, pronounced qualitative differences are

demonstrated for reconstructions with a low number of reference lines. As demon-

strated in Fig. 7 respective GRAPPA reconstructions exhibited both high noise and

residual ghosting artifacts, whereas nonlinear inversion resulted in very much im-

proved images. Because the overall regularization determines the tradeoff between

noise and artifacts, the advantage of the proposed algorithm relative to GRAPPA

cannot be explained by a better choice of regularization parameters.
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Convergence

For Newton-type algorithms convergence is not automatically guaranteed and in

some cases even requires an initial guess close to the solution. In practice, this

seems to be no problem for the proposed algorithm. For example, in situations

where GRAPPA produces a reasonable image, the nonlinear inversion algorithm

decreases the residual in each iteration yielding a good solution after only 10 − 25

iterations – even for very low numbers of reference lines. In all these cases, the initial

guess was always choosen as described above. In extreme situations, that is without

any reference lines or for acceleration factors greater than the number of receiver

channels, the algorithm is still able to decrease the residual but without generating

reasonable images. Very slow convergence in the sense that the norm of the residual

decreases very slowly is only observed when the image object is completely empty

and the algorithm tries to fit only noise. This case could be dealt with by calculating

the amount of energy in the data before starting the iteration.

The theoretical treatment of convergence is complicated by the fact, that par-

allel imaging is increasingly worse conditioned for higher acceleration factors. This

holds true even in the linear case and for perfectly known coil sensitivities. The

exact solution of the system is very far from the desired solution, because of the am-

plified noise. Every parallel imaging algorithm should therefore contain some form

of regularization. For the proposed algorithm this is accomplished by terminating

the iteration long before convergence to a undesirable solution is reached. In fact,

it would be advantageous to replace the assessment of convergence by a different

mathematical criterion. It might quantify the ability of the algorithm in conjunction

with its automatic stopping criterion (e.g., the discrepancy principle) to produce a

series of solutions for input vectors with decreasing noise that converges to the exact

solution of the noiseless case. However, a formal proof of this property was not yet

attempted for the proposed algorithm.

Computational Speed

In the present implementation the reconstruction of a single 256 × 256 image by

nonlinear inversion takes less than a minute on a modern processor. While this is

too slow for applications to a complete 3D MRI data set, significant acceleration can

already be expected by simple measures such as a multithreaded implementation uti-

lizing multiple processor cores and switching from double to single precision floating

point numbers. Further possibilities include preconditioning techniques (e.g., the

method presented in (15)), which would reduce the number of conjugate gradient

– 12 –



Image Reconstruction by Regularized Nonlinear Inversion

iterations, and adaptive discretization in particular of the coil profiles, which would

reduce the cost of the first Newton steps by an order of magnitude.

CONCLUDING REMARKS

The formulation of the MRI reconstruction for multiple receiver coils as a nonlinear

inversion problem and its application to autocalibrated parallel imaging has been

demonstrated to markedly improve the achievable image quality for high acceleration

factors when compared to conventional methods.

Although the extension of the reconstruction process to a nonlinear system of

equations seems to represent a large complication, it opens a number of advan-

tageous possibilities because of a simple and unified way to incorporate a priori

knowledge by choosing appropriate norms. For example, by including a gridding

operator the approach should be directly applicable to self-calibrating non-cartesian

sampling schemes. Another possibility would be to more accurately model the ac-

quisition process by jointly estimating relaxation or field maps together with the

coil sensitivities and the image content. A further extension already under investi-

gation is the integration of total variation-based regularization which combats the

high noise for higher acceleration factors and – in combination with appropriate

sampling patterns – would allow for the benefits of reduction factors higher than

the number of receiver coils as explained by the compressed sensing theory (16,17).

In fact, the move to more general nonlinear methods seems to be the next logical

step in MRI reconstruction.

– 13 –



Image Reconstruction by Regularized Nonlinear Inversion

REFERENCES

1. Ying L, Sheng J. Joint image reconstruction and sensitivity estimation in SENSE

(JSENSE). Magn Reson Med 2007;57:1196–1202.

2. Hoge WS, Brooks DH, Madore B, Kyriakos WE. A tour of accelerated parallel

MR imaging from a linear systems perspective. Concepts Magn Reson Part A

2005;27:17–37.

3. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: Sensitivity

encoding for fast MRI. Magn Reson Med 1999;42:952–962.

4. Pruessmann KP, Weiger M, Bornert P, Boesiger P. Advances in sensitivity

encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638–

651.

5. Kyriakos WE, Panych LP, Kacher DF, Westin CF, Bao SM, Mulkern RV, Jolesz

FA. Sensitivity profiles from an array of coils for encoding and reconstruction

in parallel (SPACE RIP). Magn Reson Med 2000;44:301–308.

6. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics

(SMASH): Fast imaging with radiofrequency coil arrays. Magn Reson Med

1997;38:591–603.

7. Bydder M, Larkman DJ, Hajnal JV. Generalized SMASH imaging. Magn Reson

Med 2002;47:160–170.

8. Griswold MA, Breuer F, Blaimer M, Kannengiesser S, Heidemann RM, Mueller

M, Nittka M, Jellus V, Kiefer B, Jakob PM. Autocalibrated coil sensitivity

estimation for parallel imaging. NMR Biomed 2006;19:316–324.

9. McKenzie CA, Yeh EN, Ohliger MA, Price MD, Sodickson DK. Self-calibrating

parallel imaging with automatic coil sensitivity extraction. Magn Reson Med

2002;47:529–538.

10. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B,

Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA).

Magn Reson Med 2002;47:1202–1210.

11. Bakushinsky AB, Kokurin MY. Iterative Methods for Approximate Solution of

Inverse Problems. Dordrecht: Springer; 2004.

12. Engl HW, Hanke M, Neubauer A. Regularization of Inverse Problems. Dor-

drecht, Boston, London: Kluwer Academic Publisher; 1996.

13. Bauer F, Kannengiesser S. An alternative approach to the image reconstruction

for parallel data acquisition in MRI. Mathematical Methods in the Applied

Sciences 2007;30:1437–1451.

14. Bauer F, Hohage T. A Lepskij-type stopping rule for regularized Newton meth-

ods. Inverse Problems 2005;21:1975–1991

– 14 –



Image Reconstruction by Regularized Nonlinear Inversion

15. Hohage T. On the numerical solution of a three-dimensional inverse medium

scattering problem. Inverse Problems 2001;17:1743–1763.

16. Donoho D. Compressed sensing. IEEE T Information Theory 2006;52:1289–

1306.

17. Candes E, Romberg J, Tao T. Robust uncertainty principles: Exact signal recon-

struction from highly incomplete frequency information. IEEE T Information

Theory 2006;52:489–509.

– 15 –



Image Reconstruction by Regularized Nonlinear Inversion

FIG. 1. Flow chart for the calculation of the operator (G), its derivative (DG), and

the adjoint of the derivative (DGH) from ci (coil sensitivities) and ρ (proton density).

W = preconditioning matrix, WH = adjoint of W, FT = Fourier transformation,

IFT = inverse FT, P = projection onto the trajectory, yi = data, · = pointwise

multiplication, + = addition, ? = complex conjugation.
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FIG. 2. 3D FLASH MRI partitions of a phantom reconstructed with GRAPPA,

autocalibrated SENSE (SENSE/auto), nonlinear inversion (Inv) and SENSE with

coil sensitivities taken from nonlinear inversion (SENSE/Inv) for 2D acceleration

factors of 6 = 3× 2, 9 = 3× 3, and 12 = 4× 3 using 24× 24 reference lines and 16,

19, and 21 iterations of the nonlinear inversion algorithm, respectively.
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FIG. 3. 3D FLASH MRI partitions of the human brain reconstructed with GRAPPA,

autocalibrated SENSE and nonlinear inversion (Inv) for 2D acceleration factors of

4 = 2 × 2 and 6 = 3 × 2 using 16 × 16 reference lines using 14 and 18 iterations,

respectively.
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FIG. 4. Coil sensitivities corresponding to the Inv reconstruction (2D acceleration

factor 4, 14 iterations) shown in Fig. 3.
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FIG. 5. Influence of the number of iterations (11 to 14) on the Inv reconstruction

(2D acceleration factor 4) shown in Fig. 3.
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FIG. 6. Influence of the number of coil updates (8 to 14) on the Inv reconstruction

(2D acceleration factor 4, 14 iterations) shown in Fig. 3.
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FIG. 7. 3D FLASH MRI partitions of the human brain reconstructed with GRAPPA,

autocalibrated SENSE and nonlinear inversion (Inv) for a 2D acceleration factor of

4 using 24× 24, 16× 16, and 8× 8 reference lines with 14 and 22 (8× 8) iterations.
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