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Abstract

The Weber problem for a given finite set of demand points D =
{a1, . . . , aM} ⊂ R

2 with positive weights wm (m = 1, . . . , M) consists

of finding a facility x ∈ R
2 such that

∑

M

i=1
wid(x, ai) is minimized for

some distance function d.

In this paper we extend the Weber problem in the following way: We
allow traveling along given linear curves (lines, line-segments and rays)
with high speed. Leaving and entering such a curve is allowed at all
their points, hence a network structure is continuously integrated in the
plane. This extension gives the chance to model real-world situations
like highway networks or other traffic infrastructure.

The extension of the Weber problem leads to a more difficult mathe-
matical problem, since the convexity property of the Weber problem
does not hold for the extended problem. This paper presents a ge-
ometrical approach to solve the extended Weber problem and gives
discretization results for polyhedral gauges.

1 Introduction

Planar location problems have been discussed and solved with various dis-
tance measures. Starting from Euclidean and rectangular distance in the
early days of location theory, there are many results about norms, poly-
hedral norms, or gauge functions for location problems. Also non-convex
distance measures as they e.g. result if barriers are present have been inves-
tigated. An overview is given e.g. in [10].

On the other hand, in many applications the location of a new facility on a
network is of interest. Network location has been treated for point facilities,
but also for paths or other subnetworks, a survey has been given in [7] and
[8].

However, there a rather few papers combining planar and network distances
in location problems. A first model has been suggested by [6] where a
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transportation network with fixed access points is embedded into the plane.
The networks in [6] are assumed to be connected. [19] generalize this model
to arbitrary networks and develop a unified model to treat Weber problems
with barriers and Weber problems with embedded networks. An extension of
this model is given in [13]. An other model with mixed distance is proposed
in [2]. The distance between points in the plane is given by the length of a
shortest path between the points, where the length is measured by network
distance, if a subpath coincides with parts of the network edges, otherwise
the distance is measured by a metric. Unlike previous models, an approach
for an optimal placement of the given network is suggested. A similar model
is presented in [4]. In [5] mixed distances are used, but the given network is
fixed. A game theoretic approach is suggested, where one tries to find best
pricing of the network w.r.t. the possibility of foot walks. There are many
papers concerning mixed distances and Voronoi diagrams, see e.g. [3], [1],
[18], [12].

In our paper we start with a planar location problem but allow some high-
speed curves along which traveling is faster than the usual traveling in the
plane. We define the resulting distance measure and then deal with median
location problems under this distances. We are able to identify a finite
dominating set for such locations problems if the distance measure is derived
from a polyhedral gauge, and if the set of high-speed curves consists of
a finite number of lines, rays or line segments. Furthermore we prove a
dominance criterion for given demand points. More specific results can be
obtained for special cases as we show for the case of the rectangular norm
with only one high-speed line. If the given distance measure is a positive
definite and symmetric, then we can show that the resulting distance is a
metric.

In the paper we will use the classification scheme of location problems intro-
duced by Hamacher and Nickel [16].Their scheme consists of five different
classes:

Pos1/Pos2/Pos3/Pos4/Pos5.

Pos1 indicates the number of new facilities (e.g. 1 in the case of a single-
facility problem), Pos2 gives the type of location problem (e.g. R

2 for a
planar problem), Pos3 contains special assumptions (e.g. forbidden regions
or equal weights or a • if no special assumptions are to be made), Pos4
declares the distance function in planar case (e.g. l1 or l∞) and Pos5 gives
the objective function (e.g.

∑

for Median problems and max for Center
problems). For instance, the well known Weber problem without any further
assumption with Euclidean distances will be classified as 1/R

2/ • /l2/
∑

.

The remainder of the paper is organized as follows: In Section 2 we formally
define the high-speed distance and introduce the notation needed. Section 3
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investigates properties of shortest paths in a polyhedral gauge distance with
high-speed curves. These properties will be used in Section 4 where a finite
dominating set will be constructed. Section 5 deals with the case in which
the high-speed distance is derived from a arbitrary distance function. In
Section 6 the rectangular metric and one straight line is investigated. The
paper is concluded by a summary and possible lines of further research.

2 Weber problems with polyhedral gauges and high-
speed curves

Let H = {h1, . . . , hK} be a set of linear high-speed curves (lines, line-
segments and rays) in the plane with

|{hi ∩ hj}| ≤ 1 ∀i 6= j. (1)

For every hi ∈ H let a real number λ(hi) ∈ ]0, 1[ be given, specifying the
time advantage arising from traveling along curve hi. This means traveling
along curve hi is λ(hi)

−1 times faster than traveling the same distance in
the plane. We will use the notation Λ = {λ(h1), . . . , λ(hK)} and call λ(hi)
speed factor of high-speed curve hi. The idea will be made precise by the
following explanation of distances with respect to these high-speed curves:

Let d : R
2 × R

2 → R be any distance function. Let P = [z1, z2, . . . , zL]
be a finite sequence of points in the plane. We connect the points
z1, z2, . . . , zL−1, zL by line segments. In this way we obtain a piecewise
linear path with intermediate points z1, z2, . . . , zL. We call such a path P
a finite linear path from x to y if z1 = x and zL = y holds. The length of
such a finite linear path is defined by the sum of lengths of all line segments
belonging to the path. The length of a line segment [zi, zi+1] is measured by
d and is equal to d(zi, zi+1) if the line segment is not contained in a curve
h ∈ H. Otherwise, the length is λ(h)d(zi, zi+1). Finally, the high-speed dis-
tance dH(x, y) between two points x, y ∈ R

2 is defined as the length of a
shortest finite linear path (with respect to the distance function d and the
pair (H,Λ)) from x to y. We give an exact definition of this idea.

Definition 1. Let Pxy be the set of all finite linear paths from x to y and
let d be a distance function Then dH is given by

dH(x, y) := min
P=[z1,...,zL]∈Pxy

{

L−1
∑

i=1

c(zi, zi+1)

}

(2)

with

c(zi, zi+1) :=

{

λ(h)d(zi, zi+1) [zi, zi+1] ∈ h for a h ∈ H
d(zi, zi+1) otherwise

(3)
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c(zi, zj) is well defined, since |{hi ∩ hj}| ≤ 1∀i 6= j holds. Note that a path
between two points x and y can enter a high-speed curve h at any point
z ∈ h. The first point z on such a high-speed curve will be called access
point, the last point on the curve will be called exit point. Note that each
point x ∈ h is a potential access or exit point.

In the paper we will use the following notation for specifying straight lines.

• A line segment between y, z ∈ R
2 is denoted as

[y, z] := {x ∈ R
2 : x = y + α(z − y) for some α ∈ [0, 1]}.

• Given a line segment h, the straight line passing through h is denoted
by l(h).

• A ray starting at z ∈ R
2 in direction d ∈ R

2 is denoted as

rz,d := {x ∈ R
2 : x = z + αd for some α ∈ R

+
0 }.

Furthermore we use the following notation for specifying certain points of
linear curves.

• Given a linear curve h, its extreme points (i.e. the end points of h)
are denoted by E(h).

• Given a set of linear curves H, the union of all extreme points of curves
in H is denoted by E(H), i.e.

E(H) :=
⋃

h∈H

E(h).

Using the high-speed distance dH and denoting the set of demand points
by D = {a1, . . . , aM} and the set of positive weights by W = {w1, . . . , wM}
(for each demand point am a weight wm is associated representing its de-
mand) the Weber problem with high-speed curves can be formulated as
1/R

2/(H,Λ)/dH/
∑

. This means we search a new facility x ∈ R
2 such that

fH(x) :=

M
∑

m=1

wmdH(am, x)

is minimized.

If the distance function is non-symmetric, then dH is also non-symmetric.
I.e. dH(x, y) may differ from dH(y, x) for some points x, y ∈ R

2. Therefore
it is important to fix the travel direction. In this paper we will always travel
from the given demand points D towards a new facility. We indicate this
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Figure 1: Problem of 1/R
2/(H,Λ)/dH/

∑

with D = {a1, a2, a3} and H =
{h1, h2, h3}.

by using the notation dH(x, y) if the distance from x to y is required and
dH(y, x) if one asks for the distance from y to x.

An example for a problem 1/R
2/(H,Λ)/dH/

∑

is given in Figure 1.

Due to the high-speed curves, the distance dH is not convex even if d is con-
vex and therefore fH is also not convex. Hence most of the standard methods
for location problems cannot be applied, since this methods are mostly de-
veloped for convex problems. In this paper we overcome this difficulty not
by non-convex optimization but use a geometric approach which enables us
to develop a discretization result for the problem type 1/R

2/(H,Λ)/γH/
∑

,
where γH is a distance function derived from a polyhedral gauge γ.

A polyhedral gauge is given by a convex polyhedron B in the plane R
2

containing the origin 0 = (0, 0) in its interior. With d1, . . . , dδ we denote the
extreme points of B and call them fundamental directions (see Figure 2).
Furthermore, we define dδ+1 := d1 It is known [15] that for all x in the cone
C(di, di+1), i = 1, . . . , δ, spanned by di and di+1 only the two fundamental
directions di and di+1 are needed to determine ‖x‖ (see also Lemma 6).
We interpret ‖x‖ as the distance γ(0, x) between 0 and x and extend this
definition to define the gauge distance

γ(x, y) := γ(0, y − x)

between any two points x, y ∈ R
2. From the above it follows, that the gauge

distance γ(x, y) can be represented by an arbitrary (di, di+1)-staircase path
from x to y using only the two fundamental directions di and di+1. In this
paper we consider polyhedral gauges. To simplify our notation we use the
denotation high-speed gauge distance for the distance function γH obtained
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Figure 2: A polyhedral gauge with four fundamental directions.

by a set of high-speed curves H, a set of associated speed-factors Λ and a
polyhedral gauge γ (see Definition 1).

3 Shortest paths in high-speed gauge distance

Any point of a high-speed curve h ∈ H can be used as access or exit point to
it. Hence, there may exist an uncountable number of realizations of a linear
path between two points. Therefore it is not obviously, how to compute the
high-speed gauge distance between two points. In this section we investigate
properties of shortest linear paths in high-speed gauge distances γH in order
to solve this problem. Without going into details, the main results of this
section are the following: Given a point x, a high-speed curve h, a second
point y ∈ h and a shortest path form x to y with three intermediate points,
we determine in Theorem 1 a finite set of intermediate points such that a
shortest path from x to y can be constructed with this intermediate points.
Furthermore we determine in Theorem 2 an analogous set for the case of
two high-speed curves h1, h2, two points x ∈ h1, y ∈ h2 and a shortest
path form x to y with four intermediate points. Finally we use this results
to determine a finite set of intermediate points such that a shortest path
between any two points can be constructed using only points form this set,
see Theorem 3 and Lemma 4.

We use the notation

γP(P ) =

L−1
∑

i=1

c(zi, zi+1) (4)

with

c(zi, zi+1) =

{

λ(h)γ(zi, zi+1) [zi, zi+1] ∈ h for a h ∈ H
γ(zi, zi+1) otherwise

, (5)
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i = 1, . . . , L − 1, for the length of a linear path P = [z1, . . . , zL] in the
high-speed gauge distance.

In the following we need intersections between lines. It is possible that the
intersection of two lines is not finite. To avoid intersections that consist of
more than one point, we introduce the following definition:

Definition 2. Denote the power set of R
2 by P (R2). Then we define

ρ : P (R2) → P (R2), A 7→

{

A if |A| < ∞
∅ if |A| = ∞

.

Now we can use ρ to eliminate infinite intersections.

Definition 3. For h ∈ H and z ∈ R
2 let K+

h,z be the set of intersection points

between h and the rays rz,di with origin z and fundamental directions di,
i = 1, . . . , δ, of the gauge γ as direction vectors.

K+
h,z : =

δ
⋃

i=1

ρ
(

lz,di ∩ h
)

.

Analogously, let K−
h,z be the set of intersection points between h and the rays

rz,−di with origin z and inverse fundamental directions −di, i = 1, . . . , δ, of
the gauge γ as direction vectors.

K−
h,z : =

δ
⋃

i=1

ρ
(

lz,−di ∩ h
)

.

Let Kh,z := K+
h,z ∪ K−

h,z be the union of K+
h,z and K−

h,z.

Note that K+
h,z and K−

h,z are subsets of the high-speed curve h ∈ H. If the

gauge γ is symmetric, then K+
h,z and K−

h,z coincide. See Figure 3 for some
examples of Kh,z.

We formulate the following theorem on shortest paths with three interme-
diate points using exactly one high-speed curve.

Theorem 1. Let z1 be a point, h ∈ H a high-speed curve, and let z2 and z3

be two points on h.

• If Q = [z1, z2, z3] is a shortest path from z1 to z3, then there exists
s ∈ K+

h,z1
∪E(h)∪{z3} such that Q

′
= [z1, s, z3] is a shortest path from

z1 to z3.
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l z,d1

l z,d3

l z,d4

l z,d2

z

h

ts

(a) Kh,z = {s, t}

l z,d1

l z,d3

l z,d4

l z,d2

z
h

(b) Kh,z = ∅

l z,d1

l z,d3

l z,d4

l z,d2

z
h

(c) Kh,z = ∅

l z,d1

l z,d3

l z,d4

l z,d2

z
h

(d) Kh,z = {z}

Figure 3: Kh,z for different high-speed curves h and a symmetric gauge γ.
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• If P = [z3, z2, z1] is a shortest path from z3 to z1, then there exists
t ∈ K−

h,z1
∪E(h)∪{z3} such that P

′

= [z3, t, z1] is a shortest path from
z3 to z1.

Proof. Observe that the function

w : h → R, x 7→ γ(z1, x) + λ(h)γ(x, z3)

is convex and piecewise linear with breakpoints in K+
h,z1

∪{z3}. For any x ∈ h
the length of the path Q(x) := [z1, x, z3] coincide with w(x). Furthermore
z2 must be a minimizer of w, otherwise we obtain a contradiction to the
assumption that Q is a shortest path from z1 to z3. Since a convex and
piecewise linear function reaches its minimum in a breakpoint or in the
boundary of its domain, we obtain the first part of the claim.

The function
v : h → R, x 7→ λ(h)γ(z3, x) + γ(x, z1)

is convex and piecewise linear with breakpoints in K−
h,z1

∪ {z3}. Hence, we
obtain the second part of the claim analogously to the first part.

Now we consider paths with four intermediate points and two high-speed
curves.

Theorem 2. Let h1, h2 ∈ H be two different high-speed curves. Let z1, z2 ∈
h1 and z3, z4 ∈ h2 such that z1 6= z2 and z3 6= z4. If Q = [z1, z2, z3, z4] is a
shortest path from z1 to z4, then there exists a shortest path Q

′

= [z1, s, t, z4]
with s ∈ h1 and t ∈ h2 such that at least one of the following four conditions
is satisfied:

( 1 ) s is an extreme point of h1.

( 2 ) t is an extreme point of h2.

( 3 ) s = t is the intersection point of h1 and h2.

( 4 ) s = z1 or t = z4, i.e. high-speed curve h1 respectively h2 is not used.

Furthermore, if s is an extreme point of h1, then either t is also an extreme
point of h2 or t ∈ K+

h2,s ∪ {z4} holds. If t is an extreme point of h2, then

either s is also an extreme point of h1 or s ∈ K−
h1,t ∪ {z1} holds.

Proof. Let l(hk) be the straight line passing through hk, k = 1, 2. In the
case where l(h1) and l(h2) are equal, it is obvious that a path exists that
fulfills conditions (1) and (2).
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Let us assume that l(h1) and l(h2) are not equal. Without loss of generality
we can also assume that z2 and z3 are not equal, otherwise they coincide
with the intersection point of the high-speed curves h1 and h2 and we have
nothing to show. Now, for any point x ∈ l(h1) let m(x) be the intersection
between the straight line

lx,z2−z3 := {u ∈ R
2 : u = x + α(z2 − z3) for some α ∈ R}

and the straight line l(h2). Furthermore, for any y ∈ l(h2) let m−1(y) be the
intersection between the straight line ly,−z2+z3 and the straight line l(h1).
Since l(h1) and l(h2) are not equal, m and m−1 are well-defined. Note that
m : l(h1) → l(h2) is a bijective function with inverse function m−1. We
study the function

w : l(h1) → R, x 7→ λ(h1)γ(z1, x) + γ(x,m(x)) + λ(h2)γ(m(x), z4).

Due to our assumptions, the length γP(Q) of the path Q, i.e. the high-
speed distance from z1 to z4, is equal to w(z2). Let I(h1, h2) denote the
intersection between l(h1) and l(h2). If l(h1) and l(h2) have no intersection,
then I(h1, h2) is empty. Observe that the function w is piecewise linear and
its breakpoints are included in the set

B := E(h1) ∪ m−1 (E(h2)) ∪ I(h1, h2) ∪
{

z1,m
−1(z4)

}

⊂ l(h1).

Denote the elements of B by bi, i = 1, . . . , |B|, and assume that bi ≤lex bi+1,
where ≤lex denotes the lexicographical order. Let a = max{bi ∈ B : bi ≤lex

z2} and b = min{bi ∈ B : bi ≥lex z2}. (Note that [a, b] may consist of a
single point.) We have B ∩ ]a, b[= ∅. Therefore w is linear on [a, b].
Since z2 ∈ h1, we have [a, b] ⊆ h1 and m([a, b]) ⊆ h2. Hence, the length
γP(Q(x)) of the path Q(x) := [z1, x,m(x), z4] coincides with w(x) on [a, b].
A minimizer of the linear function w restricted to [a, b] is included in {a, b}.
Therefore we conclude that for at least one k ∈ {a, b}

γH(z1, z4) ≤ γP(Q(k)) = w(k) ≤ w(z2) = γH(z1, z4)

holds, i.e. the path Q(k) = [z1, k,m(k), z4] is a shortest path from z1 to z4

that fulfills at least one of the four conditions.

In order to prove the second part of the claim, assume that P = [z1, u, v, z4]
is a shortest path from z1 to z4 with u ∈ E(h1) and u 6= v. Now, applying
Theorem 1 on the path P ′ := [u, v, z4] yields some t ∈ K+

h2,u ∪ E(h) ∪ {z4}.
The case where v ∈ E(h2) can be treated almost analogously.

As a consequence of Theorem 2 it follows that is not necessary to shorten
a trip on a high-speed line in order to minimize the overall distance, see
Figure 4.
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z3
z4

z2

z1

h1

h2

s

Figure 4: If P = [z1, z2, z3, z4] is a shortest path from z1 to z4, then also the
path [z1, s, z4] is a a shortest path from z1 to z4.

In order to obtain a general result on shortest paths with more than four
intermediate points, we need the following definitions. First we introduce a
standard representation of a path:

Definition 4. The standard representation of path P = [z1, . . . , zL] from z1

to zL is a path Q = [w1, . . . , wR] such that

• γP(P ) = γP(Q),

• w1 = z1 and zL = wR,

• [w2i, w2i+1] ⊂ h for some h ∈ H for all i = 1, . . . , R
2 − 2,

• |[w2i−1, w2i] ∩ h| ≤ 1 for all h ∈ H and i = 1, . . . , R
2 , and

• if [w2i, w2i+1] ⊂ h1 for some h1 ∈ H and [w2i+2, w2i+3] ⊂ h2 for some
h2 ∈ H then h1 6= h2, i = 1, . . . , R

2 − 4.

If P = [z1, . . . , zL] is a path in standard representation then all intermediate
points but the last with even indices are access points to a high-speed curve
and all intermediate points but the first with odd indices are exit points
from a high-speed curve. Furthermore we have z2i 6= z2i+1 for all i =
2, . . . , L/2 − 2. In particular, the number of intermediate points L of P is
even. Note that we can transform any path into standard representation by
deleting unnecessary intermediate points or by adding additional points. An
example of a linear path and its standard representation is given in Figure 5.

Definition 5. For two linear curves hi, hj ∈ H, i 6= j we denote their unique
(see (1)) intersection point by I(hi, hj) (if it exists) and merge all these
points in the set I(H), i.e. I(H) :=

⋃

hi,hj∈H : i6=j I(hi, hj). Then, we define

K := I(H) ∪
⋃

i,j

⋃

t∈E(hi)

Khj ,t.
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z3z1

z4

z5

z2

h1

h2

Figure 5: The standard representation of the path P := [z1, . . . , z5] is given
by the path Q := [w1, . . . , w6] with w1 := z1, w2 := z2, w3 = z4, w4 = z4,
w5 = z5, and w6 = z5, i.e. we have Q = [z1, z2, z4, z4, z5, z5].

Furthermore, for any z ∈ R
2 we define

K+
z :=

⋃

h∈H

K+
h,x, and K−

z :=
⋃

h∈H

K−
h,x.

Since Kh,x ⊆ h for every x ∈ R
2, we have K ⊆ H and Kz ⊆ H for any

z ∈ R
2. Furthermore, K and Kz := K+

z ∪ K−
z are finite. An example of K

and its construction is depicted in Figure 6.

h1
h2

Figure 6: In the case where the set of high-speed curves is given by two line
segments h1 , h2 and using the rectangular metric, the set K is the union of
(1) the intersection between the high-speed curves h1 and h2, and (2) inter-
sections between high-speed curves and lines in fundamental directions of
the rectangular metric through the extreme points of the high-speed curves
h1 and h2.

To see why we need K let x, y ∈ R
2 be any points. In Theorem 3 below

we will prove that there always exists a shortest path P from x to y such
that all but the two first and the two last intermediate points of the path
are contained in the set K. Obviously, the first and the last intermediate
point of a path from x to y are x and y. In Lemma 4 we will show, that the
two first and two last intermediate points of the path P are included in the
set K+

x respectively K−
y . Hence, the union K ∪ K+

x ∪ K−
y ∪ {x, y} is a set
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similar to a finite dominating set in the sense that all intermediate points
of the shortest path P from x to y are included in this set. In Corollary 5
we will show how to use this result in order to compute the length of P .

Theorem 3. Let z1, zL ∈ R
2 be points in the plane. Then either there exists

a shortest path P = [z1, . . . , zL] from z1 to zL such that all but the two
first and two last intermediate points of P are contained in the set K, i.e.
zi ∈ K ∀ i = 3, . . . , L − 2, or the path [z1, zL] is a shortest path from z1 to
zL.

Proof. Let Q = [w1, . . . , wR] be a standard representation of P . Obviously,
any subpath [wi, . . . , wi+k] of Q is a shortest path from wi to wi+k. Now, let
i ∈ {2, . . . , R− 4} be even. Then the subpath [wi, wi, wi+1, wi+2, wi+3, wi+3]
is a shortest path from wi to wi+3 in standard representation. Therefore we
have wi 6= wi+1 and wi+2 6= wi+3. Furthermore, the line segments [wi, wi+1]
and [wi+2, wi+3] are contained in different high-speed curves. Hence, we can
apply Theorem 2 on wi, . . . , wi+3 and the suitable high-speed curves. We
obtain that there exists a shortest path [wi, s, t, wi+3] with either s, t ∈ K, or
with s = wi, or t = wi+3, respectively. In the latter case we remove the inter-
mediate points wi and wi+1 (if s = wi) or wi+2 and wi+3 (if t = wi+3) from
Q. If s = wi and t = wi+3 we remove the intermediate points wi, wi+1, wi+2

and wi+3. We denote the new path with R − 2 (or R − 4) intermediate
points again by Q. In the former case we replace the intermediate points
wi+1, wi+2 by s and t. Again, we denote this new path with R intermediate
points and wi+1, wi+2 ∈ K by Q. Since in both cases the new path Q is still
a shortest path in standard representation, we can iterate this procedure.
After at most R/2 iterations Q is a path with the required properties, or
we have deleted all but the first and the last intermediate point from Q, i.e.
[z1, zL] is a shortest path from z1 to zL.

We are now able to construct a finite set such that a shortest path between
two points can be constructed using only intermediate points of this set:

Lemma 4. Let z1, zL be any points in the plane and let Vz1,zL
be the set

Vz1,zL
:= K ∪ K+

z1
∪ K−

zL
∪ {z1, zL}.

Then there exists a a shortest path P = [z1, . . . , zL] from z1 to zL such that
all intermediate points of P are contained in the set Vz1,zL

.

Proof. Due to Theorem 2, we can assume that Q = [w1, . . . , wR] is a shortest
path in standard representation from z1 to zL with wi ∈ K ∀i = 3, . . . , R −
3. Furthermore, we have w1 = z1 and wR = zL. Since Q is in standard
representation, the intermediate points w2 and w3 lie on the same high-speed
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curve. Therfore we can apply Theorem 1 on the path [w1, w2, w3] and obtain
that there exists a shortest path [w1, t, w3] with t ∈ Vz1,zL

. Analogously, we
can apply Theorem 1 on the path [wR−2, wR−1, wR].

An example of Vx,y is depicted in Figure 7.

h1
h2

y

x

Figure 7: In the case where the set of high-speed curves is given by two line
segments h1 and h2 and using the rectangular metric, the set Vx,y is the
union of the set {x, y}, the set K, see Figure 6, and the set of intersections
between h1, h2 and lines in fundamental directions of the rectangular metric
through the points of x and y.

In order to compute the length of a shortest path in high-speed gauge dis-
tance of any pair of points x, y ∈ R

2 we take the points contained in the set
Vx,y as vertices of a directed graph Gx,y. We construct the edges of Gx,y in
the following way: We add an edge (u, v) with weight λ(h)γ(u, v) for any
h ∈ H, u ∈ K+

h,x, and v ∈ K−
h,y. We add an edge (x, v) with weight γ(x, v)

or (u, y) with weight γ(u, y), respectively, for any v ∈ K+
x ∪ E(H) and any

u ∈ K−
y ∪ E(H). Furthermore, for any pair h1, h2 ∈ H with non-empty

intersection z := h1 ∩ h2 we add an edge (u, z) with weight λ(h1)γ(u, z) for
any u ∈ K+

h1,x ∪ E(h1), and we add an edge (z, v) with weight λ(h1)γ(z, v)

for any v ∈ K−
h1,y ∪ E(h1). At last, for any pair h1, h2 ∈ H we add an edge

(u, v) with weight γ(u, v) for any u ∈ E(h1) and any v ∈ E(h2) ∪ K+
h1,u. An

example of the graph Gx,y is given in Figure 8.

Corollary 5. Let x, y be points in the plane. Then the high-speed gauge dis-
tance from x to y is given by the length of a shortest path from x to y in the
graph Gx,y.

Proof. Due to Lemma 4, there exists a shortest path from x to y using only
intermediate points included in Vx,y. Let P = [z1, . . . , zL] be a path with
zi ∈ Vx,y ∀i = 1, . . . , L. Since the length of P is given by

∑

i c(zi, zi+1), see
Definition 1, the length of the path P in G coincides with the length of P
in the plane.
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y

x

Figure 8: The graph Gx,y for Figure 7.

4 Discretization of Weber problems with high-speed
curves

Discretization of planar location problem to discrete location problems is
not a new concept. Probably, the most famous discretization of a planar
location problem is the paper of Durier and Michelot [11]. They showed,
that in the case of the unrestricted Weber problem with polyhedral gauges
1/R

2/ • /γ/Σ the fundamental directions rooted at the demand points D
define a grid tessellation of the plane such that the grid points (intersection
of fundamental directions) contain at least one optimal location. This result
is based on the fact that the objective function is linear in each cell.

In this section we will show that a grid tessellation exists such that our
objective function is concave on each cell. This yields a grid point which is
an optimal location for 1/R

2/(H,Λ)/γH/
∑

. We will show that the number
of grid points depends polynomially on D and H and that a solution of
1/R

2/(H,Λ)/γH/
∑

can be computed in polynomial time.

We first define a grid in R
2 consisting of the high-speed curves H and of all

rays starting from points in

K := K ∪ D ∪
⋃

z∈D

K+
z

along the fundamental directions of the gauge γ, i.e.,

G :=
⋃

x∈K

⋃δ
i=1 rx,di ∪ H.

We use the notation P(G) for the set of intersections points between curves
in G and the notation C(G) for cells defined by G. Note that K ⊆ P(G).

15



A cell C ∈ C(G) is a convex polyhedron with extreme points in P(G) such
that C does not contain any other convex polyhedron with edges in G; see
Figure 10 for a grid and Figure 11 for the corresponding grid points P(G).

Recall the following well-known basic lemma.

Lemma 6 ([9]). The gauge distance γ(x, a) is linear in x = (x1, x2) on each
cone spanned by two neighbored fundamental directions di = (di,1, di,2) and
di+1 = (di+1,2, di+1,2) with origin a. Furthermore, the value of γ(x, a) can
be evaluated by

γ(x, a) = αi + αi+1,

where αi and αi+1 can be calculated as

αi =
di+1,1x2 − di+1,2x1

di,2di+1,1 − di,1di+1,2
and αi+1 =

di,2x1 − di,1x2

di,2di+1,1 − di,1di+1,2
.

With this observation we can prove the main result of the paper:

Theorem 7. At least one of the grid points P(G) is optimal for
1/R

2/(H,Λ)/γH/
∑

.

Proof. We show that γH(a, x) is concave on each cell C ∈ C(G) for every de-
mand point a ∈ D. Then the objective function fH of 1/R

2/(H,Λ)/γH/
∑

is concave on C as positive linear combination of concave functions and
therefore an extreme point of a cell is a minimizer i.e. P(G) contains an
optimal solution.

Let a ∈ D be a demand point and let x ∈ R
2. From Theorem 3 and Lemma 4

we know, that either a shortest path Q = [z1, . . . , zL] from a to x exists such
that all intermediate points zi ,i ≤ L, are contained in Va,x, or that [a, x]
is a shortest path from a to x. Furthermore, in the former case we have
zi ∈ K∀i ≤ L − 2 and zL−1 ∈ K−

x ∪ E(H). Hence, for any point x ∈ R
2 one

of the following sets contains a shortest path from a to x:

( 1 ) P1
ax := {P = [a, x]}.

( 2 ) P2
ax := {P = [z1, z2, . . . , zL] : z1 = a, zL = x, zL−1 ∈ E(H)}.

( 3 ) P3
ax := {P = [z1, z2, . . . , zL] : z1 = a, zL = x, zL−2 ∈ K ∩ h, zL−1 ∈

K−
h,x for some h ∈ H}.
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Therefore we obtain

γH(a, x) = min
i=1,2,3

min
P∈Pi

ax

γP(P ).

We now show that all three functions

f i(x) := min
P∈Pi

ax

γP(P ), i = 1, 2, 3

are concave functions on every cell C ∈ C(G). To this end, we fix a cell
C ∈ C(G).

Concavity of f1. For x ∈ C we obtain

f1(x) =

{

λ(h)γ(a, x) if a, x ∈ h for some h ∈ H

γ(a, x) else
.

First, note that C lies in a cone spanned by two neighbored fundamental
directions with origin a. If f1(x) = γ(a, x) ∀ x ∈ C we can apply Lemma 6
and obtain that f1 is linear on C. If there exists x ∈ C such that f1(x) =
λ(h)γ(a, x) for some h ∈ H, then h defines a facet of C. Furthermore there
are at most two high-speed curves such that f1(x) = λ(h)γ(a, x) for some
x ∈ C. In the case that only one facet of C coincides with a high-speed curve
h through a, we modify a fundamental direction of the gauge γ as follows: If
h is not a multiple of a fundamental direction we add h as a new fundamental
direction to γ, otherwise we adjust the length of the fundamental direction
by the speed factor λ of h. By applying Lemma 6 to the modified gauge we
obtain that f1 is linear on C.

If two facets of C are given by high-speed curves h1, h2 through a, we modify
γ w.r.t. h1 and a copy γ

′
of γ w.r.t. h2. Now the value of f1 is given by the

minimum of γ(a, x) and γ
′
(a, x) and therefore f1 is concave on C.

Concavity of f2. For f2 we obtain

f2(x) = min
z∈E(H)

{γH(a, z) + γ(z, x).}

For each z ∈ E(H) the function γH(a, z) + γ(z, x) is linear in x, again due
to Lemma 6 and the definition of G. Hence, f2 is concave as the minimum
over a finite set of linear functions.

Concavity of f3. Let x ∈ C and P = [z1, z2, . . . , zL−2, zL−1, zL] be a
shortest path between a and x in P3

ax. Then there exists a curve h with
zL−2 ∈ h and a fundamental direction di such that

x = zL−2 + α0dh + α1di

where dh is the direction vector of h. Moreover, we know that
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• zL−1 = zL−2 + α0dh ∈ h and that

• di and dh are linearly independent or α1 = 0 (if di and dh are linearly
dependent and α1 6= 0 then zL−1 ∈ E(H) and this has been already
treated in our second case).

If α1 = 0 we can choose di arbitrarily and therfore we can assume that di and
dh are linearly independent. Hence, the point zL−1 and the distance from
zL−2 to x is determined by the curve h (with its direction vector dh) and
the fundamental direction di used in the last segment of the path. Since
x ∈ C was chosen arbitrarily, there exists for every x ∈ C some h ∈ H,
z ∈ K ∩ h and a direction vector di such that the value of f3(x) is given
by γH(a, z) + λ(h)γ(0, α0dh) + γ(0, α1di). We will now use this fact to show
that there exists a representation of f3 on C as minimum of linear functions,
i.e. we will show that f3 is concave on C. To this end we need the term
feasible constellation of two vectors which we define as follows.

Two vectors e, f are called feasible constellation w.r.t. h and x if

• e is a fundamental direction of the gauge considered,

• f is a direction vector of h,

• e and f are linearly independent, and

• l(h) ∩ rx,−e ∈ h, i.e. the intersection between the straight line passing
through h and the ray rx,−e lies in h.

We claim that e, f are a feasible constellation w.r.t. h and some x ∈ int(C)
if and only if e, f are a feasible constellation w.r.t h and all x ∈ C.

To justify this statement, let by zh,i(x) denote the (unique) intersection
point between the ray rx,−di and the line l(h) passing through h. Now
assume x, x′ ∈ C and zh,i(x) ∈ h but zh,i(x

′) 6∈ h. Then h is a line segment
or a ray which ends between the two points zh,i(x), zh,i(x

′) ∈ l(h). Hence
there is an extreme point z ∈ h and the ray in direction di starting at z
belongs to G. Since this ray separates zh,i(x) from zh,i(x

′) it also separates
x from x′ and hence lies in the interior of the cell C, a contradiction. See
Figure 9 for an example of feasible and infeasible constellations.

Now let di be a fundamental direction of the gauge considered and dh a
direction vector of a curve h ∈ H such that di, dh are a feasible constellation.
Furthermore z ∈ K ∩ h. We are going to show that

gz,h,i : C → R, y 7→ γH(a, z) + λ(h)γ(z, zh,i(y)) + γ(zh,i(y), y)
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Figure 9: The notation in the proof of Theorem 7. di is a feasible direction
w.r.t h , but dj is not.

is linear. The first term of gz,h,i(x) is constant. The others describe the dis-
tance from z to x using the curve h and the fundamental direction di. Since
dh and di are linearly independent, there exist unique scalars α0(x), α1(x)
such that

x = zL−2 + α0(x)dh + α1(x)di. (6)

We rewrite (6) as

(dh, di)

(

α0(x)
α1(x)

)

= (x − zL−2)

with regular 2 × 2 matrix M := (dh, di). Hence M−1 exists and

(

α0(x)
α1(x)

)

:= M−1(x − zL−2)

are linear functions. We add a new fundamental direction dδ+1 := λ(h)
‖dh‖

dh

to γ and by applying Lemma 6 on the modified gauge γ we obtain

gz,h,i(x) = γH(a, z) + α0(x) + α1(x) ∀ x ∈ C.

(Note that due to the definition of high-speed curves the modified gauge γ
is always a convex gauge).

Summarizing, for every x ∈ C there exists a feasible constellation of vectors
dh, di and z ∈ K ∩ h such that the length of a shortest path P ∈ P3

a,x is
given by the linear function gz,h,i(x). Hence, using the conditions for feasible
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constellations, we can rewrite the distance from a to x for paths P ∈ P3
a,x

as

f3(x) = min
z∈K

min
h∈H
s.t.z∈h

min
i=1,...,δ s.t. di,dh are feasible

constellation w.r.t. h and x

gz,h,i

Lemma 8. The size of P(G) is of order O(δ4L4M2) where δ denotes the
number of fundamental directions of the used gauge γ, M is the number of
given demand points and L the number of high-speed lines.

Proof. The size of P(G) is given by the number of intersection between linear
curves in G. Hence |P(G)| ≤

(|G|
2

)

. G consists of

• δ rays through M demand points,

• δ rays through |K| points, and

• all L high-speed curves.

K consists of at most

•
(

L
2

)

intersections between high-speed curves and

• δML + 2δL(L − 1) points lying on high-speed curves.

So |K| is of order O(δL2M)), |G| is of order O(δ2L2M) and finally |P(G)| is
of order O(δ4L4M2).

Note that for fixed δ and L the size of P(G) is of order O(M2). So the size
of the FDS P(G) is not too bad. Nevertheless, it is possible to identify a
smaller FDS for special cases. For the case of only one high-speed line and
of the rectangular metric this will be done in Section 6.

5 The problem with more general distances γ

In this section we investigate high-speed metrics that are derived from more
general distance functions d. We first investigate the properties of the re-
sulting high-speed distance.

Theorem 9. Let d : R
2 → R be a function and let H be a set of linear

curves. Then the following properties for the distance function dH apply:
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h1

h2

h3

a1

a2

a3

Figure 10: Grid G for the example introduced in Figure 1 with rectangular
metric. 2.

( 1 ) If d is positive definite then also dH is.

( 2 ) If d is symmetric then also dH is.

( 3 ) dH satisfies the triangle inequality.

Proof. Positive definiteness. Let x, y ∈ R
2 and dH(x, y) = 0. This means

that a path P = [z1, z2, . . . , zL] ∈ Px,y exists such that

L−1
∑

i=1

c(zi, zi+1) = 0,

see (3) for the definition of c. Since c(zi, zi+1) ≥ 0∀i = 1, . . . , L − 1 and
c(zi, zi+1) = 0 if and only if zi = zi+1 we obtain z1 = z2 = · · · = zL and
therefore x = y.

On the other hand, if x = y, we obtain dH(x, y) = 0 using the path P :=
[x, y] ∈ Pxy.

Symmetry. Note that each path P ∈ Px,y can be traversed in opposite
direction. Since d is a metric, it satisfies c(x, y) = c(y, x) for all x, y ∈ R

2.
Hence, given a path P ∈ Px,y there exists a path P̄ ∈ Py,x with

same length. This shows symmetry of dH .

Triangle inequality. Let x, y, z ∈ R
2, P1 := [v1, v2, . . . , vM ] ∈ Px,y and

P2 := [w1, w2, . . . , wN ] ∈ Py,z such that dH(x, y) =
∑M−1

i=1 c(vi, vi+1) and
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h1

h2

h3

Figure 11: Set P(G) = {crossed dots} defined by the grid of Figure 10.
|P(G)| = 175.

dH(y, z) =
∑N−1

i=1 c(wi, wi+1). Let P3 be the composition of P1 and P2, i.e.

P3 := [v1, . . . , vM , w1, . . . , wN ].

Then P3 is a finite linear path from x to z, i.e. P3 ∈ Pxz. Hence

dH(x, z) = min
P=[z1,...,zL]∈Pxz

{

L−1
∑

i=1

c(zi, zi+1)

}

≤ γP(P3)

=
M−1
∑

i=1

c(vi, vi+1) +
N−1
∑

i=1

c(wi, wi+1)

= dH(x, y) + dH(y, z),

proving that the triangle inequality holds.

Note, if a function d is positive definite and symmetric, then the derived
highs-speed distance dH is a metric. I.e. dH fulfills the triangle inequality,
also if the triangle inequality does not hold for d.

We next provide a simple dominance criterion for the optimality of a demand
point in the case of a high-speed distance dH which is derived from any
function d.

Theorem 10. If

wk ≥
1

2

M
∑

i=1

wi (7)
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holds for some k ∈ {1, . . . ,M} then demand point ak is a minimizer of
1/R

2/(H,Λ)/dH/
∑

. If inequality (7) is strict, then demand point ak is a
unique minimizer of 1/R

2/(H,Λ)/dH/
∑

.

Proof. Let x∗ be a optimal solution of 1/R
2/(H,Λ)/dH/

∑

. Without lost of
generality we can assume that demand point a1 satisfy inequality (7). Then
we obtain

fH(x∗) − dH(x∗, a1)
(

ω1 −
∑M

m=2 ωm

)

=
∑M

m=1 ωmdH(x∗, am) − dH(x∗, a1)
(

ω1 −
∑M

m=2 ωm

)

=
∑M

m=2 ωmdH(x∗, am) +
∑M

m=2 ωmdH(x∗, a1) =
∑M

m=2 ωm(dH(x∗, am) + dH(x∗, a1)).

Since dH satisfy the triangle inequality (see Theorem 9) we obtain
dH(x∗, am) + dH(x∗, a1) ≥ dH(am, a1) for all m = 1, . . . ,M and hence

fH(x∗) − dH(x∗, a1)

(

ω1 −
M
∑

m=2

ωm

)

≥
M
∑

m=1

ωmdH(am, a1) = fH(a1).

Note that dH(a1, a1) = 0. Since ω1 ≥
∑M

m=2 ωm it follows ω1 −
∑M

m=2 ωm ≥
0. Therefore fH(x∗) ≥ fH(a1) holds. Hence we obtain that a1 is a minimizer
of 1/R

2/(H,Λ)/dH/
∑

.

Now assume that inequality (7) is strict, i.e. ω1 > 1
2

∑M
i=1 ωi. From the first

part of the proof we know that a1 is a minimizer of 1/R
2/(H,Λ)/dH/

∑

.
To the contrary let us assume that there exists another minimizer x∗ 6= a1.
Then dH(x∗, a1) > 0 and we obtain analogously to the first part of the proof
that fH(x∗) > fH(a1). This is a contradiction to the assumption that a1 is
a minimizer.

6 The case of a single high-speed line in rectangular

metric

We now treat the special case of 1/R
2/(H,Λ)/dH/

∑

where the used dis-
tance function is induced by one straight line and the rectangular metric.
Furthermore the high-speed curve, denoted by h, is assumed to be parallel
to one fundamental line of the rectangular metric, i.e. the line is either par-
allel to the x1-axis or to the x2-axis. Therefore the x1-axis can assumed to
be the high-speed curve. As in Definition 1 we define the distance between
two points in the plane by the length of a shortest path between the points.
In contrast to the previous sections, we now use the denotation lH for this
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distance function to underline that it is derived from the rectangular met-
ric l1. From Theorem 9 it follows that lH is a metric. Since we have one
high-speed curve, we use the following representation of lH that does not
use shortest paths.

Lemma 11. For every x = (x1, x2), y = (y1, z2) ∈ R
2 we have

lH(x, y) = min {l1(x, y), λ(h) | x1 − y1 | + | x2 | + | y2 |} .

Proof. Let us assume that lH(x, y) < l1(x, y) holds, otherwise we have noth-
ing to show. This assumption implies x1 6= y1. Let us denote the x1-axis by
h = {(z1, z2) ∈ R

2 : z2 = 0}. Since there exists only one high-speed line,
we have to prove that v̂ := (x1, 0) and ŵ := (y1, 0) are minimizers of

minimize l1(x, v) + λ(h)l1(v,w) + l1(w, y)
s.t. v,w ∈ h.

(8)

A minimizer of (8) can be found by solving

minimize |x1 − v| + λ(h)|v − w| + |y1 − w|
s.t. v,w ∈ R.

(9)

|x1 − v| and |y1 − w| are piecewise linear and convex with breakpoints in
x1 or y1, respectively. Furthermore λ(h)|v − w| is linear in each of the four
cones defined by the lines l1 : y = x and l2 : y = −x. Summarizing,
the vertical line through (x1, 0), the horizontal line through (0, y1), and the
lines l1, l2 induce a partition of the plane into polygonal cells such that
(9) is linear in each cell. Let Z be the set that contains all extreme points
of this cells. From the Fundamental Theorem of Linear Programming we
know, that Z must contain a minimizer of (9). Furthermore, except the
point (x1, y1) all points in Z are of the form (z, z) or (z,−z), respectively. A
point of the form (z, z) can not be a minimizer, since in this case we obtain a
contradiction to our assumption lH(x, y) < l1(x, y). Also a point of the form
(z,−z) 6= (x1, y1) can not be a minimizer, since in this case we can always
improve the objective value by moving in x1-direction or in x2-direction,
respectively. Hence, only (x1, y1) is a valid minimizer of (9).

Using Lemma 11 it is possible to solve 1/R
2/(H,λ)/lH/

∑

by linear pro-
gramming. But in the following we will investigate a geometrical approach.
Since h is parallel to a fundamental direction of the rectangular metric, the
size of the FDS computed in Section 4 decreases. Now the size of the FDS
(i.e. the set C(G)) is in order of O(M2) where M is the number of given
demand points. But in this special case we are able to calculate a smaller
FDS by identifying a certain subset of C(G). To this we will use some well
known properties of 1/R/ • /| · |/

∑

.
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Theorem 12. ([14]) Let B = {b1, . . . , bn} be a set of real numbers such that
b1 ≤ b2 ≤ . . . ≤ bn and let wi be a non-negative weight associated to bi for all

i = 1, . . . ,M . Let m∗ := min
{

m :
∑m

i=1 wi ≥
1
2

∑M
i=1 wi

}

. If
∑m∗

i=1 wi >

1
2

∑M
i=1 wi, then bm∗ is the unique minimizer of g(x) :=

∑n
i=1 wi|bi − x|. Or

else [bm∗ , bm∗+1] is the set of minimizer of g.

The objective function of 1/R
2/(H,λ)/lH/

∑

is given by

fH(x) =

M
∑

i=1

wilH(ai, x).

We use the standard notation, i.e. every given demand point is represented
by a point ai with associated weight wi. To investigate properties of fH , we
define for every ǫ ∈ {0, 1}M a function zǫ : R

2 → R,

x 7→
M
∑

i=1

wi (ǫil1(ai, x) + (1 − ǫi) (λ(h) | x1 − ai1 | + | x2 | + | ai2 |)) .

Note that for ǫ = (1, . . . , 1) zǫ is equal to the objective function of 1/R
2/ ·

/l1/
∑

. Furthermore, for every x ∈ R
2 there exists an ǫ ∈ {0, 1}M such

that zǫ(x) = fH(x) holds. Since zǫ(x) ≥ fH(x) for all x ∈ R
2 and for all

ǫ ∈ {0, 1}M , we obtain that a minimizer of z(x) := minǫ∈{0,1}M zǫ(x) is also
a minimizer of fH and vice versa. Each point in the set

OPT(z) := {x ∈ argmin z(x)}

is a minimizer of fH . So OPT(z) is a FDS of 1/R
2/(H,λ)/lH/

∑

. In the
following we will not compute OPT(z) exactly but use the observation that

OPT(z) ⊂ OPT(zǫ) :=
{

x ∈ argmin zǫ(x) : ǫ ∈ {0, 1}M
}

holds. We calculate four elements of OPT(zǫ), namely the element with
the smallest x1 value, the element with the largest x1 value and the both
elements with the smallest and largest x2 values. With the help of this four
elements we obtain a rectangle that contains OPT(zǫ) and therefore also
OPT(z).

First we compute the smallest and largest x1 values of elements in OPT(zǫ).
To this, we assume that the given demand points D = {a1, . . . , aM} satisfy
a11 < a21 < . . . < aM1. If there are demand points with the same x1 value
we can combine them if we accumulate the associated weights.
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Theorem 13. Let x = (x1, x2) be in OPT(zǫ),

s∗ := min

{

s ∈ {1, . . . ,M} :

s
∑

i=1

wi ≥ λ(h)

M
∑

i=s+1

wi

}

and

t∗ := max

{

t ∈ {1, . . . ,M} :

M
∑

i=t

wi > λ(h)

t−1
∑

i=1

wi

}

.

Then x1 ∈ [as∗1, a(t∗+1)1] holds.

Proof. Let x = (x1, x2) be in OPT(zǫ). Since there exists ǫ ∈ {0, 1}M such
that x is a minimizer of zǫ, x1 is a minimizer of

z1
ǫ : R → R, x 7→

∑

i : ǫi=0

wiλ(h) | x1 − ai1 | +
∑

i : ǫi=1

wi | x1 − ai1 | .

Now we can apply Theorem 12 on {a11, . . . , aM1}, {w1, . . . , wM} and z1
ǫ

and obtain that there exists m∗ ∈ {1, . . . ,M} such that am∗1 = x1 or x1 ∈
[am∗1, a(m∗+1)1]. Furthermore m∗ satisfies the inequality

∑

i : i≤m∗, ǫi=0

wiλ(h) +
∑

i : i≤m∗, ǫi=1

wi ≥
1

2

∑

i : ǫi=0

wiλ(h) +
1

2

∑

i : ǫi=1

wi. (10)

Inequality (10) is equivalent to

∑

i : i≤m∗,

ǫi=0

wiλ(h) +
∑

i : i≤m∗,

ǫi=1

wi ≥
∑

i : i>m∗,

ǫi=0

wiλ(h) +
∑

i : i>m∗,

ǫi=1

wi. (11)

From inequality (11) we obtain

M
∑

i=1

wi ≥ λ(h)

M
∑

i=m∗+1

wi,

i.e. m∗ ≥ s∗.
From Theorem 12 we also conclude

∑

i : i<m∗, ǫi=0

wiλ(h) +
∑

i : i<m∗, ǫi=1

wi <
1

2

∑

i : ǫi=0

wiλ(h) +
1

2

∑

i : ǫi=1

wi. (12)

Inequality (12) is equivalent to

∑

i : i<m∗, ǫi=0

wiλ(h) +
∑

i : i<m∗, ǫi=1

wi <
∑

i : i≥m∗ : ǫi=0

wiλ(h) +
∑

i : i≥m∗ : ǫi=1

wi.
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From inequality (6) we obtain

λ(h)

m∗−1
∑

i=1

wi <

M
∑

i=m∗

wi,

i.e. m∗ ≤ t∗.
Altogether we obtain as∗1 ≤ am∗1 ≤ x1 ≤ a(m∗+1)1 ≤ a(t∗+1)1, i.e. x1 ∈
[as∗1, a(t∗+1)1].

Now we compute the smallest and largest x2 value of elements in OPT(zǫ).
To this end let OPT(z2

1) be the set of minimizers of z2
1(x) :=

∑M
i=1 wi |

x− ai2 |. We denote the smallest and largest elements of OPT(z2
1) by l and

u, respectively.

Theorem 14. Let x = (x1, x2) be in OPT(zǫ). Then

x2 ∈ [min{l, 0},max{0, u}].

Proof. Let x = (x1, x2) be in OPT(zǫ). Since there exists ǫ ∈ {0, 1}M such
that x is a minimizer of zǫ, we conclude that x2 is a minimizer of

z2
ǫ : R → R, x 7→

∑

i : ǫi=0

wi | x1 | +
∑

i : ǫi=1

wi | x1 − ai2 | .

Obviously, if ǫ = (1, . . . , 1) then x2 ∈ [l, u]. If ǫi = 0 the location of demand
point ai2 changes to zero (note that the demand points are points in R). We
can merge this demand points to a new demand point a0 and sum up their
weights. Hence, with each i ∈ {1, . . . ,M} such that ǫi = 0 the importance
of the demand point a0 increases. Therefore if ǫ 6= (1, . . . , 1) a minimizer of
z2
ǫ is closer to zero.

With Theorem 13 and Theorem 14 we obtain a rectangle, namely

[as∗1, at∗1] × [min{l, 0},max{0, u}]

that contains OPT(z). We are hence able to define a smaller finite domi-
nating set FDS for 1/R

2/(H,λ)/lH/
∑

through

C := [as∗1, at∗1] × [au∗2, av∗2] ∩ P(G).

Figure 6 shows an example of a problem of type 1/R
2/(H,λ)/lH/

∑

. The
new FDS C is 85% smaller than P(G).
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Figure 12: Example of 1/R
2/(H,λ)/lH/

∑

with D = {black points}, λ =
0.5, and weight 1 for each demand point in D. The grey and black points
belongs to P(G). C consists of the 15 points included in the rectangular.

7 Conclusion

In this paper we studied an extended Weber problem with non-convex dis-
tance function. We proved a discretization result to solve this new type of
problem and were able to identify a finite dominating set. Our results can
be used to solve small location problems. However, for a large number of
given high-speed curves or of fundamental directions of the used polyhedral
gauge, the FDS becomes too large. Approaches to reduce the size of the
FDS are possible for special cases as we have shown for the case of rectan-
gular distance and one straight line. We also looked at block norms with
only two fundamental directions (see [17]).

A first step to obtain a smaller FDS in the general case could be to study
the convex hull of the given demand points and enlarge it with respect to
the high-speed curves to obtain a bounded region which contains all opti-
mal solutions. The idea extends the fact, that for many location problems
a minimizer is contained in the convex set of the given demand points. Fur-
thermore, the theoretical results of this paper can be used to reduce the
given continuous location problem to a discrete problem with a network
structure. It has to be evaluated if this network structure leads to faster
algorithms than testing all points of the FDS.
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