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Abstract

A new second order Newton method for reconstructing the shape of a
sound soft scatterer from the measured far-field pattern for scattering of time
harmonic plane waves is presented. This method extends a hybrid between
regularized Newton iterations and decomposition methods that has been sug-
gested and analyzed in a number of papers by Kress and Serranho [7, 8, 9,
11, 12] and has some features in common with the second degree method for
ill-posed nonlinear problems as considered by Hettlich and Rundell [6]. The
main idea of our iterative method is to use Huygen’s principle, i.e., represent
the scattered field as a single-layer potential. Given an approximation for the
boundary of the scatterer, this leads to an ill-posed integral equation of the
first kind that is solved via Tikhonov regularization. Then, in a second order
Taylor expansion, the sound soft boundary condition is employed to update
the boundary approximation. In an iterative procedure, these two steps are
alternated until some stopping criterium is satisfied. We describe the method
in detail and illustrate its feasibility through examples with exact and noisy
data.

1 Introduction

Inverse scattering problems for time harmonic waves are of fundamental importance
in applications such as radar and sonar, nondestructive evaluation, geophysical ex-
ploration, medical imaging and others. In principle, in these applications the wave
scattered by an unknown object is measured at a number of discrete locations and
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information such as shape parameters, location parameters and electromagnetic pa-
rameters of the scatterer are extracted from these data. As opposed to classical
techniques of imaging such as computerized tomography that is based on the fact
that x-rays travel along straight lines, inverse scattering problems take into account
that the propagation of acoustic, electromagnetic and elastic waves have to be mod-
eled by a wave equation. This means that inverse scattering requires a nonlinear
model, whereas inverse tomography is a linear approximation of inverse scattering
problems.

In this study, we are interested in shape reconstruction of sound soft obstacles
from measurements of the far field pattern by using a new variant of a second order
Newton method. As a major advantage, this iterative algorithm does not require
a forward solver at each iteration step. Our approach extends a corresponding
first order Newton method as suggested and analyzed by Kress and Serranho for
shape reconstruction for sound soft [7, 12] and sound hard obstacles [9] and for the
reconstruction of both the shape and the boundary impedance [11]. Although, in
the present paper the obstacle is assumed to be smooth, since the approach of Kress
and Serranho has also been extended to cracks [8] we expect that our method also
can be carried over to this case.

Given an open bounded obstacle D ⊂ IR2 with an unbounded and connected
complement and a smooth boundary ∂D and an incident field ui, the direct scatter-
ing problem consists of finding the total field u = ui + us as the sum of the known
incident field ui and the scattered field us, such that the Helmholtz equation

△u + k2u = 0 in IR2 \ D̄ (1.1)

and the sound soft or Dirichlet boundary condition

u = 0 on ∂D̄ (1.2)

are fulfilled and the scattered wave us satisfies the Sommerfeld radiation condition

lim
r→∞

√
r

(

∂us

∂r
− ikus

)

= 0, r = |x| , (1.3)

uniformly with respect to all directions. The latter ensures an asymptotic behavior
of the scattered wave of the form

us(x) =
eik|x|

√

|x|

{

u∞(x̂) + O

(

1

|x|

)}

, |x| → ∞, (1.4)

uniformly in all directions with the far field pattern u∞ defined on the unit circle Ω.
The inverse scattering problem we are interested in is to determine the location

and the shape of the scatterer D from a knowledge of the far field pattern u∞ for
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one or several incident plane waves ui = eik x·d with incident direction d ∈ Ω. We
note that the inverse scattering problem we have just formulated is ill-posed in the
sense that the determination of D does not depend continuously on the measured
far field data in any reasonable norm. This issue of ill-posedness will be handled
using Tikhonov regularization in our reconstruction algorithm.

This algorithm starts from Green’s representation formula for the scattered wave

us(x) = − i

4

∫

∂D

∂u

∂ν
(y) H

(1)
0 (k |x − y|) ds(y), x ∈ IR3 \ D̄, (1.5)

and its far field pattern

u∞(x̂) = − eiπ/4

√
8πk

∫

∂D

∂u

∂ν
(y) e−ik x̂·y ds(y), x̂ ∈ Ω, (1.6)

that is, Huygen’s principle (see Theorem 3.12 in [2]). Here, H
(1)
0 denotes the Hankel

function of order zero and of the first kind and ν is the outward unit normal to
∂D. We view (1.6) as the data equation in terms of the measured far field pattern
u∞. Given an approximation for the boundary ∂D, we solve (1.6) for the unknown
flux ϕ := −∂u/∂ν. Then we insert the scattered wave (1.5) into the boundary
condition (1.2) and consider this as the field equation which we solve for updating
the approximation for ∂D. This is achieved via a Taylor expansion up to order
two for u along the normal direction and solving the quadratic equation for the
update function. In an obvious way, these two steps are iterated until an appropriate
stopping criterium is satisfied.

To some extend our approach is related to a method that has been suggested and
investigated more recently in Çayören et al [1]. The main difference is that in [1]
the curve on which the Taylor expansion is employed remains fixed throughout the
algorithm and that, in order to compensate for this, higher order Taylor expansions
are used.

The idea of our algorithm differs from the traditional regularized Newton type
iterations for the inverse obstacle scattering problem. The latter approach is based
on the observation that the solution to the direct scattering problem with a fixed
incident plane wave ui defines an operator

A : ∂D 7→ u∞

that maps the boundary ∂D of the scatterer D onto the far field pattern u∞ of the
scattered wave. In terms of this operator, given a far field pattern u∞, the inverse
problem just consists in solving the nonlinear and ill-posed operator equation

A(∂D) = u∞
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for the unknown surface ∂D which, for example, can be done via regularized Newton
iterations as has been suggested for the first time by Roger [10]. For details on this
approach we refer to [2]. Numerical examples in three dimensions have been more
recently reported by Farhat et al [3] and by Harbrecht and Hohage [5]. A related
second order Newton scheme has been considered by Hettlich and Rundell [6].

2 The reconstruction algorithm

Since we assume the boundary ∂D to be smooth, i.e., analytic, the scattered wave
can be extended as solution to the Helmholtz equation across the boundary into a
neighborhood of ∂D. We now assume that an initial estimate Γ0 for the boundary
of the scatterer D is at our disposal such that this extension of us is defined in the
closed exterior of Γ0. Further we assume that k2 is not a Dirichlet eigenvalue for the
negative Laplacian in the interior of Γ0. Then the scattered field can be expressed
as a single-layer potential

us(x) =
i

4

∫

Γ0

H
(1)
0 (k |x − y|)ϕ(y) ds(y) (2.1)

for all x in the exterior of Γ0 and a uniquely determined density ϕ ∈ L2(Γ0) (see [2]).
Passing to the far field in (2.1) we obtain

eiπ/4

√
8πk

∫

Γ0

e−ik x̂·yϕ(y) ds(y) = u∞(x̂), x̂ ∈ Ω, (2.2)

as an integral equation of the first kind for the unknown density ϕ. Due to its
analytic kernel, this integral equation is severely ill-posed. However, the operator
S∞ : L2(Γ0) → L2(Ω) defined by

(S∞ϕ)(x̂) :=
eiπ/4

√
8πk

∫

Γ0

e−ik x̂·yϕ(y) ds(y), x̂ ∈ Ω,

is known to be injective and have dense range (see Theorem 5.17 in [2]). Therefore,
Tikhonov regularization can be applied for a stable approximate solution of (2.2),
that is, the ill-posed equation (2.2) is replaced by

αϕα + S∗
∞S∞ϕα = S∗

∞u∞ (2.3)

with some positive regularization parameter α and the adjoint S∗
∞ of S∞.

For the further description of the reconstruction scheme we represent the curve
Γ0 by a regular parameterization

Γ0 = {z0(t) : t ∈ [0, 2π)} (2.4)
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with a 2π-periodic function z0 : IR → IR2. Searching the location where the bound-
ary condition (1.2) is satisfied we approximate the total field u by the Taylor formula
of order two with respect to the normal direction at Γ0. For this we try to update
in the form

Γ1 = {z1(t) = z0(t) + h(t)ν0(t) : t ∈ [0, 2π)} (2.5)

where ν0 denotes the outward normal vector to Γ0 and h : IR → IR is a sufficiently
small 2π periodic function. The normal vector can be expressed through the param-
eterization (2.4) via

ν0(t) =
[z′0(t)]

⊥

|z′0(t)]
, t ∈ [0, 2π),

where for any vector a = (a1, a2) we set a⊥ = (a2,−a1). Then the second order
Taylor formula requires the update function h to satisfy

u ◦ z0 +
∂u

∂ν0
◦ z0 h +

1

2

∂2u

∂ν2
0

◦ z0 h2 = 0. (2.6)

Once the single layer density ϕ is known from (2.3), the values u and ∂u/∂ν0 of
the total field on Γ0 can be obtained through the jump relations for the single-layer
potential [2], that is, by

u(x) = ui(x) +
i

4

∫

Γ0

H
(1)
0 (k |x − y|) ϕ(y) ds(y), x ∈ Γ0, (2.7)

and

∂u

∂ν0

(x) =
∂ui

∂ν0

(x) +
i

4

∫

Γ0

∂H
(1)
0 (k |x − y|)

∂ν0(x)
ϕ(y) ds(y)− 1

2
ϕ(x), x ∈ Γ0. (2.8)

The second order derivative ∂2u/∂ν2
0 can be obtained by using the fact that the

total field satisfies the Helmholtz equation outside the object, that is, it is given by

∂2u

∂ν2
0

◦ z0 = −k2u ◦ z0 +
z′0 · z′′0
|z′0|4

∂(u ◦ z0)

∂t
− 1

|z′0|2
∂2(u ◦ z0)

∂t2
− z′0 · ν ′

0

|z′0|2
∂u

∂ν0
◦ z0 (2.9)

in terms of the parameterization (2.4) (see, for example, [9]). The integrals in (2.7)
and (2.8) can be accurately evaluated by the quadrature rules as described in [2]
and the first and second order derivatives of u ◦ z0 with respect to the parameter t
occurring in (2.9) can be obtained via trigonometric differentiation.

As in the work of Hettlich and Rundell [6] and following Halley [4] the nonlinear
equation (2.6) is solved in two steps, a predictor and a corrector step. In the predictor
step, one has to solve

u ◦ z0 +
∂u

∂ν
◦ z0 h0 = 0 (2.10)
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for h0. Since the solution of (2.10) is sensitive to errors in the normal derivative of
u in the vicinity of zeros, equation (2.10) is solved in a stable way by a least squares
method. For this we express h0 in terms of basis functions ω1, ω2, . . . , ωJ by

h0 =
J

∑

j=1

ajωj (2.11)

with possible choices of basis functions given by splines or trigonometric polynomials.
Then, we satisfy (2.10) in a penalized least squares sense, that is, the coefficients
a1, a2, . . . , aJ in (2.11) are chosen such that for a set of collocation points t1, t2, . . . , tN
in [0, 2π) the penalized least squares sum

N
∑

n=1

∣

∣

∣

∣

∣

u(z0(tn)) +
∂u

∂ν
(z0(tn))

J1
∑

j=1

ajωj(tn)

∣

∣

∣

∣

∣

2

+ β1

J
∑

j=1

a2
j

with some regularization parameter β1 > 0 is minimized. Once h0 has been obtained,
in the corrector step the equations

u ◦ z0 +
∂u

∂ν0

◦ z0 hm +
1

2

∂2u

∂ν2
0

◦ z0 hm−1 hm = 0 (2.12)

are solved recursively for hm, m = 1, . . . , M, again in a penalized least squares sense,
that is,

N
∑

n=1

∣

∣

∣

∣

∣

u(z0(tn)) +

[

∂u

∂ν
(z0(tn)) +

1

2

∂2u

∂ν2
(z0(tn))h0(tn)

] J
∑

j=1

bjmωj(tn)

∣

∣

∣

∣

∣

2

+ β2

J
∑

j=1

b2
jm

with some regularization parameter β2 > 0 is minimized to obtain

hm =

J
∑

j=1

bjmωj.

Then, finally h = hM is inserted in (2.5) to obtain the updated boundary Γ1. In
our numerical examples, we used M = 4 for the number of inner iterations. This
procedure of alternating solving (2.3) and (2.6) now is iterated in an obvious fashion
until some stopping criterium is satisfied.

3 Numerical examples

In our examples we employed trigonometric polynomials of degree less than or equal
to J for the approximation of the boundary in the predictor and corrector step.
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In all examples, we used N = 50 collocation points. In order to avoid an inverse
crime, the synthetic data were obtained by solving the combined single- and double-
layer boundary integral equation for the direct scattering problem by the Nyström
method as described in [2] with 100 quadrature points. The wave number is chosen
as k = 1 and the penalty factors for the least squares approach as β1 = β2 = 0.001.
The number of iteration steps is denoted by T .

In the first example, we consider the identification of a peanut-shaped object
with the parameterization

∂D =
{

√

cos2 t + 0.25 sin2 t (cos t, sin t) : t ∈ [0, 2π)
}

. (3.1)

The iterations were started with a circle of radius 0.5 centered at the origin and we
worked with the parameters J = 5, T = 6, and α = (0.5)n ×10−8, α = (0.9)n ×10−5

depending on the iteration number n for noiseless and noisy data, respectively.
In the second example, the reconstruction of a kite-shaped object with parame-

terization
∂D = {(cos t + 0.65 cos 2t − 0.65, 1.5 sin t) : t ∈ [0, 2π)} (3.2)

is considered. Here we started the iterations with a circle of radius 1.5 centered
at the origin. As parameters we choose J = 10, T = 6, and α = (0.9)n × 10−8,
α = (0.9)n × 10−5 for noiseless and noisy data, respectively.

As seen from the figures, our second order Newton method gives slightly better
reconstructions than the first order Newton iterations and is more stable against
noisy data. Here, by first order Newton iteration we understand the variant where
only the predictor step is carried out at each iteration as in the method of Kress
and Serranho. We observed that if the noise level exceeds 4% then the reconstruc-
tions start to deteriorate. As to be expected we have better reconstructions in the
illuminated region than in the shadow region.
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Figure 1: Reconstruction of the peanut for d = (−1, 0) without noise (left) and with
3% noise (right)

Figure 2: Reconstruction of the peanut for d = (0,−1) without noise (left) and with
3% noise (right)
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Figure 3: Reconstruction of the kite for d = (−1, 0) without noise (left) and with
3% noise (right)

Figure 4: Reconstruction of the kite for d =
(

−
√

1/2,−
√

1/2
)

without noise (left)

and with 3% noise (right)
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