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Abstract

We propose two methods for solving an inverse source problem for time-
harmonic acoustic waves. Based on the reciprocity gap principle a nonlinear
equation is presented for the locations and intensities of the point sources
that can be solved via Newton iterations. To provide an initial guess for
this iteration we suggest a range test algorithm for approximating the source
locations. We give a mathematical foundation for the range test and exhibit
its feasibility in connection with the iteration method by some numerical
examples.

1 Introduction

The scattering of time harmonic acoustic point sources at n source points with
locations sj and intensities cj for j = 1, . . . , n at a sound-sound soft obstacle D ⊂ IR2

can be modelled by the solution of

−∆u− k2u =
n∑
j=1

cjδsj
in IR2 \ D̄

subject to the Dirichlet boundary condition

u = 0 on ∂D
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and the Sommerfeld radiation condition at infinity. Here, δs stands for the Dirac
delta distribution. This paper is concerned with the inverse problem to recover the
location and the intensity of the sources from a knowledge of the normal derivative
of u on the boundary ∂D where we assume the boundary ∂D to be known.

We propose an iterative method based on the reciprocity gap principle, that is,
on Green’s integral theorem. Our approach is motivated by a series of papers us-
ing similar ideas for the iterative solution of inverse problems for the shape of the
boundary that was initiated by Kress and Rundell [7] for an inverse boundary value
problem for the Laplace equation. For a survey of the extension of this approach
to the Helmholtz equation we refer to Ivanyshyn, Kress and Serranho [4]. For the
case of the inverse source problem the recipricity gap principle leads to a nonlin-
ear equation for the location and the intensities that can be solved iteratively via
simultaneous linerization with respect to all unknowns. Our approach modifies the
method considered in [12] through the use of point sources on the boundary ∂D
rather than point sources in the exterior IR2 \ D̄ of the scatterer. This results in
more accurate reconstructions as indicated through our numerical examples. The
description of the iterative scheme is provided in Section 3

In order to provide an initial guess for the iterative scheme we propose a range
test algorithm for finding approximations for the source locations. For a closed curve
Γ containing the closure D̄ of the scatterer in its interior we construct a compact
linear operator A : L2(Γ)→ L2(∂D) such that the range of A can be used as an
indicator whether the source locations are contained in the annulus between Γ and
∂D or not. By choosing different shapes for the curve Γ and numerically deciding via
Tikhonov regularization on the solvability of the ill-posed operator equation Aϕ = f
for appropriate right hand sides f , depending on the given normal derivative of u, it is
possible to approximate the source locations. We will give a detailed analysis of this
algorithm in Section 4 including the construction of the operator A and establishing
injectivity and dense range as prerequisites for using Tiknonov regularization in the
range test. In the final Section 5, numerical examples illustrate the feasibility of the
range test and its combination with the iterative scheme. In principle, the approach
can of course be extended to three dimensions.

Range test and probe methods have been more recently suggested and developed
in inverse scattering for gaining information on the location and shape of scatterers
by Luke and Potthast [9] and by Potthast, Sylvester and Kusiak [11]. For a survey
we refer to Potthast [10]. However, to our knowledge, this type of methods has not
yet been employed for inverse source problems.

In practical remote sensing, faraway sources radiate fields that, within measure-
ment precision, are nearly those radiated by point sources. Hence, the inverse source
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problem occurs for example in astronomy. If instead of the exterior problem we con-
sider the interior problem with unknown source locations and intensities within D,
then the inverse source problem has applications, for example, in electro- and mag-
neto encephalography. Algorithms like the MUSIC, in principle, also address an
inverse source problem but with a different set of data (see for example Kirsch [5]).
For related work on the type of inverse problem that we are addressing we refer to
Ben Abda et al [1], El Badia and Ha-Duong [3] and Leblond et al [8]

2 The inverse source problem

We proceed with a more specified description of the inverse source problem under
consideration. Let D ⊂ IR2 be a simply connected bounded domain with a C2

boundary ∂D and outward unit normal ν. Denote by

Φ(x, y) :=
i

4
H

(1)
0 (k|x− y|), x 6= y,

the fundamental solution to the Helmholtz equation with postive wave number k
given in terms of the Hankel function of the first kind and of order zero. Consider
the direct scattering problem for the sound-soft obstacle D with the incident field
ui generated by a source distribution

ui(x) =
n∑
j=1

cjΦ(x, sj), x 6= sj, j = 1, . . . , n, (2.1)

with source points sj in IR2 \ D̄ and intensities cj ∈ C \ {0} for j = 1, . . . , n. The
scattered field us has to satisfy the Helmholtz equation

∆us + k2us = 0 in IR2 \ D̄, (2.2)

the sound-soft boundary condition

ui + us = 0 on ∂D (2.3)

and the Sommerfeld radiation condition

lim
r→∞

r1/2

(
∂us

∂r
− ikus

)
= 0 (2.4)
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uniformly for all directions. In the distributional sense, the total field u := ui + us

satisfies the inhomogeneous Helmholtz equation

−∆u− k2u = f in IR2 \ D̄, (2.5)

with the inhomogeneity

f :=
n∑
j=1

cjδsj
(2.6)

given in terms of the Dirac delta distribution δs.
The inverse source problem we are interested in is to determine the source loca-

tions and intensities, including their number n, from the knowledge of the normal
derivative

g :=
∂u

∂ν
on ∂D (2.7)

of the total field. We note that this inverse problem is clearly non-linear, since the
total field u and therefore its normal derivative g depends non-linearly on the source
locations sj. Moreover, the problem is also ill-posed, since due to the well-posedness
of the direct scattering problem for the sound-soft scatterer D, given any ε > 0,
we can add a source term with intensity one located far away from the boundary
∂D to f in (2.6) such that difference of the normal derivatives corresponding to the
original source f and the perturbed source in the L2 norm is smaller than ε. In
this sense, the solution to the inverse problem does not depend continuously on the
data.

We cite the uniqueness result for the inverse problem as considered in Section
3.2 of [12] with a sketch of its proof.

Theorem 2.1 (Uniqueness) Let

f1 =

n1∑
j=1

c
(1)
j δ

s
(1)
j

and f2 =

n2∑
j=1

c
(2)
j δ

s
(2)
j

be two source distributions such that for the corresponding total fields u1 and u2 as
given through the solution of (2.1)–(2.6) for f1 and f2, respectively, and assume that

∂u1

∂ν
=
∂u2

∂ν
on Λ

for some open subset Λ ⊂ ∂D. Then n1 = n2 and c
(1)
j = c

(2)
j and s

(1)
j = s

(2)
j for

j = 1, 2, . . . , n1.
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Proof. The difference v := u1 − u2 satisfies the differential equation

∆v + k2v = −
n1∑
j=1

c
(1)
j δ

s
(1)
j

+

n2∑
j=1

c
(2)
j δ

s
(2)
j

in IR2 \ D̄

and the boundary conditions
v = 0 on ∂D

and
∂v

∂ν
= 0 on Λ.

By Holmgren’s theorem, this implies that

v = 0 in IR2\
(
D̄ ∪

{
s

(1)
j : j = 1, 2, . . . , n1

}
∪
{
s

(2)
j : j = 1, 2, . . . , n1

})
.

Therefore we have that

−
n1∑
j=1

c
(1)
j δ

s
(1)
j

+

n2∑
j=1

c
(2)
j δ

s
(2)
j

= 0

and since the Dirac deltas are linearly independent the statement of the theorem
follows. �

Before we proceed with describing our solution algorithm, we note that in the
case of the Laplace equation there exists an interesting simplification that connects
the exterior inverse source problem to an interior inverse source problem. Denote
by

Φ0(x, y) := ln
1

|x− y|
, x 6= y,

the fundamental solution for the Laplace equation and consider a disc D of radius
one centered at the origin. For any source point s ∈ IR2\D̄ we then have the Green’s
function for the Dirichlet problem given by

G(x, y) = Φ0(x, y)− Φ0(|y|x, |y| y∗)

with the reflected point y∗ = |y|−2y ∈ D. Hence, for a source point s ∈ IR2 \ D̄ and
corresponding s∗ = |s|−2s ∈ D. we simulatenously have

−∆G(·, s) = δs in IR2 \ D̄
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and
−∆G(·, s) = −δs∗ in D

together with the boundary condition

G(·, s) = 0 on ∂D.

Therefore the boundary data produced by a set of external source points sj ∈ IR2\D̄
can be emulated using a corresponding set of internal source points s∗j ∈ D. Hence,
it suffices to solve the internal inverse source problem (see [1, 3, 8]) to recover s∗j ∈ D
and then by a simple transformation obtain the associated outer sources sj ∈ IR2\D̄.
This simplification is no longer possible for the Helmholtz equation. Nevertheless it
should be noticed that this procedure may be used to produce an initial guess for
the source locations when the wave number is small enough (see [12]).

3 Iterative solution

In [12] an iterative solution method is proposed based on the reciprocity gap prin-
ciple. Applying Green’s theorem in view of the boundary conditions (2.2) and (2.7)
it follows that the total field u satisfies

n∑
j=1

cjv(sj) =

∫
∂D

vg ds (3.1)

for all solutions v ∈ H1
loc(IR

2 \ D̄) to the Helmholtz equation satisfying the radiation
condition. The method presented in [12] applies the reciprocity gap (3.1) for v =
Φ(x, ·) with source locations x on some auxilaury closed curve surrounding ∂D to
obtain a set of non-linear equations for the source locations sj and the intensities cj.

We suggest to slightly modify this approach and use as test functions v in (3.1)
the fundamental solution with source points on the known boundary ∂D instead
of source points away from the boundary. As to be expected this improves on the
accuracy of the source reconstructions. Putting the source points on the boundary
leads to the Green’s formula

n∑
j=1

cjΦ(x, sj) =

∫
∂D

Φ(x, y)g(y) ds(y), x ∈ ∂D, (3.2)

which can be seen as a particular case of Huygen’s principle, that is, of the repre-
sentation

u = ui −
∫
∂D

∂u

∂ν
(y)Φ(x, y), x ∈ IR2 \ D̄,
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of the total field in Theorem 3.12 in [2] by taking the trace on the boundary ∂D. We
use (3.2), or more precisely a discretized version of (3.2), to solve the inverse source
problem iteratively by linearizing simultaneously with respect to the intensities and
the locations.

Given a current approximation c1, c2, . . . , cn for the intensities and s1, s2, . . . , sn
for the locations, we determine updates

c1 + γ1, c2 + γ2, . . . , cn + γn and s1 + ξ1, s2 + ξ2, . . . , sn + ξn

from the linearized equation

n∑
j=1

{
(cj + γj)Φ(x, sj) + grady Φ(x, sj) · ξj

}
=

∫
∂D

Φ(x, y)g(y) ds(y), x ∈ ∂D. (3.3)

This equation is linear with respect to the γj and ξj. It needs to be solved in a
least squares sense after collocating it at a sufficient number of collocation points
xm ∈ ∂D, m = 1, . . . ,M . For the integral on the right hand side, i.e., the single-
layer potential with density g the logarithmic quadrature formulas as described
in Section 3.5 of [2] can be employed. Alternatively, one could reformulate (3.2)
as a least squares problem and use the Levenberg–Marquardt algorithm, requiring
basically the same derivatives.

To start the iterations an initial guess is required for the locations. From this,
the initial guess for the intensities can be obtained via solving (3.2) in a least squares
sense. Note, that (3.2) is linear with respect to the intensities. An algorithm for
providing an initial guess for the source locations is the subject of the next section.

Before we proceed we wish to point out that (3.2), in principle, can also be
used for the case of incomplete data, i.e., for the case when g is known only on an
open subset Λ ⊂ ∂D. In this case, we just consider the missing part g|∂D\Λ as an
additional unknown and split the integral over ∂D accordingly. Of course, it is to
be expected that this will effect the degree of ill-posedness.

4 Initial guess via a range test

Let B be a simply connected domain with C2 boundary Γ with outward normal ν
such that D̄ ⊂ B. We will design a compact linear operator A : L2(Γ) → L2(∂D)
such that the range of A depends on whether the source location are contained in
the annulus G := B \ D̄ or not.
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To this end, we denote by N : L2(∂D) → H1(∂D) the Neumann-to-Dirichlet
operator for the exterior domain IR2 \ D̄ subject to the Sommerfeld radiation condi-
tion. Further we denote by u0 the solution to the exterior Neumann problem with
boundary condition

∂u0

∂ν
= g on ∂D. (4.1)

In particular, we have u0|∂D = Ng. Further we introduce the compact operators
V,W : L2(Γ)→ L2(∂D) by the single-layer potential

(V ϕ)(x) :=

∫
Γ

Φ(x, y)ϕ(y) ds(y), x ∈ ∂D,

and its normal derivative

(Wϕ)(x) :=

∫
Γ

∂Φ(x, y)

∂ν(x)
ϕ(y) ds(y), x ∈ ∂D.

If there exist densities ϕ ∈ L2(Γ) and ψ ∈ L2(∂D) such that the total field u can
be represented in the form

u(x) = u0(x) +

∫
Γ

Φ(x, y)ϕ(y) ds(y) +

∫
∂D

Φ(x, y)ψ(y) ds(y), x ∈ G, (4.2)

then u is regular in G and therefore none of the source points sj, j = 1, . . . , n, lies
within G. Conversely, if none of the source points is contained in G, then u − u0

is regular in G and can be represented as a single-layer potential with density in
L2(∂G) provided k2 is not a Dirichlet eigenvalue of the negative Laplacian neither for
G nor for D. The latter assumption ensures bijectivity of the single-layer potential
operator from L2(∂G) to H1(∂G).

We abbreviate

v(x) :=

∫
Γ

Φ(x, y)ϕ(y) ds(y), x /∈ Γ, (4.3)

and

w(x) :=

∫
∂D

Φ(x, y)ψ(y) ds(y), x /∈ ∂D.

Then, in view of u = 0 and ∂νu = ∂νu0 on ∂D by Holmgren’s theorem the represen-
tation (4.2), that is, the composition u = u0 + v + w in G, is equivalent to

u0 + v + w = 0 on ∂D (4.4)
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and
∂v

∂ν
+
∂w

∂ν
= 0 on ∂D. (4.5)

With the aid of the Neumann-to-Dirichlet operator N , that is,

w|∂D +N
∂v

∂ν

∣∣∣∣
∂D

= 0,

we can eliminate w from these two equations and arrive at the ill-posed equation

Aϕ = Ng (4.6)

for the density ϕ and the operator A : L2(Γ)→ L2(∂D) given by

A := −V +NW. (4.7)

Conversely, for a solution ϕ ∈ L2(Γ) we define v by (4.3). Then we can represent
the solution w of the exterior Neumann problem with boundary condition (4.5) as
a single-layer potential with density ψ ∈ L2(∂) since the single-layer operator from
L2(∂D) to H1(∂D) is bijective as consequence of our assumption that k2 is not a
Dirichlet eigenvalue for D.

Summarizing we have proven the following theorem.

Theorem 4.1 Assume that k2 is not a Dirichlet eigenvalue of the negative Lapla-
cian neither for G nor for D. Then the ill-posed linear integral equation (4.6) is
solvable if and only if sj 6∈ G for j = 1, . . . , n.

We note that instead of (4.6) we could also use the equivalent equation

N−1Aϕ = g (4.8)

with the operator
N−1A = −N−1V +W

where the inverse N−1 is given by the Dirichlet-to-Neumann operator.
The idea now is to check the solvability of (4.6), for example, via Tikhonov

regularization. If A is injective and has dense range, the regularized solution of (4.6)
converges as the regularization parameter tends to zero if and only if (4.6) is solvable
(see Section 4 in [2]). Numerically we can test for solvability by performing the
Tikhonov regularization for a couple of reasonably small regularization parameters.
If the regularized solution remains bounded while the regularization parameter is
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decreased then the equation is considered as solvable. Otherwise it is considered as
unsolvable.

Here, the assumptions on injectivity and dense range are essential to ensure that
the Tikhonov regularization scheme converges to the correct solution rather than
to the solution given by the Moore-Penrose inverse. In this sense, we provide the
following two theorems.

Theorem 4.2 The operator A as defined in (4.7) is injective provided k2 is not a
Dirichlet eigenvalue of the negative Laplacian for B.

Proof. Let Aϕ = 0. We define v as single-layer potential by (4.3) and w as the
radiating solution to the Helmholtz equation in IR2 \ D̄ satisfying the Neumann
boundary condition

∂w

∂ν
= Wϕ on ∂D,

that is,
∂w

∂ν
=
∂v

∂ν
on ∂D.

From this we have that
w = NWϕ on ∂D,

whence
w = v on ∂D

as consequence of Aϕ = 0. Since the Cauchy data of v and w coincide on ∂D and
both are analytic in G by Holmgren’s theorem we have that

v = w in G.

Because the single-layer potential v with density on Γ is analytic in G ∪ D̄, the
function w can be extended across ∂D as a solution to the Helmholtz equation in
G∪D̄. Therefore w turns out as entire solution to the Helmholtz equation satisfying
the radiation condition. Hence w = 0 in all of IR2 and consequently v = 0 in G.
This now implies ϕ = 0 since by the assumptions on k2 the single-layer operator
from L2(Γ) to H1(Γ) is injective. �

Theorem 4.3 The operator A as defined in (4.7) has dense range provided k2 is
not a Dirichlet eigenvalue of the negative Laplacian for D.
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Proof. It suffices to show that the adjoint operator A∗ : L2(∂D) → L2(Γ) of A is
injective. Clearly, we have

A∗ = V ∗ −W ∗N∗ (4.9)

with the adjoints V ∗,W ∗ : L2(∂D) → L2(Γ) of V and W , and the adjoint N∗ :
L2(∂D) → L2(∂D) of N : L2(∂D) → L2(∂D). The adjoints of the potential opera-
tors are given by

(V ∗ψ)(x) :=

∫
∂D

Φ(x, y)ψ(y) ds(y), x ∈ ∂Γ,

and

(W ∗ψ)(x) :=

∫
∂D

∂Φ(x, y)

∂ν(y)
ψ(y) ds(y), x ∈ ∂Γ.

To characterize the adjoint N∗ of the Neumann-to-Dirichelet operator N , given any
ψ1, ψ2 ∈ L2(∂D), we define w1 and w2 as the radiating solutions to the Helmholtz
equation in IR2 \ D̄ satisfying the Neumann boundary conditions ∂νw1 = ψ1 and
∂νw2 = ψ2 on ∂D, respectively. By Green’s theorem we conclude∫

∂D

Nψ1ψ2 ds =

∫
∂D

w1
∂w2

∂ν
ds =

∫
∂D

w2
∂w1

∂ν
ds =

∫
∂D

ψ1Nψ2 ds,

that is,

(Nψ1, ψ2)L2(∂D) =
(
ψ1, Nψ2

)
L2(∂D)

.

Consequently, N∗ is given by

N∗ψ = Nψ. (4.10)

For an explicit form of N , we introduce the operators S : L2(∂D) → H1(∂D)
and K ′ : L2(∂D)→ L2(∂D) by

(Sψ)(x) := 2

∫
∂D

Φ(x, y)ψ(y) ds(y), x ∈ ∂D,

and

(K ′ψ)(x) := 2

∫
∂D

∂Φ(x, y)

∂ν(x)
ψ(y)ds(y), x ∈ ∂D.

Observing that k is not an interior eigenvalue for D, a single-layer representation of
the solution to the exterior Neumann problem leads to the decomposition

N = S(−I +K ′)−1 (4.11)
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for the Neumann-to-Dirichelet operator (cf. [2]). Here, I stands for the identity
operator.

We further introduce the operator T : H1(∂D)→ L2(∂D) as the normal deriva-
tive of the double-layer potential by

(Tψ)(x) = 2
∂

∂ν(x)

∫
∂D

∂Φ(x, y)

∂ν(y)
ψ(y) ds(y)y, x ∈ ∂D,

and note the identity
TS = K ′2 − I (4.12)

(see Section 3 in [2] or Section 8 in [6]). From (4.11) and (4.12) we conclude that

TN = I +K ′. (4.13)

After these preparations, we are now ready for proving injectivity of A∗. Let ψ
be a solution of A∗ψ = 0 and define the potentials

v(x) :=

∫
∂D

Φ(x, y)ψ(y) ds(y), x ∈ IR2 \ D̄,

and

w(x) :=

∫
∂D

∂Φ(x, y)

∂ν(y)
(Nψ)(y) ds(y), x ∈ IR2 \ D̄.

Then
v|∂D = V ∗ψ

and
w|∂D = W ∗Nψ = W ∗N∗ψ

where we made use of (4.10). From this we observe that A∗ψ = 0 implies v = w on
Γ. By the uniqueness for the exterior Dirichlet problem and the analyticity of v and
w in IR2 \ D̄ this implies that v = w in IR2 \ D̄, whence

∂v

∂ν
=
∂w

∂ν
on ∂D (4.14)

in the sense of the jump relations in the L2 sense (see Section 3 in [2]). The latter
also imply that

∂v

∂ν
= (−I +K ′)ψ
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and
∂v

∂ν
= TNψ = (I +K ′)ψ

where we made use of (4.13). In view of the last two equations, from (4.14) we now
can conclude that ψ = 0 and the proof is complete. �

Now Theorem 4.1 suggests the following procedure to find the position of the
unknown sources. For simplicity assume that ∂D is close to a circle. Then we choose
for Γ concentric circles and increase the radius until the equation (4.6) becomes
unsolvable in the sense that the L2 norm of two different Tikhonov solutions to
(4.6) for a couple of regularization parameters changes drasticly. Then we modify
the curve Γ by first decreasing the radius to some extend and then deforming the
circle locally by a bump and rotate this bump as we will show in the next section.
If for some of these bumpy contours Γ the equation (4.6) is unsolvable we choose a
circle containing the corresponding bump. We then solve the equation for the outer
domain of these circles. If the equation is solvable, the method for finding an initial
guess stops and we choose the center of the circles as initial guesses. Otherwise, we
go back to the concentric circles, but now we exclude from G the previous circles
around the sources that we found already. Note that in this sense, in principle, our
approach can be interpreted as a range test algorithm for finding the sources.

5 Numerical examples

In our examples we confine ourselves to the case where D is a disk of radius one
centered at the origin and to the wave number k = 1. For the numerical discretization
of the right hand side in (3.2) and of the Neumann-to-Dirichlet operator (4.11) we
used the logarithmic quadrature rules in [2] with 80 quadrature points over the
boundary ∂D. The synthetic data were generated by using the combined single- and
double-layer approach for solving the direct problem. Note that no inverse crime
can be committed since the algorithm for the inverse problem does not contain the
integral equations used for the solution of the direct problem.

We will present numerical results both for the range test method for finding an
initial guess and for the iterative method.
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5.1 Range test method for initial guess

First we describe the numerical implementation of the range test method as sug-
gested at the end of the previous Section 4. We start by choosing Γ as a concentric
circle with radius 2 and then increase the radius by one until the equation becomes
unsolvable. To test solvability, we solve equation (4.6) by Tikhonov regularization
with regularization parameters α1 = 10−8 and α2 = 10−12. We consider the equa-
tion (4.6) to be unsolvable if the relative L2 error between the two solutions for the
different regularization parameters is larger than 50%. For the discretization of the
integrals over Γ we used the trapezoidal rule with 120 quadrature points.

After we obtain a circle for which unsolvability occurs we consider bumpy curves
parametrized by

p(t) =

(
r +

3

2
e−4n

√
r sin2 t

2

)
{cos(t− θ), sin(t− θ)}

where r is the largest radius of the concentric circle for which the equation (4.6) was
solvable, 2n is the number of bumpy curves used for fixed radius r and θ is an angle
describing the location of the bump. The number

n = round

(
5 r

4

)
seems to be a good empirical choice along with 2n equidistant angles θj = πj

n
, j =

1, 2, . . . , 2n, in order to cover most of the annulus between the circles of radii r and r+
1. For each θi for which the equation (4.6) was not solvable we picked the circle with
radius 5

4
centered at −

(
r + 3

10

)
{cos θi, sin θi} to exclude the corresponding source.

5.1.1 First example: One source

As a first example we considered a single source located at s1 = (4, 0) with inten-
sity 1, that is, the incident field is given by ui(x) = Φ(x, (4, 0)). We applied the range
test algorithm with the configuration as described above and the result is plotted
in Figure 2. The disk that was obtained indeed covers the unknown source and the
center of the circle can be used as an initial guess for the iterative method.

5.1.2 Second example: Three sources

To the source s1 = (4, 0) with intensity c1 = 1 from the previous example we
added two more sources at s2 = (−3, 1) and s3 = (−2, 4) with intensities c2 = 3

14
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Figure 1: For r = 3 concentric circles of radius r − 1 and r + 1 are shown in
red, circles with bumps in green and circles centered at the bumps in blue for
all θi, i = 1, 2, . . . , 2n.
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Figure 2: Circle centered in the red dot covers the unknown source (black dot) for
the data of the first example.

and c3 = −2, respectively, that is, we considered the incident field

ui(x) = Φ(x, (4, 0))− 2Φ(x, (−2, 4)) + 3Φ(x, (−3, 1)).
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Applying the range test algorithm, again the disks cover the unknown sources as
presented in Figure 3.
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Figure 3: Circles centered in the red dots cover the unknown sources (black dots)
for the data of the second example.

However we should note some restrictions of our approach. The circles considered
to exclude the sources do not cover all the plane and therefore the method (as
applied here) might not work in some cases. A more complete coverage of the plane
by disjoint sets with well behaved boundaries would then be needed and we leave
this for future research. We also might have the situation where two or more sources
lie within a circle, that is, our method does not actually separate all the sources.
However, this could be taken into account by taking several initial guesses inside
each circle for the iterative method. We also point out that our method has some
difficulties in finding sources away from the obstacle, which is due to the ill-posed
nature of the problem as pointed out above. Finally, we admitt that as it is obvious
from its construction the range test algorithm is very sensitive to noisy data.

5.2 Iterative method

We now illustrate the application of the iterative method as presented in Section 3
using as initial guess the approximations for the source locations from the previous
subsection. As a stopping criteria for the iterations we used an adaptation of Mo-
zorov’s discrepancy principle, that is, we stopped the at the m-th iteration if the

16



residual

e(m) =

∥∥∥∥∂u(m)

∂ν
− g
∥∥∥∥
L2(∂D)

is larger than for the previous iteration. Here ∂νu
(m) denotes the normal derivative

on ∂D of the total field generated by the current approximation for the incident
field with approximations s

(m)
j for the source locations and approximations c

(m)
j for

the source intensities. To solve equation (3.3) we applied Tikhonov regularization
with regularization parameter

α = 0.1αm0 , α0 = min{0.9, 0.55 + 15nl}

for the m-th iteration with the noise level nl. In this way the regularization pa-
rameter decreases with the number of iterations at a slower rate for higher noise
level.

5.2.1 First example: One source

Again we considered a single source located at (4, 0) with intensity 1. We first
worked with exact data using as initial guess the center of the circle obtained in
Section 5.1.1. The result as presented in Figure 4 is extremely accurate with an
error of order 10−8 for the source location.

D
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-2

-1

0

1

2

3

s1 s̃1

{4, 0)
{

4− 2× 10−9, 5× 10−17
)

c1 c̃1

1 1 + 10−6 + 7× 10−9i

Number of iterations: 14

Figure 4: Left: Initial guess red, exact location black and approximation (no noise)
green (superposing the black dot). Right: Table with corresponding values.

We also applied the method with 1% and 5% noise on the data, using as initial
guess two sources located at s̃1 = (1, 1) and s̃2 = (−1,−1), both with intensity 1,
that is, with an incorrect number of sources in the initial guess. The results in
Figures 5 and 6 show that the source s̃1 approximates the existing source, while the
intensity of the second source tends to zero. The errors are of the same order as the
noise level as to be expected from Mozorov’s principle.
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0

1
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3 j sj s̃j

1 {4, 0) (3.980, 0.001)

2 - (−0.733,−1.225)

j cj c̃j

1 1 0.997 + 0.019i

2 - −0.00020− 0.00006i

Number of iterations: 24

Figure 5: Left: Initial guess red, exact location black and approximation (1% noise)
green. Right: Table with corresponding values.
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3 j sj s̃j

1 (4, 0) (4.064, 0.0134)

2 - (−1.005,−1.149)

j cj c̃j

1 1 1.006− 0.066i

2 - 0.00048− 0.00068i

Number of iterations: 22

Figure 6: Left: Initial guess red, exact location black and approximation (5% noise)
green. Right: Table with corresponding values.

5.2.2 Second example: Three sources

We go back to the example in Subsection 5.1.2, that is, we want to recover the
locations and intensities of the sources generating the incident field

ui(x) = Φ(x, (4, 0)) + 3Φ(x, (−3, 1))− 2Φ(x, (−2, 4)).

Again we start by applying the method with exact data using as initial guess the
centers of the circles obtained in Subsection 5.1.2. The result is presented in Figure 7,
an extremely accurate reconstruction is exhibited again.

Analogously to the previous example we applied the method with 1% and 5%
noise on the data, using as initial guess four sources located at

s̃1 = (1, 1), s̃2 = (−1, 1), s̃3 = (1,−1), s̃4 = (−1,−1),

all with intensity 1. In a similar way, the results in Figures 8 and 9 show that three
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j sj s̃j cj c̃j

1 (4, 0) (4.00000005,−0.00000002) 1 1.000001 + 2× 10−8i

2 (−3, 1) (−2.99999999, 0.99999999) 3 3.000003− 10−7i

3 (2,−4) (1.99999998,−3.99999993) -2 −2.000002− 5× 10−8i

Number of iterations: 20

Figure 7: Top: Initial guess in red, exact location in black and approximation in
green (no noise) for Example 5.2.2 on top. Bottom: Table of approximations.

of the sources approximate the existing sources, while the intensity of the remaining
source is close to zero.

6 Conclusion

We have proposed and analysed a combination of a range test algorithm and an it-
erative scheme based on the reciprocity gap principle for the inverse source problem.
Numerical examples provide evidence for the feasibility of this approach. Further
research is required to make the method more efficient and to extend it to three
dimensions. In principle, the method can also be applied to other boudary condi-
tions than the sound-soft scatterer, to interior problems and to other differential
equations.
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j sj s̃j cj c̃j

1 (4, 0) (4.0567,−0.0046) 1 1.0106− 0.0565i

2 (−3, 1) (−2.9989, 1.0027) 3 3.0013 + 0.0032i

3 (2,−4) (2.0036,−3.9671) -2 −1.9936− 0.0568i

4 - (−0.8805,−0.8328) - 0.0041 + 0.0021i

Number of iterations: 41

Figure 8: Top: Initial guess in red, exact location in black and approximation in
green (1% noise) for Example 5.2.2. Bottom: Table of approximations.
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