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Using fundamental solutions in inverse scattering

David Colton* and Rainer Kress'

Abstract

We provide a brief description of recent results in inverse scattering theory
having as a common mathematical framework the exploitation of the behavior
of the fundamental solution to the Helmholtz equation, in particular the fact
that for the source point on the boundary 0D of the scattering object such
a solution is not in the Sobolev space H'/2(8D). Included in our discussion
are uniqueness theorems, decomposition methods (including the point-source
method), the method of singular sources, the linear sampling method and the
factorization method.

1 Introduction

In the past twenty years considerable progress has been made on the development
of the mathematical theory of inverse scattering problems for time-harmonic acous-
tic and electromagnetic waves. A survey of these results up until 1998 was given
in the second edition of our book [17]. However, since that time a number of im-
portant new developments have occurred as well as an understanding of a common
mathematical structure underlying many of the results obtained to date. Hence the
purpose of our paper is two-fold: to describe some of the basic recent results in
the mathematical theory of inverse scattering problems as well as to indicate the
common mathematical framework that forms the basis of these new developments.
In addition we will provide some historical remarks and personal anecdotes arising
out of our participation in the growth of the field of inverse scattering theory over
the past twenty years. Before beginning, we warn the reader that our account is
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personal and strongly influenced by the close connection for many years between
the Department of Mathematical Sciences at the University of Delaware and the In-
stitut fiir Numerische und Angewandte Mathematik at the University of Géttingen
together with research groups growing out of this collaboration. In particular, we
do not claim to cover all of the new developments in inverse scattering theory!

We now present a brief overview of what the reader can expect to find in
this paper. We will restrict out attention to the case of the scattering of time-
harmonic acoustic waves by either a sound-soft obstacle or a penetrable inhomoge-
neous medium (although we will not hesitate to consider more general situations
from time to time where appropriate). In particular, factoring out e=™*, we will
always assume that the incident field is given by the time-harmonic plane wave

uz(x) — eikw-d
where k = w/c is the (fixed) wave number, w the frequency, ¢ the speed of sound, d
the direction of propagation and # € IR>. In this case, the scattering of the incident
field u* by a penetrable medium with support D C IR? is a special case of the
scattering problem

V-AVw+k*nw =0 in D (1.1)

Au+Kku=0 inR*\D (1.2)

u(z) = e* ¥4 4 o (z) (1.3)

w=u, v-AVw=v-Vu ondD (1.4)
. ouw' .\

rli)nolor < o iku ) =0 (1.5)

where A € C*(D) is a matrix, n € C(D) is a scalar, D is a bounded domain with
smooth boundary dD having unit outward normal v, IR* \ D is connected and the
Sommerfeld radiation condition (1.5) is assumed to hold uniformly with respect to
% = z/|x| as r = |z| tends to infinity. We always assume that Rn(z) > 0 and
Sn(xz) > 0 for x € D and that the matrix A is symmetric such that

¢ FA@E= Ml and € RA@)E > el (1.6)

for all z € D and € € C* where v, and ~y, are positive constants. The physical
problem of scattering by acoustic waves corresponds to the case when A is of the



form al where a is a scalar and [ is the identity matrix. The special case of scattering
by a sound-soft obstacle corresponds to the case when w = 0 in D and the boundary
condition (1.4) is replaced by u =0 on 9D, i.e.,

Au+k*u=0 inR*\D (1.7)
u(z) = e*% 4 () (1.8)
u=0 ondD (1.9)

. ovw .\
rli)nolor ( 5 tku > =0. (1.10)

The existence of a unique solution to the scattering problem (1.1)—(1.5) such that
w € H'(D), u € H. (IR*\ D), and to the scattering problem (1.7)—(1.10) such that
€ H. (IR*\ D) is well known [17, 32].

Our main interest in the paper is not with the direct scattering problems (1.1)-
(1.5) and (1.7)—(1.10) but rather with the corresponding inverse problem. In particu-
lar, it is easily seen [17] that the scattered fields u® corresponding to both (1.1)—(1.5)
and (1.7)—(1.10) have the asymptotic behavior

o (1)) am

as r = |z| — oo. The function u., is known as the far field pattern of the scattered
wave and is an analytic function of # and d on the unit sphere Q := {z € R® :
|z| = 1}. The inverse scattering problem that the two of us have been concerned
with for the past twenty years is to determine D from a knowledge of uq(Z,d) for
T € Qo C Qandde Q; C Q where 0y and 2; are subsets of 2. We note that
in general this is the most we can expect to determine from u.,. In particular, the
matrix A is in general not uniquely determined from u., nor is the scalar n except in
certain circumstances [28]. We further note that the inverse scattering problem we
have just formulated is ill-posed in the sense that the determination of D does not
depend continuously on the measured far field data in any reasonable norm. This
issue of ill-posedness will be handled using standard regularization techniques, e.g.
Tikhonov regularization. Hence our main concern is with issues of uniqueness and
(stabilized) reconstruction algorithms.

The methods that we will discuss in this paper for establishing uniqueness and
reconstruction techniques are characterized by two salient features. The first is that
the methods that we and our collaborators have developed are in general indepen-
dent of the boundary conditions, i.e., the material properties of the scatterer. In

(&

u®(z) =
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particular, for uniqueness and many of the reconstruction algorithms we will present
it is not necessary to know a priori whether the far field pattern is associated with
(1.1)—(1.5) or (1.7)—(1.10) (or indeed other boundary conditions instead of (1.9)
such as the Neumann or impedance boundary conditions). This is important since
in many (if not most) situations one cannot assume that the material properties of
the scatterer are known a priori. A second feature of our approach to the inverse
scattering problem is that both our uniqueness theorems and reconstruction algo-
rithms are based on the exploration of the behavior of the fundamental solution to
the Helmholtz equation defined by

eik|z—z|

O(z,2) : x # z, (1.12)

- Atz — 2|

in particular the trivial fact that for the source point z on the boundary ®(-, 2) is
not in H/2(D). In our opinion, the commonality of the mathematical techniques
used in uniqueness and reconstruction provides a particularly satisfying approach to
the inverse scattering problem that we are considering in this paper.

The plan of our paper is as follows. In the next section we will present unique-
ness theorems for the inverse scattering problems associated with (1.1)—(1.5) and
(1.7)-(1.10). These uniqueness theorems are motivated by the fundamental paper
of Isakov [36] but differ from his approach in a number of significant aspects. We
then apply the techniques used to prove uniqueness to establish a number of re-
construction algorithms, in particular the point-source method and the method of
singular sources developed by Potthast [56]. A different class of reconstruction al-
gorithms than the point-source and singular source methods is the class of methods
based on determining the range of the far field operator F' : L?(Q;) — L?*()
defined by

(Fg)(#) = / uoo(#, d)g(d) ds(d), & € D, (1.13)

1951
where g € L?(2;) (or the range of other operators derived from F'). In this regard,
we will discuss both the linear sampling method and the factorization method [7, 27].
In particular we will outline a new derivation of the factorization method based on
the operator (F*F)/* that has recently been developed by Grinberg and Kirsch [27].

2 Uniqueness
The first question to ask in inverse scattering problems is that of uniqueness, i.e.,

whether a scatterer can be identified from a knowledge of its far field pattern. As
an important ingredient of all uniqueness results, we note that by Rellich’s lemma



(see [17]) the far field pattern u, uniquely determines the scattered wave u®. The
following classical uniqueness result for sound-soft scatterers is due to Schiffer.

Theorem 2.1 Assume that Dy and Do are two sound-soft scatterers such that their
far field patterns coincide for an infinite number of incident plane waves with distinct
directions and one fixed wave number. Then D = Ds.

Proof. Assume that D; # D,. By Rellich’s lemma for each incident plane wave u¢ the
scattered waves u; and uj for the obstacles D; and D, coincide in the unbounded
component G of the complement of D; U Dy. Without loss of generality, we can
assume that D* := (R® \ G) \ D, is nonempty. Then u$ is defined in D*, and the
total field u = u’ + u$ satisfies the Helmholtz equation in D* and the homogeneous
boundary condition © = 0 on 0D*. Hence, u is a Dirichlet eigenfunction of —A in
the domain D* with eigenvalue k?. The proof can now be completed by showing
that the total fields for distinct incoming plane waves are linearly independent, since
this contradicts the fact that for a fixed eigenvalue there exist only finitely many
linearly independent Dirichlet eigenfunctions of —A in H}(D*). O

Schiffer’s uniqueness result was obtained around 1960 and was never published by
Schiffer himself. It appeared as a private communication in the monograph by Lax
and Philipps [51]. This is notable since nowadays in a time of permanent evaluation
and competition for grants nobody would want to give away such a valuable result
as a private communication! Noting that the proof presented in [51] contains a slight
technical fault since the fact that the complement of D; U Dy might be disconnected
was overlooked, it is comforting to observe that even eminent authors can also have
errors in their books.

By analyticity the far field pattern is completely determined on the whole unit
sphere by only knowing it on some surface patch. Therefore, Schiffer’s result and,
simultaneously, all other results of this section carry over to the case of limited
aperture problems where the far field is only known on some open subset 2 of €.

Using the strong monotonicity property of the eigenvalues of —A, extending
Schiffer’s ideas, Colton and Sleeman [21] showed that a sound-soft scatterer is
uniquely determined by the far field pattern for one incident plane wave under
the a priori assumption that it is contained in a ball of radius R such that kR < .
More recently, exploiting the fact that the wave functions are complex-valued, this
bound was improved to kR < 4.49 by Gintides [26].

Schiffer’s proof cannot be generalized to other boundary conditions. This is due
to the fact that the finiteness of the dimension of the eigenspaces for eigenvalues
of —A for the Neumann or impedance boundary condition requires the boundary
of the intersection D* from the proof of the Theorem 2.1 to be sufficiently smooth.
Therefore, for a long time uniqueness for other inverse scattering problems both for



impenetrable and penetrable obstacles remained open. In 1990, Isakov [36] wrote:
As pointed out by Rainer Kress [45] in his lecture at the Conference on Inverse
Problems in Partial Differential Equations in Arcata, there are no uniqueness results
for inverse transmission problems, so convergence of numerical algorithms is not
gustified. In this paper we obtain uniqueness theorems for the inverse transmission
problem. Assuming two different scatterers producing the same far field patterns for
all incident directions, Isakov obtained a contradiction by considering a sequence of
solutions with a singularity moving towards a boundary point of one scatterer that
is not contained in the other scatterer. He used weak solutions and the proofs are
technically involved. During a hike in the Dolomites, on a long downhill walk from
Rifugio Treviso to Passo Cereda, Andreas Kirsch and Rainer Kress [44] realized that
these proofs can by simplified by using classical solutions rather than weak solutions
and by obtaining the contradiction by considering pointwise limits of the singular
solutions rather than limits of L? integrals. Only after this new uniqueness proof was
published, it was also observed by the authors that for scattering from impenetrable
objects it is not required to know the boundary condition of the scattered wave on
the boundary of the scatterer. Furthermore, as stated in the following theorem,
one can conclude that in addition to the shape 0D of the scatterer the boundary
condition is also uniquely determined by the far field pattern for infinitely many
incident plane waves (see also Alves and Ha-Duong [2], Cakoni and Colton [6] and
Kress and Rundell [48]).

We consider boundary conditions of the form Bu = 0 on 0D, where Bu = u
for a sound-soft scatterer and Bu = O0u/0v + ikAu for the impedance boundary
condition. In the latter case, the real-valued function A is assumed to be continuous
and non-negative to ensure well-posedness of the direct scattering problem. In the
proof of the uniqueness theorem, in addition to scattering of plane waves, we also
need to consider scattering of point sources ®(-, z) with source location z € IR*\ D.
We denote the corresponding scattered wave by w*(-, z) and its far field pattern by
Weo(+,2). Scattering by plane waves and by point sources is related through the
mized reciprocity relation (see [46, 56])

u*(z,d) = dnwe(—d, 2), z€R*\ D, d e, (2.1)

which is valid both for the sound-soft and impedance boundary condition and also
for transmission conditions.

Theorem 2.2 Assume that D1 and Dy are two scatterers with boundary conditions
B and By such that the far field patterns coincide for an infinite number of incident
plane waves with distinct directions and one fired wave number. Then D1 = Dy and
Bl = BQ



Proof. Following Potthast [56] we simplify the approach of Kirsch and Kress through
the use of the mixed reciprocity relation (2.1). Let w1 and uy o be the far field
patterns for plane wave incidence and let w{ and wj be the scattered waves for
point source incidence corresponding to D; and D,, respectively. With (2.1) and
two applications of Rellich’s lemma, first for scattering of plane waves and then
for scattering of point sources, from the assumption vy 1(Z,d) = U 2(Z, d) for all
Z,d € Q it can be concluded that wi(z, z) = wi(z, z) for all z, z € G. Here, as in the
previous proof, G denotes the unbounded component of the complement of D; U Ds.

Now assume that D; # D,. Then, without loss of generality, there exists z* € 0G
such that z* € 9D, and z* € D,. In particular we have

1
zni=x"+—v(')eG, n=12 ...,
n

for sufficiently large n. Then, on one hand we obtain that

lim Byw;(z*, z,) = Bywy(z*, z*),

n—o0
since w$(x*,-) is continuously differentiable in a neighborhood of z* € D, due to
reciprocity and the well-posedness of the direct scattering problem with boundary
condition By on dD5. On the other hand we find that

lim Byw;(z*, 2,) = o0,
n—o0
because of the boundary condition Bywji(z*,z,) = —B®(z*,2,) on 0D;. This
contradicts w(x*, z,) = wi(z*, z,,) for all sufficiently large n, and therefore D; = D,.
Finally, to establish that \; = A, for the case of two impedance boundary condi-
tions B; and B, we set D = D; = D, and assume that \; # Ay. Then from Rellich’s
lemma and the boundary conditions, considering one incident field, we have that

5 £y 4+ tkdou=0 on 0D,

for the total wave u = u; = uy. Hence, (A; — Ay)u on dD. ;From this, in view of the
fact that A; # Ao, by Holmgren’s theorem and the boundary condition we obtain
that v = 0 in IR® \ D. This leads to the contradiction that the incident field must
satisfy the radiation condition. Hence, A\ = X,. The case when one of the boundary
conditions is the sound-soft boundary condition is dealt with analogously. 0

Clearly, the above method exploits the fact that the scattered wave for point

source incidence becomes singular at the boundary as the source point approaches
a boundary point. It also has been employed by Kirsch and Kress [44] for the
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transmission problem and by Hettlich [33] and by Gerlach and Kress [25] for the
conductive boundary condition. Here the analysis becomes more involved due to the
fact that from the transmission or conductive boundary conditions it is not immedi-
ately obvious that the scattered wave becomes singular since the singularity of the
incident wave, in principle, could be compensated by a singularity of the transmitted
wave. In the proofs this possibility is excluded through a somewhat tedious analysis
of boundary integral operators that, in particular, require the fundamental solution
both inside and outside the homogeneous scatterer. In electromagnetics correspond-
ing uniqueness results with the above approach were obtained for scattering from
perfect conductors by Colton and Kress [17, Theorem 7.1], for scattering from ho-
mogeneous dielectrics by Hahner [31], for scattering from homogeneous chiral media
by Gerlach [24], and for scattering from homogeneous orthotropic media by Colton,
Kress, and Monk [19].

Héhner [32] considered uniqueness for the inverse scattering problem to deter-
mine the shape of the scatterer D for the inhomogeneous transmission problem (1.1)—
(1.5) that, in particular, includes scattering from an inhomogeneous orthotropic
medium. Hahner’s approach restructures Isakov’s [36] original idea in such a way
that, in general, it can applied provided the direct scattering problem is well-posed
with a sufficiently regular solution and an associated interior transmission problem
is a compact perturbation of a well-posed problem. It differs from the analysis
in [44] by using weak solution techniques rather than boundary integral equations
and as opposed to both [36, 44] it does not need the fundamental solution inside the
scatterer. In the context of this survey it is also notable that the occurrence of the
interior transmission problem within the proof connects Hihner’s uniqueness analy-
sis with the mathematical foundations of the linear sampling method as considered
in Section 4. The ideas of Hihner have been extended to Maxwell’s equations by
Cakoni and Colton [4].

In closing this section we briefly mention a challenging open problem. Although
there is widespread belief that the far field pattern for one single incident direction
and one single wave number determines a sound-soft scatterer without any additional
a priori information, establishing this is still open. Some progress has recently be
obtained by Cheng and Yamamoto [11], Allesandrini and Rondi [1], and Liu and
Zou [52] who established uniqueness with one incident plane wave for polyhedral
scatterers. Assuming that there exist two polyhedral scatterers producing the same
far field pattern for one incident plane wave, the main idea of their proofs is to use
the reflexion principle to construct a zero field line extending to infinity. However,
in view of the fact that the scattered wave tends to zero uniformly at infinity, this
contradicts the property that the incident plane wave has modulus one everywhere.



3 Decomposition methods

The main idea of so-called decomposition methods is to break up the inverse obstacle
scattering problem into two parts: the first part deals with the ill-posedness by
constructing the scattered wave u® from its far field pattern u, and the second
part deals with the nonlinearity by determining the unknown boundary 0D of the
scatterer as the location where the boundary condition for the total field u® + u® is
satisfied in a least-squares sense. In the decomposition method due to Kirsch and
Kress [43], for the first part, enough a priori information on the unknown scatterer
D is assumed so one can place a closed surface I" inside D. Then the scattered field
u® is represented as a single-layer potential

w@) = [ o)) dsty) (3.1)
r
with an unknown density ¢ € L?(T"). In this case the far field pattern us, has the

representation

1 o

in / et o(y) ds(y), e (3:2)
T Jr

Given the far field pattern wu.,, the density ¢ is now found by solving the integral
equation of the first kind (3.2). Due to its analytic kernel, the integral equation (3.2)
is severely ill-posed. This reflects the ill-posed nature of the problem to determine
u® from its far field pattern. For a stable numerical solution of (3.2) Tikhonov
regularization can be applied.

Given an approximation of the scattered wave by inserting a solution of the
regularized form of (3.2) into the potential (3.1), the unknown boundary 0D is then
determined by requiring the sound-soft boundary condition

Uoo () =

u' () + /r o(y)®(z,y)ds(y) =0, =z € 9D, (3.3)

to be satisfied in a least-squares sense by minimizing the defect over all surfaces
contained in some suitable class of admissible boundaries.

Although, in principle, this decomposition method does not make special use
of the fundamental solution, we mention it here for several reasons. Firstly, it was
invented within the Delaware—Gottingen connection in the late 1980s as an alterna-
tive to the dual-space method (see the next section) and has the advantage over this
method in that it requires as data the far field pattern for only one incident wave.
Secondly, we want to mention two modifications of this approach that have been
suggested more recently. One possibility is to view I' as an approximation for the
boundary 0D and, keeping ¢ fixed as a regularized solution of (3.2), update I' via
linearizing the boundary condition (3.3) around I'. Then, in an obvious fashion, the
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two steps are repeated iteratively [47, 50]. Another possibility is to first change T’
into in 0D in both (3.2) and (3.3) and then view these equation as a system of two
nonlinear equations for the two unknowns 0D and ¢ that can be solved by regular-
ized Newton iterations [37, 49]. Since the equations (3.2) and (3.3), with I" changed
into 0D, can also be related to the reciprocity gap principle, this approach exhibits
some connections with the reciprocity gap version of the linear sampling method of
the next section. Finally, it should be noted that all of the above approaches do not
require the solution of the forward problem within the iteration procedure.

A third reason for briefly considering the decomposition method, and the main
reason we have included a description of it in this paper, is that it is closely related
to the point-source method of Potthast that we are going to now describe. This
method was invented by Potthast [53, 54, 56] in 1996 and since then its presentation
and motivation has undergone some metamorphosis. In the sequel we adopt the
more recent interpretation by Potthast [23, 57, 58] to explain the basic ideas of the
method. It starts from Green’s representation for the scattered wave for scattering
from a sound-soft obstacle

ou _
w@==[ L)o@y dsly), zeR\D, (34)
oD OV
and its far field pattern
1 ou ik R
Uoo(E) = = > (y) e " ¥ds(y), e, (3.5)

that is, Huygen’s principle (see Theorem 3.12 in [17]). For z € IR\ D we choose a
domain B, such that z ¢ B, and D C B, and approximate the point source ®(-, z)
by a Herglotz wave function

By, 2) ~ /Q ek g (d) ds(d), y € B. (3.6)

with kernel g,. Provided the wave number k? is not an eigenvalue for —A in B,
the Herglotz wave functions are dense on H'/?(9B,) [18, 22] and consequently the
approximation (3.6) can be achieved uniformly with respect to y on compact subsets
of B,. Then we can insert (3.6) into (3.4) and use (3.5) to obtain

u’(z) ~ 47r/ 9:(2)Uoo(—2) ds(Z) (3.7)
Q
as an approximation for the scattered wave u®. Note that the reconstruction formula

(3.7) may be considered as a backprojection of the far field pattern via the kernel g,.
Knowing the scattered wave, the boundary 0D of the sound-soft scatterer can be

10



obtained either by finding the location where the boundary condition ¢ + u® = 0 is
satisfied in a least-squares sense or by visualizing the modulus |u| of the total field.

The approximation (3.6), for example, can be obtained by solving the ill-posed
linear integral equation

Leiky'dgz(d) ds(d) = ®(y,z), ye€ 0B,, (3.8)

via Tikhonov regularization. Note that, in principle, the integral operator in (3.8)
may be interpreted as the L? adjoint of the integral operator in (3.2) with T re-
placed by 0B,. (This connection has been exploited more recently by Potthast and
Schulz [59] to suggest a modification of the classical decomposition method due to
Kirsch and Kress that does not require any a priori information and, in addition,
overcomes the difficulty that, in general, the integral equation (3.2) is not solvable.)
The computational effort of solving (3.8) for a full grid of points z outside the scat-
terer D can be largely reduced by fixing a reference domain B not containing the
origin, for example a ball, and then choose

B,=MB+z

that is, first apply an orthogonal matrix M to the reference domain B and then
translate it. Straightforward calculations show that if the Herglotz wave function
with kernel g approximates the point source ®(-,0) located at the origin with error
less than & with respect to L?(0B) then the Herglotz wave function with kernel

gz(d) — efik z-dg(M*d)

approximates the point source ®(-, z) located at z with error less than € with respect
to L?(0B,). Hence, it suffices to solve (3.8) via Tikhonov regularization only once
for z =0 and 0B.

In the practical implementation for a grid of points 2y, £ = 1,..., L, the above
procedure is carried out for a finite number of matrices M;, j =1,..., J, representing
various directions that are used to move the approximating domain around. As
an indicator to decide whether the crucial condition D C B, is satisfied, one can
use two different error levels in the solution of the integral equation (3.8), that is,
two different regularization parameters in the Tikhonov regularization and keep the
approximation obtained via (3.7) only if the two results are close.

We finish this section by connecting the above ideas to those of sampling methods
that will be the general topic of the last two sections of this survey. Roughly
speaking, sampling methods rely on choosing an indicator function f on IR® such
that its value f(z) decides whether z lies inside or outside the scatterer D. For
Potthast’s [55, 56, 58| singular source method this indicator function is given by

11



f(z) := w’(z, z) through the value of the scattered wave w*(-,z) for the singular
source ®(-, z) as incident field evaluated at the source point z. The values w®(z, z)
will be small for points z € IR* \ D that are away from the boundary and will blow
up when z approaches the boundary due to the singularity of the incident field.
Clearly, the singular source method can be viewed as a straightforward numerical
implementation of the uniqueness proof for Theorem 2.2.

Assuming the far field pattern for plane wave incidence to be known for all
incident and observation directions, the indicator function w*(z, z) can be obtained
by two applications of the backprojection (3.7) and the mixed reciprocity principle
(2.1). Combining (2.1) and (3.7) we obtain the approximation

weo(—d, 2) = 4i (2, d) ~ /Q 02 (2 1oy (— 3, d) ds(2).

7

Inserting this into the backprojection (3.7) as applied to w® yields the approximation

wy(z, 2) & /Q /Q 0.(0) . () te (— 3, d) ds(2), ds(d). (3.9)

We note that, as opposed to the point source method described above, for the singu-
lar source method the boundary condition need not be known. Furthermore, using
higher order multipoles as the incident field instead of the fundamental solution, it
can also be applied to the inverse medium problem. We also note that if we use
the reflexion operator R : L?(Q) — L?(Q) defined by (Rg)(%) = g(—2) the approxi-
mation (3.9) can be expressed in terms of the far field operator F' as introduced in
(1.13) (in the special case Qy = Q; = Q) by the L?*(€) scalar product

ws(z,2) =~ (Fg,, Rg,).

The probe method as suggested by Ikehata [34, 35] uses as indicator function an
energy integral for w®(-, z) instead of the point evaluation ws(z, z). In this sense, it
follows the uniqueness proof of Isakov whereas the singular source method mimics
the uniqueness proof of Kirsch and Kress.

4 The linear sampling method

The linear sampling method is a technique for determining the support D of a
scattering object by solving the far field equation

(Fg)(%) = Poo(2,2), 2 € Qy, (4.1)
where the far field operator F is defined by (1.13) and
1 o
Qoo (i, 2) = — e FT= (4.2)
4m
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is the far field pattern of the radiating fundamental solution to the Helmholtz equa-
tion with source point z € IR® given by (1.12). However, the origins of the linear
sampling method go back to the dual space method for determining D as developed
by Colton and Monk during the years 1985-1990 and described in our book [17].
Focusing on the scattering problem (1.7)—(1.10), the dual space method (in the sim-
plest version) seeks to determine D by assuming that D contains the origin and then
solving
(Fg)(.’fj) = (I)oo(:%:o)’ z € (.

Having determined g through the use of Tikhonov regularization, 0D is then deter-
mined by first constructing the Herglotz wave function with kernel g defined by

(Hg)(z) = / e*g(d)ds(d), z € IR? (4.3)

(931

and then using nonlinear optimization techniques to determine 0D as the locus of
points satisfying
(Hg)(z) + ®(z,0) = 0.

The linear sampling method was born in Kennedy Airport in New York while An-
dreas Kirsch had several hours to wait for his flight back to Germany. On his laptop
he had the dual space method programmed (in IR?) and for amusement he shifted
the origin to arbitrary points z. In doing this, he noted that ||g(:, 2)||12(a,) became
unbounded as z approached 0D and, by plotting the level curves of ||g(-, 2)||r2(a,),
the shape 0D miraculously appeared! Soon after his return to Germany, David
Colton met him at the University of Erlangen and the paper [14] was written. In
particular, the linear sampling method uses Tikhonov regularization to solve (4.1)
for z on a grid of points containing D and then looks for the locus of points where
llg(-, 2)||L2(0,) becomes unbounded.

A problem with the linear sampling method as described above is that in general
there does not exist a solution of (4.1) for noise free data and hence it is not clear
what “solution” is obtained by using Tikhonov regularization (However, see [3]).
Hence the mathematical justification of the linear sampling method is based on
approximation arguments, in particular on the fact that, with respect to the H'(D)
norm, the set of Herglotz wave functions is dense in the space of solutions to the
Helmholtz equation [18, 22|. (For the case of limited aperture far field data (i.e.
0y # Q) more is needed, in particular that the denseness property remains true
if the kernels of the set of Herglotz wave functions have their support on a fixed
compact subset of the unit sphere Q [5]). Given this approximation property, and
the fact that if k2 is not a Dirichlet eigenvalue for —A in D then the far field operator
corresponding to (1.7)-(1.10) is injective with dense range [17], one can prove the
following theorem:
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Theorem 4.1 Assume that k? is not a Dirichlet eigenvalue for —A in D and let F
be the far field operator corresponding to (1.7)—(1.10) . Then

1. For z € D and a given € > 0 there ezists a g € L*(Q) such that
1FgZ = Poo(-, 2)||22(000) < €
and the corresponding Herglotz wave function Hg? converges to a solution of
Au+ku=0 inD (4.4)
u=—®(-,z) ondD (4.5)
in HY(D) as € — 0.
2. For z € D and a fized € > 0 we have that

Jim [[Hgl|| gy = 00 and - Hm {|g7]| 2(qy) = oo

3. For z € R*\ D and a given € > 0, every g¢ € L*(Q) that satisfies
|Fg? — (I)oo(',Z)HB(QO) <e€
18 such that

lim || Hg? || py = 00 and  lim||gZ||z2(@,) = oo

This theorem is the basis of the linear sampling method for the scattering prob-
lem (1.7)—(1.10). An analogous theorem for the linear sampling method for the
scattering problem (1.1)—(1.5) is more difficult to establish. The following theorem

indicates why this is true (For simplicity we will assume that we have full aperture
data, i.e. Q() = Ql = Q)

Theorem 4.2 Let F : L?(Q) — L*(Q) be the far field operator corresponding to the
scattering problem (1.1)—(1.5). Then F is injective with dense range if and only if
there does not erist a solution v,w € H'(D) of the interior transmission problem

V- -AVw+k’nw=0 inD (4.6)
Av+k*v =0 inD (4.7)
w=v, v-AVw=v-Vv ondD (4.8)

such that v is a Herglotz wave function with kernel g # 0.
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Proof. By the reciprocity relation e (£, d) = e (—d, —%) (see Theorem 8.8 of [17]),
it is easily verified that the adjoint operator F™* satisfies

(F"h)(d) = (Fg)(—d)

where ¢(Z) = h(—2). Since N(F*)* = F(L2(Q)) where N(F*) denotes the null
space of F™*, we see that it suffices to prove injectivity of F'.

Assume now that (F'g)(2) = 0 for £ € Q. Then by Rellich’s lemma [17] we have
that

U*(z) = / w* (2, d)g(d) ds(d) (4.9)
0
is equal to zero for x € IR* \ D. Hence if v = Hg then from (1.1)-(1.5) we see that
U = U? + v satisfies
V- -AVW + k*nW =0 in D

Av+k*’v=0 inD

w=wv, v-AVW =v-Vv ondD
for

W(z) = /Q w(z, d)g(d) ds(d).

Hence, by the hypothesis of the theorem, g = 0, that is, F' is injective.

Conversely, it is easily verified that if there exists a nontrivial solution to (4.6)-
(4.8) such that v is a Herglotz wave function with kernel g # 0 then (Fg)(z) = 0 for
Z € Q (multiply (1.2)—(1.4) by g, integrate over Q2 and note that if U® is defined by
(4.9) then U*(z) = 0 for = € IR*\ D by the uniqueness of the solution to (1.1)-(1.5)).
The theorem is now proved. O

Corollary 4.3 Assume that £ - SA(x)€ < 0 in a point xg € D for all ¢ € C* or
Sn(zg) > 0 for a point xy € D. Then the far field operator corresponding to the
scattering problem (1.1)—~(1.5) is injective with dense range.

Proof. Let v,w € H'(D) be a solution to the interior transmission problem (4.6)—
(4.8). Then by the divergence theorem and (4.6)—(4.8) we have that

/VE- AVw dz = k2/n|w\2dx — k2/|v|2dac + /|Vv\2dac.
D D D

D

Hence by the assumptions on A and n given in the introduction we have that

& (/VE-Adex) =0 and %/ n|w|?dz = 0.
d D
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By the hypothesis of the corollary and the continuity of A and n we can now con-
clude by the unique continuation principle that w(z) = 0 for x € D and hence
v(xz) = 0 also for x € D. The corollary now follows from Theorem 4.2. O

If £ > 0 is such that the interior transmission problem has a nontrivial solution
then k is called a transmission eigenvalue. ;From the above corollary it is seen that
k can be a transmission eigenvalue only if SA(z) = 0 and Sn(z) = 0 for z € D.
Except in the special case when A = I and n is spherically symmetric (c.f. Theorem
8.13 of [17]), it is an open problem whether or not transmission eigenvalues exist.
However, from the point of view of the linear sampling method, it is sufficient to
know that if transmission eigenvalues exist they form a discrete set. For the case
A =1 and n(z) > 1 for x € D (or n(z) < 1 for € D) this has been established
by Colton, Kirsch and Péivérinta [15] and Rynne and Sleemann [60]. Analogous
results for the case when A # I have been given by Cakoni, Colton and Haddar [8].
In addition to the discreteness of the set of transmission eigenvalues, in order to
establish the analogue of Theorem 4.1 for the scattering problem (1.1)-(1.5) it is
necessary to establish the well-posedness of an inhomogeneous interior transmission
problem analogous to the interior Dirichlet problem (4.4)-(4.5) and this has been
done by Colton, Piana and Potthast [20] for the case when A = I and by Cakoni,
Colton and Haddar [8] for the case when A # I. Putting all of this together, one
now arrives at a result analogous to Theorem 4.1 for the case of the scattering
problem (1.1)—(1.5) where instead of assuming that £? is not a Dirichlet eigenvalue
one must now assume that £ is not a transmission eigenvalue and instead of the
inhomogeneous interior Dirichlet problem (4.4)—(4.5) one has an inhomogeneous
interior transmission problem (c.f. [7]).

The linear sampling method has also been extended to the case of Maxwells’s
equations by Colton, Haddar and Monk [13], Haddar and Monk [30], Cakoni and
Colton [5], Cakoni, Colton and Monk [9] and Haddar [29]. For a brief description of
these more recent developments and further references, see the last chapter of [7].

We note that in the first two papers on the linear sampling method [14, 20], this
method for solving the inverse scattering problem was called the “simple method”
since it was a simple linear method to solve a rather complicated nonlinear inverse
problem. At the time, Michele Piana from Genova was visiting David Colton at the
University of Delaware and was searching for a permanent position in Italy. Over a
beer at the local pub, Michele said it would perhaps not reflect well on his application
if the method he helped develop was called a “simple” method. So it was suggested
that he come up with a better name and so he did: the linear sampling method since
it is a method by which you examine a function g(-, z) at certain “sampling” points
Z = 21,%9,...,21. Of course not everyone liked this choice since sampling methods
typically refer to something quite different, but nevertheless the name has stuck.
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We close this section by briefly describing a version of the linear sampling method
based on the reciprocity gap functional which is applicable to objects situated in
a piecewise homogeneous background medium. In particular, assume that the un-
known scattering object is embedded in a portion B of a piecewise inhomogeneous
medium where the index of refraction is constant with wave number k. Let By C B
be a domain in B having a smooth boundary 0B, such that D C By, let v be the
unit outward normal to 0B, and define the reciprocity gap functional by

ou ou
R(u,v) := /030 <u 3 ¢ 6_y) ds (4.10)

where v and v are solutions of the Helmholtz equation in By \ D. In particular,
we want u to be the total field due to a point source situated at zo € B\ By and
v = v, to be a Herglotz wave function with kernel g. We then consider the integral
equation

R(u,vy) = R(u, ®,) (4.11)
where ®, = ®(-, 2) is the radiating fundamental solution (1.12) and v = wu(-, zo)
where 7, is now assumed to be on a smooth surface C' in B\ B, that is homotopic
to OBy. If D is a sound-soft obstacle, we assume that k? is not a Dirichlet eigenvalue
of —A in D and if D is an inhomogeneous medium we assume that the medium is
isotropic and absorbing. Then the following theorem is valid [12]:

Theorem 4.4 Assume that the above assumptions on D are satisfied. Then
1. If z € D then there exists a sequence {gn}, gn € L*(2), such that
lim R(u,v,,) = R(u,®,), zo € C,

n—oo

and v, converges in L?(D).
2. If 2 € By \ D then for every sequence {g,}, gn € L*(Q), such that
lim R(u,v,,) = R(u,®,), zo€C,

n—00

we have that
lim ||vg, ||z2(p) = oo
n—0o0

In particular, Theorem 4.4 provides a method for determining D from a knowl-
edge of the Cauchy data of u on 0B, in a manner analogous to that of the linear
sampling method.

Numerical examples using Theorem 4.4 to determine D from Cauchy data on
0By, as well as to objects buried in an absorbing half-space, can be found in [12]. The
extension of Theorem 4.4 to Maxwell’s equations, together with numerical examples,
can be found in [10].
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5 The factorization method

As mentioned in the previous section, a problem with the linear sampling method
from the mathematical point of view is that in general there does not exist a solution
of the far field equation for noise free data. The factorization method as developed
by Kirsch [38]-[42] overcomes this problem under certain assumptions, e.g. full aper-
ture scattering data or, at best, the case when Z,d € 2y C Q. Here, based on the
presentation in the forthcoming book by Grinberg and Kirsch [27], we present a brief
outline of the simplest version of the factorization method, i.e., that corresponding
to the case of the operator (F*F)'/* and the scattering problem (1.7)—(1.10) corre-
sponding to a sound-soft obstacle. As in the reconstruction methods presented in
Sections 3 and 4, the idea is again based on the fact that the fundamental solution
to the Helmholtz equation is singular at the source point.

We begin with a slight generalization of the scattering problem (1.7)-(1.10), i.e.,
given the boundary data f € H'/2(9D), find a solution v € H} (IR*\ D) satisfying

loc

Av+k*v=0 inR*\D (5.1)
v=f onodD (5.2)

. ov .
rli)rgor (E - zkv) = 0. (5.3)

The existence of a unique solution to (5.1)—(5.3) is well known (c.f. [17]). We now
define the operator G : H'/2(0D) — L?(Q) by Gf = vs where vy is the far field
pattern of the solution of the boundary value problem (5.1)—(5.3) and note that
O (-, 2) € G(HY?(OD)) if and only if z € D. It is furthermore easy to verify that G
is compact, injective and has dense range. The factorization method gets its name
from the following theorem. In the theorem S : H~'/2(9D) — H'/?(0D) denotes
the single layer potential defined by

S = [ oot dst), «eoD, (5.4)
D
Theorem 5.1 Let F' be the far field operator corresponding to (1.7)—(1.10) and let
G and S be defined as above. Then

F=—-4rGS*G*

where G* : L*(Q) — H~Y2(0D) and S* : H~/2(0D) — H'?(0D) are the adjoints
of G and S respectively with respect to L?(Q)) and the duality pairing (H=/?(0D),
H'2(0D)).
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Proof. Define H : L*(Q) — HY?(dD) by

(Hg)(z) = / et edg(d) ds(d), € D, (5.5)

Q

i.e. Hg is the trace on 0D of the Herglotz wave function with kernel g. The adjoint
H*: H'2(0D) — L*(f) is given by

(H0)(2) = /a () ds(y), G e R (5.6)

and note that this, up to a factor 4w, is the far field pattern of the single layer
potential (5.4). Hence, for continuous densities ¢, we have that H*p = 47 GS¢ and
hence, by a denseness argument, H* = 47 G.S and therefore

H = 47 5*G*. (5.7)

But Fg is the far field pattern of (5.1)—(5.3) corresponding to the boundary values
—Hg on 0D, and hence
Fg=—-GHyg. (5.8)

(5.7) and (5.8) now imply the theorem. d

Theorem 5.1 suggests that the following theorem from functional analysis [27]
will be relevant for our purposes.

Theorem 5.2 Let X be a Hilbert space with duality pairing (-,-). Furthermore, let
H be a Hilbert space with inner product (-,-) and let F: H— H and B: X — H
be bounded linear operators such that

1. F = BAB* for some bounded linear operator A : X* — X.
2. There exists ¢ > 0 such that
{0, Ap)| > cllgl®  for all ¢ € B*(H).
Then for any ¢ € H, ¢ # 0, we have that
p€B(X) <= inf{|(y,FyY):¢eH, (¥,¢) =1}>0.
We will now apply Theorem 5.2 to the factorization of the far field operator given

in Theorem 5.1. In particular, we choose H = L?(Q), X = H'/?(0D), B = G and
A = —S*. To this end, we note that if k? is not a Dirichlet eigenvalue of —A in D
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then there exists a positive constant ¢ such that with respect to the duality pairing
(H-Y2(0D), HY?(0D)) we have that [27]

(e, So)| > ellell-1r2op) (5.9)

for all ¢ € H~'/2(0D). From this fact we now see that the following corollary
immediately follows from Theorem 5.2 (noting that (@, S*¢) = (¢, S¢)):

Corollary 5.3 Assume that k% is not a Dirichlet eigenvalue of —A in D. Then if
F is the far field operator corresponding to (1.7)—(1.10) then for any ¢ € H, ¢ # 0,
we have that

¢ € G(L*(OD)) <= inf{|(y, FY)|: v € L*(Q), (¥, ¢) =1} > 0.

Since P (-, 2) is in the range of G if and only if z € D, the above corollary
provides a variational method for determining D from a knowledge of the far field
pattern us, [40]. However such an approach is very time consuming since it involves
solving a minimization problem for every sampling point z. A more efficient ap-
proach, and one more closely related to the linear sampling method, is based on the
following theorem which can be proved using Theorem 5.2 [27].

Theorem 5.4 Let H and X be Hilbert spaces and let the compact operator F : H —
H have a factorization of the form

F = BAB*

with bounded linear operators B : X — H and A : X* — X such that S{p, Ap) # 0
for ¢ € B*(H) and ¢ # 0. Assume that

1. A is of the form A = Ay + C where C is compact and Aqy is self-adjoint and
coercive on B*(H).

2. F 1s injective and, for some v > 0, I +ivF is unitary.
Then the ranges of B and (F*F)'/* coincide.

In order to apply Theorem 5.4 to the inverse scattering problem associated with
(1.7)-(1.10) we set H = L*(Q), X = HY?(0D), B = G and A = —S* and need
to verify the conditions of the above theorem. The first condition follows from the
coercivity of the single layer potential for the Laplace equation [27]. For the second
condition, we have already noted in the previous section that F'is injective, provided
k? is not a Dirichlet eigenvalue of —A in D. Furthermore, from [16] we have the
basic identity '

Fop=%pp (5.10)
27
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where F* denotes the L? adjoint of F' and from this one easily sees by direct com-
putation that the scattering operator

ik

S:=1
+27T

F (5.11)
is unitary. Hence, we have the following corollary to Theorem 5.4 [38]:

Corollary 5.5 Assume that k% is not a Dirichlet eigenvalue of —A in D. Then the
ranges of G and (F*F)Y* coincide.

In particular, we have that if k2 is not a Dirichlet eigenvalue of —A in D we have
that
z€D <= Py (-,2)€ (F*F)1/4(L2(Q)). (5.12)

This means that, in contrast to the linear sampling method, if Tikhonov regu-
larization (with the regularization parameter chosen by the Morozov discrepancy
principle) is used to solve the operator equation

(F*F)"'g, = ®(-, 2) (5.13)

with noisy data u., then ||g.|| converges as the noise level tends to zero if and only
if z € D.

The factorization method for an inhomogeneous medium has been considered
in [39], where the analysis is again based on the interior transmission problem. The
case of Maxwell’s equation for an inhomogeneous medium was investigated in [42],
although the factorization method for a perfect conductor remains an open problem
as is the problem of the discreteness of the set of transmission eigenvalues. Finally,
it is possible to remove the assumption that the scattering operator is unitary (i.e.
F is normal) and thus allow the scattering object to be absorbing [41, 42].
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