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Abstract

For the problem to determine the shape of a perfectly conducting inclusion within
a conducting homogeneous host medium from overdetermined Cauchy data on the
accessible exterior boundary, that is for an inverse Dirichlet boundary value problem,
recently Kress and Rundell suggested a new inverse algorithm based on nonlinear
integral equations arising from the reciprocity gap principle. The present paper
extends this approach to the case of a perfectly insulating inclusion and the case
of a perfectly conducting crack. The mathematical foundations of these extensions
are provided and numerical examples illustrate the feasibility of the method.

1 Introduction

Inverse boundary value problems for the Laplace equation model electrostatic imaging
methods in nondestructive testing and evaluation. Roughly speaking, in these appli-
cations an unknown inclusion within a conducting medium is assessed by imposing a
voltage pattern at a number of electrodes attached to the boundary of the conducting
object and measuring the resulting currents (or vice versa). For these inverse problems
the reciprocity gap approach based on Green’s integral theorem has been successfully
applied, among others, by Andrieux and Ben Abda [6] for the identification of planar
cracks and by Bryan et al [9] for the reconstruction of cracks with unknown transmission
conditions. For the problem to determine the shape of a perfectly conducting inclusion
within a two-dimensional homogeneous host medium from overdetermined Cauchy data
on the accessible exterior boundary, recently Kress and Rundell [20] suggested an inverse
algorithm based on nonlinear integral equations arising from the reciprocity gap principle.
The purpose of this paper is to extend this approach to the case of a perfectly insulating
inclusion and the case of a perfectly conducting crack.

Let D be a doubly connected domain in IR?> with a smooth boundary 9D, which
consists of an interior boundary I'y and an exterior boundary I'y, such that 0D =TqUT,
where 'y N’y = (). By v we denote the unit normal to the boundary 0D directed into
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the exterior of D. For convenience, we denote the bounded domain with boundary I'y by
Dy and the unbounded domain with boundary I'y by D;.

The electrostatic potential in an electrically conducting medium D containing a perfect
insulator with boundary I'y is modeled by the following mixed boundary value problem:
Given a function f € H'/?(T';), find a solution u € H'(D) of the Laplace equation

Au=0 in D (1.1)

that satisfies the mixed Neumann and Dirichlet boundary conditions

g—zzo only, wu=f only (1.2)
in the sense of the trace theorem. It is well known that a unique solution exists to this
mixed problem. For a classical approach via boundary integral equations we refer to [14]
and for weak solutions to [18, 23]. For the approximate solution of the boundary integral
equations plenty of techniques are available, among others we refer to [7, 18]. In the spirit
of Atkinson, for our work we base the numerical solution on trigonometric polynomi-
als. From Atkinson [7], p. 383, we quote: It is the personal opinion of the author that the
most efficient numerical methods for solving boundary integral equations on smooth planar
boundaries are those based on trigonometric polynomial approximations, and such meth-
ods are sometimes called spectral methods. When calculations using piecewise polynomial
approrimations are compared with those using trigonometric polynomial approxrimations,
the latter are almost always the more efficient.

Assuming that the interior boundary degenerates into a crack I';, that is, an open arc,
the corresponding problem for a domain with a perfectly conducting crack is: Given a
function f € HY/?(T';), find a solution u € H'(D) to the Laplace equation

Au=0 inD (1.3)
satisfying the Dirichlet boundary conditions
u=0 only, wu=f only. (1.4)

Again, existence and uniqueness of a solution to this crack problem are well established.

The topic of this paper is the inverse problem to determine the shape of the inclusion
[’y or the crack I'. from an imposed voltage f on the outer boundary I'; and the measured
currents

0
g= B_Z on I'y, (1.5)

i.e., the resulting Neumann data. Note that in the case of the nonconducting inclusion
by Green’s integral theorem

gds=0 (1.6)

Iy
has to be satisfied as necessary condition for the total current. Concerning the issue of
uniqueness the identifiability of the interior boundary curve I'y from one pair of Cauchy
data (f,g) on the exterior boundary curve 'y for the case of a homogeneous Neumann
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condition on I'y can be reduced to the case of a homogeneous Dirichlet condition (see [15]).
For the latter we refer to [18, 19] and note that the idea of the proof actually goes back
to a private communication of Schiffer referenced in [22]. Addressing the ill-posedness of
the inverse problem, among others, stability estimates were obtained in [2, 5, 8, 10, 12].
In these references, as a by-product, also the question of uniqueness is addressed.

For the inverse crack problem, in general, the shape of ['. is not uniquely determined
by one pair of Cauchy data, since the crack might coincide with an equipotential line of
the solution for the domain without crack. However, in [13] it was shown that two bound-
ary measurements with appropriately chosen specific boundary voltages are sufficient to
determine I',. Stability for the crack reconstruction was considered in [1, 3, 4, 13].

For a harmonic function U € H'(D) we define the reciprocity gap functional

G(U) = / {f ‘3—5 - gU} ds (1.7)

I't
in terms of the data f and ¢g. Then, as a consequence of Green’s second integral theorem,
for the case of an insulating inclusion we have that

ou
U)=— —d 1.8
6v) =~ [ v ds (18)
where p := ulr, denotes the unknown Dirichlet boundary data on Iy. In the case of the
domain with a crack, we obtain

Ggu) = g hUds, (1.9)
where 5 5
U u
= —] - — 1.1
h ovi|, —Ov|_ (1.10)

denotes the jump of the normal derivative across the crack I'.. Here, v is a continuous unit
normal vector on I'.. By proceeding as in the classical proof of Green’s representation
formula for harmonic functions (see [18]) it can be seen that (1.9), in addition to all
U € H'(D), is also valid for all U € span{®(z,-) : z € ['.} where

1 1
CI)(.’E,y) =— In—— 3 z 7é Y, (111)

2 |z —y
denotes the fundamental solution to the Laplace equation in two dimensions.

According to the reciprocity gap principle, G would vanish identically if no inclusion
or crack were present. Therefore it can be expected that the functional G contains in-
formation on the unknown boundary or crack. We will use the identities (1.8) and (1.9)
to derive two-by-two systems of integral equations for the pair of unknowns (I'y,p) and
(T, h), respectively, by choosing the test functions U as fundamental solutions ® with
appropriately located sources. To obtain the equations for (I, p) we choose one set of
functions with source points in D; and another set with source points in Dy. Then the in-
tegral equations are derived from letting the source points tend to I'y and [y, respectively.
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Analogously, for determining the equations for (I'., h) one set of functions is chosen with
source points in D; and another set with source points on I'.. We will show that solving
the inverse problems is equivalent to solving the two-by-two systems of integral equations.

The integral equations are linear with respect to the densities p and h and nonlinear
with respect to the boundary shapes [y and I'.. For each of the two systems the equation
resulting from the source points in D, is severely ill-posed whereas the second equation
is only mildly ill-posed. For the practical solution of the integral equations we propose a
Newton iteration via linearization of the full two-by-two systems. Clearly, the ill-posedness
requires to incorporate a regularization within each step of the Newton iterations. As
in [20] we confine ourselves to the well-established Tikhonov regularization.

A standard approach to solving the above inverse problems is to apply Newton itera-
tions to the nonlinear operator equations Fj(Iy) = g or F.(I';) = g, where for a fixed f
the operators F; and F¢, respectively, map the interior boundary Iy and I', onto the nor-
mal derivative Ou/0v|r, of the solution u to the boundary value problems (1.1)—(1.2) and
(1.3)—(1.4), respectively. As opposed to this approach our method does not require the
solution of the forward problem in each iteration step and the derivatives occurring in the
linearization can be explicitly expressed in terms of integral operators rather then through
associated boundary value problems. Both these properties lead to a noticeable reduction
of the computational costs without diminishing the quality of the reconstructions.

Since the equations are linear with respect to the densities one might also consider
a second variant of Newton iterations. For the perfectly insulating inclusion, given a
current approximation for I'g, one can first solve the severely ill-posed linear equation
for the density p and then, keeping p fixed, linearize the second equation to update I'y.
The same approach could also be pursued for the case of the perfectly conducting crack.
However, we refrain from further pursuing this idea since the numerical experience as
reported in [20] indicates that, for the perfectly conducting inclusion, this second variant
leads to less accurate reconstructions than the full linearization.

The plan of the paper is as follows. In Section 2 we will derive the integral equations
and prove their equivalence to the inverse problems. This is followed by the parameteriza-
tion of the integral operators and their derivatives with respect to I'y and I'. in Section 3.
After describing the linearization and the iteration scheme in Section 4 we conclude with
numerical examples in Section 5.

2 Nonlinear integral equations

2.1 Insulating inclusion

In terms of the fundamental solution (1.11), we introduce double-layer potential operators
Qj : L*(To) = L*(Ty), j=0,1,

defined by

@) == [ o G ds = 5 s, wer



Note, that )y contains the residual term for the limit of the double-layer potential when
approaching ['y from inside Dy. In terms of the given functions f and g we define the
combined single- and double-layer potential

0P(x,
w(z) = / {f(y) 90(z,y) _ 9(y)®(z, y)} ds(y), x€R*\T. (2.2)
ry ov(y)
Further, in terms of the unknown function p we introduce the double-layer potential
8@ (,’13, y) 2
v(z) = ——=ds(y), xe€R"\T,. 2.3
(@)= [ p) Z5, 0 ds) \To (2.3

Now we are in the position to state the following theorem.

Theorem 2.1 The inverse boundary value problem for the perfect insulator and the sys-
tem of integral equations

Qop = wlr, (2.4)
and

Qip = wr, (2.5)

are equivalent.

Proof. Let I'y be a solution to the inverse boundary value problem and p the corresponding
Dirichlet data on I'g. Then, from (1.8) applied to U = ®(z, -) with source point z € IR*\ D,
we have

—v=w inIR?\ D.

By using the jump relations for single- and double-layer potentials, we observe that T’y
and p satisfy the equations (2.4) and (2.5).

Conversely, if 'y and p satisfy (2.4) and (2.5), in view of the condition (1.6), the
function w + v is bounded and harmonic in D;. From (2.5) it follows that v + w = 0
on 'y, hence v +w = 0 in D; by the uniqueness for the exterior Dirichlet problem for
the Laplace equation. From (2.4) we conclude that v + w is harmonic in Dy and satisfies
v+w = 0 on I'y. Therefore, by the uniqueness for the interior Dirichlet problem, we have

that v +w = 0 in Dy. Now we define a harmonic function  := —v — w in D. Then from
the jump relations for single and double-layer potentials applied to v and w, we conclude
that wu = f, Ju/ov =gon Iy and u =p, Ou/Ov =0 on I'y. O

We note that the integral equations (2.4) and (2.5) exploit (1.8) completely, since the
set {®(z,-) : = € R?\ D} is complete in W := {U € H(D) : AU =0 in D} (see [20]).

2.2 Perfectly conducting crack

To derive nonlinear integral equations from (1.9), we introduce the single-layer operators

Sj : LQ(PC) — LQ(F]'), j=cql,



defined by
(Sih)(@) = [ hy)(s,y)ds(y), = €L, (2.6

c

As in the case of a perfectly conducting inclusion with closed boundary curve (see [20]),
in order to ensure boundedness at infinity for the operator S1 and the combined potential
w as defined in (2.2), we introduce modifications S; and @ by

(Sih)(@) = (Si)(@) +[1 - @(2,0)] [ h(y)ds(y), @ €T, (27)

w(z) = w(z) —[1 — O(z, O)]/F g(y)ds(y), z€R*\{lU{0}}. (2.8)

1

Here, without loss of generality, we assume that the origin is contained in D. After these
definitions from (1.9) we can state the following theorem.

Theorem 2.2 The inverse boundary value problem for the crack and the system of inte-
gral equations
Sch = wlr, (2.9)

and B
Sih = @, (2.10)

are equivalent.

Proof. The proof is analogous to that for the case of a perfectly conducting inclusion as
provided in [20]. O

Note that (2.4) is a well-posed integral equation of the second kind and that equation
(2.9) is only mildly ill-posed due to its singular kernel. However the equations (2.5) and
(2.10) how smooth kernels and therefore there inversion is severely ill-posed.

3 Parameterized integral operators and derivatives

3.1 Inclusion reconstruction
We assume that the boundary curves are parameterized in the form
Iy ={%@):tel0,2r]}, j=0,1,

where z; : IR — IR? are 27 periodic, twice continuously differentiable and injective func-
tions. The latter property, in particular, implies 27(t) # 0 for all ¢ € [0, 27]. Furthermore,
we assume that the orientations of I';, 7 = 0,1, are counter—clockwise. For convenience,
we introduce the vectors

pi(r) = (1) (=7j2, 251), 3 =0,1,



that are exterior normal vectors to I';, 7 = 0, 1. For simplicity we consider only starlike
interior boundary curves with parameterization

zo(t) = r(t)(cost,sint). (3.1)

Here r : R — (0,00) is a 27 periodic twice continuously differentiable function rep-
resenting the radial distance from the origin. Then, setting ¢ = p o 2y and Ajp =
(Qi(poz")) o2, we transform (2.1) into the parametric form

1 o po(T) - [2(t) — 20(7)] 1—j .
A t:——/ i dr——L o), telo,2r], j=o0,1.
( JQD)( ) or Jo T |Z](t) _20(7_)|2 T 9 (,0( ) [ ’/T] J
The kernels of the parameterized double-layer potential operators A; are smooth with the
diagonal values for A given through the limit

lim :u]'(’r) ) [zj(t) —Zj (T)] _ Mj(t) . Z}-’(t)
Tt (1) = 2(7)? 21212

j=0,1, (3.2)

for j = 0. For the parameterized form of the combined single- and double-layer potential
w; = w o z; evaluated on I';, j = 0,1, due to the jump relations, we have

1o pa(7) - [2(t) — 21(7)] j
(1) = — / 1 dr + = t
wi(t) = 5= [ fteatr) LA s L )

(3.3)

1 2w
—5= | 9@ )00, ()| () dr, € (0,2

We will use the notations wy(r) and A;(r, ¢), j = 0,1, to indicate the dependence on r.
Note that w; does not depend on r. Again the kernel of wy is smooth. In the kernel of wy,
the term arising from the double-layer potential is smooth with diagonal values given by
(3.2) for j = 1 and the term stemming from the single-layer potential has a logarithmic

singularity. For the numerical approximation of the latter we note the decomposition

t—T1

sin

|21(t) = 21 (7)] 7

t—T1

2

210 (21(t), 21(7)) = —In

sin

‘+ln

where the second term is smooth with diagonal values

t—T1

sin

limIn

Ly 2 gy = —1In 2z (t)]-

Hence, the well established quadrature rules for 27 periodic logarithmic singularities as
described in [18] are available. For the 27 periodic smooth kernels in all the operators, of
course, the trapezoidal rule can be employed for the numerical approximation.

With these notations, the integral equations (2.4) and (2.5) are transformed into

Ao(r, ) = wo(r) (3.4)
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and
Al (Ta QD) = wWs. (35)

For solving these nonlinear equations via Newton iterations, the derivatives of the opera-
tors A; and the potential wy with respect to the interior boundary I'y are required. The
Fréchet derivatives of these operators can be obtained by formally differentiating their
kernels with respect to r (see [24]). Hence the derivative of A, in direction ¢ is given by

Al (r, 0;9)(t) = 1 /0% o(7) po(7) - [20(t) — Zo(;)(]](gz)'off)zo—(:)o‘g)] - [Go(t) — Go(7)] d

L 1o (7) - [Go(t) — Co(7)] 4 [Go(T)] " - [20(t) — 20(7)] .
5/, e 20(t) — 20(7) d

for t € [0, 2x|. Here, we have set ((t) = ¢(t)(cost,sint) and

[G])*F = ¢ (t)(—sint,cost) — q(t)(cost,sint).
The kernel H(t,7) of the integral operator Aj is smooth with the diagonal values
H(t) := lim H(t,7)

given by

ﬁ _ qu (7“7"2 + 7”3) _ 2(]' (7‘7“'7“” + 7,/7,2) + q (27”7"2 _ 7,27.11 + ,’,,IITIZ)
2 (r'2 + 12)? '

Analogously, the Fréchet derivatives of the operator A; and the potential wg are given by

L[y 0 00— 5O [0 a0 60)

All(ra QO;Q)(t) = ; |Zl(t) _ 20(7')|4

t €[0,2n],

L [ I 0 20— ple) Gl

o |20(t) — 20(7)]? ’
and

™

i) =~ [ gy 1) o) =0 206l

|20(t) = 21 (7)[*
LR Sy (1) - Go(t) -
+27T~/0 f( 1( )) |Zo(t) _21(7_)|2 d (36)

+%/o2ﬁg (22(7) [Zog())(;)z_l(;)g;)ﬁg(t) |21(r)|dr, t€[0,2n].

The operators A} and wj both have smooth kernels and, of course, wj(q) = (- (grad w)oz.



3.2 Crack reconstruction

We assume that the crack I, € IR? is an open curve of class C?, i.e.,
F.={o(s):se[-1,1]}, (3.7)

where o : [~1,1] — IR? is three times continuously differentiable and injective. The
latter property ensures that o'(s) # 0 for all s € [—1,1]. To incorporate the square root
singularities of the solution u at the crack tips (see [13]) we apply the cosine transformation
as suggested by Yan and Sloan [25]. We substitute s = cost for ¢t € [0,7], into the
presentation (3.7) and transform the integral operator (2.6) into the parametric form

(Beg)(t) = [ @)le®) 2lr)) dr, tE 0,7, (38
Here we have set
z¢(t) == o(cost), te0,n],

and
o(t) := |sint| |o'(cost)| h(z.(t)), t€[0,n].

Since the integrand in (3.8) can be considered as an even 27 periodic function, we can
rewrite it in the form

1 2w
(Be)t) =3 [ oD)@(zelt), ze(r)) dr. ¢t € [0, (3.9)
To cope with the logarithmic singularity of the kernel we proceed as in [16] and split
1
21®(2.(t), z.(7)) = —In (5 | cost — cos T|> + H(t,7)

where
|cost — cos 7|

2 [2(t) = z(7)]

H(t,7) :==In
is smooth with diagonal values
: _ /!
lim H(t,7) = —1In2|2.(t)].

From the identity

+7

sin

1
In (5 | cost — cos 7'|) = In |sin : (3.10)

_T‘—i-ln

substituting 7 by —7 in (3.9) for the integral corresponding to the second term on the
right side of (3.10) it can be seen that

(Beot) =5 [ {-m

sin + % H(t, T)} o(r)dr, te0,m). (3.11)

t—T‘



Hence, the logarithmic singularity is of the same type as for the single-layer potential
part of wy over the closed curve I'; from the previous subsection and therefore the same
quadratures can be applied.

For the operator S; as defined by (2.10) the cosine substitution leads to

(Bio)(t) = [ o(r)®(aa(t), 7(r) dr + [1 = 821 (),0)] [ ¢(r)dr, ¢ € (0,27,

For the numerical approximation of the operator B; with smooth kernel we again use
the fact that the integrand can be smoothly extended as a 27 periodic even function and
apply the trapezoidal rule.

Analogous to the previous subsection, the parameterization of the potential w on T,
yields

: /027r Fla () (1) - [2e(t) = 21(7)] dr

welt) = o 2old) — ()P

1 2
—5r ), 9 (1)2(z (D), z1(7))|z1 ()| dr, € [0, 7],
where w, := w o z.. The parameterization w; = w o z; of the modified potential @ on I';
is given by
2T
() = wr(6) = [1 = (=0, 0)] [ g(r)dr, ¢ €[o,2n)

with w; as in (3.3). N

As in the previous subsection we will use the notations w.(z.), Be(z¢, ©), Bi(ze, ) to

indicate the dependence of the crack parameterized by z.. With the above notations, the
integral equations (2.9) and (2.10) can now be rewritten in the parametric form

Bc(zca 90) = wc(zc) (3.12)
and N
Bl (Zc, (p) = ’lﬁl. (313)
The Fréchet derivatives at z. in the direction (. are given by
1 i Ze(t) — 2e(T)] - [Ce(t) — CelT
Ly el = w6 )],
2w Jo |2¢(t) — ze(T)|

Here, as for z.(t) = o(cost) we have substituted (.(t) = o(cost) for some o, creating
a perturbed crack with parameterization o + o;. The kernel in (3.14) is smooth with

diagonal values
i 1260 = 20160 = G0)) _ 2400) - (1)
= |2 (t) = 2e(7)[? EAGIE.

Bl(ze, 05 ¢c)(t) = tefo,n]. (3.14)

Finally, the derivative of the operator B; is given by

Bl(aes1)(0) = o [ () PO v 0,2

and for the Fréchet derivative w.(z.; (.) we have the same formula as for wy(r; ¢) in (3.6)
with zo and (o replaced by z. and (., respectively, and for ¢ € [0, 7].
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4 The iteration scheme

Since the integral operators Ay, and A; are linear with respect to ¢, the linearization of
the system (3.4)—(3.5) leads to

Ao(r, ) + Ao(r, ) + Ag(r, 05 ¢) = wo(r) + wy(r; q) (4.1)
and
A (r,0) + Av(r, ) + AL (r, 03 q) = w. (4.2)

Given a current approximation for r and ¢, the linear system (4.1) and (4.2) needs to
be solved for ¢ and v to obtain the update r 4+ ¢ for the radial function and ¢ + 1 for
the boundary values. Then, in an obvious way, this procedure is iterated. Clearly, the
ill-posedness requires to incorporate a regularization in order to achieve stability. For this,
in our numerical examples we used the well-established Tikhonov regularization with a
Sobolev penalty term on the radial function and an L? penalty term on the boundary
values.
Analogously the linearization of (3.12)—(3.13) yields

Be(ze, 0) + Be(ze, ¥) + Be(2e, 95 Ce) = we(ze) + wi(ze; ) (4.3)

and B N N
Bi(2e, 0) + Bi(ze, %) + Bi(2e, ;) = 1. (4.4)

The following theorem claims the injectivity of the linearization (4.1)—(4.2) at the
exact solution.

Theorem 4.1 Let r be the parameterization of the interior boundary 'y and let ¢ = uw oz
in terms of the solution u of (1.1)—(1.2). Assume that ¢ € C?[0,27] and ¢ € L?*[0, 27]
solve the homogeneous system

Ao(r, ) + Ay(r, ¢5.9) — wo(r;q) =0 (4.5)

and
Ay (r, ) + Ai(r,¢59) = 0. (4.6)
Then g =0 and ¢ = 0.

Proof. We begin by showing that, for sufficiently small ¢, the perturbed interior curve as
given in polar coordinates by

Lrpqg = {(r(t) + q(t))(cost,sint) : t € [0, 27]}
can be represented in the form
[pirg = {r(t)(cost,sint) + q(t)v(t) : t € [0, 27|}
in terms of the unit normal vector

v(t) = r'(t)(—sint, cost) — r(t)(cost,sin t)
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to the unperturbed curve I', = I'y and a function ¢. For this we need to show that each
point y in some neighborhood of I'y can be represented in the form

y =r(t)(cost,sint) + nu(t)

for some ¢ € [0, 27] and some 1 € IR. To this end, for sufficiently small A > 0, we consider
the corresponding map F : [0, 27] x [—h, h] — IR? given by
F(t,n) = r(t)(cost,sint) + nu(t).

Since
68}; (t,0) = r'(t)(cost,sint) + r(t)(—sint,cost) and aﬁ_i(t’ 0) = v(t),

obviously, for sufficiently small h the mapping F' is bijective. From the analysis in Sub-
section 3.1 we observe that in the Fréchet derivatives Aj, A} and w] we now may replace
the perturbation vector (y(t) = ¢(t)(cost,sint) by Co=qu.

We introduce the function

V)= [ () grad, ®(x, 20(7)) - v(z0(7)) dr

+/2W ) grad, (grad, (x, 20(7) - v(z(7)) - &o(r) dr,  © € R\ T,

Then (4.6) implies that V' = 0 on I';. Since V' is bounded in Dy, from the uniqueness for
the exterior Dirichlet problem and analyticity we can conclude that V =0 in DU D;.

In view of the jump relations from equation (4.5) and V = 0 in D, by approaching Ty
from inside D we conclude that 1 + (o - (grad[v + w]) o 2o = 0, that is,

Y+ qv - (gradv + w]) o 2y = 0. (4.7)

0
Recalling from the proof of Theorem 2.1 that u = —v — w in D and using 8_u =0 on [y,
v

from (4.7) we now obtain that ¢» = 0. Therefore the property V = 0 in D simplifies into

/OQW (1) grad, (grad, ®(z, 20(7)) - v(20(7))) - v(20(7))dT =0, =z € D,

where we have set ¢ := ¢ ¢. Note that ¢ is continuous. Working out the derivatives, and
making use of periodicity, we rewrite this into the form

Vi(z) + Vo(z) =0, z€ D, (4.8)
for
B 33—20( ) - v(z(1)P? .
B 2/ |z — 2o(7)[* d
and

Vo(z) == /7r _ o) dr.

— & = 2o(7)?
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The kernel in the integral for V] coincides with the square of the kernel of the double-layer
potential. Therefore, proceeding as in the proof for the jump relations of the double-layer
potential (see the proof of Theorem 6.17 in [18]) it can be seen that the function V; is
bounded in D. Consequently, in view of (4.8), the function V5 also must be bounded in
D.

Now assume that @ # 0. Then, because ¢ is continuous, without loss of generality we
may assume that there exist positive numbers ¢ and p with § < 7 such that @(7) > p for
|7| < 6. Then for z = 2(0) + hv(29(0)) we can estimate

|20(7) — 2|? < 2|20(7) = 20(0)[2 + 282 < 2||2) || o7 + 2h% < C(72 + h?)

for all |7| < ¢ and some constant C' > 0. Consequently we can estimate

é 3 é

o(7) o 1 2u 5

T g B dr = 2 arctan 2 | 4,
/_5|x—zo(7')|2 T—c/muh? T on (49)

Since the remaining integral over § < |7| < 7 in the expression for V5(x), for sufficiently
small A, is uniformly bounded with respect to h, from (4.9) we conclude that

lim V5(20(0) + v (20(0))) = o0

which is a contradiction to the boundedness of V5 in D. Hence, ¢ = 0 and consequently
©q = 0. From Holmgren’s theorem and the homogeneous Neumann boundary condition
for u on I'y we conclude that u cannot vanish on an open subset of I'y. Therefore, in view
of ¢ = u o 7y, we finally conclude that ¢§ = 0 and consequently ¢ = 0 and this concludes
the proof. O

A corresponding result for the perfectly conducting crack can be shown analogously
to the case of a perfectly conducting inclusion in [20]. We note that the proof of Theorem
(4.1) required additional techniques as compared with that of Theorem 5.1 in [20].

5 Numerical examples

In this final section we present some numerical results for the reconstruction method
described above both for the perfectly insulating inclusion and the perfectly conducting
crack. For the sake of simplicity, in all examples, the outer boundary I'; is chosen to be
the unit circle, i.e., z1(t) = (cost,sint). The synthetic data g were obtained by solving the
direct problem (1.1)—(1.2) for the inclusion and (1.3)—(1.4) for the crack by the Green’s
function approach as described in [11]. Roughly speaking, this approach solves both
problems by a superposition of the solution for the Dirichlet problem for the unit disk
and a single-layer potential with an unknown density on I'y and I, respectively, and with
the Green’s function for the unit disk as kernel. In the case of the Neumann boundary
condition, this leads to a boundary integral equation of the second kind on the boundary
[’y that can be numerically solved by the Nystrom method. In the case of the Dirichlet
condition on the crack I'. the resulting integral equation is of the first kind and can be
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solved via the cosine transformation. In order to compute the normal derivative on I';
it is required to evaluate the normal derivative of the Poisson integral which leads to a
hypersingular integral. To deal with this singularity we use Garrick’s quadrature formula
and trigonometric interpolation as described in [17].

Using the Green’s function approach for creating the synthetic data clearly avoids
committing an inverse crime, since the inverse solver is not based on using the Green’s
function. For noisy data, random errors are added pointwise to g with the percentage
given in terms of the L? norm. In all examples the regularization parameters were chosen
by trial and error.

We begin with considering the numerical solution of the inverse boundary value prob-
lem (1.1), (1.2) and (1.5), i.e., the reconstruction of an inclusion. Here, we assume that
the interior boundary is starlike, i.e., that it is given in the form (3.1). As finite di-
mensional space for the approximation and the update we use the space of trigonometric
polynomials of degree less than or equal to K, that is,

K K
q(t) = > amcosmt + Y by sinmt. (5.1)

m=0 m=1

To approximate the integral operators in (4.1)—(4.2) we use 2M equidistant quadrature
points for the trapezoidal rule and the logarithmic singularity quadrature. Further, for
the solution of the linear equations (4.1)-(4.2) we apply a fully discrete collocation at
the same 2M equidistant points to obtain a 4M x 4M linear system for the 2K + 1
coefficients (a,, by,) from (5.1) and the 2M approximate values for 1 (ty), ..., ¥ (tanr—1),
where t; = 7j/M, j =0,...,2M — 1. Due to the ill-posedness, Tikhonov regularization is
incorporated with a Sobolev H! penalty term on ¢ and L? penalty term on 1. The initial
guess for the interior boundary Iy is chosen as a circle of radius 0.8 centered at the origin.
We denote the regularization parameters for penalizing 1 and ¢ by « and [, respectively.

In the first example, we consider the identification of a peanut shaped boundary curve
[’y given by the radial function

3
r(t) = Z\/cos2 t+0.25sin’t, t € [0,27].
The boundary data are of the form
f(z1(t)) = exp(—cos®t), te€[0,2n].

The reconstructions with M = 16, K =8, a = 1le—9, 8 = le — 7, | = 2 are presented
in Fig. 1. For the reconstruction with 3% random noise we choose the regularization
parameters a = le — 8, # = le — 6, with the other parameters remaining unchanged. The
correct interior boundary I'y is presented by the dashed line and the reconstruction by
the solid line.

For the second example we consider the reconstruction of an apple-shaped contour
with radial function

) 0.5+ 0.4cost+ 0.1sin2¢
7" =
14+ 0.7cost ’

t € [0,27].
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8 iterations, exact data 8 iterations, 3% noise

Figure 1: Reconstruction of a peanut-shaped contour

The Dirichlet data are the same as in the first example. The results for a = le — 6,
B=1le—4, M =16, K = 6, | = 0 without noise and for a = le — 5, § = le — 3 with 3%
noise are presented in Fig. 2.

8 iterations, exact data 8 iterations, 3% noise
Figure 2: Reconstruction of an apple-shaped contour
In the third example we consider a kite-shaped inclusion with the parameterization
20(t) = (0.6 cost + 0.3 cos 2t — 0.2,0.6sint), t € [0, 27]
and the Dirichlet data
f(z1(t)) = cost+sint, t€[0,2n].

The reconstruction with exact data for M =24, K =16, = 2, a = 0.0001, 8 = 0.001
and with 3% noise are shown in Fig. 3.
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8 iterations, exact data 8 iterations, 3% noise

Figure 3: Reconstruction of a kite-shaped contour

We conclude with some numerical examples for crack identification (compare also [21]).
As finite dimensional space for the reconstructions and the updates (. we choose the space
of Chebyshev polynomials of degree less than or equal to K, that is,

C(s) = ;)ajTj(s), s €[-1,1], (5.2)

with coefficients a; € IR*. To approximate the integral operators in (4.3)-(4.4) we use
2M equidistant quadrature points for the trapezoidal rule and the logarithmic singularity
quadrature. Again, for the solution of the linear equations (4.3)—(4.4) we apply a fully
discrete collocation at the same 2M equidistant points to obtain a (3M + 1) x (3M + 1)
linear system for the 2K + 2 components of the coefficients a; in (5.2) and the M +1
approximate values for ¢ (ty),..., ¢ (tsm). Here, the symmetry property ¢ (t;) = ¥ (tap—;)
for t; = 2nj/M, j = 0,..., M is incorporated. Since the linearized equations inherit
the ill-posedness from the equations (3.12)-(3.13) a Tikhonov regularization with an L2
penalty term with a weight w(s) = 1/v/1 — s? is applied both for ¢ and ). We denote the
regularization parameters for penalizing ¢» and ¢ by « and (3, respectively. As a stopping
rule we use the condition

Iellzzo.n1 )

[l 2ell 22 0,7
where § is a given tolerance. For all examples we choose the parameters M =32, K =7
and 60 = 0.0001.

We start by presenting the reconstruction of a parabolic crack given by

2(s) = (0.55,0.5(s*> — 0.5)), s¢€[-1,1].
The boundary data are of the form

f(z1(t)) =1+ cos’t, tel0,2n]. (5.3)
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exact data 3% noise

Figure 4: Reconstruction of a parabolic crack

The initial guess for ', is chosen as the straight line {(0.5s,0) : s € [—1,1]}. The results
with the parameters o = 0.001, § = 0.01 and data without noise and with 3% noise are
presented in Fig. 4. The exact crack I'; is given by the dashed line, the reconstruction by
the solid line and the initial guess by the dotted line.

exact data 3% noise

Figure 5: Reconstructions of the crack (5.4)

In Fig. 5 we show the reconstructions of a crack with the parameterization
z(s) = (0.5(s* + s — 1),0.125(s* + 0.55%)), s e [-1,1], (5.4)

with Dirichlet data (5.3) and the regularization parameters o = 0.0001, 3 = 0.001. The
initial guess for I'; is chosen as {(0.5s,—0.1) : s € [-1,1]}.

In the last example, we present a reconstruction of a crack that is not contained in
the approximation space, i.e., in the space of polynomials of degree less than or equal to
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exact data 3% noise

Figure 6: Reconstructions of the crack (5.5)

K, and has the parameterization

1 3
z(s) == (s,sin —8) , se€[-1,1]. (5.5)
2 2
The Dirichlet data are given by
f(z1(t)) = exp(—sin®t), t € [0,27].

The initial guess for the crack I'; is chosen as {(0.5s,0.25s) : s € [—1,1]}. The recon-
struction for exact data and data with 3% noise with regularization parameters a = 0.01,
B = 0.1 are presented in Fig. 6.

Summarizing, the numerical results show rather accurate reconstructions with reason-
able stability against noisy data. In particular, the crack reconstructions show a satisfying
identification of the location of the crack tips. Further numerical experiments indicated
that for a noise level above about 5% the reconstructions started to deteriorate.
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