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Abstract

An inverse scattering problem is considered for arbitrarily shaped cylindri-
cal objects that have inhomogeneous impedance boundaries and are buried in
arbitrarily shaped cylindrical dielectrics. Given the shapes of the impedance
object and the dielectric, the inverse problem consists of reconstructing the
inhomogeneous boundary impedance from a measured far field pattern for
an incident time-harmonic plane wave. Extending the approach suggested by
Akduman and Kress [1] for an impedance cylinder in a homogeneous back-
ground medium, both the direct and the inverse scattering problem are solved
via boundary integral equations. For the inverse problem, representing the
scattered field as a potential leads to severely ill-posed linear integral equa-
tions of the first kind for the densities. For their stable numerical solution
Tikhonov regularization is employed. Knowing the scattered field, the bound-
ary impedance function can be obtained from the boundary condition either
by direct evaluation or by a least squares approach. We provide a mathemati-
cal foundation of the inverse method and illustrate its feasibility by numerical
examples.

1 Introduction

In electromagnetics, the impedance boundary condition is a tool for simplifying
the solution of electromagnetic scattering problems involving complex structures.
Commonly the boundary condition with a space dependent impedance coefficient is
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used to model imperfectly conducting scatterers, perfectly conducting objects with
a penetrable or absorbing boundary layer, or scatterers with a corrugated boundary.
Its first application to a lossy material is generally attributed to Leontovich.

The determination of the boundary impedance for a given scatterer constitutes
an important class of inverse scattering problems. In this paper we consider the
scattering from an impedance object buried in a dielectric. This model corresponds
to applications in biomedical imaging, nondestructive testing and geophysical explo-
rations. In biomedical applications, for example, the bone of an arm can be modeled
in terms of an inhomogeneous impedance boundary condition while the muscular
structure over it can be considered as a lossy dielectric layer. In nondestructive
evaluation of the coating on a conducting wire, the coating can be characterized
as an arbitrarily shaped lossy dielectric layer and the conducting wire is modeled
by an inhomogeneous surface impedance. The problem to determine the boundary
impedance from scattering of time-harmonic waves by an impedance object with
known shape that is buried in a dielectric is the topic of this paper. Motivated by
the applications just mentioned, in a preliminary investigation we confine ourselves
to a two-dimensional model case.

For the problem to recover the impedance function of an infinitely long cylindrical
object with arbitrarily shaped cross section imbedded in a homogeneous background
Akduman and Kress [1] suggested to use a boundary integral equation approach both
for the corresponding direct and inverse problem. The aim of the present paper is
to extend this approach to the case of an impedance cylinder buried in a cylindrical
dielectric with arbitrary cross section.

To some extend, the inverse problem consists in solving a certain Cauchy prob-
lem, i.e., extending solutions to the Helmholtz equation from knowing their Cauchy
data on some boundary curve. With this respect we also mention the related work
of Jakubik and Potthast [6]. For the simultaneous reconstruction of the shape and
the impedance in a homogeneous background we refer to Kress and Rundell [9] and
to Serranho [11].

The plan of the paper is as follows. Since every investigation of inverse problems
has to be based on a solid knowledge of the corresponding direct problem in Section 2
we give an existence analysis of the direct scattering problem based on boundary
integral equations. This is followed by a short description of the numerical solution
of the integral equations in Section 3. In the main Section 4 we present our inverse
algorithm that again is based on boundary integral equations. In the final Section 5
some numerical examples exhibit the feasibility of our inverse method.

2



2 The direct problem

Consider a doubly connected bounded domain D0 ⊂ IR2 representing the cross sec-
tion of an infinitely long homogeneous dielectric cylinder. We assume the boundary
∂D0 to be C2 smooth and denote the interior component of boundary curve by Γ0

and the exterior component by Γ1, that is, ∂D0 = Γ0∪Γ1 and Γ0∩Γ1 = ∅. We shall
denote by ν0 the unit normal to Γ0 directed into the interior of D0 and by ν1 the unit
normal to Γ1 directed into the exterior of D0. The unbounded domain with bound-
ary Γ1 we denote by D1 and consider it as the cross section of the homogeneous
background medium.

Now, the direct scattering problem for a time-harmonic E-polarized electromag-
netic wave with frequency ω subject to an impedance boundary condition is modeled
by the following transmission boundary value problem for the Helmholtz equation.
The total fields u0 ∈ C2(D0)∩C1(D0) in D0 and u1 ∈ C2(D1) ∩C1(D1) in D1 repre-
senting the electric field parallel to the cylinder axis satisfy the Helmholtz equations

△uj + k2
juj = 0 in Dj , j = 0, 1, (2.1)

with the wave numbers kj = ω
√
µj (εj + iσj/ω) given in terms of the dielectric

permittivity εj, the magnetic permeability µj, and the conductivity σj of the medium
Dj. Note that the sign of the square root is chosen such that Re kj > 0 and Im kj ≥ 0.
In particular, throughout the paper, we shall assume that σ1 = 0, i.e., k1 is real and
positive.

The total fields have to satisfy the transmission conditions

u1 = u0 and
∂u1

∂ν1
=
∂u0

∂ν1
on Γ1 (2.2)

and the impedance boundary condition

u0 +
η

ik0

∂u0

∂ν0
= 0 on Γ0 (2.3)

for some Hölder continuous function η satisfying

Re
η

k0

≥ 0 (2.4)

and
η(x) 6= 0 (2.5)

for all x ∈ Γ0. The condition (2.2) ensures the continuity of the tangential com-
ponents of the electric and the magnetic field at the interface Γ1 and the condition
(2.3) model’s the standard impedance condition on the boundary Γ0.
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The external total field u1 is decomposed u1 = ui + us into the incident field
ui given by a plane wave ui = eik1 x·d where d = (cosφ0, sinφ0) is the propagation
direction with angle φ0 and the scattered field us that has to satisfy the Sommerfeld

radiation condition

lim
r→∞

√
r

(
∂us

∂r
− ik1u

s

)
= 0, r = |x| , (2.6)

uniformly for all directions. The Sommerfeld radiation condition (2.6) guarantees
an asymptotic behavior of the scattered wave in the form of an outgoing wave

us(x) =
eik1|x|

√
|x|

{
u∞

(
x

|x|

)
+O

(
1

|x|

)}
, |x| → ∞, (2.7)

uniformly for all directions with the amplitude factor u∞ known as the far field
pattern and defined on the unit circle Ω.

Theorem 2.1 The direct scattering problem has at most one solution.

Proof. Assume that u1
1, u

1
0 and u2

1, u
2
0 are two solutions to the direct scattering prob-

lem and consider the difference u1 := u1
1 − u2

1 and u0 := u1
0 − u2

0. Then u1 and u0

satisfy the Helmholtz equations (2.1), the boundary conditions (2.2) and (2.3) and
in addition u1 satisfies the radiation condition (2.6). Green’s theorem, applied to u0

in the domain D0 yields
∫

Γ1

u0
∂ū0

∂ν1
ds =

∫

Γ0

u0
∂ū0

∂ν0
ds+

∫

D0

{
|gradu0|2 − k̄2

0 |u0|2
}
dx. (2.8)

From this, using the boundary conditions and taking the imaginary part, we obtain

Im

(∫

Γ1

u1
∂ū1

∂ν1
ds

)
=

∫

Γ0

Re

(
η

k0

) ∣∣∣∣
∂ū1

∂ν1

∣∣∣∣
2

ds+ Im
(
k2

0

) ∫

D0

|u0|2dx ≥ 0,

provided the condition (2.4) is satisfied. Now, in view of the radiation condition for
u1, from Theorem 2.12 in [3] we conclude that u1 = 0 in D1. Finally Holmgren’s
uniqueness theorem (see Theorem 6.12 in [2]) and the transmission conditions (2.2)
imply that u0 = 0 in D0. �

We establish existence of a solution to the direct scattering problem by adopting
a potential approach to transform the scattering problem into a system of boundary
integral equations. To this end, for j = 0, 1, we introduce the fundamental solutions
Φj for the two-dimensional Helmholtz equation with wave number kj by

Φj(x, y) :=
i

4
H

(1)
0 (kj |x− y|), x 6= y,
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in terms of the Hankel function H
(1)
0 of the first kind and order zero. Then, for

j, ℓ,m = 0, 1, we define single- and double-layer operators Sjℓ,m and Kjℓ,m by

(Sjℓ,mϕ)(x) := 2

∫

Γj

Φm(x, y)ϕ(y) ds(y), x ∈ Γℓ, (2.9)

and

(Kjl,mϕ)(x) := 2

∫

Γj

∂Φm(x, y)

∂νj(y)
ϕ(y) ds(y), x ∈ Γℓ, (2.10)

and the corresponding normal derivative operators K ′
jℓ,m and Tjℓ,m by

(K ′
jℓ,mϕ)(x) := 2

∫

Γj

∂Φm(x, y)

∂νℓ(x)
ϕ(y) ds(y), x ∈ Γℓ, (2.11)

and

(Tjℓ,mϕ)(x) := 2
∂

∂νℓ(x)

∫

Γj

∂Φm(x, y)

∂νj(y)
ϕ(y) ds(y), x ∈ Γℓ. (2.12)

The operators Sjℓ,m, Kjℓ,m, K
′
jℓ,m : C(Γj) → C(Γℓ) are compact since they represent

integral operators with weakly singular kernels for j = ℓ and continuous kernels for
j 6= ℓ. For j 6= ℓ the operator Tjℓ,m : C(Γj) → C(Γℓ) also has a continuous kernel
and therefore is compact, but the operator Tjj,m is a hypersingular operator that is
only defined on subspaces Vj ⊂ C (Γj) of sufficiently smooth functions. However,
the difference operator Tjj,1 − Tjj,0 : C(Γj) → C(Γj) again has a weakly singular
kernel and is compact. For these compactness properties we refer to Section 3.1
in [3].

In order to prove solvability of the direct scattering problem we seek the solution
in the form of a combination of double- and single-layer potentials

us(x) =

∫

Γ1

{
∂Φ1(x, y)

∂ν1(y)
ψ(y) + Φ1(x, y)ϕ(y)

}
ds(y), x ∈ D1, (2.13)

and

u0(x) =

∫

Γ1

{
∂Φ0(x, y)

∂ν1 (y)
ψ(y) + Φ0(x, y)ϕ(y)

}
ds(y)

+

∫

Γ0

Φ0(x, y)χ(y)ds(y), x ∈ D0.

(2.14)

Then we can state the following theorem.
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Theorem 2.2 The fields given by (2.13) and (2.14) solve the direct scattering prob-

lem if the continuous densities ψ, ϕ and χ satisfy the system of integral equations

2ψ +K11,1ψ −K11,0ψ + S11,1ϕ− S11,0ϕ− S01,0χ = −2ui,

2ϕ− T11,1ψ + T11,0ψ −K ′
11,1ϕ+K ′

11,0ϕ+K ′
01,0χ = 2

∂ui

∂ν1
,

χ− (T10,0ψ +K ′
10,0ϕ+K ′

00,0χ) − ik0

η
(K10,0ψ + S10,0ϕ+ S00,0χ) = 0.

(2.15)

Proof. We only sketch the proof. Clearly u1 = ui + us and u0 defined by (2.13)
and (2.14) satisfy the Helmholtz equations (2.1) and additionally us satisfies the
radiation condition. The mapping properties of the operators between Hölder spaces
as described in Theorem 3.4 of [3] can be employed to show that for any continuous
solution of the system (2.15) the density ψ is Hölder continuously differentiable and
the densities ϕ and χ are Hölder continuous. This implies that us and u0 have
the required regularity u0 ∈ C2(D0) ∩ C1(D0) and us ∈ C2(D1) ∩C1(D1) and that
the jump relations can be applied (see Theorem 3.3 in [3]). In particular, for the
Hölder continuously differentiable density ψ the hypersingular operators T11,m can
be applied. From the jump relations we then obtain

2 (us − u0) = K11,1ψ + ψ + S11,1ϕ−K11,0ψ + ψ − S11,0ϕ− S01,0χ,

2

(
∂us

∂ν1
− ∂u0

∂ν1

)
= T11,1ψ +K ′

11,1ϕ− ϕ− T11,0ψ −K ′
11,0ϕ− ϕ−K ′

01,0χ,

2

(
u0 +

η

ik0

∂u0

∂ν0

)
= K10,0ψ + S10,0ϕ+ S00,0χ+

η

ik0
(T10,0ψ +K ′

10,0ϕ+K ′
00,0χ− χ).

Therefore the system (2.15) implies that u1 and u0 satisfy the transmission and
boundary conditions (2.2) and (2.3). �

We introduce an operator A : C (Γ1)×C (Γ1)×C (Γ0) → C (Γ1)×C (Γ1)×C (Γ0)
by

A :=




K11,1 −K11,0 S11,1 − S11,0 −S01,0

−T11,1 + T11,0 −K ′
11,1 +K ′

11,0 K ′
01,0

−2T10,0 −
2ik0

η
K10,0 −2K ′

10,0 −
2ik0

η
S10,0 −2K ′

00,0 −
2ik0

η
S00,0



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which obviously is compact since all its components are compact. Now, the system
can be rewritten in the abbreviated form

(2I + A)




ψ

ϕ

χ


 = 2




−ui

∂ui/∂ν1

0




where I is the identity operator.

Theorem 2.3 The direct scattering problem has a unique solution, provided k2
0 is

not a Dirichlet eigenvalue of the negative Laplacian in the interior of Γ0.

Proof. It suffices to prove that under the assumption on k0 the system of integral
equations (2.15) has a unique solution. To this end we show that the operator
2I +A is injective. Then the statement follows from the Riesz–Fredholm theory for
compact operators. Assume that the densities ψ, ϕ and χ solve the homogeneous
form of (2.15). Then the potentials in (2.13) and (2.14) solve the homogeneous
transmission impedance problem. Therefore by the Theorem 2.1 we have us = 0 in
D1 and u0 = 0 in D0. Since u0 is continuous across Γ0 the assumption on k0 implies
that u0 = 0 in the interior of Γ0. Therefore the jump relations yield

χ =
∂u−0
∂ν0

− ∂u+
0

∂ν0

= 0 on Γ0.

Then the remaining densities ψ and ϕ solve

2

(
ψ

ϕ

)
+

(
K11,1 −K11,0 S11,1 − S11,0

−T11,1 + T11,0 −K ′
11,1 +K ′

11,0

)(
ψ

ϕ

)
= 0

and from Theorem 3.41 in [2] we can conclude that ψ = ϕ = 0. �

We refrain from elaborating on how to avoid the assumption on k2
0 not to be an

interior Dirichlet eigenvalue by replacing the single-layer potential with density χ
on Γ0 be a combined single- and double-layer potential. We note that if we have
absorption in D0, i.e., if σ0 > 0 then the assumption on k0 is always fulfilled.

3 Numerical solution of the direct problem

We assume that the boundary curves Γ0 and Γ1 are represented through regular
parameterizations of the form

Γj = {zj(t) : t ∈ [0, 2π]} , j = 0, 1, (3.1)
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where zj : IR → IR2 are 2π–periodic and twice continously differentiable functions
such that the orientation of Γj is counter-clockwise. Then the normal vectors are
given by

νj(t) =
1

|z′j(t)|
[z′j(t)]

⊥, t ∈ [0, 2π], (3.2)

where or any vector a = (a1, a2), the vector a⊥ := (a2,−a1) is obtained by rotating
a clockwise by 90 degrees. Inserting (3.1) into the kernels of the integral operators
we obtain for the single-layer operator

2Φm(zℓ(t), zj(τ)) =
i

2
H

(1)
0 (km|zℓ(t) − zj(τ)|)

and its normal derivative

2
∂Φm(zℓ(t), zj(τ))

∂ν(zℓ(t))
=
ikm

2

[z′ℓ(t)]
⊥ · [zℓ(t) − zj(τ)]

|z′ℓ(t)| |zℓ(t) − zj(τ)|
H

(1) ′
0 (km|zℓ(t) − zj(τ)|).

Analogously, we have the parameterized kernels of the double-layer operator

2
∂Φm(zℓ(t), zj(τ))

∂ν(zj(τ))
=
ikm

2

[z′j(τ)]
⊥ · [zj(τ) − zℓ(t)]

|z′j(τ)| |zℓ(t) − zj(τ)|
H

(1) ′
0 (km|zℓ(t) − zj(τ)|)

and its normal derivative

2
∂

∂ν(zℓ(t))

∂Φm(zℓ(t), zj(τ))

∂ν(zj(τ))
= Ujℓ(t, τ) H

(1) ′
0 (km|zℓ(t) − zj(τ)|)

+Vjℓ(t, τ)

{
kmH

(1) ′′
0 (km|zℓ(t) − zj(τ)|) −

H
(1) ′
0 (km|zℓ(t) − zj(τ)|)

|zℓ(t) − zj(τ)|

}

where

Ujℓ(t, τ) := −ikm

2

z′ℓ(t) · z′j(τ)
|z′ℓ(t)| |z′j(τ)| |zℓ(t) − zj(τ)|

and

Vjℓ(t, τ) :=
ikm

2

[z′ℓ(t)]
⊥ · [zℓ(t) − zj(τ)]

|z′ℓ(t)| |zℓ(t) − zj(τ)|
[z′j(τ)]

⊥ · [zj(τ) − zℓ(t)]

|z′j(τ)| |zℓ(t) − zj(τ)|
From this it can be seen that all the operators entering into the operator A have
parameterized versions of the form

(Mϕ)(t) :=

∫ 2π

0

m(t, τ)ϕ(τ) dτ, t ∈ [0, 2π],
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of an integral operator M : C[0, 2π] → C[0, 2π] mapping the space of continuous 2π
periodic functions into itself. From the explicit expression for the Hankel functions in
terms of Bessel and Neumann functions it follows that the kernels can be decomposed

m(t, τ) = m1(t, τ) ln

(
sin2 t− τ

2

)
+m2(t, τ)

with smooth functions m1 and m2. For details we refer to Section 3.5 of [3] and [7].
For integral equation system with this type of singular kernels, the Nyström method
with quadrature rules based on trigonometric interpolation as described in Section
3.5 of [3] is at our disposal. We refrain from repeating the details. For a related error
analysis we refer to [8] and note that we have exponential convergence for smooth,
that is analytic boundary curves and impedance functions. The following examples
exhibit this fast convergence for various types of non-convex boundaries with the
parametric representation of the curves given in Table 3.1.

Contour Type Parametric Representation

Apple Shaped: Γ(a) =

{
0.5 + 0.4 cos t+ 0.1 sin 2t

1 + 0.7 cos t
(cos t, sin t) : t ∈ [0, 2π]

}

Circle: Γ(c) = {c0(cos t, sin t) : t ∈ [0, 2π]} , c0 : constant

Drop Shaped: Γ(d) =

{(
−0.5 + 0.75 sin

t

2
,−0.75 sin t

)
: t ∈ [0, 2π]

}

Ellipse: Γ(e) = {(e0 cos t, e1 sin t) : t ∈ [0, 2π]} , e0, e1 : constant

Kite Shaped: Γ(k) = {(cos t+ 1.3 cos2 t− 0.8, 1.5 sin t) : t ∈ [0, 2π]}

Peanut Shaped: Γ(p) =
{√

cos2 t+ 0.25 sin2 t (cos t, sin t) : t ∈ [0, 2π]
}

Rounded Triangle: Γ(r) = {(2 + 0.3 cos 3t) (cos t, sin t) : t ∈ [0, 2π]}

Table 3.1: Parametric Representation of Boundary Curves

By the asymptotics of the Hankel function, the parametric representation of the
far field pattern of the combined double- and single-layer potential (2.13) is given
by

u∞(x̂) = γ

∫ 2π

0

{
k1 [z′1(τ)]

⊥ · x̂ ψ(z1(τ)) + i ϕ(z1(τ)) |z′1(τ)|
}
e−ik1 z1(τ)·x̂dτ (3.3)
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where γ = e−iπ/4/
√

8πk1 and x̂ ∈ Ω. Table 3.2 gives some approximate values
for the far field pattern u∞(d) and u∞(−d) in the forward direction d and the
backscattering direction −d obtained through evaluating (3.3) by the trapezoidal
rule for the solution to the system of integral equations (2.15). The number of
quadrature points in the Nyström method is 2n. The direction d of the incident
wave is d = (1, 0). The impedance functions for the first and second example are

η1(z0(t)) = sin2 t+ i cos2 t and η2(z0(t)) = e−(t−π)2 + i
sin t

100
.

Parameters: n Reu∞(d) Im u∞(d) Reu∞(−d) Im u∞(−d)

Γ0 = Γ(p),Γ1 = Γ(r) 8 0.76469029 0.33025282 -1.83100457 0.96201264
16 0.76060633 0.34007177 -1.82590173 0.95574934

η = η1 32 0.76059742 0.34007960 -1.82589332 0.95574400
k0 = 1, k1 = 0.5 64 0.76059742 0.34007960 -1.82589332 0.95574400

Γ0 = Γ(c),Γ1 = Γ(e) 8 -0.74988421 1.20005719 -2.06346703 0.43885428
c0 = 1, e0 = 3, e1 = 2 16 -0.74916948 1.19966827 -2.06251065 0.43973667

η = η2 32 -0.74916933 1.19966791 -2.06251067 0.43973683
k0 = 2, k1 = 0.25 64 -0.74916930 1.19966781 -2.06251067 0.43973686

Γ0 = Γ(e),Γ1 = Γ(a) 8 0.02828285 0.21769004 0.13572374 0.46599794
e0 = 1.2, e1 = 0.8 16 0.01777448 0.23601195 0.13005604 0.48467119
η = 0.2 − i0.3 32 0.01776323 0.23596266 0.13009672 0.48461955
k0 = 3, k1 = 2 64 0.01776322 0.23596267 0.13009673 0.48461956

Γ0 = Γ(k),Γ1 = Γ(c) 8 -0.89788315 -0.26054746 -2.74987888 1.53351515
c0 = 3 16 -0.70664878 -0.28046829 -2.68668081 1.50093930
η = 1 32 -0.70661800 -0.28043077 -2.68620811 1.50115647

k0 = 4, k1 = 1 64 -0.70661800 -0.28043077 -2.68620811 1.50115647

Table 3.2: Numerical results for direct scattering problem

We used the following tests for the accuracy of our forward code. One can
consider the transmission boundary value problem as treated in Chapter 3.8 of [2]
as a special case of the direct problem presented in this paper for the case where

10



the impedance cylinder is omitted. Hence, first of all we compared our results
with some results obtained by the method of moments for the transmission problem
(see [4, 10]). For the two different methods we obtained the same results. However,
we observed that for higher frequencies our Nyström method is much faster than the
method of moments. Additionally, we considered the forward problem as presented
in [1] as another special case of our direct problem when k0 = k1 = 1. Then, we
compared the results with [1] and observed that they match accurately.

4 The inverse problem

As one of the most important tools in scattering theory, Rellich’s lemma (see The-
orem 2.13 in [3]) provides a one-to-one correspondence between radiating solutions
to the Helmholtz equation and their far field pattern in the sense that u∞ = 0 on Ω
(or on an open subset of Ω) implies that us = 0 in D1.

The inverse scattering problem that we are concerned with is, given the shape of
the scatterers, to determine the impedance function η from a knowledge of the far
field pattern for one incident wave. We note that this inverse problem is nonlinear
in the sense that the scattered wave depends nonlinearly on the impedance η as is
obvious from the representation of the solution in Section 2. More importantly, the
inverse problem is ill-posed since the determination of η does not depend continously
on the far field pattern in any reasonable norm. We will handle this issue of ill-
posedness by using Tikhonov regularization.

However, concerning identifiability we first note that the far field pattern for one
incident plane wave uniquely determines the impedance function η. As a conse-
quence of Rellich’s lemma the far field pattern uniquely determines u1 in D1. Then,
by Holmgren’s theorem and the transmission conditions (2.2) the field u0 is also
uniquely determined in D0. From the impedance condition (2.3) we now can read
off the uniqueness of η. Note that due to Holmgren’s theorem the normal deriva-
tive of u0 cannot vanish on open subsets of Γ0. Otherwise we first would conclude
u0 = 0 in D0 and consequently u1 = 0 in D1 via the transmission conditions. This
finally would lead to the contradiction that the incident plane wave would satisfy
the radiation condition.

For our actual reconstruction algorithm we proceed along the proof of the above
uniqueness result. From the given far field pattern we first reconstruct us in D1 by
seeking it in the form of a single-layer potential

us(x) =

∫

Γ1

Φ1(x, y)ϕ(y)ds(y), x ∈ D1, (4.1)

with unknown density ϕ ∈ L2(Γ1). The single layer potential (4.1) has far field
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pattern

u∞(x̂) = γ

∫

Γ1

e−ik1 x̂·y ϕ(y) ds(y), x̂ ∈ Ω, (4.2)

(see (3.3)). Therefore, given the far field pattern u∞, the density ϕ is found by
solving the integral equation of the first kind

S∞ϕ = u∞ (4.3)

with the compact operator S∞ : L2(Γ1) → L2(Ω) given by

S∞(ϕ)(x̂) := γ

∫

Γ1

e−ik1 x̂·y ϕ(y) ds(y), x̂ ∈ Ω. (4.4)

Due to the analytic kernel of S∞, the integral equation (4.3) is severely ill-posed.
For a stable numerical solution of (4.3) Tikhonov regularization can be applied, that
is, the ill-posed equation (4.3) is replaced by

αϕα + S∗
∞S∞ϕα = S∗

∞u∞ (4.5)

with some positive regularization parameter α and the adjoint S∗
∞ : L2(Ω) → L2(Γ1)

of S∞. For the applicability of the Tikhonov regularization the following theorem
on S∞ is essential. For its proof we refer to Theorem 5.17 in [3].

Theorem 4.1 The far field integral operator S∞ : L2(Γ1) → L2(Ω) defined by (4.4)
is injective and has dense range provided k2

1 is not a Dirichlet eigenvalue for the

negative Laplacian in the interior of Γ1.

Once we have determined ϕ, and consequently u1 via (4.1), we seek u0 as a
single-layer potential

u0(x) =

∫

Γ1

Φ0(x, y)ψ(y) ds(y) +

∫

Γ0

Φ0(x, y)χ(y) ds(y), x ∈ D0. (4.6)

Given us via (4.1), it is an immediate consequence of the jump relations that the
field (4.6) satisfies the transmission conditions (2.2) provided the densities ψ and χ
solve the system of integral equations

S11,0ψ + S01,0χ = 2ui + S11,1ϕ

K ′
11,0ψ + ψ +K ′

01,0χ = 2
∂ui

∂ν1

+K ′
11,1ϕ− ϕ

(4.7)
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If k2
1 is not a Dirichlet eigenvalue for the interior of Γ1, then the inverse operator

(I+K ′
11,0)

−1 : L2(Γ1) → L2(Γ1) exists (see Theorem 3.17 in [2]) and we can eliminate
ψ from (4.7) to obtain

B̃χ = f (4.8)

with the compact operator B : L2(Γ0) → L2(Γ1) given by

B̃ := S01,0 − S11,0(I +K ′
11,0)

−1K ′
01,0

and the right-hand side

f := 2ui + S11,1ϕ+ S11,0(I +K ′
11,0)

−1

(
2
∂ui

∂ν1
+K ′

11,1ϕ− ϕ

)
.

The compactness of B̃ illustrates the ill-posedness of the system (4.7). Rather than
regularizing the eliminated version (4.8), in order to avoid the elimination step, we
applied Tikhonov regularization directly to the system (4.7). To this end we need
the following theorem.

Theorem 4.2 The operator B : L2 (Γ1) × L2 (Γ0) → L2 (Γ1) × L2 (Γ1) given by the

operator matrix

B :=

(
S11,0 S01,0

K ′
11,0 + I K ′

01,0

)

is injective and has dense range provided k2
0 is not a Dirichlet eigenvalue for the

negative Laplacian in the interior of Γ0.

Proof. For a solution of the homogeneous equation

B

(
ψ

χ

)
= 0

we first note that from the second equation we can conclude that ψ is continuous.
Then, by the jump relations, the field u0 defined by (4.6) satisfies u0 = 0 and
∂u0/∂ν1 = 0 on Γ1. Holmgren’s uniqueness theorem implies u0 = 0 in D0. Since
the single-layer potential with L2 density u0 is continuous across Γ0 (see [5], p. 176)
under the assumption on k0 we have u0 = 0 in the interior of Γ0. Since u0 is also
continuous across Γ1 by the uniqueness for the exterior Dirichlet problem in D1 we
have u0 = 0 in D1. Summarizing, we have shown that u0 = 0 in all of IR2 and the
jump relations for L2 densities (see pp. 45 in [3]) imply that ψ = χ = 0.
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To establish that B has dense range it suffices to show that its adjoint B∗ :
L2 (Γ1) × L2 (Γ1) → L2 (Γ1) × L2 (Γ0) as given by

B∗

(
ψ

χ

)
=


 S11,0ψ K11,0χ+ χ

S10,0ψ K10,0χ




is injective. For a solution to the homogeneous equation

B∗

(
ψ

χ

)
= 0 (4.9)

we define

v(x) =

∫

Γ1

Φ0(x, y)ψ(y)ds(y) +

∫

Γ1

∂Φ0(x, y)

∂ν1

χ(y) ds(y), x 6∈ Γ0.

Then the first equation of (4.9) implies that v solves the exterior Dirichlet problem
in D1 with homogeneous boundary condition v = 0 on Γ1 and consequently v = 0
in D1. The second equation of (4.9) implies that v solves the Dirichlet problem in
the interior of Γ0 with homogeneous boundary condition v = 0 on Γ0. Hence, under
the assumption on k0 we also have v = 0 in the interior of Γ0 and by analyticity
this extends to v = 0 in the interior of Γ1. Again since v = 0 in all of IR2, the jump
relations imply that ψ = χ = 0. �

We note that for the numerical approximation of the operator B we can make use
of the same quadrature rules as mentioned in Section 3. Once we have determined
ψ and χ through Tikhonov regularization of (4.7) we can compute

2u0 = S10,0ψ + S00,0χ and 2
∂u0

∂ν0
= K ′

10,0ψ +K ′
00,0χ− χ on Γ0. (4.10)

Then, in principle, for each point x ∈ Γ0 we finally can read off the impedance
function from (2.3) as

η = −ik0u0

∂u0

∂ν0

on Γ0. (4.11)

However, the reconstruction of the impedance from the equation (4.11) will be sen-
sitive to errors in the normal derivative of u0 in the vicinity of zeros. To obtain more
stable solutions, we express the unknown impedance function in terms of some basis
functions γn, n = 1, . . . , N, as a linear combination

η =
N∑

n=1

cnγn on Γ0. (4.12)
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A possible choice of basis functions consists of splines or trigonometric polynomials.
Then we satisfy (2.3) in a least squares sense, that is, we determine the coefficients
c1, . . . , cN in (4.12) such that for a set of grid points x1, . . . , xM on Γ0 the least
squares sum

M∑

m=1

∣∣∣∣∣u0 (xm) +
1

ik0

N∑

n=1

cnγn(xm)
∂u0

∂ν0
(xm)

∣∣∣∣∣

2

(4.13)

is minimized. The number of basis functions N in (4.12) can be considered as some
kind of additional regularization parameter.

5 Numerical results

In this final section we present some numerical examples in order to show the ef-
fectiveness and the accuracy of the method described in the previous sections. In
these examples all of the integral equation systems are solved through the Nyström
method with a discretization number n = 64. The integral appearing in the far field
expression (3.3) is evaluated numerically by using the trapezoidal rule. For the ap-
proximation of the impedance in (4.12) we used trigonometric polynomials of degree
less than or equal to N . The Tikhonov regularization parameters for the equations
(4.3) and (4.7) are denoted by α1 and α2, respectively.

We choose various shaped, smooth impedance and dielectric cylinders given in
Table 3.1, for various kinds of continuous impedance functions, for different wave
numbers and different angles of incidence. For noisy data, random errors were added
pointwise to the u∞ with a noise level of 3%. In all examples the regularization
parameters were chosen by trial and error.

In the first example, the shape of the impedance cylinder is chosen as a kite
shaped scatterer Γ0 = Γ(k) whereas the dielectric cylinder is a circular cylinder
Γ1 = Γ(c) with radius c0 = 2.5 . The impedance function over the boundary Γ0 is
given as

η(z0(t)) = sin4 t

2
+ i cos4 t

2
. (5.1)

The wave numbers are chosen as k0 = 1 and k1 = 0.5 and the illumination angle
is φ0 = 180 for both exact data and noisy data. For exact data, the Tikhonov
parameters are α1 = 10−8, α2 = 5 × 10−5, and for the noisy case, α1 = 5 × 10−3,
α2 = 10−2 is chosen. The degree of the polynomial is N = 9 and N = 5 for the
exact and noisy case, respectively.

As a second example, two elliptical cylinders are chosen: Γ0 = Γ(e) with semi-
axis e0 = 1.5, e1 = 1.2 and Γ1 = Γ(e) with semi-axis e0 = 2.5, e1 = 2.2. The incident
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angle is φ0 = 0, the inhomogeneous surface impedance is

η(z0(t)) = 1.5 + sin3 t+ i sin t (5.2)

and the wave numbers are k0 = 2 and k1 = 1.5 for noisy and exact data. The
parameters α1 = α2 = 10−8, N = 9 are chosen for the noiseless case and α1 =
3 × 10−1 and α2 = 5 × 10−4, N = 7 for the noisy case.

In the third application, the impedance cylinder is considered as a drop shaped
scatterer Γ0 = Γ(d) and the dielectric cylinder is an elliptical cylinder Γ1 = Γ(e) with
semi-axis e0 = 1, e1 = 1.5. Both for the noiseless and noisy case, the incident angle
is φ0 = 180, the wave numbers are k0 = 3 and k1 = 2. The inhomogeneous surface
impedance is

η(z0(t)) = 0.5e−(t−π)2 + i(0.6 + 0.2 sin t). (5.3)

The parameters α1 = 10−5, α2 = 10−5, N = 5 are chosen for exact data and
α1 = 10−3 and α2 = 8 × 10−3, N = 3 for the noisy case.

In the final example, the impedance cylinder is considered as a peanut shaped
Γ0 = Γ(p) and the dielectric cylinder is a circle Γ1 = Γ(c) with radius c0 = 1.5. The
incident angle is φ0 = 0 and the wave numbers are k0 = 1 and k1 = 0.5. The
inhomogeneous surface impedance is

η(z0(t)) =
4 + sin t

5 + cos t
+ i

cos t

7 − sin t
. (5.4)

The parameters are α1 = 10−6, α2 = 10−4, N = 5 for exact data and α1 = 0.2 and
α2 = 10−2, N = 3 for noisy data.

6 Conclusions

The applicability and the effectiveness of our method is supported by the numerical
results. As to be expected, exact data yield slightly better reconstructions than noisy
data and we observed that if the noise level exceeds 3%–4% then the reconstruc-
tions start to deteriorate. Additionally, for exact data we need smaller Tikhonov
regularization parameters and can use higher degrees for the trigonometric polyno-
mials, however for the noisy case we need stronger regularization parameters and
a smaller degree of the polynomials. We also observed that in the noise free case
we can reconstruct the impedance function satisfactorily. However, for noisy data
small perturbations of the shape of the dielectric cylinder effects the success of the
reconstruction significantly. On the other hand, the shape of the impedance cylinder
does not effect the reconstructions as much as the shape of the dielectric cylinder.
It is obvious that the illumination angle also effects the reconstructions depending
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on the geometry of the scatterers. We expect that the method can be extended
to a larger number of dielectric layers and, in principle, also to three-dimensional
problems.
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Figure 1: Reconstruction of the impedance (5.1) for a kite–circle geometry.
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Figure 2: Reconstruction of the impedance (5.2) in an ellipse–ellipse geometry.
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Figure 3: Reconstruction of the impedance (5.3) in a drop–ellipse geometry.
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Figure 4: Reconstruction of the impedance (5.4) in a peanut–circle geometry.
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