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Summary. We consider the numerical analysis of quadratic optimal control problems with
distributed and Robin boundary control governed by an elliptic problem. The Galerkin dis-
cretization is stabilized via the local projection approach which leads to a symmetric discrete
optimality system. In the singularly perturbed case, the Robin control at parts of the boundary
can be seen as regularized Dirichlet control.

1 Introduction
Let Ω ⊂ Rd ,d ∈ {2,3} be a bounded polyhedral domain with Lipschitz boundary ∂Ω =
ΓR∪ΓD, ΓD∩ΓR = /0 and outer normal unit vector n. We address some aspects of the numerical
analysis of the quadratic optimal control problem

Minimize J(u,qΩ ,qΓ ) :=
1
2

λΩ‖u− ũΩ‖2
L2(Ω) +

1
2

λΓ ‖u− ũΓ ‖2
L2(ΓR)

+
1
2

αΩ‖qΩ‖2
L2(Ω) +

1
2

αΓ ‖qΓ ‖2
L2(ΓR) (1)

where (u,qΩ ,qΓ ) ∈ V ×QΩ ×QΓ := {v ∈ H1(Ω) : u|ΓD = 0}×L2(Ω)×L2(ΓR) solves the
mixed boundary value problem of advection-diffusion-reaction type

−ε∆u+b ·∇u+σu = f +qΩ in Ω , (2)

u = 0 on ΓD, ε∇u ·n+βu = g+qΓ on ΓR.

We assume that ε > 0 and σ ≥ 0 are constants and that the advective field b is divergence-
free. In (1), the desired states are ũΩ and ũΓ . The constants λΩ ,λΓ ≥ 0 with λ 2

Ω
+ λ 2

Γ
>

0 describe the weights of the distributed and boundary control in (1) whereas αΩ ,αΓ ≥ 0
with α2

Ω
+ α2

Γ
> 0 serve as regularisation parameters. The state equation (2) describes the

dependence of the state u on the control (qΩ ,qΓ ).
Problem (1)-(2) with ΓR = /0 has been considered in [3, 10] for the singularly perturbed

case 0 < ε � 1, see also the references therein. Here one goal is to consider problem (1)-
(2) simultaneously for distributed and (Robin) boundary control. Notably, for 0 < ε � 1, the
Robin control can be seen as regularized Dirichlet control.

The Galerkin discretization is stabilized as in [3] via the local projection approach (LPS
for short below) which leads to a symmetric optimality system. This implies that discretization
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and optimization commute as opposed to residual-based stabilization techniques. Another aim
of the present paper is a more general LPS approach, including a two-level variant (as in [3])
and a one-level variant introduced in [9]. Let us emphasize two aspects of the analysis: (i) The
regularity of the solution of problem (2) is taken into account by using Sobolev-Slobodeckij
spaces and adapting the analysis of the LPS method. (ii) The analysis is performed for shape
regular meshes (as opposed to quasi-uniform meshes in [3]) which allows for (isotropic) mesh
refinement at corners or edges of the domain and in boundary layers.

An outline of the paper is as follows: In Section 2, we address the solvability of problem
(1)-(2). Then, in Section 3, we consider the finite element (FE) discretization of the optimality
system whereas Section 4 presents its convergence properties. In Sections 5 and 6, we address
a numerical experiment and the interpretation of Robin control as regularized Dirichlet control.
For full proofs we refer to [8].

Standard notations for Lebesgue and Sobolev spaces are used, e.g., the L2-inner product
and the L2-norm in G⊆Ω are denoted by (·, ·)G and ‖ · ‖0,G.

2 Continuous optimal control problem
Here we consider the optimality system for the continuous optimal control problem (1)-(2).
To this goal, we first consider the solvability of the state equation (2) with f̃ := f + qΩ and
g̃ := g+qΓ . The variational form of problem (2) reads:

Find u ∈V such that a(u,v) = f (v) ∀v ∈V, (3)

a(u,v) := ε(∇u,∇v)Ω +(b ·∇u+σu,v)Ω +(βu,v)ΓR , f (v) := ( f̃ ,v)Ω +(g̃,v)ΓR .

Lemma 1. There exists a unique solution u ∈ H1(Ω) of problem (3) under the assumptions:

i) b ∈ [L∞(Ω)]d , f̃ ∈ L2(Ω), g̃ ∈ L2(ΓR), β ∈ L∞(ΓR),
ii) ε > 0, σ ≥ 0 and ∇ ·b = 0 a.e. in Ω ,

iii) β̃ := β + 1
2 (b ·n)≥ β0 ≥ 0, β ≥ 0 a.e. on ΓR,

iv) There holds: (iv)1 µd−1(ΓD) > 0, and/ or (iv)2 σ > 0 or β0 > 0.

Moreover, the optimal control problem (1)-(2) has a unique solution (u,qΩ ,qΓ ).

The proof can be found in [8], Lemma 2.1. Please note that the assumption β ≥ 0 is not needed
for this result, but it will be used later on in the analysis in Section 4.

In general, the solution of (3) is not in W 2,2(Ω). Let S be the set of points (for d = 2) or
edges (for d = 3) which subdivide the polyhedral boundary ∂Ω into smooth disjoint connected
components. The weighted Sobolev space V k,2

δ
(Ω) denotes the closure of C∞(Ω) w.r.t.

‖v‖V k,2
δ

(Ω) =
(

∑
|α|≤k

∫
Ω

r2(δ−k+|α|)|Dα u|2 dx
) 1

2

where r = r(x) = dist(x,S ), δ ∈ R, and k ∈ N. The parameter δ is defined via eigenvalues
of eigenvalue problems (in local coordinate systems at parts of the set S ) associated with
problem (3). As it is not the goal here to give sufficient conditions for the solution of problem
(3) to belong to V k,2

δ
(Ω), we refer to [6]. Moreover, we do not intend to consider graded FE

meshes in the neighborhood of the set S although the forthcoming numerical analysis allows
such kind of refinement. For such approach to optimal control problems, see [1].

Here we consider on a subdomain G⊆Ω the Sobolev-Slobodeckij spaces
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W k+λ ,2(G) :=
{

v ∈W k,2(G) : ‖u‖k+λ ,2,G < ∞

}
, k ∈ N0, λ ∈ [0,1)

‖u‖k+λ ,2,G :=
(
‖u‖2

k,2,G + ∑
|α|=k

∫
G

∫
G

|Dα u(x)−Dα u(y)|2

|x− y|d+2λ
dx dy

) 1
2
.

The spaces W k+λ ,2(ΓR) are defined in a similar way.

Remark 1. The embeddings V 2,2
δ

(Ω)⊂W
d
2 +κ,2(Ω)⊂C(Ω) are valid for δ < 2− d

2 +κ with
κ > 0, cf. [6]. In particular, for the case ∂Ω = ΓD in polyhedral domains, the conditions
δ ≤ 1

2 +κ,κ > 0 are sufficient.

As problem (3) is uniquely solvable, we define the affine linear solution operator S :
L2(Ω)×L2(ΓR)→V, u = S(qΩ + f ,qΓ +g). Due to the linearity of (2) we can split S in its
linear and affine linear part. Inserting u = S(qΩ + f ,qΓ +g) = S(qΩ ,qΓ )+S( f ,g) in (1), we
obtain (with trace operator γ) and the definitions uΩ := ũΩ −S( f ,g) and uΓ := ũΓ −γ ◦S( f ,g)
the reduced cost functional:

j(qΩ ,qΓ ) = J (qΩ ,qΓ ,S(qΩ ,qΓ )) =
1
2

λΩ‖S(qΩ ,qΓ )−uΩ‖2
0,Ω

+
1
2

λΓ ‖γ ◦S(qΩ ,qΓ )−uΓ ‖2
0,ΓR

+
1
2

αΩ‖qΩ‖2
0,Ω +

1
2

αΓ ‖qΓ ‖2
0,ΓR

.

(4)

Now the reduced optimization problem reads

Minimize j(qΩ ,qΓ ), (qΩ ,qΓ ) ∈ QΩ ×QΓ . (5)

The reduced cost functional j is continuously differentiable. In order to formulate the
optimality conditions for problem (5), we define the associated adjoint state p ∈V to (qΩ ,qΓ )
as the solution of

Find p ∈V : aad j(p,v) = λΩ (u−uΩ )Ω +λΓ (u−uΓ )ΓR ∀v ∈V, (6)

aad j(p,v) := ε(∇p,∇v)Ω − (b ·∇p,v)Ω +σ(p,v)Ω +((β +b ·n)p,v)ΓR .

The necessary (and sufficient) optimality conditions read

DqΩ
j(qΩ ,qΓ ) · (kΩ −qΩ ) = (αΩ qΩ + p,kΩ −qΩ )Ω = 0, ∀kΩ ∈ QΩ , (7)

DqΓ
j(qΩ ,qΓ ) · (kΓ −qΓ ) = (αΓ qΓ + γ ◦ p,kΓ −qΓ )ΓR = 0, ∀kΓ ∈ QΓ , (8)

leading to
αΩ qΩ + p = 0, in Ω αΓ qΓ + γ ◦ p = 0 on ΓR. (9)

The optimality system (KKT-system) for problem (1)-(2) is formed by (9) together with
the state problem (3) and the adjoint state problem (6). The second order derivatives of
j(qΩ ,qΓ ) do not depend on (qΩ ,qΓ ) and are positive definite.

As already said, the solution of (1)-(2) is in general not arbitrarily smooth.

Assumption 1: The optimal solution (u, p,qΩ ,qΓ ) of the optimal control problem (1)-(2)
belongs to [W 1+λ ,2(Ω)]3×W

1
2 +λ ,2(ΓR) with 1+λ > d

2 .
Assume that αΩ ,αΓ > 0. Then Assumption 1 is valid if the solution u of (3) belongs to

W 1+λ ,2(Ω),1+λ > d/2, eventually for sufficiently smooth data f̃ , g̃,β . For sufficient condi-
tions, see Remark 1. Then the same statement is valid for the solution p of (6) for sufficiently
smooth data uΩ ,uΓ . Moreover, the regularity of qΩ and qΓ follows via (9). Finally, we remark
that Assumption 1 allows later on Lagrangian interpolation of the solution.
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3 Stabilized discrete optimality system
Here we introduce the discretized optimal control problem to (1)-(2). A more general approach
to the discretization as in [3] is applied by considering shape-regular FE meshes and a more
flexible stabilization concept.

Consider a family of shape-regular, admissible decompositions Th of Ω into d-dimensional
simplices, quadrilaterals (d = 2) or hexahedra (d = 3). Let hT be the diameter of a cell T ∈Th
and h = maxT∈Th hT . Assume that, for each T ∈Th, there exists an affine mapping FT : T̂ → T
which maps the reference element T̂ onto T . This quite restrictive assumption for quadrilater-
als/ hexahedra can be weakened to asymptotically affine linear mappings [2]. Let eh denote the
set of element faces (for d = 3) or element edges (for d = 2) induced by Th on ∂Ω . Moreover,
we assume that the Robin part ΓR of the boundary is exactly triangulated by eh.

Set PTh = {vh ∈ L2(Ω) : vh ◦FT ∈ P1(T̂ ),T ∈ Th} within P1(T̂ ), the space of complete
linear polynomials on T̂ , and RTh = {vh ∈ L2(Ω) : vh ◦FT ∈ Q1(T̂ ),T ∈ Th} within Q1(T̂ ),
the space of all polynomials on T̂ with maximal first degree in each coordinate direction. The
state space V is approximated by a FE space Vh ⊃ PTh ∩V or Vh ⊃ RTh ∩V. Similarly, let
Qh,Ω ⊂H1(Ω) be a FE space for the control variable and Qh,Γ = Qh,Ω |ΓR its restriction to ΓR.

The basic Galerkin discretization of the state problem (3) reads:

find uh ∈Vh such that a(uh,vh) = f (vh), ∀vh ∈Vh. (10)

The solution uh of (10) may suffer from spurious oscillations. As a remedy, we consider the
local projection stabilization (LPS) approach which results in a symmetric discrete optimality
system. LPS methods split the discrete function spaces into small and large scales and add
stabilization terms of diffusion-type acting only on the small scales. There are basically a two-
and a one-level variant (indicated by Mh = T2h and Mh = Th, respectively).

The two-level variant starts from the given space Vh = PTh ∩V or Vh = RTh ∩V for sim-
plicial or hexahedral elements. The large scales are determined by means of a coarse, non-
overlapping and shape-regular mesh Mh = {Mi}i∈I which is constructed by coarsening Th s.t.
each M ∈Mh with diameter hM is the union of neighboring cells T ∈ Th. (A more practical
approach is to start from the coarse grid Mh and to construct Th by an appropriate refinement,
see [4], Sect. 4.) Moreover, we assume:

∃C > 0 : hM ≤ChT , ∀T ∈Th, M ∈Mh with T ⊂M. (11)

We introduce a discontinuous FE space Dh ⊂ L2(Ω) of piecewise constant functions on Mh
and its restriction Dh(M) := {vh|M ; vh ∈ Dh} to M ∈Mh. The next ingredient is the local
L2-projection πM : L2(M)→ Dh(M) which defines the global projection πh : L2(Ω)→ Dh by
(πhv)|M := πM(v|M) for all M ∈Mh. The fluctuation operator κh : L2(Ω)→ L2(Ω) is defined
by κh := id−πh.

The one-level variant starts from the given discontinuous FE space Dh of piecewise con-
stant functions on Mh = Th and uses an appropriate FE space Vh on Th. For simplicial ele-
ments, define

Pbub
1 (T̂ ) = P1(T̂ )+ b̂ ·P0(T̂ ), b̂(x̂) := (d +1)d+1

λ̂1(x̂) · . . . · λ̂d+1(x̂)

with the barycentric coordinates λ̂1, . . . , λ̂d+1. The enriched space is defined as

Vh = {v ∈ H1(Ω)∩V : v|T ◦FT ∈ Pbub
1 (T̂ ) ∀T ∈Th}.

A similar construction is given in Section 4 of [9] for hexahedral elements. Then the same
framework as in the two-level approach can be used by setting Mh = Th.
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For both variants, the stabilized discrete formulation reads: find uh ∈Vh such that

al ps(uh,vh) := a(uh,vh)+ sh(uh,vh) = f (vh), ∀vh ∈Vh, (12)

sh(uh,vh) := ∑
M∈Mh

τM(κh (b ·∇uh) ,κh (b ·∇vh) )M . (13)

The stabilization sh with parameters τM ≥ 0 acts solely on the small scales. Another variant
uses s̃h(uh,vh) = ∑M τ̃M(κ̃h(∇uh), κ̃h(∇vh))M instead of sh(·, ·). Here κ̃h denotes a vector-
valued version of the fluctuation operator κh.

For a discussion of “pro’s and con’s” of the two variants, we refer to [4].
The discretized control problem associated with (1)-(2) reads as follows:

min J(uh,qh,Ω ,qh,Γ ), (uh,qh,Ω ,qh,Γ ) ∈Vh×Qh,Ω ×Qh,Γ , (14)

al ps(uh,vh) = ( f +qh,Ω ,vh)Ω +(g+qh,Γ ,vh)ΓR , ∀vh ∈Vh. (15)

Problem (14)-(15) has a unique solution (uh,qh,Ω ,qh,Γ ) which allows us to define the discrete
solution operator Sh : QΩ ×QΓ →Vh by

al ps(Sh(qh,Ω ,qh,Γ ),vh) = ( f +qh,Ω ,vh)Ω +(g+qh,Γ ,vh)ΓR ∀vh ∈Vh

and the discrete reduced cost functional as jh(qh,Ω ,qh,Γ ) = J(Sh(qh,Ω ,qh,Γ ),qh,Ω ,qh,Γ ). The
necessary (and here also sufficient) optimality conditions read

αΩ qh,Ω + ph = 0, αΓ qh,Γ + γ ◦ ph = 0.

Here the discrete adjoint state ph ∈Vh solves the discrete adjoint state problem

al ps(vh, ph) = λΩ (uh−uΩ ,vh)Ω +λΓ (uh−uΓ ,vh)ΓR . (16)

where uh = Sh(qΩ ,qΓ ) is the discrete state according to (15).

Remark 2. The symmetry of the LPS term implies that the operations “optimize” and “dis-
cretize” commute, see [3].

4 A-priori error analysis
Here we provide the error analysis for the optimal control problem (1)-(2). It turns out that
additional assumptions for the LPS method are required.

Assumption 2: The fluctuation operator κh = id−πh has the property:

∃Cκ > 0 : ‖κhq‖0,M ≤Cκ hs
M |q|s,M , ∀q ∈W s,2(M), s ∈ [0,1], ∀M ∈Mh. (17)

Remark 3. The original version of (17) in [9] only considers s ∈ {0,1}.

Following [9], we construct an interpolation jO : V → Vh such that the error v− Ihv is
L2-orthogonal to Dh for all v ∈ V . The following assumption is valid for the discrete spaces
discussed in the previous section and allows us to conserve standard approximation properties.

Assumption 3: There exists a constant βS > 0 such that, for any M ∈Mh,

inf
qh∈Dh(M)

sup
vh∈Yh(M)

(vh,qh)M

‖vh‖0,M‖qh‖0,M
≥ βS > 0. (18)
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where Yh(M) := {vh|M : vh ∈Vh,vh = 0 on Ω \M}.
Condition (18) implies that Dh must not be too rich. On the other hand, Dh must be rich

enough to fulfil (17) .
The following result extends the proof in [9] to λ ∈ {0,1}, see [8], Lemma 4.1.

Lemma 2. Under Assumption 3 there exists an operator jO : V →Vh such that

(v− jOv,qh)Ω = 0, ∀qh ∈ Dh,∀v ∈V, (19)

and for all M ∈Mh, for all E ∈ eh, and for v ∈V ∩W 1+λ ,2(Ω) with 1+λ > d
2

‖v− jOv‖0,M +hM |v− jOv|1,M +h
1
2
M‖v− jOv‖0,E . h1+λ

M ‖v‖1+λ ,2,ω(M). (20)

The next goal is to derive error estimates for the state problems (15) and (16). First, the
stability of the scheme will be given in the mesh-dependent norm

|||v||| :=
(

ε|v|21,Ω +σ‖v‖2
0,Ω +‖β̃

1
2 v‖2

0,ΓR
+ sh(v,v)

) 1
2
, ∀v ∈V.

Lemma 3. The LPS schemes (15) and (16) have unique solutions.

Proof. We consider, e.g., problem (15) with vh = uh. The application of the Cauchy-Schwarz
inequality and the definition of the triple norm yields the a priori estimate

|||uh||| ≤CΩ‖ f +qh,Ω‖0,Ω +CΓ ‖g+qh,Γ ‖0,ΓR

with CΩ := min{σ− 1
2 ;CPε

− 1
2 }, CΓ := min{β−

1
2

0 ;CPε
− 1

2 } and Poincare constant CP.

The following a priori estimates are based on the standard technique of combining stability
and consistency results based on the previous auxiliary results. Here, and in the following
Lemma, we fix some controls (pΩ , pΓ ) ∈ QΩ ×QΓ which will be later on, for the main
theorem, chosen as the Lagrangian interpolants of the optimal controls (qΩ ,qΓ ).

Lemma 4. For (qΩ ,qΓ ) ∈ QΩ ×QΓ , let u = S(qΩ ,qΓ ) ∈ V be the solution of (2). For some
(pΩ , pΓ ) ∈ QΩ ×QΓ , let wh = Sh(pΩ , pΓ ) ∈Vh be the solution of

al ps(wh,vh) = ( f + pΩ ,vh)Ω +(g+ pΓ ,vh)ΓR ∀vh ∈Vh (21)

with
τM ∼ hM/‖b‖[L∞(M)]d . (22)

Then, under the assumptions of Lemma 1, there holds the a-priori error estimate

|||u−wh||| ≤ CΩ‖qΩ − pΩ‖0,Ω +CΓ ‖qΓ − pΓ ‖0,ΓR (23)

+C
(

∑
M∈Mh

h2λ+1
M

{ |b ·∇u|2
λ ,2,M

‖b‖[L∞(M)]d
+CM‖u‖2

1+λ ,2,M

}) 1
2

with constants CM and CΓ as in the proof of Lemma 3 and

CM := εh−1
M +σhM +‖b‖[L∞(M)]d +‖β‖L∞(∂M∩ΓR) +‖b ·n‖L∞(∂M∩ΓR).

For a full proof of Lemma 4, see [8], Lemma 4.3. Similarly, we obtain an a-priori error
estimate for the adjoint problem (16) where |||u−wh||| in (23) can be further estimated via
Lemma 4. A full proof of Lemma 5 is given in [8], Lemma 4.4.
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Lemma 5. For (qΩ ,qΓ ) ∈QΩ ×QΓ , let p ∈V be the solution of the adjoint state problem (6)
and for some (pΩ , pΓ ) ∈ QΩ ×QΓ , let yh ∈ Vh be the adjoint discrete solution. Then, there
holds the a-priori error estimate

|||p− yh||| ≤ (C2
Ω λΩ +C2

Γ λΓ )‖|u−wh‖|+C
(
∑
M

h2λ+1
M

{ |b ·∇p|2
λ ,2,M

‖b‖[L∞(M)]d
+CM‖p‖2

1+λ ,2,M

}) 1
2

with τM as in (22) and constants CM ,CΩ and CΓ as in the previous Lemma.

We can now give the main result for the optimal control problem. For a full proof of
Theorem 1, we refer to [8], Theorem 4.5.

Theorem 1. Let the assumptions of Lemma 1 and Assumption 2 be valid. Moreover, let
(u,qΩ ,qΓ ) be the solution of the optimal control problem (1)-(2) and (uh,qh,Ω ,qh,Γ ) the solu-
tion of the discretized problem (14)-(15). Finally, let αΩ ,αΓ > 0. Then there exists a constant
C > 0 depending on λΩ ,λΓ ,αΩ ,αΓ ,CΩ ,CΓ such that the following error estimate holds:

‖qΩ −qh,Ω‖0,Ω +‖qΓ −qh,Γ ‖0,ΓR

≤ C
{(

∑
M∈Mh

h1+2λ

M |qΩ |21+λ ,2,M

) 1
2 +
(

∑
E∈eh∩ΓR

h1+2λ

E |qΓ |21+λ ,2,E

) 1
2

+
(
∑
M

h1+2λ

M

( |b ·∇u|2
λ ,2,M

‖b‖[L∞(M)]d
+
|b ·∇p|2

λ ,2,M

‖b‖[L∞(M)]d
+CM

(
‖u‖2

1+λ ,2,M +‖p‖2
1+λ ,2,M

))) 1
2
}

with τM as in (22), hE = diam(E),E ∈ eh and CM ,CΩ ,CΓ as in Lemma 4.

Remark 4. In the limit case λ = 1, we obtain the optimal convergence rate O(h
3
2
M).

5 Numerical experiment
Consider the following numerical example:

minJ(qΩ ,u) :=
1
2
‖u− ũΩ‖2

L2(Ω) +
1
2

αΩ‖qΩ‖2
L2(Ω),

−ε∆u+(b ·∇)u+σu = f +qΩ in Ω , u = 0 on ∂Ω

with qΩ ∈ L2(Ω), ε = 10−5, b = (−1,−2)t , σ = 1, f = 1, ũΩ = 1 and αΩ = 0.1. The
numerical solution in [3] (for box-constraints of control) with the two-level LPS method and
ε = 10−3 gave strong oscillations in the boundary layer regions.

Table 1 gives the convergence history and the numerical convergence rate of the cost
functional J. Figure 1 shows the discrete control and state on the coarse grid for the two-level
approach with Q1-elements and h = 1

128 . Spurious oscillations in the boundary layer regions
are significantly reduced as compared to the results in [3].

There is an ongoing scientific discussion on the strength of the LPS-method vs. classi-
cal residual-based stabilization techniques (like the streamline diffusion method). In [5] it is
shown for the one-level LPS method that the LPS-norm gives additional control of the stream-
line derivative, i.e. on (∑M δM‖b ·∇(·)‖2

0,M)
1
2 with δM ∼min(hM/‖b‖0,∞,M ;h2

M/ε). A further
reduction of remaining spurious oscillations in boundary layers is possible with adaptive mesh
refinement based on a posteriori error estimators. For the streamline diffusion method applied
to optimization problems for advection-diffusion problems, we refer to [10].
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Fig. 1. Optimal discrete control and state for Example 2 with ε = 10−5 and τ = 0.1 h

h = 2−l J(qh,uh) J(qh,uh)− J(q2h,u2h) num. conv. rate
2 3.082E-01 - -
3 2.767E-01 3.152E-02 -
4 2.639E-01 1.277E-02 1.303
5 2.602E-01 3.748E-03 1.769
6 2.592E-01 9.138E-04 2.036
7 2.591E-01 1.743E-04 2.390

Table 1. h-convergence of the cost functional

6 Further application: Regularized Dirichlet control
In applications, a Dirichlet boundary control u = q is desirable. A review of some variants is
given in [7]. One possibility is to approximate the Dirichlet control by a Robin control

ε̂∇u ·n+β (u−q) = 0, β = O(1) (24)

for ε̂ → +0, but the choice of ε̂ is delicate. For the singularly perturbed problem (2) with
ε̂ = ε , one can interpret the Robin control as regularized Dirichlet control.

Define the subsets Γ−,Γ0 and Γ+ of the boundary ∂Ω , depending on the sign of (b ·n)(x).
The solution u of problem (2) has boundary layers at the outflow part Γ+ with gradient |ε∇u ·
n| ∼ 1 and at characteristic boundaries Γ0 with (at most) |ε∇u ·n| ∼

√
ε . At the inflow part

Γ−, one has only |ε∇u ·n| ∼ ε . This motivates us to exclude a Dirichlet control at the outflow
boundary Γ+. On Γ−∪Γ0, the Robin regularization (24) with ε̂ = ε and β + 1

2 b ·n≥ β0 > 0 is
a good approximation of the Dirichlet control u = q.

A typical situation is the flow in a domain of channel type Ω = (0,L)× (−H
2 , H

2 ) with the
flow field b(x) = (( H

2 −|x2|)κ ,0)T with κ ≥ 0. The solution u of (2) can be seen as a tempera-
ture field or as the density of some chemical reactant. Let us describe potential applications of
Dirichlet control: A Dirichlet condition u = q is given at Σ ⊂ Γ− = {0}× (−H

2 , H
2 ) whereas

a Robin condition ε
∂u
∂x1

+ β (u− g) = 0 with β + 1
2 b · n ≥ β0 > 0 is prescribed on Γ− \ Σ .

A Neumann condition ε
∂u
∂x1

= 0 might be prescribed on Γ+ = {1}× (−H
2 , H

2 ). An ”insula-

tion” condition ε
∂u
∂x2

= 0 is given at the channel walls Γ0 = (0,L)×{−H
2 , H

2 }. Similarly, one
can assume a Dirichlet condition u = q at Σ ⊂ Γ0 of the channel walls. Finally, replacing the
Dirichlet control on Σ ⊂ Γ− ∪Γ0 by Robin boundary control leads to the problem considered
within this report. An analytical justification of this approach and numerical results will be
given elsewhere.
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