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Application of Domain Decomposition Methods to Indoor Air Flow Simulation
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A framework for solving the nonisothermal URANS equations with emphasis on applications to thermal building simulation is prescribed
in this paper. Different domain decomposition techniques are used (i) for the treatment of boundary layers, (ii) for the efficient solution
of the arising linear subproblems, and (iii) for coupling the indoor air flow field with the ambient. The approach is then applied to
exemplary indoor air flow configurations.
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1. Introduction

The accurate numerical prediction of indoor-air flows for building configurations of practical relevance
requires both a well-resolved flow simulation inside the building and taking into account the effect of the
ambient on the indoor-air flow field. The goal of the present paper is to give an overview of recent domain
decomposition (DD) techniques for tackling such flow problems. 1

In the first part of this paper, the focus is on the indoor-air flow as a problem being isolated from the
surrounding. Numerical solutions at reasonable computational costs are made amenable by employing two
DD methods. First, a modified wall-function method for avoiding a near-wall grid refinement is applied; this
method can be interpreted as a DD method with full overlap. Secondly, a non-overlapping DD method
(iteration-by-subdomains) is used, which allows a parallel solution of linearized problems of Oseen and
advection-diffusion-reaction type.

In the second part, two other DD methods are described, which are used in order to improve the physics
involved in the computational model. For getting more realistic boundary conditions at openings of the
flow domain, the computational domain is extended by a suitable ambient surrounding. Inflow and outflow
are then handled by the iteration-of-subdomains method. Finally, realistic predictions require an active
coupling between the interior of the building and its surrounding. This gives rise to a hybrid DD method
which is performed by coupling the flow solver with thermal building simulation.

2. Governing equations for buoyancy driven incompressible flow

Consider the non-dimensional incompressible, non-isothermal, unsteady Reynolds-averaged Navier-Stokes
(URANS) equations with a turbulence model to be specified later [1]. Buoyancy forces are modeled using
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the Boussinesq approximation. In a bounded domain Ω ⊂ Rd, d = 2, 3, velocity u, pressure p, and
temperature θ are solutions of the coupled system

∂tu−∇ · (2νeS(u)) + (u · ∇)u + ∇p = −βθg,

∇ · u = 0, (1)

∂tθ + (u · ∇)θ −∇ · (ae∇θ) = c−1
p q̇V

with S(u) := 1
2(∇u + ∇uT ), isobaric volume expansion coefficient β, gravitational acceleration g, volu-

metric heat source q̇V , and specific heat capacity (at constant pressure) cp. Effective viscosities νe = ν +νt

and ae = a + at are introduced with kinematic viscosity ν, turbulent viscosity νt, thermal diffusivity
a = ν/Pr and turbulent thermal diffusivity at = νt/Prt with Prandtl numbers Pr = 0.7 and Prt = 0.9.
The non-constant νt and at model turbulent effects and depend on the chosen turbulence model. Other
passive scalar fields like age of the air or concentration of pollutants can be easily appended to model (1),
see [5].

Depending on the sign of u ·n, the boundary ∂Ω is divided into wall zones Γ0 ≡ ΓW , inlet zones Γ− and
outlet zones Γ+. Boundary conditions are imposed as

σ(u, p)n = τnn on Γ− ∪ Γ+ , u = 0 on Γ0 (2)

with σ(u, p) = 2νeS(u) − pI. For θ one requires

θ = θin on Γ− , ae∇θ · n = 0 on Γ+ , θ = θw on Γ0. (3)

The in- and outflow conditions in (2) are suitable for the specification of natural ventilation problems. In
Section 5 an alternative approach to boundary conditions on Γ−∪Γ+ is considered using a non-overlapping
DD method.

The time discretization is performed, for simplicity, with the BDF(1) scheme with ∂tφ ≈ φ−φold

δt for some
variable φ. This leads to a sequence of coupled nonlinear problems to be solved within each time step.

3. Domain decomposition with full overlap for boundary layers

For brevity, it is assumed here that ∂Ω = Γ0 ≡ ΓW ; for the general case see [5]. Near ΓW , velocity u and
temperature θ exhibit strong gradients. Fig. 1 (left) shows a typical near-wall profile for the streamwise
component of u for the flow along a heated vertical wall. In order to circumvent an expensive anisotropic
grid refinement in the near-wall region, an overlapping DD approach is applied, see Fig. 1 (right).

The global problem in Ω reads

−∇ · (νe∇u) + (u · ∇)u + (δt)−1u + ∇p = −βθg + (δt)−1uold

∇ · u = 0 (4)

−∇ · (ae∇θ) + (u · ∇)θ + (δt)−1θ = c−1
p q̇V + (δt)−1θold

with modified boundary conditions on ΓW

u · n = 0 , (I − n⊗ n)σ(u, p)n = τt(u,uL, θL) (5)

ae∇θ · n = c−1
p q̇(uL, θL). (6)

The boundary data τt, q̇ at ΓW are taken from the boundary layer solution (uL, pL, θL) of (4) in the region
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Ωδ (see Fig. 1 right) with boundary conditions

uL = 0, θL = θw on ΓW ; uL = u, θL = θ on Γδ. (7)

Now the turbulent viscosity νt and the data τt, q̇ in (5)-(6) are specified. Moreover, the boundary layer
model is simplified:

As the global turbulence model in Ω one can select a standard one- or two-equation model (e.g. Spalart-
Allmaras, k−ω). Here, as a reasonable choice for indoor-air flow, the k−ǫ model with νt = cµk2/ǫ, cµ = 0.09
is used. The turbulent kinetic energy k and dissipation ǫ are semidiscrete solutions of

−∇ · (νk∇k) + (u · ∇)k + (δt)−1k = Pk + G − ǫ + (δt)−1kold (8)

−∇ · (νǫ∇ǫ) + (u · ∇)ǫ + (δt)−1ǫ + C2ǫ
2k−1 = C1ǫk

−1(Pk + G) + (δt)−1ǫold

with effective viscosities νk = ν+νt/Prk, νǫ = ν+νt/Prǫ, production and buoyancy terms Pk = 2νt|S(u)|2,
G = βatg ·∇θ and constants C1 = 1.44, C2 = 1.92, P rk = 1.0, P rǫ = 1.3. The k− ǫ equations (8) are solved

in Ω\Ωδ with the boundary conditions k = c
−1/2
µ U2

∗
, ǫ = U3

∗
/(κy) on Γδ with κ = 0.41 and U∗ = |τt|1/2.

A modified wall-function approach for a simplified boundary layer model in Ωδ is applied. Denote x, y, z
the streamwise, wall-normal and spanwise direction resp. in a wall-fitted coordinate system, see Fig. 1
(left). According to Prandtl’s boundary layer theory, we approximate (4)-(7) in Ωδ by a system of coupled
ODEs

− d

dy

(

νL
e

duL
x

dy

)

= − βθLgx, − d

dy

(

aL
e

dθL

dy

)

= 0, (9)

uL
x |y=0 = 0 , θL|y=0 = θw,

with the streamwise component gx of g and with matching conditions

uL
x |y=yδ

= ux(yδ), θL|y=yδ
= θ(yδ). (10)

For physical reasons, the following algebraic effective viscosities in Ωδ

νL
e = ν max

(

1;
Re

Remin

)

, aL
e =

ν

Pr
max

(

1;
Pr

PrL
t

Re

Remin

)

(11)

are taken with Re = |uL|y/ν and PrL
t = 1.16. Effects of thermal stratification in the boundary layer are

of prime importance. They are taken into account via the empirical formula [10]

Remin = min
(

20.0e
−25.0 q̇P r ν

U4
∗

g·n
; 70.0

)

. (12)

Now the model is decoupled and linearized within each time step:

(A) First update νt, at. Then update τt, q̇: Given ux, θ on Γδ from the previous iteration cycle, replace the
boundary condition (10) with

νL
e

duL
x

dy
|y=0 = R, aL

e

dθL

dy
|y=0 = S. (13)

Solve the initial value problem (9),(13) with (11),(12) using a shooting method for (R,S) on a layer-
adapted mesh until the conditions (10) are fulfilled. Then find the r.h.s. τt = −U2

∗
u/|u| and q̇ in (5),(6)

by setting U2
∗

= R and q̇ = cpS.
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(B) Solve the global problem (4)-(6) and, if the k-ǫ model is used, additionally (8), using an iterative block
Gauss-Seidel method, see [5, 19].

(C) Goto (A) if some stopping-criterion is not fulfilled. Otherwise goto next time step.

The iteration within each time step can be seen as an overlapping DD method. Moreover, the k − ǫ
model can be replaced by another eddy-viscosity based model. The v2 − f model which circumvents some
drawbacks of the k − ǫ model is currently under investigation. First reasonable results for the isothemal
flow in a three-dimensional channel are given in [6]. For recent progress with adaptive wall functions in
the isothermal case, see [3, 4].

4. Domain decomposition of linearized problems

Two basic problems are to solve in step (B). The first is the linearized Navier-Stokes problem of Oseen-type
with positive reaction term and variable viscosity (skipping the restriction ∂Ω = Γ0 in the sequel):

LO(a,u, p) ≡ −∇ · (2νS(u)) + (a · ∇)u + cu + ∇p = f in Ω

∇ · u = 0 in Ω (14)

σ(u, p)n = τnn on Γ− ∪ Γ+

(I − n⊗ n)σ(u, p)n = τt, u · n = 0 on Γ0.

Secondly, the linearized equations for θ, k and ǫ are advection-diffusion-reaction (ADR) problems in Ω̃ = Ω
or Ω̃ = Ω \ Ωδ with variable viscosity of the form:

LADRu ≡ −∇ · (ν∇u) + (a · ∇)u + cu = f in Ω̃

u = g on Γ̃D (15)

ν∇u · n = h on Γ̃N .

For the finite element discretization of (14)-(15), admissible triangulations Th = {K} of the domain Ω
together with discrete subspaces of globally continuous and piecewise polynomial ansatz and test functions
are considered.

It is well-known that the standard Galerkin FEM for the Oseen problem (14) with an equal-order ansatz
for velocity and pressure does not pass the discrete inf-sup condition. Therefore a pressure stabilization
(PSPG) together with divergence and SUPG stabilization is applied [5]. Moreover, the Galerkin-FEM with
SUPG-stabilization for the ADR-problem (15) is used together with a (nonlinear) shock-capturing method
, see [5].

The development of efficient domain decomposition methods for such linear problems is a matter of
ongoing research, see, e.g., [13,17]. Here, an approach (with a reasonable theoretical background) is pref-
ered which is easy to implement. More precisely, a parallelized solution of the linearized problems (14),
(15) is permitted by applying an iterative substructuring method which couples the subdomain problems
via Robin-type transmission conditions [5]. Consider a non-overlapping partition of Ω into N convex,
polyhedral subdomains being aligned with the FE mesh, i.e.

Ω̄ = Ω̄1 ∪ · · · ∪ Ω̄N , Ωk ∩ Ωj = ∅ ∀k 6= j , ∀K ∈ Th ∃k : K ⊂ Ωk.

Furthermore, set Γk := ∂Ωk\∂Ω, Γjk := ∂Ωj ∩ ∂Ωk, j 6= k, where Γkj = Γjk. Assume, for simplicity, that
the partition is stripwise.

The DD method is defined for the Oseen problem (14) as follows: for given (un
k , pn

k) from step n on each

Ωk, seek (in parallel) for (un+1
k , pn+1

k )

LO(a,un+1
k , pn+1

k ) = f in Ωk
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∇ · un+1
k = 0 in Ωk

σ(un+1
k , pn+1

k )nk = τnnk on ∂Ωk ∩ (Γ− ∪ Γ+)

πt,kσ(un+1
k , pn+1

k )nk = τt, un+1
k · nk = 0 on ∂Ωk ∩ Γ0

with πt,k := I − nk ⊗ nk, together with the interface conditions

Φk(u
n+1
k , pn+1

k ) = ϑΦk(u
n
j , pn

j ) + (1 − ϑ)Φk(u
n
k , pn

k ) on Γjk, j = 1, . . . ,N, j 6= k.

ϑ ∈ (0, 1] is a relaxation parameter. The interface function is given by

Φk(u, p) = σ(u, p) · nk + (−1

2
a · nk + zk)u (16)

with acceleration parameters zk.
For the ADR-problem (15) the DD method reads: for given un

k from iteration step n on each Ωk, seek

(in parallel) for un+1
k

LADRun+1
k = f in Ωk

un+1
k = 0 on ΓD ∩ ∂Ωk

ν∇un+1
k · nk = h on ΓN ∩ ∂Ωk

together with the interface conditions

Φk(u
n+1
k ) = ϑΦk(u

n
j ) + (1 − ϑ)Φk(u

n
k ) on Γjk, j = 1, . . . ,N, j 6= k

with a relaxation parameter ϑ ∈ (0, 1]. The interface function is specified as

Φk(u) = ν∇u · nk + (−1

2
a · nk + zk)u. (17)

For the formulation of the DD method on the discrete level, see [5].
A basic advantage for the practical implementation of the method with Robin-type interface conditions

is that the algorithm can be split into a parallel computation step for (un+1
k , pn+1

k ) and un+1
k , respectively,

and a parallel communication step for an update of the Lagrangian multipliers of the interface conditions.
The algorithms for both linear problems are well-posed if zk = zj > 0. The sequences {un

k}n for the
velocity in the Oseen problem and {un

k}n, k = 1, ...,N for the scalar field in the ADR-problem converge
strongly to the restrictions of the global discrete solutions to Ωk w.r.t. stabilized energy norms [8, 11]
and [7], respectively.

Convergence rates are not available in the a-priori estimate. Nevertheless, appropriate a-posteriori esti-
mates allow to control the convergence on subdomains via jumps of the DD solutions across the interface.
This technique has been developed for the ADR-problem in [7] and extended, e.g., in [8, 11] to the Oseen
problem. In Fig. 2, it is shown for a typical ADR problem that the error in the energy norm on the
subdomains is efficiently controlled by the interface error. Moreover, we observe that an optimization of
the acceleration parameter zk is in order. Indeed, besides the a-posteriori estimate provides the principal
design of the acceleration parameter

zk =
1

2
|a · nk| + Rk(Lk, ν, c,a), Lk ∈ {h,Hk}, Hk = diam(Ωk), (18)
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with

Rk ∼ ν

Hk

√

Hk

Lk

[

1 + Hk

√

c

ν
+ min

(‖a‖max√
νc

;
H‖a‖max

ν

)]

; (19)

for details see [7] and [8]. Fig. 2 gives some impression of the considerable acceleration of convergence
for the choice Lk = Hk. In particular, the value of zk = 0.1 corresponds to the optimized parameter.
Additional numerical experiments can be found in [7, 8, 11] and in references therein.

The relaxation parameter ϑ in the interface conditions may considerably influence the convergence of
the DD iteration. This is the case, in particular, if the flow field a is tangential to an interface. Moreover,
the convergence of the pressure in the Oseen problem can be accelerated in certain cases. Generally, a
slight under-relaxation with ϑ ∼ 0.9 can be recommended.

In a recent paper, see [9], it has been observed for the ADR-problem that an additional convergence
acceleration of the DD method is possible using a cyclic two-level DD-approach with z1

k related to Lk = Hk

and z2
k related to Lk = h. In Fig. 3, the standard case with Lk = Hk (left) is compared to the two-level

approach for a typical ADR-problem. It might be only of theoretical interest that the error between the
discrete DD solution and the discrete solution without DDM can be driven to machine accuracy for the
new variant. More remarkably is that already for the first iterations the convergence can be accelerated.

5. Domain decomposition approach for coupling the interior flow with radiative heat transfer and

ambient

The proposed approach has been implemented in the research code ParallelNS. A stabilized finite
element discretization is performed with globally continuous and piecewise linear ansatz and test functions
for the unknowns u, p, θ, k, ǫ on unstructured tetrahedral (resp. triangular) meshes in 3D (resp. 2D). A
BDF-scheme is used for the semidiscretization in time.

Parallelization is accomplished using a master/slave paradigm in a PVM configuration. Computations
were performed on either a cluster of four Compaq Professional Workstations XP1000 (667 MHz) connected
by Ethernet or on Siemens Celsius machines with two Opteron processors (1.8 GHz) and 6 GB RAM. A
multitude of numerical results indicate that the approach is suitable for the parallel computation of indoor-
air flows in the coarse-granular case as no coarse grid solver is used so far.

The approach is applied at Dresden University of Technology as an analysis tool for the design and
investigation of heating and ventilation systems, see [14]. Emphasis is both on hygienic and on energetic
aspects of the indoor-air climate. Regarding the hygienic point of view, the distribution of the local age
of the air is of prime importance. An additional ADR equation modelling this quantity is included in the
method in a straightforward way, see Section 2.

5.1. Full coupling with the ambient surrounding.

In the first simulation, the natural ventilation flow in a cavity with openings of size h/b = 0.3m/1.5m and a
heating rod with Q̇ = 300W is considered, see Fig. 4. The initial temperature distribution in the cavity and
in the external domain is homogeneous with θL,in|t=0 = 28.5oC and θL,ex|t=0 = 27.9oC. This temperature
difference and the heating rod induce a buoyancy-driven fluid motion which simulates a displacement
ventilation with completely opened windows. The Rayleigh number Ra = 2.0184 · 1010 corresponds to a
turbulent flow. The method is assessed by reference with an experimental configuration and data, see [2].

The simulation of this flow requires the application of two additional DD methods. Firstly, the com-
putational domain Ω is enlarged as sketched in Figure 4. In order to get physically more correct data
at the inflow of the cavity Ωint, a suitable ambient surrounding Ωext is also taken into account, so that
Ω = Ωint ∪Ωext. The inflow and outflow conditions at the openings are modified as follows since the fields
τn in (2) and θin in (3) are usually not known. Instead, the application of the interface conditions of the DD
method, as presented in Section 3 provides a natural treatment of the inflow and outflow at the openings.
For a similar approach in case of wind-loads, see [5]. Suitable boundary conditions have to be imposed on
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∂Ω. For natural ventilation problems, the first condition in (2) with τn = 0 for u and condition (3) for θ
with θin = θext are imposed.

Secondly, an active coupling between the flow inside the cavity and the ambient is required, which
is performed using a special version of the building simulation tool TRNSYS (TRNSYS-TUD), see [18]
and [12]. This requires the thermal coupling with an additional domain, the envelope of the cavity denoted
by ΩW , see Figure 4. The flow simulation requires as an input the wall temperature θw in boundary
condition 3. This is provided by building simulation as a result from a balance of conduction, radiation
and convection in the cavity including walls.

For this purpose, the building simulation tool has to determine (i) the radiative heat transfer inside the
room, (ii) convective heat transfer across the boundary layer, and (iii) diffusive heat transfer across the
walls due to the temperature gradient between the inner wall temperature and the ambient temperature
by Fourier’s law.

Of major importance is an accurate prediction of (ii). We consider the coefficient of convective heat
transfer hc,i at the discrete wall-element i. Then hc,i is given by Newton’s cooling law

hc,i = − q̇i

θw,i − θδ,i

where q̇i is given by the wall-function method from the flow-solver, and θw,i and θδ,i are the temperature at
Γ0 resp. at Γδ, which are all interpolated appropriately to the mesh applied for thermal building simulation.
From these data, the building simulation tool computes the new wall temperatures θw,i which are then
interpolated onto the finer FEM mesh for the next flow solver step. This coupling between ParallelNS and
TRNSYS-TUD is done once each time step. Details of this coupling can be found in [15].

Regarding the FEM simulation, the application of the wall-function method allows to use a relatively
coarse unstructured tetrahedral mesh with about 121.000 elements in the internal domain without resolving
the near-wall region. The first grid points above the wall reside at yδ = 0.05m, which is slightly beyond
the velocity maximum in the free-convection boundary layer in Fig. 1 (left). Equations (9)-(12) are solved
in Ωδ on an auxiliary grid with 20 equidistant grid nodes in wall-normal direction.

The quasi-stationary flow field is shown in Fig.5 in three cross-sections (x = 0.465m, x = 1.215m and
x = 1.965m). Concerning the accuracy of the method, Fig.6 shows a comparison of the temperature
distribution θ = θ(z) measured and calculated at x = 1.215m, y = 1.10m over a long-time period of 7200s.
A visible difference appears at the early time t = 180s during the transient stage of the flow, which might
be due some flaws of the k − ǫ model for application to transient flows and due to the low-order time-
discretisation scheme. The quasi-steady solution is in reasonably well agreement with the experimental
data.

5.2. Indoor-air flow in an atrium

Consider now the numerical simulation of air-flow conditions in an atrium (with cafeteria) of size 22m ×
22.5m×17.2m, cf. Fig. 7. The boundary conditions are taken from a thermal simulation of the surrounding
rooms of the building using TRNSYS-TUD. A domain decomposition into three subdomains is performed.
The finite element mesh consists of approximately 1.2 × 106 tetrahedra, the resulting nonlinear algebraic
systems (per time step) have approximately 2×106 unknowns. This leads to storage requirements of about
2 GB.

The numerical simulation was performed under winter conditions over a period of two hours real time.
The CPU time on the Opteron machine with two processors and three subdomains was about 70 hours.
A third processor would reduce the CPU time to less then 40 hours.

The former situation was characterized by unpleasant air flow and temperature conditions caused by the
curved glass roof. In particular, the maximum velocity in the occupied zone reached unacceptable values.
An improvement of the air flow conditions was possible with an additional heating system below the roof
which yields a reduction of maximum velocity to acceptable values.

The resulting temperature field is presented in Fig. 8. The implementation of the additional heating
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system under the roof gives an acceptable temperature distribution in all relevant zones of the atrium. For
some details of the flow field, see Fig. 9.

6. Summary

In this paper, an approach is presented based on a combination of different domain decomposition tech-
niques for the reliable and efficient simulation of indoor air flow problems coupled with radiative heat
transfer and the ambient. The method has been applied successfully to a benchmark like problem and to
an exemplary complex building configuration. The framework is used as an analysis tool for the design
and investigation of heating and ventilation systems. Ongoing research is devoted to the development of
an optimization tool for indoor air flows using the present framework.
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Figure 1. Domain decomposition in the boundary layer region.
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Figure 2. Reliability of the a posteriori estimate for ν = 10−2 and h = 1
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Figure 3. Error reduction for standard case Lk = Hk (left) and two-level case (right)
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Figure 4. Coupling of CFD solver with thermal building simulation. Left: DDM for improved inflow/outflow at
openings and interaction with walls (detail). Right: Four domains of a coupled simulation of natural ventilation
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t = 180 s/540 s/7200 s
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Figure 7. Sketch of the atrium (with cafeteria) with domain decomposition, and boundary conditions for
temperature

Figure 8. Temperature distribution in a selected cross-section of the atrium
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Figure 9. Details of the flow field in selected planes of the atrium


