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1. Introduction. Consider the stationary advection-diffusion-reactiartyem
Lu:=—Au+b-Vu+ou=f in €; u =0 onof (1.1

for the scalar field: in a bounded domaift c R, d = 2,3, with given source terny,
advection fieldb and constant data > 0,0 > 0. Problem (1.1) is a basic model in fluid
mechanics and many other applications.

The Galerkin finite element (FE) approximation of (1.1) maifex from dominating ad-
vection, i.e.£ < ||b|[z(q))«, and/or dominating reaction, i.e.,< o. The traditional way
to cope with this problem is the application of residualdzhstabilization (RBS) techniques.
The basic approach is the streamline-upwind/Petrov-&ial¢8UPG) method [6] or related
variants. An overview about RBS methods can be found in [22].

The class of RBS techniques is still quite popular since thieyrobust and easy to
implement. Nevertheless, they have severe drawbacks sterfrom the non-symmetric
form of the stabilization terms and the occurence of seamdey derivatives in the residual
Lu — f. Therefore, other stabilization techniques appeareditbigcén particular, the edge-
stabilization method [7, 5] and variational multiscale (8Mmethods [15, 16, 13, 8]. We
emphasize that almost all stabilization methods can bepreted as special VMS methods.
The key idea of VMS methods is a separation of scales: lamjescsmall scales and unre-
solved scales. The influence of the unresolved scales orthike scales has to be modelled.
Mostly, it is assumed that the unresolved scales do not imfleiéhe large scales.

Local projection stabilization (LPS) methods as specialS/pe methods are of current
interest [4, 19]. Here the influence of the unresolved saaldbe small scales is modelled by
additional artificial diffusion terms for the small scaléf?S methods belong to the class of
symmetric stabilization techniques [5]. One major advgetaf such methods applied to opti-
mization problems with partial differential equationshatthe operations ‘discretization’and
‘optimization’ commute [3].

There are currently two basic variants of LPS methods: aléwel approach [4, 19,
21] and a one-level approach [19, 24, 20, 10]. One goal ofghjger is a critical review
of the numerical analysis (based on energy estimates) amingarison of both variants.
It is another goal of this paper to show that this approacheiy ¢lose to RBS methods
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2 P. KNOBLOCH AND G. LUBE

like the algebraic subgrid scale stabilization [14, 8] ag thnusual’ Galerkin/least-squares
method [9].

The outline of the paper is as follows. The basic Galerkin F&iMd its stabilization via
local projection is discussed in Section 2. In Section 3 &f flaper, we present a unified
theory of local projection methods for problem (1.1) basedpergy estimates. In contrast
to other papers, the dependence on the polynomial degrde dinite element method is
considered. In Section 4, examples of finite element spaatEsfysng the assumptions of
Section 3 are presented and, in Section 5, a comparison bfioiants of LPS methods is
performed by means of simple numerical experiments. Se6tis devoted to the relationship
between simplicial LPS methods and residual-based stabdin methods.

Throughout this paper, standard notations for LebesgueSatdlev spaces are used.
The L? inner product in a domaitr is denoted by(-, ). Moreover, we use the notation
a < b if there exists a constaxdt > 0 independent of all relevant parameters like mesh size,
polynomial degree or coefficients éf

2. Variational formulation and stabilization. Here, the basic Galerkin finite element
formulation of problem (1.1) and its stabilized varianta iocal projection (LPS) are intro-
duced. Moreover, various technical tools are given.

2.1. Basic Galerkin approximation. The variational formulation for the advection-
diffusion-reaction problem (1.1) reads: Finds V := H}(£2) such that

a(u,v) := (eVu, Vu)g + (b- Vu + ou,v)q = (f,v)aq, Yo eV. (2.1)

AsSSUMPTIONL. LetQ C R?, d € {2, 3}, be a bounded, polyhedral domain. Moreover,
assume that > 0 is constantf € L2(Q2), b € [L>°(Q) N HY(Q)]? with V - b = 0 a.e. inQ
ando > 0 is constant.

REMARK 1. Typically,b is a finite element solution of an incompressible flow problem
Then there hold$V - b, ¢»)q = 0 for certain test functiong,. Hence,V - b is small but
does not vanish in general. A simple remedy to ensure caigroifa(-, -) is to replace the
advective ternfb - Vu,v)q by 2(b- Vu,v)q — 3(b- Vo,u)g — 3((V - b)u, v)q.

Consider a shape-regular, admissible decomposifjpof Q2 into d-dimensional sim-
plices, quadrilaterals in the two-dimensional case or hesea for three dimensions. Lef
be the diameter of a cell € 7, andh the maximum of alliy, T € 7;,. LetT be a ref-
erence element of the decompositin Let us assume that, for ea€he 7;,, there exists
an affine mappind”r : 7' — T which mapsl’ ontoT'. This quite restrictive assumption for
guadrilaterals can be weakened to asymptotically affinepingss [1].

SetP,.7, = {vn € L3(Q); v, o Fr € P(T),T € T} with the spaceP,(T) of
complete polynomials of degrdedefined orl’ andQy.7, = {vn € L*(Q); vy 0 Fr €
Qw(T) ,T € T} with the space; (1) of all polynomials onl’ with maximal degreé:
in each coordinate direction. We shall approximate the spaby a finite element space
Vi, C V such that

Vh,k D Pk,Th NV or Vh,k D Qk,Th NnV.
Now, the standard Galerkin discretization of problem (teBds: Finds;, € V}, ;, such that
a(uh,vh) = (f, ’Uh)Q, Yy, € Vh,k- (22)

As mentioned in the introduction, the solutiap of (2.2) usually suffers from spurious os-
cillations, which is often cured by introducing a stabitina in (2.2).
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2.2. Local projection stabilization (LPS). The idea of LPS methods is to split the
discrete function spaces into small and large scales ardititstabilization terms of diffusion-
type acting only on the small scales. There are two obvioascek of the space of large
scales: a two-level and a one-level approach.

The first, the two-level variant, is to determine the largales with the help of a coarse
mesh. The coarse megH;, is constructed by coarsening the basic méglsuch that each
macro-elemenf/ € M,, is the union of one or more neighbouring c€llse 7. The
diameter ofM € My, is denoted byiy;. We assume that the decomposititiy, of € is
non-overlapping and shape-regular. Additionally, theiiiar cells are supposed to be of the
same size as the corresponding macro-cell:

3C>0: hy <Chp, VT €Ty,M e MpwithT C M. (2.3)

Following the approach in [19], we define a discrete spagec L?(2) as a discontinuous
finite element space defined on the macro-partifidp. The restriction ofD;, on a macro-
elementM € My, is denoted byD,, (M) := {vp|np ; vn € Dp}.

The next ingredient is a local projection, : L?(M) — Dy (M) which defines the
global projectionr, : L(Q)) — Dy, by (m,v)|ar := mar(v|ar) forall M € Mj,. A standard
variant is the local orthogondl? projection. Denoting the identity oh?(2) by id, the
associated fluctuation operatoy : L?(Q) — L?(Q) is defined byk), := id — 7.

The second approach, the one-level variant, consists iosthg a discontinuous lower
order finite element spad®;, on the original meslT,. The same abstract framework as in
the first approach can be used by settivig, = 7;,.

For both variants, the stabilized discrete formulatiordeedindu,, € V}, ,, such that

a(un, vn) + sn(un, vn) = (f,vn)a, Yo € Vik, (2.4)

where the additional stabilization term is given by

sp(un,vp) == Z v (kn (b Vug), kn (b Vo) ) (2.5)
MeMy,

REMARK 2. The LPS scheme (2.4) with (2.5) will be denoted as streardimivative-
based LPS scheme (SD-based LPS scheme for short belowheAratiant is to replace
sh (-, ) with

Eh(uh,vh) = Z %M(nhVuh,nthh)M.
MeMy,

Later on, it will be called gradient-based LPS scheme. Weswihmarize the corresponding
result in Remark 6.

The constants,; and7, will be determined later based on an a priori estimate. Bleas
notice that the stabilizations, ands;, act solely on the small scales. Of course, there is some
more freedom in the choice of,, see also [19, 4].

In order to control the consistency error of thg-dependent stabilization terms, the
spaceD;, has to be large enough; more precisely:

ASSUMPTION 2. The fluctuation operatok,, satisfies for0 < [ < k the following
approximation property:

hl
o < cmﬁ|q|l,M, Vg € L2(Q), ¢|a € H(M), YM € M,,.

(2.6)

3C, >0 : l5nql
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The subsequent numerical analysis takes advantage ofiséinequality (see [11])
tinw © vl < pinek®hplvnllor, YT € Th, Yop € Vi (2.7)

and of the interpolation properties of the finite elementspé ;. For the Scott-Zhang quasi-
interpolant operatof;, ;. [25], one obtains fow € V with v|,,,, € H"(wr), r > 1, on the
patchesor := Ugrzzp T

hl—m
F3C>0: o= Tppvllmr < C—L

- krfm

[v]lrwrs 0 <m <l=min{k+1,7}. (2.8)

The constan€ may depend on.

2.3. Special interpolation operator. Following [19], we construct a special interpola-
tion j, : V — V}, , such that the errar — jjv is L?-orthogonal taD;, for allv € V. In order
to conserve the standard approximation properties, wdiaddily assume

AssUMPTION3. There exists a constagt> 0 such that, for any/f € M,

(vh7Qh)M (29)

inf sup ————— > G
qn€DR (M) 4, €Yy, (M) ||Uh| O,MHQhHO,M

WhereYh(M) = {Uh|M ; Up € Vh,ka vp, = 00N \ M}

REMARK 3. The inf-sup condition (2.9) implies that the spdgg must not be too rich.
On the other hand];, must be rich enough to fulfil the approximation property }2.6ater
we will present several function spacBg satisfying (2.9).

LEMMA 2.1. Let Assumption 3 be satisfied. Then there is an interpolatjoerator
Jn V= Vi such that

(’U _jhU7Qh)Q = 01 VQh S Dh,v’l} S Va (210)
. hor . 1 th
o= ol + o = noliar £ (14 ) Bl
VM eM,, veVNH(Q), 1<I<k+1. (2.11)

Proof. We follow the lines of the proof of Th. 2.2 in [19], but we takeo account the
dependence of the constants on the polynomial order andfifseip constang.

Consider anyM € M, and define the linear continuous operafgy : Y, (M) —
Dyp(M) by

(Bhvn, qn) == (Vn, qn) M Yup € Ya(M),qn € Dip(M).

DenoteW, (M) := Ker(By,) and letW,, (M)* be the orthogonal complement Bfj, (M)

in Y}, (M) with respect to(-,-)y,. The Closed Range Theorem yields via Assumption 3
(cf. [12], p. 58, Lemma 4.1) thaB;, is an isomorphism froni/;, (M )+ onto Dy, (M)’ with
Bllvnllo,nr < | Brvn || b, (ary for anywv, € Wy, (M)+. Therefore, for any € V, there exists

a uniquezy, (v, M) € Wi, (M) with ||z, (v, M)|jo.p < %Hv — I kv||o,ar Such that

(Brzn(v, M), qn) = (zn(v, M), qn)m = (v — In kv, qn)nr,  Yan € Dyp(M).

Since M, is a partition of(2, we can define an operatgy : V' — Vj, i by (jpv)|m =
(In k)| M + 2n(v, M), M € M;,. Then we immediately obtain the orthogonality property
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(2.10). Due to (2.8) the operatgy, satisfies forl <! < k+ 1landallM € My, v €
VN HY(Q)

) 1\° ) 1\° h2!
o= dwolBar < (14 5) To= ol <€ (14 3) 3 hlol

TCM
TET,

2
l,wT'

To derive an approximation property in ti&' seminorm, we first use the inverse inequality
(2.7) and the assumption (2.3), which implies

2
_ o —
2 (0, M)F oy < ok hr® o (v, M) G 7 S 52 kK llv = Inaoll§ ar-
TCM
TET),

Then, applying the approximation property (2.8), we get

[v — drv|im = v — In v — 20 (v, M) |1, < |v— Ingvli,m + [20(v, M) m

1 L hlfl
S (3+55) B lolhon

O

REMARK 4. (i) The estimate of Lemma 2.1 is optimal with respedtip The estimate
in the seminorm - |1 5/ is seemingly sub-optimal regardirkg A discussion of the stability
constants appearing in Lemma 2.1 is given in [21].
(i) If v € VN HY(Q) with ¢ > % it is possible to replace the Scott-Zhang quasi-interpola
operator/}, . in (2.8)by a pointwise interpolant, e.g., the Lagrangian interpdlar his allows
to replace the sets,, in (2.11)and in the a priori estimates of the next section by the macro-
elementsV/, see [20].

3. Apriori analysis. The next goal is an error estimate for the scheme (2.4). Torere
further assumptions on the finite element spdées and Dy, are required. We will derive all
results for the SD-based LPS scheme. The correspondiniisrésuthe gradient-based LPS
scheme, see Remark 2, will be summarized in Remark 6.

3.1. Stability. First, the stability of the scheme will be proven in the mesipendent
norm

[SE

o]l := (elvli o +ollvlg o +sn(v,0)*,  VweV.

The corresponding norm for the gradient-based LPS schelioe/foby replacings;, with 5y,.
LEMMA 3.1.The following a priori estimate is valid for the SD-based LseBeme

elunl? o + ollunllp o < [llunlll* < (f,un)a, (3.1)
hence existence and uniqueness k& V}, ;. in the scheme (2.4) follow.

Proof. For anyv € V, integration by parts yield® - Vv, v)q = —4((V - b)v,v)q =0
and therefore

(a+sn)(v,v) =elvfi o +ollvl§ o + sn(v,v) = [[[o][[*, VveV. (3.2)

This implies (3.1), hence existence and uniqueness, & V}, ;, in the scheme (2.4
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3.2. Approximate Galerkin orthogonality. In LPS methods the Galerkin orthogonal-
ity is not fulfilled and a careful analysis of the consistercyor has to be done.

LEMMA 3.2.Letu € V anduy, € V4, be the solutions of (2.1) and of (2.4), respectively.
Then, there holds

a(u — up,vp) = sp(up,vp), Yo, € Vi k- (3.3)

Proof. The assertion (3.3) follows by subtracting (2.4) from j2vith v = v;,. 0

Now we estimate the consistency error.

LEMMA 3.3. Let Assumption 2 be fulfilled and letc V withb- Vu € H'(M) for some
1€{0,...,k}andforall M € M, Then, there holds for the SD-based LPS scheme

h2l 2
[sn(u; vn)| S < > Cu kQﬂb'VUhQ.,M) Honlll,  Von € Vi
MeMy,
with
10l poo (arak?)?
Cyy := min {TMa (rar| H[th(M)]d ) } (3.4)
SRS

Proof. Consider any// € My, andvy, € V;, 5. Then the Cauchy-Schwarz inequality and
Assumption 2 yield

(nh(b-Vu),ﬁh(b-Vvh))MN kl |b Vulia||kn(d - Vor) o,

Furthermore, we deduce using thé stability of »;, in Assumption 2, the inverse inequality
(2.7) and the assumption (2.3) that

51 (B - Vo)l S 1Bl (ree (aryjavnline S 1Bl nee aryja kBt 1onllo,a-
Thus,

M (kR (b Vu), k(b - Vop))

hl
H M |b Vu|l M (

(S

C3y (b VUh)HOM) )

which proves the lemmal

3.3. A priori error estimate. The a priori estimate can be proven using the standard
technique of combining the stability and the consistensylts of the previous subsections.
THEOREM 3.4. Letu € V be the solution of (2.1) and;, € V}, ;, the solution of (2.4).
We assume that € H'*1(Q) for somel € {1,...,k} and thatb - Vu € H'(M) for all
M € M,;,. Furthermore let Assumptions 2 and 3 for the coarse spgag®e satisfied. Then,
there holds for the SD-based LPS scheme

2

le—ullP < S st gup, + (14 L) carte 2 35)

h ~ ]Wk LM A[le 2 I+1,wnm -
MeMy, ﬁ

with C%, defined in(3.4)and
2

hau M 2
Cyi=e+ Uﬁ + Tk + TM||bH[L°o(M)]d
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Proof. The error is split intouw — up, = (v — jru) + (Jru — up). We start with the
approximation errot, — j,u. Lemma 2.1 yields

1
2

' 1 h2 h2l
lw = dnull] S (1 + B) < Z {E‘FUk—]f ‘f’TMHb”[QLoo(M)]d kTAEZ”quZ-i-l,wM

MeMy,

Now we estimate the remaining paft, := j,u — uy, using (3.2)

(a4 sp)(jnu — up, wp)

lldnu — unl|| =
[[|wn ]|l
_ (a+ sp)(u —up,wp) I (@~ sn)(jru — u,wp) — T4l
[[|wnl| [[lwnl]

Applying Lemmata 3.2 and 3.3, the first term is bounded by

N[

sp(u, wp,) h% 9
|||wh||| (MGZ/V[} ]W k2l ,M

Now we consider the terms @ff separately. Integration by parts, the orthogonality priype
(2.10) and the estimate (2.11) yield fof, € V}, i, that

a(jpu —u,wp) = e(V(jru — u), Vwp)a — (kn(b - Vwp), jru — w)a + o(jru — u, wp)a
1 h2 h2l %
S (1 + B) ( Z {E-i- (0+ —M> F] kgl]wQ”U”lQJrl,wM) [[wn[]]-
MeMy,

The estimate of the stabilization term follows using (2.6 §2.11)

1 9 h2l %
sutie=wwn) S (14 5) (3 mwlblm il | sl

MeMy,

Summing up all inequalities in this proof gives the assertib

3.4. Parameter design.Now we will calibrate the stabilization parametesg with re-
spect to the local mesh siZe,, the polynomial degreé of the discrete ansatz functions
and problem data. The parametetg are determined by balancing the ternﬁ% ~
TM|\b||[2L,,O(M)]d in Cjs on the right-hand side of the general a priori error estinfatg),
hence

ha
SO S— (3.6)
1611 Lo (A1) k2

Note that the discrete problem is well defined alspbifi,« (1))« = 0 for someM € M,
since

a0 S S Tt Byl wlan,  Vo,we V.
MeMy,
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CORROLARY 3.1. If 1), satisfies (3.6), then we obtain for the SD-based LPS scheme
under the assumptions of Theorem 3.4

h2 ha |- Vul? |b- Vul|?,
_ 2 < har . M LM LM
[ETAEE'S {k mm{ -

MeM,, k2 Hb”[Lx(M)]d’

1 2 h2, hM h2l
+ (1 + B) {e +o i+ Ibll[mwndp] iz 1l -

REMARK 5. This result requires some discussion:
i) For [ = k ande < hys, we obtain for the second right-hand side term in Corol-

lary 3.1 the optimal convergence ra@(hf\j%) with respect tdhy,.
For the first right-hand side term, the optimal rate is obdrifb =~ 0 in €. If this
is not the case but > 0, then one gets the suboptimal raf&r%,). In the case of
o = 0, an additional reduction of the rate may occur.

i) Due to the non-optimal estimate of the convergence oodiéne interpolation opera-
tor 7 in the H' seminorm, these estimates are presumably not optimal esihect
to polynomial degreé. Let us assume that in Lemma 2.1 there holds

har . 1\ A
"o = ol (145 ) 5B ol
A careful check of the proofs leads to
h
™~ (3.7)

6l (Loe (aryjak”

Then the a priori estimate (3.5) in Theorem 3.4 would be ogitinith respect tok
too with the possible exception of the factors depending.oMumerical experi-
ments suggest that the choice (3.7) is correct.

REMARK 6. The result for the gradient-based LPS-scheme (see Remada2spond-
ing to Corollary 3.1 reads as follows: Assume titatc [W1><(Q)]¢, ¢ > 0 andu €
H™1(Q) for somel € {1,...,k}. Moreover, let Assumptions 2 and 3 hold. For ~
Bt ||bl| (2= (a1yj2/k* we obtain for the gradient-based LPS scheme

e = unll? < (1+1)2
~ B

>

MeMy,

h?\4|b|[2W1,oo(1\4)]d hos h?&

h2
e+odl 4 + bl e 7z | gmz el

Forl = k,e < hyps, we obtain the optimal convergence ra[ﬂéhﬁj%) with respect tah ;.
This estimate is better with respectitq; than for the SD-based LPS scheme, see Remark 5
().

4. Examples of finite element spacesThe paper [19] presents different variants for
the choice of the discrete spadés;, and D;, using simplicial, quadrilateral and hexahedral
elements. There are two basic variants of the LPS methodsirtb-level approach for which
M, = T, and the two-level approach for which the meghis obtained by refining the
meshM,,, see Fig. 4.1 forl = 2. In what follows, we describe some details of these two
approaches.
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FIG. 4.1. Relation between the mesh#d;,, and 7;, in the two-level approach. The bold lines indicate the
meshM,, the fine lines7;,

We §hal| assume that all macro-elements\ity, are affine equivalent to the reference
elementl” and thatD,, C P, um, for somem € Ny. Let us formulate a sufficient condition
for the validity of the inf-sup condition (2.9). We introdei@ reference bubble function
b e C(T)N HY(T) satisfyingh > 0 andb # 0 and, for anyM € M,,, we sethy; = bo Fy,.
Then there exists a positive constarsguch that

(bna, ) > llall§ n;, Vg € Dp(M), M € My,
Thus, it suffices to require that
bA{-Dh(M) CYh(M), VM € My, (41)

Then the inf-sup condition (2.9) holds with = (a/|\5|\Lx(T))1/2. Note that a necessary
condition for the validity of (2.9) is thatim Y}, (M) > dim Dy, (M). Therefore, ifY;, (M) =
bar - Dp(M), thenYy, (M) has the smallest possible dimension.

The one-level approach with1,;, = 7, starts from a given discontinuous spdgg and
uses an enrichment of the spadész, NV or Qi 7, NV to satisfy (4.1). For simplicial
elements, we set

Dy:=Pi 11, Vir:={veV;vpoFrec PMT)VT €T},

where
R . ) R R d+1 .
PO(T) = Po(T) +b- Pooa (D), b(#) = (d+ 1) [] hi@)
=1
with the barycentric coordinates,i = 1,...,d + 1. For quadrilateral/hexahedral elements,

we can use eitheD, = Py 17, of D, = Qi_17,. SettngD = P,_,(T) or D =

Qr-1(T), respectively, the spacé} ;, are constructed analogously as for simplices with

vyhereT = (-1, 1)4. In the numerical experiments presented in the next seatiertonsider
D =Qr-1(T).

Now consider the two-level approach (cf. Figure 4.1doe 2). In the simplicial case,
each elemend/ € M, is devided intad + 1 simplices by connecting the barycentreldf
with the vertices of\/. For quadrilateral/hexahedral elements, eadthke M, is uniformly
refined into2? subelements. Then, for simplices, we set

Vi = Pe1,, NV, Dy, = Pr_1m,,
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and, for quadrilaterals/hexahedra,
Vi == Qr,1, NV, Dp, == Qr-1,m,, -

Then the condition (4.1) is obviously satisfied it H}(T) is defined as a nonnegative piece-
wise P;/Q, function with respect to a division df corresponding to the relation between
My, and7;,. Hence the inf-sup constagtin Assumption 3 is independent 4f Moreover,
the 3 scales like®(v/k) for simplicial elements and liké(1) for quadrilateral elements in
the affine case, see [21].

Note that, for the two-level approach based on simplicialdielements, the spadg, ;,
can be written in the form

Vhyk:{veV: ’U|MOFM EPk(T)@BkvMEMh}a

whereB;, H} (T) is a finite-dimensional space consisting of continuouseviése poly-
nomial functions of degrek. Therefore, the simplicial two-level approach can be régdr
as a one-level approach with respect to the mesh This will be used in Section 6.

5. Comparison of one- and two-level approach.n this section, we provide a com-
parison of the one- and two-level variants of the LPS metfidtk following arguments are
relevant for the comparison regarding the efficiency andHikity:

The data structure for the one-level method is much simpin for the two-level ap-
proach. Moreover, adaptive mesh refinement tools can berdasbrporated. On the other
hand, for the same fine mesh, the one-level approach reqnoesdegrees of freedom than
the two-level approach.

Moreover, there is a formal argument from the regularitynpof view x against the SD-
based variant of the two-level method: The assumplioW« € H'(M) for all M € M;,
in Theorem 3.4 implicitly requires thdt € [H'(M)]?. This is not realistic ad is usually
a finite element solution stemming from a flow simulation.aBke note that this argument is
not valid for the gradient-based variant of the two-levetmoe.

Now we proceed with the comparison by evaluating some nwalezkperiments for the
SD-based LPS-scheme. First of all, we emphasize that bathgrie-level and the two-level
method, perform very well according to the theory of Sec8dor problems with solutions
without boundary and interior layers. Nevertheless, wet aoriresponding results. Here, we
concentrate ourselves instead on the more interestingpégseblems with layers.

In all numerical experiments, the computational domaiis the unit square. We shall
consider both one- and two-level approach which will be cared with the SUPG method.
The parameter design is; = 1ohs for the LPS methods andlr = dphr for the SUPG
method with free parameters anddy. The computations were performed for the one-level
method with theQ%“> and Q4“* elements on uniform grids consisting 64 x 64 and of
32 x 32 equal square elements, respectively. Similarly, for th€SUnethod, we apply the
Q1 and@Q- elements on uniform grids consisting ® x 64 and of32 x 32 equal square
elements, respectively. For the two-level approach, wdyaihe Q; and Q> elements on
uniform grids consisting 0f28 x 128 and of64 x 64 equal square elements, respectively.
Thus, the corresponding coarse mesh#s consist of64 x 64 and of32 x 32 elements and
hence are the same as for the one-level approach. This givaknast fair comparison of
both approaches.

We start with two rather academic problems where the flow feisl aligned with the
uniform (Cartesian) mesh 0.
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ExamMPLE 1. Exponential outflow layer (see [20], Example 4.2).
Consider inQ = (0,1)? the model problem (1.1) with = 10~7, b = (0,2)” ando = 0.
The exact solution

1 —exp(—2(1 — x3)/¢)
1 —exp(—2/¢)

has an exponential boundary layer at the outflow part of thengary and generates the
right-hand sidef = Lu. On the whole boundary d?, a Dirichlet boundary condition
determined by: is prescribed. Note that the limit solutidim._,o u(x) = 2x; — 1 can be
exactly interpolated by, elementsk > 1.

u(z) = (221 — 1)

le+2 le+2 T

L2 norm —=—
H1 seminorm ——

le+l L-infinity norm —e— 4
1k i
le-1 v
L2 norm —=— le-2 | 1
le-4 - H1 seminorm —— b
L-infinity norm —e—
le-5 L le-3 L
0.01 0.1 1 0.01 0.1 1
deltad deltad
le+2 le+2 T T

L2 norm —s—
H1 seminorm —+—
le+l F L-infinity norm —e— 4

L2 norm —s—
le-4 - H1 seminorm —— b
L-infinity norm —e—

0.001 0.01 0.1 1 0.001 0.01 0.1 1
tauo tauo

le+2 T T

L2 norm —=—
H1 seminorm ——

le+l F L-infinity norm —e— 4
1 W
le-l b
L2 norm —=— le-2 | 1
le-4 - H1 seminorm —— b
L-infinity norm —e—

le-5 L L le-3 L L

0.001 0.01 0.1 1 0.001 0.01 0.1 1
tauo tauo

FiG. 5.1. Dependence of errors on scaling parametégsand o for different methods and Example @1
elements (left column) an@2 elements (right column) for SUPG method (first row), onelléPS method (second
row) and two-level LPS method (third row)

Figure 5.1 provides a comparison of the errors in fienorm, H' seminorm and the
(discrete)L> norm vs. the scaling parametegsfor the LPS method ané, for the SUPG
method. We calculate all (semi)norms on the subdortiginvhich does not contain those
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1.75 T T 1.75 T T
SUPG method with delta0=0.105 —a— SUPG method with delta0=0.105 ——
15 one-level LPS with tau0=0.04 —e— B 15 two-level LPS with tau0=0.027 —e— T
Q1 part of the LPS solution —=— LPS solution on macro-mesh —=a—

1.25 B 1.25

1L N WA b 1

0.75 | N 0.75

05 | 0.5

0.25 0.25

0 L L 0 L L
0.7 0.8 0.9 1 0.7 0.8 0.9 1

FIG. 5.2. Cross-section of the discrete solutions for Example Z;at= 1 — 1/32 for one-level method with
’2’“” elements (left) and two-level method wigh elements (right) compared to the SUPG solution

elementsM € M,, which intersect the outflow boundary layeragt = 1. In particular, the
H'! seminorm ofu on these elements would otherwise dominate the error. Eapik® and
Q%> elements, we drop the additional bubble functions when edimg the errors.

First let us consider th€@; andQ%“* elements in the left column of Figure 5.1. For all
methods, one observes a global minimum of the errors for sgraaddg, which corresponds
to the nodally exact solution ofi resp.Q) in case of the two-level method. The two-level
solution possesses a spurious oscillation aleng= 1 — 1/128 which is in agreement with
the one-dimensional theoretical investigations of [23].

The results are less good for the andQ4“® elements in the right column of Figure 5.1
as nodally exact discrete solutions cannot be obtainedeftfezless, a global minimum can
be observed for certain valuesgf andd. The LPS methods are clearly outperformed by
the SUPG method with the optimized parameiger Furthermore, we observe that the one-
level method leads to larger errors with repect to all norhantthe two-level method. In
particular, the one-level method leads to larger osailtatithan the two-level method. This is
highlighted by Figure 5.2 where a cross-section of the digcsolutions at; =1 — 1/32is
shown (here the largest oscillations of the discrete smiutan be observed). The solutions
are shown only forw, > 0.7 since they are nearly constant fe < 0.7. It can also be
seen that the discrete solutions can be improved if theyegrlaced by the piecewise bilinear
interpolate in case of the one-level method and by the piseehiquadratic interpolate on
the macro-mesh in case of the two-level method. Figure StBdéushows the SUPG solution
which is signifantly better than both LPS solutions althlounguch less degrees of freedom
are needed.

In the above comparison, the number of degrees of freedorsidened for the one-
level method is smaller than for the two-level method, wHedwds to a larger smearing of
the boundary layer in case of the one-level method, see &igwt. If we apply the one-
level method on the fine mesh of the two-level method (and &éme number of degrees of
freedom is larger for the one-level method than for the texel method), than the smearings
caused by both LPS methods are comparable but the osciatibthe one-level solutions
remain larger than for the two-level method. Also the ermmmssidered in Figure 5.1 remain
larger for the one-level method.

ExAMPLE 2. Parabolic layers (see [20], Example 4.4).

Consider inQ2 = (0,1)? the model problem (1.1) with= 107, b = (0,1 + 2?)T, 0 = 0
andf = 0. Atthe outflow boundar¥y,,: = (0,1) x {1}, a homogeneous Neumann condition
is considered whereas, &f2 \ T',,:, an inhomogeneous Dirichlet conditierfz) = 1 — x5
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is prescribed. The exact solution exhibites parabolictay#xz; = 0 andz; = 1.
As an exact solution is not available, we provide a comparidfocross-sections of the
discrete solution at the outflow part of the boundaryat 1 for different values ofy,.

1.4 T T T T 1.4 T T T T
\
1.2 i H 12 -
1 iR i 1
0.8 |t 0.8
0.6 |- 1 0.6
04 I E 0.4
02k Q1 element, 64x64 mesh —a— i 0.2 ‘coarse’ part of Q1 solution ——
: Q2 element, 32x32 mesh —e— . ‘coarse’ part of Q2 solution —e—
O 1 1 1 1 0 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Fi1G. 5.3.Outflow profiles for the Galerkin solutions of Example 2
14 14
12 E 12
1 —a—0 i 1
0.8 E 0.8
0.6 [ E 0.6
04 | tau0=1e0 —=— 5 0.4 tau0 = 1e0
tau0 = lel —e— tau0 = lel —e—
02 | tau0 = 1le2 —— 02 | tau0 = 1e2 ——
: tau0 = 1e3 —»— ) tau0 = 1e3 —»—
0 Il Il Il 0 Il Il Il
0.8 0.85 0.9 0.95 1 0.8 0.85 0.9 0.95 1
1.4 1.4
1.2 E 1.2
1 E 1
0.8 E 0.8
0.6 [ E 0.6
04 | tau0=1e0 —=— 5 04 | tau0=1e0 —=—
tau0 = lel —e— tau0 = lel —e—
02k tau0 = 1e2 —=— 02k tau0 = 1e2 —=—
: tau0 = 1e3 —=— : tau0 = 1e3 —=—
0 Il Il Il 0 Il Il Il
0.8 0.85 0.9 0.95 1 0.8 0.85 0.9 0.95 1

FiG. 5.4. Outflow profiles for LPS solutions of Example 2 with differealues ofry: one-level LPS (left
column) and two-level LPS (right column) for t@g:“® and Q1 elements (first row) and for th@54® and Q2
elements (second row)

For this example, the Galerkin method leads to solutionb gfiturious oscillations lo-
calized along the boundary layers, see Figure 5.3 left. blae the oscillations depicted
in this figure disappear if we represent the discrete salatlay their values at the vertices
of the32 x 32 mesh, see Figure 5.3 right. This nice behaviour is seemimglgffect of the
Cartesian mesh being aligned with the flow fildin what follows, we shall investigate to
what extent the Galerkin solutions can be improved by meéttseed_PS method. We shall
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present the outflow profiles only in a neighbourhood of thatrigpundary layer.

For all four LPS methods and, € (0.01,1), the outflow profiles are very similar to
that of the Galerkin method with th@, or Q2 element on the mesHh;, of the respective
LPS method. For the two-level methods, this is true also fioaler values ofry. For the
one-level methods, the behaviour fer € (0,0.01) is different since the Galerkin solutions
for the Q4** or Q4“* elements significantly differ from the Galerkin solutios the Q; or
Q- elements, respectively.

For, > 102, the LPS with theQ; element leads to very similar outflow profiles as
the LPS with theQ}“’ element, and the LPS with th@, element gives almost the same
outflow profiles as the the LPS with thigh® element. However, the qualitative behaviour
of the first order and the second order LPS methods is diffeféfhereas, for the second
order LPS methods, the outflow profiles are basically inddpetofry > 102, the first order
LPS methods introduce a considerable smearing of the boytedeers which increases with
increasingry and makes the discrete solutions useless.

It remains to discuss the properties of the LPS methodsfer (1, 10%), see Figure 5.4.
As we observe, for first order LPS methods, the oscillatioesrease with increasing,
but simultaneously the boundary layers are smeared. Fondearder LPS methods, the
oscillations first decrease but soon they again start teeas® and, for, = 102, they are
already larger than for the Galerkin method. Thus, for firsieo LPS methods, oscillation-
free discrete solutions can be obtained only at the prizengfasing the layers. For second
order LPS methods, it seems that, for any choiceyoft is not possible to obtain a discrete
solution with sufficiently suppressed spurious oscillasio

An alternative way to suppress the spurius oscillatione@1tS solutions is to consider
only a ‘coarse’ part of the solution like in Figure 5.3. Howefor the two-level methods, this
does not lead to an improvementin comparison with the ‘@aart of the Galerkin solution.
For the one-level methods, a small improvement is possitdeertheless, it is questionable
whether this improvement is worth the increased computatioost. Moreover, it is very
sensitive to the choice of,.

Finally, we consider an example where the flow figlg not aligned with the uniform
(Cartesian) mesh.

EXAMPLE 3. Consider inQ2 = (0, 1)? the model problem (1.1) with = 10~7, b =
(—x2,21)T, 0 = 0 and f = 0. At the outflow boundar¥,,, = (0,1) x {1}, a homoge-
neous Neumann condition is considered wherea8{at I',,,;, an inhomogeneous Dirichlet
conditionu(z) = 1forz €[4, 2] x {0} andu(x) = 0 elsewhere is prescribed. The exact so-
lution exhibits interior parabolic layers starting fromehdiscontinuities of the inflow profile
atzo = 0.

The solutions of all four LPS methods with optimized paraamet, are comparable,
see Figure 5.5 where two such solutions are shown. The thssptutions detect the interior
layers well but have local spurious oscillations in this ruital layers. A comparison of the
results for the LPS methods to the SUPG method (not shownijietathat the LPS methods
cannot outperform the SUPG method.

Summarizing, both variants of the LPS method give comparadsults for problems
with boundary and interior layers and we have not found amyic@ing arguments for prefer-
ing one of these variants. All methods are able to detectdayrand interior layers numer-
ically but they are rather sensitive to the scaling of thdistation parameter. In general,
the LPS methods do not attain the quality of the classicalGutethod. As for the SUPG
method, the discrete solutions exhibit local spuriousliagicins in layer regions unless the
mesh is aligned with the advection direction. A potentiahegly in case of boundary layers
is the weak imposition of Dirichlet data by using Nitzscheisthod, cf., e.g., [2]. Another
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FiG. 5.5. Plot of the discrete solutions for Example 3 for the onellenethod with theQ’l’“b element and
70 = 0.03 (left) and for the two-level method with tiag: element andy = 3 (right)

idea is the implementation of additional (nonlinear) dtabfion terms which reduce oscilla-
tions in crosswind directions around layers, see [17]. Mueeg, we refer to the possibility to
resolve layers with well-adapted anisotropic finite eletagsee, e.g., [18].

6. Relation to residual-based stabilizations.In this section we shall demonstrate that
LPS methods based on simplicial meshes are very close to &B&itjues. The dependence
on the polynomial degrelewill not be considered here.

As we have seen in Section 4, for both the one- and two-ley@icgeh, the spacds, ;,
and Dy, are given by

Vik = Vi ® Bk, Dy = Py_1,m,,,
where
Vg = Pe, OV, Bk = @ Bi(M).
MeMy,

The spaces3; (M) are defined using a finite-dimensional spagec C (1) N H} (T) such
that B, N P, (T) = {0}, i.e., for anyM € My, we setB(M) := {00 Fy,'; © € By}.
ThenBy (M) C H} (M) andBy(M) N Py(M) = {0}.

Let us consider the gradient-based LPS scheme, i.e., theetiissolution is a function
up, € Vi1, satisfying

a(uh,vh) + Z TA[(I{hvuh, nthh)M = (f, ’Uh)Q, Yy, € Vh,k, (61)
MeMy,

where we dropped the tilde ovey, for simplicity. The local projectionry, : L?(M) —
Dy (M) = P,—1(M) used to define the fluctuation operatgris assumed to be the orthog-
onal L2 projection of L?(M) onto P, (M ). We shall also use the local fluctuation operator

ks := id—myr. Note that, foranyy, € V', x, we haveVo, € [Dy,)? and hence, Vo, = 0.
Thus, it follows from (6.1) that

a(un,on) = (f,Tn)a, Vo € Vg (6.2)
We define the bilinear forms

ap (u,v) :=e(Vu, Vo) + (b Vu,v)n + o(u,v)u,
an(u,v) :==e(Vu, Vo)pr — (b- Vu,v)pr + o(u, v)m-
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Then
ap(u,v) = ay(v,u), Yu,v € HY (M), M € M,,. (6.3)
Denoting
L*u:= —eAu—b-Vu+ ou,
we have
an (u,v) = (Lu,v)m, Yu € H*(M),v € Hy (M), (6.4)
apy (u,v) = (u, L*v) Yu € Hy(M),v € H*(M). (6.5)

Using the local bilinear forms, we deduce from (6.1) that,doy M € M, we have
an(un, var) + Taa (Kar Vun, K Voa ) v = (f,va) s Vunr € Be(M). (6.6)

We denote byiy, € Vi, anduz € By, i, the uniquely determined functions satisfyitig +
ub = uy, and setuyr = ul|,, forany M € M,,. Combining (6.4) and (6.6), we derive that

anr(unr, var) + T (K Vunr, s Voa ) v = (f — Lin, o) s Yo € Bi(M).
We define one-to-one linear operatots;, A%, : Bix(M) — By (M) by

an(u,v) + T (K Vu, k3 Vo) = (A, v)ar, Yu,v € By (M),
ary(v,u) + T (ke Vo, kprVu)ar = (u, A3o) ar, Yu,v € By (M).

According to (6.3), the operatot}, is adjoint to the operatad ;. Clearly,
(Anrunr,var) e = (f — Lan, va) ur, Yoy € B(M)
and hence
un = Ay o (f — L), (6.7)

wherep), is the orthogonal.? projection fromZL? (M) onto B, (M ). According to (6.2), we
have

a(n, on) + Z am(un,Tn) = (f,Un)a, Vo, € Vi .
MeMy,

Using (6.5) and (6.7), we obtain
an (unr, Tn) = (une, L*0p) v = (Ayf o (f — L), one L) Vo, € Vi

and hence we derive that

a(@n, o)+ Y (f = Ltn, (Ay) " oL Bn)ar = (£,Tn)a,  VOh € Vg (6.8)
MeMy,

Since(A%,)~! maps intoBy, (M), itis not necessary to apply the projection to f — Luj,.
The relation (6.8) shows that any simplicial LPS method acamterpreted as a residual-
based stabilization. The operafot’,)~* plays the role of a stabilization parameter and we



Local projection stabilization for advection-diffusisaaction problems 17

shall investigate in the following how it depends on the LR&meterr,, and on the data of
the problem (1.1).
LEMMA 6.1. There exists > 0 such that

k0 Vollo a2 YIVVllo s Vo € Bi(M), M € M.

Proof. Consider anyM € M, andv € By(M). Then there exist$ € By such
thatv = @ o F;,' and we haveéVv = (DFy)~M (Vi) o F;,' where DF), is the Jacobi
matrix of F;. Thus, given anyi € {1,...,d}, there exists a vectat € R? such that
(Ov/0x;) o Fyy = a - V. Consequently, it suffices to prove the existence of 0 such that

I&(a-Vo)ly s >la-Villyz — VaeR: b€ By, (6.9)

wherei = id — # and# is the orthogonaL? projection of L2(T") onto P,_, (). Let us
assume that (6.9) does not hold for apy> 0. Then there exist sequencés, };>; C
R? and {¢,}°°, C By such thatla,| = 1, ||an||0T = 1 and||&(a, - an)|\0T <
(1/n)|lay, - an||07T < 1/n for anyn € N. Since the spaceR? and B, are finite-
dimensional, there exist subsequen¢es, } and {9,,} converging to some € R¢ and
i € By, respectively. Clearlyja| = 1, | Vil|, 7 = 1 andi(a - V) = 0. The last relation
implies thata - Vo € P,_ 1(T ') and hencey € Py (T) sinced € C( ') N H}(T). Conse-
quently,o = 0 asB,N P, (1) = {0}. Thisis in contradiction with the fact tha®ol|, 7 = 1.
O

THEOREM 6.2. There exist positive constant§ and Cs such that, for any\/ € M,
andg € By (M), we have

C1h3, < 1(A3) " gllo s < Cah3, .
e+1a + [bllipengahar +ohi, = lglloas T e+ T +ohi,

(6.10)

Proof. Considerany! € M, andg € By (M) and sets = (A%,)~'g. Thena’, (u,v)+
v (kM Vu, k3 Vo) ar = (g,v)p foranyv € Bi(M). Itis well known that

Csha|vlypr < Nvlloar < harlvly ars Vv € Bi(M),
whereC is positive and independent 8f andv. Therefore, in view of Lemma 6.1,

> (g, u)nmr = elul? pr + ollullg ar + Tacll s Vul|3 o

> (e +~°mm +0C3hyy )|“|1 M>

which implies that

min{1, 7% C3}(e + mar + ohiy)llullo nr <

thus proving the right-hand side inequality in (6.10). Oa ttther hand, for any € By (M),
we have

(9:v)m < {(e+7a0)C5 " hiyf + 1Bl Lo anye + ohar Huly arllvllo ars

where we used the fact thittn z(|3 ;= 2115 4 — Imar2ll§ 0 < Nl2115.5 forany z e
L?(M). Consequently,

C3harllgllo ar < max{1, Cs}(e + 7ar + ||bll[poe (aryehar + ohip)lullo s
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which completes the prodil

REMARK 7. Let us consider the simplest cake= 1. Since, for anyM € My, the
spaceB; (M) is one-dimensional, the operatdr;, represents a multiplicative factor and we
easily obtain

162715, a1
(e +man)barlF ap + ollbarllf ar’

(437" =

whereby; = bo FA‘/. Moreover, introducing the mean values

(b, bar)mr
b [ = —, =
M= T o )ar fm

(f,bn)m
(1, bM)M

and denoting by, the barycentre of/, we derive that
(f = Lun, (Ay) " o L*0n) = Sas(bar - Vn + 0p — far, bas - VO, — 0Tn(z01)) 1
with

_ (labl\'f)?\/[
|M{(e + 7ar)|bar [T op + ollbar]

1) M

(2J,M}’

where|M | is the volume of\/.

REMARK 8. Let us consider the SD-based LPS scheme (2.4), (2.5) whiclowevrite
in the form

a(un, vy) + Z T (Kn(eb - Vup), kn(ews - Vor))ar = (f, vn)a, Yo € Vik,
MeMy,

wheree, = b/|b| (ep = 0 if b = 0). If we assume thah is piecewise constant, we again
deduce that the componer € Vhyk of the discrete solution;, € V}, ;, satisfies the relation
(6.8), where the operatad}, : Bi(M) — By (M) is now defined by

an(v,u) + mar(kar(es - V), kp(ep - V) = (u, Ayv) Yu,v € Bi(M).

It is easy to check that the statement of Theorem 6.2 remaiit as well, provided that
TM:OIfb|M:O

REMARK 9. As we see from (6.10), the limit casg — oo corresponds to the Galerkin
discretization (2.2).

7. Summary. In this paper, we considered the local projection stalibra(LPS) of
finite element methods for the linear advection-diffusieaction problem. This new tech-
nigue for the numerical solution of transport-dominateslpems preserves the stability and
accuracy of methods with residual-based stabilizationhlasta symmetric form of the sta-
bilization term. We gave a critical discussion and comparisf the one- and two-level
approaches to LPS which showed that there are no convinogugreents for prefering one
of these approaches. Moreover, the relation between therh®&8od and residual-based
stabilization techniques was explained for simplical edats.
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