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1. Introduction. Consider the stationary advection-diffusion-reaction problem

Lu := −ε∆u + b · ∇u + σu = f in Ω; u = 0 on∂Ω (1.1)

for the scalar fieldu in a bounded domainΩ ⊂ R
d, d = 2, 3, with given source termf ,

advection fieldb and constant dataε > 0, σ ≥ 0. Problem (1.1) is a basic model in fluid
mechanics and many other applications.

The Galerkin finite element (FE) approximation of (1.1) may suffer from dominating ad-
vection, i.e.,ε ≪ ‖b‖[L∞(Ω)]d , and/or dominating reaction, i.e.,ε ≪ σ. The traditional way
to cope with this problem is the application of residual-based stabilization (RBS) techniques.
The basic approach is the streamline-upwind/Petrov-Galerkin (SUPG) method [6] or related
variants. An overview about RBS methods can be found in [22].

The class of RBS techniques is still quite popular since theyare robust and easy to
implement. Nevertheless, they have severe drawbacks stemming from the non-symmetric
form of the stabilization terms and the occurence of second-order derivatives in the residual
Lu − f . Therefore, other stabilization techniques appeared recently, in particular, the edge-
stabilization method [7, 5] and variational multiscale (VMS) methods [15, 16, 13, 8]. We
emphasize that almost all stabilization methods can be interpreted as special VMS methods.
The key idea of VMS methods is a separation of scales: large scales, small scales and unre-
solved scales. The influence of the unresolved scales on the other scales has to be modelled.
Mostly, it is assumed that the unresolved scales do not influence the large scales.

Local projection stabilization (LPS) methods as special VMS-type methods are of current
interest [4, 19]. Here the influence of the unresolved scaleson the small scales is modelled by
additional artificial diffusion terms for the small scales.LPS methods belong to the class of
symmetric stabilization techniques [5]. One major advantage of such methods applied to opti-
mization problems with partial differential equations is that the operations ‘discretization’and
‘optimization’ commute [3].

There are currently two basic variants of LPS methods: a two-level approach [4, 19,
21] and a one-level approach [19, 24, 20, 10]. One goal of thispaper is a critical review
of the numerical analysis (based on energy estimates) and a comparison of both variants.
It is another goal of this paper to show that this approach is very close to RBS methods
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2 P. KNOBLOCH AND G. LUBE

like the algebraic subgrid scale stabilization [14, 8] or the ‘unusual’ Galerkin/least-squares
method [9].

The outline of the paper is as follows. The basic Galerkin FEMand its stabilization via
local projection is discussed in Section 2. In Section 3 of this paper, we present a unified
theory of local projection methods for problem (1.1) based on energy estimates. In contrast
to other papers, the dependence on the polynomial degree of the finite element method is
considered. In Section 4, examples of finite element spaces satisfying the assumptions of
Section 3 are presented and, in Section 5, a comparison of both variants of LPS methods is
performed by means of simple numerical experiments. Section 6 is devoted to the relationship
between simplicial LPS methods and residual-based stabilization methods.

Throughout this paper, standard notations for Lebesgue andSobolev spaces are used.
The L2 inner product in a domainG is denoted by(·, ·)G. Moreover, we use the notation
a . b if there exists a constantC > 0 independent of all relevant parameters like mesh size,
polynomial degree or coefficients ofL.

2. Variational formulation and stabilization. Here, the basic Galerkin finite element
formulation of problem (1.1) and its stabilized variants via local projection (LPS) are intro-
duced. Moreover, various technical tools are given.

2.1. Basic Galerkin approximation. The variational formulation for the advection-
diffusion-reaction problem (1.1) reads: Findu ∈ V := H1

0 (Ω) such that

a(u, v) := (ε∇u,∇v)Ω + (b · ∇u + σu, v)Ω = (f, v)Ω, ∀v ∈ V. (2.1)

ASSUMPTION1. LetΩ ⊂ R
d, d ∈ {2, 3}, be a bounded, polyhedral domain. Moreover,

assume thatε > 0 is constant,f ∈ L2(Ω), b ∈ [L∞(Ω) ∩ H1(Ω)]d with ∇ · b = 0 a.e. inΩ
andσ ≥ 0 is constant.

REMARK 1. Typically,b is a finite element solution of an incompressible flow problem.
Then there holds(∇ · b, qh)Ω = 0 for certain test functionsqh. Hence,∇ · b is small but
does not vanish in general. A simple remedy to ensure coercivity of a(·, ·) is to replace the
advective term(b · ∇u, v)Ω by 1

2 (b · ∇u, v)Ω − 1
2 (b · ∇v, u)Ω − 1

2 ((∇ · b)u, v)Ω.
Consider a shape-regular, admissible decompositionTh of Ω into d-dimensional sim-

plices, quadrilaterals in the two-dimensional case or hexahedra for three dimensions. LethT

be the diameter of a cellT ∈ Th andh the maximum of allhT , T ∈ Th. Let T̂ be a ref-
erence element of the decompositionTh. Let us assume that, for eachT ∈ Th, there exists
an affine mappingFT : T̂ → T which mapsT̂ ontoT . This quite restrictive assumption for
quadrilaterals can be weakened to asymptotically affine mappings [1].

SetPk,Th
:= {vh ∈ L2(Ω) ; vh ◦ FT ∈ Pk(T̂ ) , T ∈ Th} with the spacePk(T̂ ) of

complete polynomials of degreek defined onT̂ andQk,Th
:= {vh ∈ L2(Ω) ; vh ◦ FT ∈

Qk(T̂ ) , T ∈ Th} with the spaceQk(T̂ ) of all polynomials onT̂ with maximal degreek
in each coordinate direction. We shall approximate the space V by a finite element space
Vh,k ⊂ V such that

Vh,k ⊃ Pk,Th
∩ V or Vh,k ⊃ Qk,Th

∩ V.

Now, the standard Galerkin discretization of problem (1.1)reads: Finduh ∈ Vh,k such that

a(uh, vh) = (f, vh)Ω, ∀vh ∈ Vh,k. (2.2)

As mentioned in the introduction, the solutionuh of (2.2) usually suffers from spurious os-
cillations, which is often cured by introducing a stabilization in (2.2).
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2.2. Local projection stabilization (LPS). The idea of LPS methods is to split the
discrete function spaces into small and large scales and to add stabilization terms of diffusion-
type acting only on the small scales. There are two obvious choices of the space of large
scales: a two-level and a one-level approach.

The first, the two-level variant, is to determine the large scales with the help of a coarse
mesh. The coarse meshMh is constructed by coarsening the basic meshTh such that each
macro-elementM ∈ Mh is the union of one or more neighbouring cellsT ∈ Th. The
diameter ofM ∈ Mh is denoted byhM . We assume that the decompositionMh of Ω is
non-overlapping and shape-regular. Additionally, the interior cells are supposed to be of the
same size as the corresponding macro-cell:

∃ C > 0 : hM ≤ ChT , ∀T ∈ Th, M ∈ Mh with T ⊂ M. (2.3)

Following the approach in [19], we define a discrete spaceDh ⊂ L2(Ω) as a discontinuous
finite element space defined on the macro-partitionMh. The restriction ofDh on a macro-
elementM ∈ Mh is denoted byDh(M) := {vh|M ; vh ∈ Dh}.

The next ingredient is a local projectionπM : L2(M) → Dh(M) which defines the
global projectionπh : L2(Ω) → Dh by (πhv)|M := πM (v|M ) for all M ∈ Mh. A standard
variant is the local orthogonalL2 projection. Denoting the identity onL2(Ω) by id, the
associated fluctuation operatorκh : L2(Ω) → L2(Ω) is defined byκh := id − πh.

The second approach, the one-level variant, consists in choosing a discontinuous lower
order finite element spaceDh on the original meshTh. The same abstract framework as in
the first approach can be used by settingMh = Th.

For both variants, the stabilized discrete formulation reads: finduh ∈ Vh,k such that

a(uh, vh) + sh(uh, vh) = (f, vh)Ω, ∀vh ∈ Vh,k, (2.4)

where the additional stabilization term is given by

sh(uh, vh) :=
∑

M∈Mh

τM (κh (b · ∇uh) , κh (b · ∇vh) )M . (2.5)

REMARK 2. The LPS scheme (2.4) with (2.5) will be denoted as streamline-derivative-
based LPS scheme (SD-based LPS scheme for short below). Another variant is to replace
sh(·, ·) with

s̃h(uh, vh) :=
∑

M∈Mh

τ̃M (κh∇uh, κh∇vh)M .

Later on, it will be called gradient-based LPS scheme. We will summarize the corresponding
result in Remark 6.

The constantsτM andτ̃M will be determined later based on an a priori estimate. Please
notice that the stabilizationssh ands̃h act solely on the small scales. Of course, there is some
more freedom in the choice ofsh, see also [19, 4].

In order to control the consistency error of theκh-dependent stabilization terms, the
spaceDh has to be large enough; more precisely:

ASSUMPTION 2. The fluctuation operatorκh satisfies for0 ≤ l ≤ k the following
approximation property:

∃ Cκ > 0 : ‖κhq‖0,M ≤ Cκ
hl

M

kl
|q|l,M , ∀q ∈ L2(Ω), q|M ∈ H l(M), ∀M ∈ Mh.

(2.6)
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The subsequent numerical analysis takes advantage of the inverse inequality (see [11])

∃ µinv : |vh|1,T ≤ µinvk2h−1
T ‖vh‖0,T , ∀T ∈ Th, ∀vh ∈ Vh,k (2.7)

and of the interpolation properties of the finite element spaceVh,k. For the Scott-Zhang quasi-
interpolant operatorIh,k [25], one obtains forv ∈ V with v|ωT

∈ Hr(ωT ), r ≥ 1, on the
patchesωT :=

⋃

T ′∩T 6=∅ T ′

∃ C > 0 : ‖v − Ih,kv‖m,T ≤ C
hl−m

T

kr−m
‖v‖r,ωT

, 0 ≤ m ≤ l = min{k + 1, r}. (2.8)

The constantC may depend onr.

2.3. Special interpolation operator. Following [19], we construct a special interpola-
tion jh : V → Vh,k such that the errorv− jhv is L2-orthogonal toDh for all v ∈ V . In order
to conserve the standard approximation properties, we additionally assume

ASSUMPTION3. There exists a constantβ > 0 such that, for anyM ∈ Mh,

inf
qh∈Dh(M)

sup
vh∈Yh(M)

(vh, qh)M

‖vh‖0,M‖qh‖0,M
≥ βx (2.9)

whereYh(M) := {vh|M ; vh ∈ Vh,k, vh = 0 onΩ \ M}.
REMARK 3. The inf-sup condition (2.9) implies that the spaceDh must not be too rich.

On the other hand,Dh must be rich enough to fulfil the approximation property (2.6) . Later
we will present several function spacesDh satisfying (2.9).

LEMMA 2.1. Let Assumption 3 be satisfied. Then there is an interpolationoperator
jh : V → Vh,k such that

(v − jhv, qh)Ω = 0, ∀qh ∈ Dh, ∀v ∈ V, (2.10)

‖v − jhv‖0,M +
hM

k2
|v − jhv|1,M .

(

1 +
1

β

)

hl
M

kl
‖v‖l,ωM

,

∀M ∈ Mh, v ∈ V ∩ H l(Ω), 1 ≤ l ≤ k + 1. (2.11)

Proof. We follow the lines of the proof of Th. 2.2 in [19], but we takeinto account the
dependence of the constants on the polynomial order and the inf-sup constantβ.

Consider anyM ∈ Mh and define the linear continuous operatorBh : Yh(M) →
Dh(M)′ by

〈Bhvh, qh〉 := (vh, qh)M , ∀vh ∈ Yh(M), qh ∈ Dh(M).

DenoteWh(M) := Ker(Bh) and letWh(M)⊥ be the orthogonal complement ofWh(M)
in Yh(M) with respect to(·, ·)M . The Closed Range Theorem yields via Assumption 3
(cf. [12], p. 58, Lemma 4.1) thatBh is an isomorphism fromWh(M)⊥ ontoDh(M)′ with
β‖vh‖0,M ≤ ‖Bhvh‖Dh(M)′ for anyvh ∈ Wh(M)⊥. Therefore, for anyv ∈ V , there exists
a uniquezh(v, M) ∈ Wh(M)⊥ with ‖zh(v, M)‖0,M ≤ 1

β‖v − Ih,kv‖0,M such that

〈Bhzh(v, M), qh〉 = (zh(v, M), qh)M = (v − Ih,kv, qh)M , ∀qh ∈ Dh(M).

SinceMh is a partition ofΩ, we can define an operatorjh : V → Vh,k by (jhv)|M :=
(Ih,kv)|M + zh(v, M), M ∈ Mh. Then we immediately obtain the orthogonality property



Local projection stabilization for advection-diffusion-reaction problems 5

(2.10). Due to (2.8) the operatorjh satisfies for1 ≤ l ≤ k + 1 and allM ∈ Mh, v ∈
V ∩ H l(Ω)

‖v − jhv‖2
0,M ≤

(

1 +
1

β

)2

‖v − Ih,kv‖2
0,M ≤ C

(

1 +
1

β

)2
∑

T⊂M

T∈Th

h2l
T

k2l
‖v‖2

l,ωT
.

To derive an approximation property in theH1 seminorm, we first use the inverse inequality
(2.7) and the assumption (2.3), which implies

|zh(v, M)|21,M ≤
∑

T⊂M

T∈Th

µ2
invk4h−2

T ‖zh(v, M)‖2
0,T .

µ2
inv

β2
k4h−2

M ‖v − Ih,kv‖2
0,M .

Then, applying the approximation property (2.8), we get

|v − jhv|1,M = |v − Ih,kv − zh(v, M)|1,M ≤ |v − Ih,kv|1,M + |zh(v, M)|1,M

.

(

1

k
+

µinv

β

)

hl−1
M

kl−2
‖v‖l,ωM

.

REMARK 4. (i) The estimate of Lemma 2.1 is optimal with respect tohM . The estimate
in the seminorm| · |1,M is seemingly sub-optimal regardingk. A discussion of the stability
constantβ appearing in Lemma 2.1 is given in [21].
(ii) If v ∈ V ∩ Ht(Ω) with t > 3

2 , it is possible to replace the Scott-Zhang quasi-interpolant
operatorIh,k in (2.8)by a pointwise interpolant, e.g., the Lagrangian interpolant. This allows
to replace the setsωM in (2.11)and in the a priori estimates of the next section by the macro-
elementsM , see [20].

3. A priori analysis. The next goal is an error estimate for the scheme (2.4). Therefore,
further assumptions on the finite element spacesVh,k andDh are required. We will derive all
results for the SD-based LPS scheme. The corresponding results for the gradient-based LPS
scheme, see Remark 2, will be summarized in Remark 6.

3.1. Stability. First, the stability of the scheme will be proven in the mesh-dependent
norm

|||v||| :=
(

ε|v|21,Ω + σ‖v‖2
0,Ω + sh(v, v)

)
1

2 , ∀v ∈ V.

The corresponding norm for the gradient-based LPS scheme follows by replacingsh with s̃h.
LEMMA 3.1. The following a priori estimate is valid for the SD-based LPSscheme

ε|uh|21,Ω + σ‖uh‖2
0,Ω ≤ |||uh|||2 ≤ (f, uh)Ω, (3.1)

hence existence and uniqueness ofuh ∈ Vh,k in the scheme (2.4) follow.
Proof. For anyv ∈ V , integration by parts yields(b · ∇v, v)Ω = − 1

2 ((∇ · b)v, v)Ω = 0
and therefore

(a + sh)(v, v) = ε|v|21,Ω + σ‖v‖2
0,Ω + sh(v, v) = |||v|||2, ∀v ∈ V. (3.2)

This implies (3.1), hence existence and uniqueness ofuh ∈ Vh,k in the scheme (2.4).



6 P. KNOBLOCH AND G. LUBE

3.2. Approximate Galerkin orthogonality. In LPS methods the Galerkin orthogonal-
ity is not fulfilled and a careful analysis of the consistencyerror has to be done.

LEMMA 3.2. Letu ∈ V anduh ∈ Vh,k be the solutions of (2.1) and of (2.4), respectively.
Then, there holds

a(u − uh, vh) = sh(uh, vh), ∀vh ∈ Vh,k. (3.3)

Proof. The assertion (3.3) follows by subtracting (2.4) from (2.1) with v = vh.
Now we estimate the consistency error.
LEMMA 3.3. Let Assumption 2 be fulfilled and letu ∈ V with b ·∇u ∈ H l(M) for some

l ∈ {0, . . . , k} and for allM ∈ Mh. Then, there holds for the SD-based LPS scheme

|sh(u, vh)| .

(

∑

M∈Mh

Cs
M

h2l
M

k2l
|b · ∇u|2l,M

)
1

2

|||vh|||, ∀vh ∈ Vh,k

with

Cs
M := min

{

τM ,
(τM‖b‖[L∞(M)]dk2)2

σ h2
M

}

. (3.4)

Proof. Consider anyM ∈ Mh andvh ∈ Vh,k. Then the Cauchy-Schwarz inequality and
Assumption 2 yield

(κh(b · ∇u), κh(b · ∇vh))M .
hl

M

kl
|b · ∇u|l,M‖κh(b · ∇vh)‖0,M .

Furthermore, we deduce using theL2 stability ofκh in Assumption 2, the inverse inequality
(2.7) and the assumption (2.3) that

‖κh(b · ∇vh)‖0,M . ‖b‖[L∞(M)]d |vh|1,M . ‖b‖[L∞(M)]dk2h−1
M ‖vh‖0,M .

Thus,

τM (κh(b · ∇u), κh(b · ∇vh))M

.
√

Cs
M

hl
M

kl
|b · ∇u|l,M

(

σ‖vh‖2
0,M + τM‖κh(b · ∇vh)‖2

0,M

)
1

2 ,

which proves the lemma.

3.3. A priori error estimate. The a priori estimate can be proven using the standard
technique of combining the stability and the consistency results of the previous subsections.

THEOREM 3.4. Let u ∈ V be the solution of (2.1) anduh ∈ Vh,k the solution of (2.4).
We assume thatu ∈ H l+1(Ω) for somel ∈ {1, . . . , k} and thatb · ∇u ∈ H l(M) for all
M ∈ Mh. Furthermore let Assumptions 2 and 3 for the coarse spaceDh be satisfied. Then,
there holds for the SD-based LPS scheme

|||u − uh|||2 .
∑

M∈Mh

{

Cs
M

h2l
M

k2l
|b · ∇u|2l,M +

(

1 +
1

β

)2

CM
h2l

M

k2l−2
‖u‖2

l+1,ωM

}

(3.5)

with Cs
M defined in(3.4)and

CM := ε + σ
h2

M

k4
+

h2
M

τMk4
+ τM‖b‖2

[L∞(M)]d .



Local projection stabilization for advection-diffusion-reaction problems 7

Proof. The error is split intou − uh = (u − jhu) + (jhu − uh). We start with the
approximation erroru − jhu. Lemma 2.1 yields

|||u − jhu||| .

(

1 +
1

β

)

(

∑

M∈Mh

[

ε + σ
h2

M

k4
+ τM‖b‖2

[L∞(M)]d

] h2l
M

k2l−2
‖u‖2

l+1,ωM

)
1

2

.

Now we estimate the remaining partwh := jhu − uh using (3.2)

|||jhu − uh||| =
(a + sh)(jhu − uh, wh)

|||wh|||

=
(a + sh)(u − uh, wh)

|||wh|||
+

(a + sh)(jhu − u, wh)

|||wh|||
=: I + II.

Applying Lemmata 3.2 and 3.3, the first term is bounded by

I =
sh(u, wh)

|||wh|||
.

(

∑

M∈Mh

Cs
M

h2l
M

k2l
|b · ∇u|2l,M

)
1

2

.

Now we consider the terms ofII separately. Integration by parts, the orthogonality property
(2.10) and the estimate (2.11) yield forwh ∈ Vh,k that

a(jhu − u, wh) = ε(∇(jhu − u),∇wh)Ω − (κh(b · ∇wh), jhu − u)Ω + σ(jhu − u, wh)Ω

.

(

1 +
1

β

)

(

∑

M∈Mh

[

ε +

(

σ +
1

τM

)

h2
M

k4

]

h2l
M

k2l−2
‖u‖2

l+1,ωM

)
1

2

|||wh|||.

The estimate of the stabilization term follows using (2.6) and (2.11)

sh(jhu − u, wh) .

(

1 +
1

β

)

(

∑

M∈Mh

τM‖b‖2
[L∞(M)]d

h2l
M

k2l−2
‖u‖2

l+1,ωM

)
1

2

|||wh|||.

Summing up all inequalities in this proof gives the assertion.

3.4. Parameter design.Now we will calibrate the stabilization parametersτM with re-
spect to the local mesh sizehM , the polynomial degreek of the discrete ansatz functions

and problem data. The parametersτM are determined by balancing the termsh
2

M

τM k4 ∼
τM‖b‖2

[L∞(M)]d in CM on the right-hand side of the general a priori error estimate(3.5),
hence

τM ∼ hM

‖b‖[L∞(M)]dk2
. (3.6)

Note that the discrete problem is well defined also if‖b‖[L∞(M)]d = 0 for someM ∈ Mh

since

|sh(v, w)| .
∑

M∈Mh

τM ‖b‖2
[L∞(M)]d |v|1,M |w|1,M , ∀v, w ∈ V.
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CORROLARY 3.1. If τM satisfies (3.6), then we obtain for the SD-based LPS scheme
under the assumptions of Theorem 3.4

|||u − uh|||2 .
∑

M∈Mh

{

h2l
M

k2l
min

{

hM

k2

|b · ∇u|2l,M
‖b‖[L∞(M)]d

,
|b · ∇u|2l,M

σ

}

+

(

1 +
1

β

)2 [

ε + σ
h2

M

k4
+ ‖b‖[L∞(M)]d

hM

k2

]

h2l
M

k2l−2
‖u‖2

l+1,ωM

}

.

REMARK 5. This result requires some discussion:
i) For l = k and ε . hM , we obtain for the second right-hand side term in Corol-

lary 3.1 the optimal convergence rateO(h
k+ 1

2

M ) with respect tohM .
For the first right-hand side term, the optimal rate is obtained if b 6= 0 in Ω. If this
is not the case butσ > 0, then one gets the suboptimal rateO(hk

M ). In the case of
σ = 0, an additional reduction of the rate may occur.

ii) Due to the non-optimal estimate of the convergence orderof the interpolation opera-
tor jh in theH1 seminorm, these estimates are presumably not optimal with respect
to polynomial degreek. Let us assume that in Lemma 2.1 there holds

hM

k
|v − jhv|1,M .

(

1 +
1

β

)

hl
M

kl
‖v‖l,ωM

.

A careful check of the proofs leads to

τM ∼ hM

‖b‖[L∞(M)]dk
. (3.7)

Then the a priori estimate (3.5) in Theorem 3.4 would be optimal with respect tok
too with the possible exception of the factors depending onβ. Numerical experi-
ments suggest that the choice (3.7) is correct.

REMARK 6. The result for the gradient-based LPS-scheme (see Remark 2)correspond-
ing to Corollary 3.1 reads as follows: Assume thatb ∈ [W 1,∞(Ω)]d, σ > 0 and u ∈
H l+1(Ω) for somel ∈ {1, . . . , k}. Moreover, let Assumptions 2 and 3 hold. Forτ̃M ∼
hM‖b‖[L∞(M)]d/k2 we obtain for the gradient-based LPS scheme

|||u − uh|||2 .

(

1 +
1

β

)2

×
∑

M∈Mh

[

ε + σ
h2

M

k4
+

h2
M |b|2[W 1,∞(M)]d

σ
+ ‖b‖[L∞(M)]d

hM

k2

]

h2l
M

k2l−2
‖u‖2

l+1,ωM
.

For l = k, ε . hM , we obtain the optimal convergence rateO(h
k+ 1

2

M ) with respect tohM .
This estimate is better with respect tohM than for the SD-based LPS scheme, see Remark 5
(i).

4. Examples of finite element spaces.The paper [19] presents different variants for
the choice of the discrete spacesVh,k andDh using simplicial, quadrilateral and hexahedral
elements. There are two basic variants of the LPS methods: the one-level approach for which
Mh = Th and the two-level approach for which the meshTh is obtained by refining the
meshMh, see Fig. 4.1 ford = 2. In what follows, we describe some details of these two
approaches.
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FIG. 4.1. Relation between the meshesMh andTh in the two-level approach. The bold lines indicate the
meshMh, the fine linesTh

We shall assume that all macro-elements inMh are affine equivalent to the reference
elementT̂ and thatDh ⊂ Pm,Mh

for somem ∈ N0. Let us formulate a sufficient condition
for the validity of the inf-sup condition (2.9). We introduce a reference bubble function

b̂ ∈ C(T̂ )∩H1
0 (T̂ ) satisfyingb̂ ≥ 0 andb̂ 6= 0 and, for anyM ∈ Mh, we setbM = b̂ ◦F−1

M .
Then there exists a positive constantα such that

(bMq, q)M ≥ α ‖q‖2
0,M , ∀q ∈ Dh(M), M ∈ Mh.

Thus, it suffices to require that

bM · Dh(M) ⊂ Yh(M), ∀M ∈ Mh. (4.1)

Then the inf-sup condition (2.9) holds withβ = (α/‖b̂‖L∞(T̂ ))
1/2. Note that a necessary

condition for the validity of (2.9) is thatdimYh(M) ≥ dimDh(M). Therefore, ifYh(M) =
bM · Dh(M), thenYh(M) has the smallest possible dimension.

The one-level approach withMh = Th starts from a given discontinuous spaceDh and
uses an enrichment of the spacesPk,Th

∩ V or Qk,Th
∩ V to satisfy (4.1). For simplicial

elements, we set

Dh := Pk−1,Th
, Vh,k := {v ∈ V ; v|T ◦ FT ∈ P bub

k (T̂ ) ∀T ∈ Th},

where

P bub
k (T̂ ) := Pk(T̂ ) + b̂ · Pk−1(T̂ ), b̂(x̂) := (d + 1)d+1

d+1
∏

i=1

λ̂i(x̂)

with the barycentric coordinateŝλi, i = 1, . . . , d + 1. For quadrilateral/hexahedral elements,
we can use eitherDh = Pk−1,Th

or Dh = Qk−1,Th
. SettingD̂ = Pk−1(T̂ ) or D̂ =

Qk−1(T̂ ), respectively, the spacesVh,k are constructed analogously as for simplices with

Qbub
k (T̂ ) := Qk(T̂ ) + b̂ · D̂, b̂(x̂) :=

d
∏

i=1

(1 − x̂2
i ),

whereT̂ = (−1, 1)d. In the numerical experiments presented in the next section, we consider
D̂ = Qk−1(T̂ ).

Now consider the two-level approach (cf. Figure 4.1 ford = 2). In the simplicial case,
each elementM ∈ Mh is devided intod + 1 simplices by connecting the barycentre ofM
with the vertices ofM . For quadrilateral/hexahedral elements, eachM ∈ Mh is uniformly
refined into2d subelements. Then, for simplices, we set

Vh,k := Pk,Th
∩ V, Dh := Pk−1,Mh



10 P. KNOBLOCH AND G. LUBE

and, for quadrilaterals/hexahedra,

Vh,k := Qk,Th
∩ V, Dh := Qk−1,Mh

.

Then the condition (4.1) is obviously satisfied ifb̂ ∈ H1
0 (T̂ ) is defined as a nonnegative piece-

wise P1/Q1 function with respect to a division of̂T corresponding to the relation between
Mh andTh. Hence the inf-sup constantβ in Assumption 3 is independent ofh. Moreover,
theβ scales likeO(

√
k) for simplicial elements and likeO(1) for quadrilateral elements in

the affine case, see [21].
Note that, for the two-level approach based on simplicial finite elements, the spaceVh,k

can be written in the form

Vh,k = {v ∈ V : v|M ◦ FM ∈ Pk(T̂ ) ⊕ B̂k ∀M ∈ Mh},

whereB̂k ⊂ H1
0 (T̂ ) is a finite-dimensional space consisting of continuous piecewise poly-

nomial functions of degreek. Therefore, the simplicial two-level approach can be regarded
as a one-level approach with respect to the meshMh. This will be used in Section 6.

5. Comparison of one- and two-level approach.In this section, we provide a com-
parison of the one- and two-level variants of the LPS method.The following arguments are
relevant for the comparison regarding the efficiency and flexibility:

The data structure for the one-level method is much simpler than for the two-level ap-
proach. Moreover, adaptive mesh refinement tools can be easier incorporated. On the other
hand, for the same fine mesh, the one-level approach requiresmore degrees of freedom than
the two-level approach.

Moreover, there is a formal argument from the regularity point of view x against the SD-
based variant of the two-level method: The assumptionb · ∇u ∈ H l(M) for all M ∈ Mh

in Theorem 3.4 implicitly requires thatb ∈ [H l(M)]d. This is not realistic asb is usually
a finite element solution stemming from a flow simulation. Please note that this argument is
not valid for the gradient-based variant of the two-level method.

Now we proceed with the comparison by evaluating some numerical experiments for the
SD-based LPS-scheme. First of all, we emphasize that both, the one-level and the two-level
method, perform very well according to the theory of Section3 for problems with solutions
without boundary and interior layers. Nevertheless, we omit corresponding results. Here, we
concentrate ourselves instead on the more interesting caseof problems with layers.

In all numerical experiments, the computational domainΩ is the unit square. We shall
consider both one- and two-level approach which will be compared with the SUPG method.
The parameter design isτM = τ0hM for the LPS methods andδT = δ0hT for the SUPG
method with free parametersτ0 andδ0. The computations were performed for the one-level
method with theQbub

1 andQbub
2 elements on uniform grids consisting of64 × 64 and of

32 × 32 equal square elements, respectively. Similarly, for the SUPG method, we apply the
Q1 andQ2 elements on uniform grids consisting of64 × 64 and of32 × 32 equal square
elements, respectively. For the two-level approach, we apply the Q1 andQ2 elements on
uniform grids consisting of128 × 128 and of64 × 64 equal square elements, respectively.
Thus, the corresponding coarse meshesMh consist of64 × 64 and of32 × 32 elements and
hence are the same as for the one-level approach. This gives an almost fair comparison of
both approaches.

We start with two rather academic problems where the flow fieldb is aligned with the
uniform (Cartesian) mesh inΩ.
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EXAMPLE 1. Exponential outflow layer (see [20], Example 4.2).
Consider inΩ = (0, 1)2 the model problem (1.1) withε = 10−7, b = (0, 2)T andσ = 0.
The exact solution

u(x) = (2x1 − 1)
1 − exp(−2(1 − x2)/ε)

1 − exp(−2/ε)

has an exponential boundary layer at the outflow part of the boundary and generates the
right-hand sidef = Lu. On the whole boundary ofΩ, a Dirichlet boundary condition
determined byu is prescribed. Note that the limit solutionlimε→0 u(x) = 2x1 − 1 can be
exactly interpolated byQk elements,k ≥ 1.
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FIG. 5.1. Dependence of errors on scaling parametersδ0 and τ0 for different methods and Example 1:Q1

elements (left column) andQ2 elements (right column) for SUPG method (first row), one-level LPS method (second
row) and two-level LPS method (third row)

Figure 5.1 provides a comparison of the errors in theL2 norm,H1 seminorm and the
(discrete)L∞ norm vs. the scaling parametersτ0 for the LPS method andδ0 for the SUPG
method. We calculate all (semi)norms on the subdomainΩ0 which does not contain those
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FIG. 5.2. Cross-section of the discrete solutions for Example 1 atx1 = 1 − 1/32 for one-level method with
Qbub

2
elements (left) and two-level method withQ2 elements (right) compared to the SUPG solution

elementsM ∈ Mh which intersect the outflow boundary layer atx2 = 1. In particular, the
H1 seminorm ofu on these elements would otherwise dominate the error. For the Qbub

1 and
Qbub

2 elements, we drop the additional bubble functions when computing the errors.
First let us consider theQ1 andQbub

1 elements in the left column of Figure 5.1. For all
methods, one observes a global minimum of the errors for someτ∗

0 andδ∗0 , which corresponds
to the nodally exact solution onΩ resp.Ω0 in case of the two-level method. The two-level
solution possesses a spurious oscillation alongx2 = 1 − 1/128 which is in agreement with
the one-dimensional theoretical investigations of [23].

The results are less good for theQ2 andQbub
2 elements in the right column of Figure 5.1

as nodally exact discrete solutions cannot be obtained. Nevertheless, a global minimum can
be observed for certain values ofτ∗

0 andδ∗0 . The LPS methods are clearly outperformed by
the SUPG method with the optimized parameterδ∗0 . Furthermore, we observe that the one-
level method leads to larger errors with repect to all norms than the two-level method. In
particular, the one-level method leads to larger oscillations than the two-level method. This is
highlighted by Figure 5.2 where a cross-section of the discrete solutions atx1 = 1 − 1/32 is
shown (here the largest oscillations of the discrete solution can be observed). The solutions
are shown only forx2 ≥ 0.7 since they are nearly constant forx2 < 0.7. It can also be
seen that the discrete solutions can be improved if they are replaced by the piecewise bilinear
interpolate in case of the one-level method and by the piecewise biquadratic interpolate on
the macro-mesh in case of the two-level method. Figure 5.2 further shows the SUPG solution
which is signifantly better than both LPS solutions although much less degrees of freedom
are needed.

In the above comparison, the number of degrees of freedom considered for the one-
level method is smaller than for the two-level method, whichleads to a larger smearing of
the boundary layer in case of the one-level method, see Figure 5.2. If we apply the one-
level method on the fine mesh of the two-level method (and hence the number of degrees of
freedom is larger for the one-level method than for the two-level method), than the smearings
caused by both LPS methods are comparable but the oscillations of the one-level solutions
remain larger than for the two-level method. Also the errorsconsidered in Figure 5.1 remain
larger for the one-level method.

EXAMPLE 2. Parabolic layers (see [20], Example 4.4).
Consider inΩ = (0, 1)2 the model problem (1.1) withε = 10−7, b = (0, 1 + x2

1)
T , σ = 0

andf = 0. At the outflow boundaryΓout = (0, 1)×{1}, a homogeneous Neumann condition
is considered whereas, at∂Ω \ Γout, an inhomogeneous Dirichlet conditionu(x) = 1 − x2
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is prescribed. The exact solution exhibites parabolic layers atx1 = 0 andx1 = 1.
As an exact solution is not available, we provide a comparison of cross-sections of the

discrete solution at the outflow part of the boundary atx2 = 1 for different values ofτ0.
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FIG. 5.3.Outflow profiles for the Galerkin solutions of Example 2
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FIG. 5.4. Outflow profiles for LPS solutions of Example 2 with differentvalues ofτ0: one-level LPS (left
column) and two-level LPS (right column) for theQbub

1
and Q1 elements (first row) and for theQbub

2
and Q2

elements (second row)

For this example, the Galerkin method leads to solutions with spurious oscillations lo-
calized along the boundary layers, see Figure 5.3 left. Moreover, the oscillations depicted
in this figure disappear if we represent the discrete solutions by their values at the vertices
of the32 × 32 mesh, see Figure 5.3 right. This nice behaviour is seeminglyan effect of the
Cartesian mesh being aligned with the flow fieldb. In what follows, we shall investigate to
what extent the Galerkin solutions can be improved by means of the LPS method. We shall
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present the outflow profiles only in a neighbourhood of the right boundary layer.
For all four LPS methods andτ0 ∈ (0.01, 1), the outflow profiles are very similar to

that of the Galerkin method with theQ1 or Q2 element on the meshTh of the respective
LPS method. For the two-level methods, this is true also for smaller values ofτ0. For the
one-level methods, the behaviour forτ0 ∈ (0, 0.01) is different since the Galerkin solutions
for theQbub

1 or Qbub
2 elements significantly differ from the Galerkin solutions for theQ1 or

Q2 elements, respectively.
For τ0 > 103, the LPS with theQ1 element leads to very similar outflow profiles as

the LPS with theQbub
1 element, and the LPS with theQ2 element gives almost the same

outflow profiles as the the LPS with theQbub
2 element. However, the qualitative behaviour

of the first order and the second order LPS methods is different. Whereas, for the second
order LPS methods, the outflow profiles are basically independent ofτ0 > 103, the first order
LPS methods introduce a considerable smearing of the boundary layers which increases with
increasingτ0 and makes the discrete solutions useless.

It remains to discuss the properties of the LPS methods forτ0 ∈ (1, 103), see Figure 5.4.
As we observe, for first order LPS methods, the oscillations decrease with increasingτ0

but simultaneously the boundary layers are smeared. For second order LPS methods, the
oscillations first decrease but soon they again start to increase and, forτ0 = 102, they are
already larger than for the Galerkin method. Thus, for first order LPS methods, oscillation-
free discrete solutions can be obtained only at the prize of smearing the layers. For second
order LPS methods, it seems that, for any choice ofτ0, it is not possible to obtain a discrete
solution with sufficiently suppressed spurious oscillations.

An alternative way to suppress the spurius oscillations of the LPS solutions is to consider
only a ‘coarse’ part of the solution like in Figure 5.3. However, for the two-level methods, this
does not lead to an improvement in comparison with the ‘coarse’ part of the Galerkin solution.
For the one-level methods, a small improvement is possible,nevertheless, it is questionable
whether this improvement is worth the increased computational cost. Moreover, it is very
sensitive to the choice ofτ0.

Finally, we consider an example where the flow fieldb is not aligned with the uniform
(Cartesian) mesh.

EXAMPLE 3. Consider inΩ = (0, 1)2 the model problem (1.1) withε = 10−7, b =
(−x2, x1)

T , σ = 0 andf = 0. At the outflow boundaryΓout = (0, 1) × {1}, a homoge-
neous Neumann condition is considered whereas, at∂Ω \ Γout, an inhomogeneous Dirichlet
conditionu(x) = 1 for x ∈ [ 13 , 2

3 ]×{0} andu(x) = 0 elsewhere is prescribed. The exact so-
lution exhibits interior parabolic layers starting from the discontinuities of the inflow profile
at x2 = 0.

The solutions of all four LPS methods with optimized parametersτ0 are comparable,
see Figure 5.5 where two such solutions are shown. The discrete solutions detect the interior
layers well but have local spurious oscillations in this numerical layers. A comparison of the
results for the LPS methods to the SUPG method (not shown) clarifies that the LPS methods
cannot outperform the SUPG method.

Summarizing, both variants of the LPS method give comparable results for problems
with boundary and interior layers and we have not found any convincing arguments for prefer-
ing one of these variants. All methods are able to detect boundary and interior layers numer-
ically but they are rather sensitive to the scaling of the stabilisation parameter. In general,
the LPS methods do not attain the quality of the classical SUPG method. As for the SUPG
method, the discrete solutions exhibit local spurious oscillations in layer regions unless the
mesh is aligned with the advection direction. A potential remedy in case of boundary layers
is the weak imposition of Dirichlet data by using Nitzsche’smethod, cf., e.g., [2]. Another
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FIG. 5.5. Plot of the discrete solutions for Example 3 for the one-level method with theQbub

1
element and

τ0 = 0.03 (left) and for the two-level method with theQ2 element andτ0 = 3 (right)

idea is the implementation of additional (nonlinear) stabilisation terms which reduce oscilla-
tions in crosswind directions around layers, see [17]. Moreover, we refer to the possibility to
resolve layers with well-adapted anisotropic finite elements, see, e.g., [18].

6. Relation to residual-based stabilizations.In this section we shall demonstrate that
LPS methods based on simplicial meshes are very close to RBS techniques. The dependence
on the polynomial degreek will not be considered here.

As we have seen in Section 4, for both the one- and two-level approach, the spacesVh,k

andDh are given by

Vh,k = V h,k ⊕ Bh,k, Dh = Pk−1,Mh
,

where

V h,k := Pk,Mh
∩ V, Bh,k :=

⊕

M∈Mh

Bk(M).

The spacesBk(M) are defined using a finite-dimensional spaceB̂k ⊂ C(T̂ ) ∩ H1
0 (T̂ ) such

that B̂k ∩ Pk(T̂ ) = {0}, i.e., for anyM ∈ Mh, we setBk(M) := {v̂ ◦ F−1
M ; v̂ ∈ B̂k}.

ThenBk(M) ⊂ H1
0 (M) andBk(M) ∩ Pk(M) = {0}.

Let us consider the gradient-based LPS scheme, i.e., the discrete solution is a function
uh ∈ Vh,k satisfying

a(uh, vh) +
∑

M∈Mh

τM (κh∇uh, κh∇vh)M = (f, vh)Ω, ∀vh ∈ Vh,k, (6.1)

where we dropped the tilde overτM for simplicity. The local projectionπM : L2(M) →
Dh(M) = Pk−1(M) used to define the fluctuation operatorκh is assumed to be the orthog-
onalL2 projection ofL2(M) ontoPk−1(M). We shall also use the local fluctuation operator
κM := id−πM . Note that, for anyvh ∈ V h,k, we have∇vh ∈ [Dh]d and henceκh∇vh = 0.
Thus, it follows from (6.1) that

a(uh, vh) = (f, vh)Ω, ∀vh ∈ V h,k. (6.2)

We define the bilinear forms

aM (u, v) := ε(∇u,∇v)M + (b · ∇u, v)M + σ(u, v)M ,

a⋆
M (u, v) := ε(∇u,∇v)M − (b · ∇u, v)M + σ(u, v)M .
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Then

aM (u, v) = a⋆
M (v, u), ∀u, v ∈ H1

0 (M), M ∈ Mh. (6.3)

Denoting

L⋆u := −ε∆u − b · ∇u + σu,

we have

aM (u, v) = (Lu, v)M , ∀u ∈ H2(M), v ∈ H1
0 (M), (6.4)

aM (u, v) = (u, L⋆v)M , ∀u ∈ H1
0 (M), v ∈ H2(M). (6.5)

Using the local bilinear forms, we deduce from (6.1) that, for anyM ∈ Mh, we have

aM (uh, vM ) + τM (κM∇uh, κM∇vM )M = (f, vM )M , ∀vM ∈ Bk(M). (6.6)

We denote byuh ∈ V h,k andub
h ∈ Bh,k the uniquely determined functions satisfyinguh +

ub
h = uh and setuM = ub

h|M for anyM ∈ Mh. Combining (6.4) and (6.6), we derive that

aM (uM , vM ) + τM (κM∇uM , κM∇vM )M = (f − Luh, vM )M , ∀vM ∈ Bk(M).

We define one-to-one linear operatorsAM , A⋆
M : Bk(M) → Bk(M) by

aM (u, v) + τM (κM∇u, κM∇v)M = (AMu, v)M , ∀u, v ∈ Bk(M),

a⋆
M (v, u) + τM (κM∇v, κM∇u)M = (u, A⋆

Mv)M , ∀u, v ∈ Bk(M).

According to (6.3), the operatorA⋆
M is adjoint to the operatorAM . Clearly,

(AMuM , vM )M = (f − Luh, vM )M , ∀vM ∈ Bk(M)

and hence

uM = A−1
M ̺M (f − Luh), (6.7)

where̺M is the orthogonalL2 projection fromL2(M) ontoBk(M). According to (6.2), we
have

a(uh, vh) +
∑

M∈Mh

aM (uM , vh) = (f, vh)Ω, ∀vh ∈ V h,k.

Using (6.5) and (6.7), we obtain

aM (uM , vh) = (uM , L⋆vh)M = (A−1
M ̺M (f − Luh), ̺ML⋆vh)M , ∀vh ∈ V h,k

and hence we derive that

a(uh, vh) +
∑

M∈Mh

(f − Luh, (A⋆
M )−1̺ML⋆vh)M = (f, vh)Ω, ∀vh ∈ V h,k. (6.8)

Since(A⋆
M )−1 maps intoBk(M), it is not necessary to apply the projection̺M to f −Luh.

The relation (6.8) shows that any simplicial LPS method can be interpreted as a residual-
based stabilization. The operator(A⋆

M )−1 plays the role of a stabilization parameter and we
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shall investigate in the following how it depends on the LPS parameterτM and on the data of
the problem (1.1).

LEMMA 6.1. There existsγ > 0 such that

‖κM∇v‖0,M ≥ γ‖∇v‖0,M , ∀v ∈ Bk(M), M ∈ Mh.

Proof. Consider anyM ∈ Mh and v ∈ Bk(M). Then there existŝv ∈ B̂k such
that v = v̂ ◦ F−1

M and we have∇v = (DFM )−M (∇̂v̂) ◦ F−1
M whereDFM is the Jacobi

matrix of FM . Thus, given anyi ∈ {1, . . . , d}, there exists a vectora ∈ R
d such that

(∂v/∂xi) ◦FM = a · ∇̂v̂. Consequently, it suffices to prove the existence ofγ > 0 such that

‖κ̂(a · ∇̂v̂)‖0,T̂ ≥ γ‖a · ∇̂v̂‖0,T̂ , ∀a ∈ R
d, v̂ ∈ B̂k, (6.9)

whereκ̂ = id − π̂ and π̂ is the orthogonalL2 projection ofL2(T̂ ) ontoPk−1(T̂ ). Let us
assume that (6.9) does not hold for anyγ > 0. Then there exist sequences{an}∞n=1 ⊂
R

d and {v̂n}∞n=1 ⊂ B̂k such that|an| = 1, ‖∇̂v̂n‖0,T̂ = 1 and ‖κ̂(an · ∇̂v̂n)‖0,T̂ <

(1/n)‖an · ∇̂v̂n‖0,T̂ ≤ 1/n for any n ∈ N. Since the spacesRd and B̂k are finite-

dimensional, there exist subsequences{anl
} and{v̂nl

} converging to somea ∈ R
d and

v̂ ∈ B̂k, respectively. Clearly,|a| = 1, ‖∇̂v̂‖0,T̂ = 1 andκ̂(a · ∇̂v̂) = 0. The last relation

implies thata · ∇̂v̂ ∈ Pk−1(T̂ ) and hencêv ∈ Pk(T̂ ) sincev̂ ∈ C(T̂ ) ∩ H1
0 (T̂ ). Conse-

quently,v̂ = 0 asB̂k∩Pk(T̂ ) = {0}. This is in contradiction with the fact that‖∇v̂‖0,T̂ = 1.

THEOREM 6.2. There exist positive constantsC1 andC2 such that, for anyM ∈ Mh

andg ∈ Bk(M), we have

C1h
2
M

ε + τM + ‖b‖[L∞(M)]dhM + σh2
M

≤
‖(A⋆

M )−1g‖0,M

‖g‖0,M

≤ C2h
2
M

ε + τM + σh2
M

. (6.10)

Proof. Consider anyM ∈ Mh andg ∈ Bk(M) and setu = (A⋆
M )−1g. Thena⋆

M (u, v)+
τM (κM∇u, κM∇v)M = (g, v)M for anyv ∈ Bk(M). It is well known that

C3hM |v|1,M ≤ ‖v‖0,M ≤ hM |v|1,M , ∀v ∈ Bk(M),

whereC3 is positive and independent ofM andv. Therefore, in view of Lemma 6.1,

hM |u|1,M‖g‖0,M ≥ (g, u)M = ε|u|21,M + σ‖u‖2
0,M + τM‖κM∇u‖2

0,M

≥ (ε + γ2τM + σC2
3h2

M )|u|21,M ,

which implies that

min{1, γ2, C2
3}(ε + τM + σh2

M )‖u‖0,M ≤ h2
M‖g‖0,M ,

thus proving the right-hand side inequality in (6.10). On the other hand, for anyv ∈ Bk(M),
we have

(g, v)M ≤ {(ε + τM )C−1
3 h−1

M + ‖b‖[L∞(M)]d + σhM}|u|1,M‖v‖0,M ,

where we used the fact that‖κMz‖2
0,M = ‖z‖2

0,M − ‖πMz‖2
0,M ≤ ‖z‖2

0,M for any z ∈
L2(M). Consequently,

C2
3h2

M‖g‖0,M ≤ max{1, C3}(ε + τM + ‖b‖[L∞(M)]dhM + σh2
M )‖u‖0,M ,
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which completes the proof.
REMARK 7. Let us consider the simplest casek = 1. Since, for anyM ∈ Mh, the

spaceB1(M) is one-dimensional, the operatorA⋆
M represents a multiplicative factor and we

easily obtain

(A⋆
M )−1 =

‖bM‖2
0,M

(ε + τM )|bM |21,M + σ‖bM‖2
0,M

,

wherebM = b̂ ◦ F−1
M . Moreover, introducing the mean values

bM =
(b, bM )M

(1, bM )M
, fM =

(f, bM )M

(1, bM )M

and denoting byxM the barycentre ofM , we derive that

(f − Luh, (A⋆
M )−1̺ML⋆vh)M = δM (bM · ∇uh + σuh − fM , bM · ∇vh − σvh(xM ))M

with

δM =
(1, bM )2M

|M |{(ε + τM )|bM |21,M + σ‖bM‖2
0,M} ,

where|M | is the volume ofM .
REMARK 8. Let us consider the SD-based LPS scheme (2.4), (2.5) which wenow write

in the form

a(uh, vh) +
∑

M∈Mh

τM (κh(eb · ∇uh), κh(eb · ∇vh))M = (f, vh)Ω, ∀vh ∈ Vh,k,

whereeb = b/|b| (eb = 0 if b = 0). If we assume thatb is piecewise constant, we again
deduce that the componentuh ∈ V h,k of the discrete solutionuh ∈ Vh,k satisfies the relation
(6.8), where the operatorA⋆

M : Bk(M) → Bk(M) is now defined by

a⋆
M (v, u) + τM (κM (eb · ∇v), κh(eb · ∇u))M = (u, A⋆

Mv)M , ∀u, v ∈ Bk(M).

It is easy to check that the statement of Theorem 6.2 remains valid as well, provided that
τM = 0 if b|M = 0.

REMARK 9. As we see from (6.10), the limit caseτM → ∞ corresponds to the Galerkin
discretization (2.2).

7. Summary. In this paper, we considered the local projection stabilization (LPS) of
finite element methods for the linear advection-diffusion-reaction problem. This new tech-
nique for the numerical solution of transport-dominated problems preserves the stability and
accuracy of methods with residual-based stabilization buthas a symmetric form of the sta-
bilization term. We gave a critical discussion and comparison of the one- and two-level
approaches to LPS which showed that there are no convincing arguments for prefering one
of these approaches. Moreover, the relation between the LPSmethod and residual-based
stabilization techniques was explained for simplical elements.
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