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Abstract. In this paper, we consider the numerical analysis of quadratic optimal control problems governed by
a linear advection-diffusion-reaction equation without control constraints. In the case of dominating advection, the
Galerkin discretization is stabilized via the one- or two-level variant of the local projection approach which leads to
a symmetric optimality system at the discrete level. The optimal control problem simultaneously covers distributed
and Robin boundary control. In the singularly perturbed case, the boundary control at inflow and/ or characteristic
parts of the boundary can be seen as regularization of a Dirichlet boundary control.
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1. Introduction. In this paper, we consider some aspects of the numerical analysis of
the quadratic optimal control problem

min J(u, qΩ, qΓ) =
λΩ

2
‖u−uΩ‖2

L2(Ω)+
λΓ

2
‖u−uΓ‖2

L2(ΓR)+
αΩ

2
‖qΩ‖2

L2(Ω)+
αΓ

2
‖qΓ‖2

L2(ΓR)

(1.1)
where(u, qΩ, qΓ) ∈ V × Qad

Ω × Qad
Γ with

V = {v ∈ H1(Ω) : u|ΓD
= 0}, Qad

Ω = L2(Ω), Qad
Γ = L2(ΓR)

is subject to the linear mixed boundary value problem of advection-diffusion-reaction type

−ε∆u + b · ∇u + σu = f + qΩ in Ω,

ε∇u · n + βu = g + qΓ onΓR (1.2)

u = 0 onΓD.

HereΩ ⊂ R
d, d ∈ {2, 3} is a bounded polyhedral domain with Lipschitz boundary∂Ω =

ΓR ∪ ΓD, ΓD ∩ ΓR = ∅ and outer normal unit vectorn. In (1.1), the desired states areuΩ

in Ω anduΓ on ΓR. The constantsλΩ, λΓ ≥ 0 with λ2
Ω + λ2

Γ > 0 describe the weights of
different parts whereasαΩ, αΓ ≥ 0 with α2

Ω+α2
Γ > 0 serve as regularisation parameters. The

state equation (1.2) describes the dependence of the stateu on the control(qΩ, qΓ). Here we
consider the problem without restrictions of the control. The problem with box-constraints
for the control will be considered elsewhere.

The linear-quadratic optimal control problem (1.1)-(1.2), without and with control con-
straints has been considered by Becker and Vexler in [5] for the singularly perturbed case
with 0 < ε ≪ 1, see also the references therein. One goal of the present paper is to consider
problem (1.1)-(1.2) simultaneously for distributed and (Robin) boundary control. Notably, in
the singularly perturbed case0 < ǫ ≪ 1, the Robin control at inflow and/or characteristic
parts of the boundary can be seen as regularization of a Dirichlet boundary control.

The standard Galerkin discretization is stabilized as in [5] via the local projection ap-
proach (LPS for short below) which leads to a symmetric optimality system at the dis-
crete level. This implies that the operations ”discretization” and ”optimization” commute
as opposed to residual-based stabilization techniques like the standard streamline-diffusion
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method. Another aim of the present paper is a more general LPSapproach, including the
so-called two-level variant (as in [5]) and a one-level variant introduced in [14].

Let us emphasize two aspects of the analysis in the present paper: Firstly, the regu-
larity of the solution of the mixed boundary value problem (1.2) is taken into account by
using Sobolev-Slobodeckij spaces and adapting the analysis of the LPS method. Secondly,
the analysis is performed for shape regular meshes (as opposed to quasi-uniform meshes in
[5]) which allows for (isotropic) mesh refinement at cornersor edges of the domain and in
boundary layers.

An outline of the paper is as follows: In Section 2, we addressthe existence, unique-
ness and regularity of the solution of problem (1.1)-(1.2).Then, in Section 3, we consider
the discretization of the state equation by means of finite element methods (FEM) with local
projection stabilization and derive the discretized optimality systems. In Section 4, we ana-
lyze the convergence properties of the discretized optimalcontrol problem. In Section 5, we
briefly address the interpretation of Robin boundary control as regularized Dirichlet control.
Some numerical experiments will be presented in Section 6.

Throughout this paper, standard notations for Lebesgue andSobolev spaces are used. In
particular, theL2-inner product and the corresponding norm in a domainG ⊆ Ω are denoted
by (·, ·)G and‖ · ‖0,G, respectively. Usually, we omit the indexG if G = Ω.

2. Continuous optimal control problem. Here we consider the optimality system for
thecontinuousoptimal control problem (1.1)-(1.2).

2.1. Solvability. To this goal, we first consider the solvability of the state equation (1.2)
with f̃ := f + qΩ andg̃ := g + qΓ. The variational form of problem (1.2) reads

Findu ∈ V := {v ∈ H1(Ω) : v|ΓD
= 0}, s.t. a(u, v) = f(v) ∀v ∈ V. (2.1)

with

a(u, v) := ε(∇u,∇v)Ω + (b · ∇u + σu, v)Ω + (βu, v)ΓR

f(v) := (f̃ , v)Ω + (g̃, v)ΓR
.

The following result provides sufficient conditions for theunique solvability of (2.1).
LEMMA 2.1. Let the following assumptions be valid:

i) bi ∈ L∞(Ω), i ∈ {1, · · · , d}, f̃ ∈ L2(Ω), g̃ ∈ L2(ΓR), β ∈ L∞(ΓR),
ii) ǫ > 0, σ ≥ 0 and ∇ · b = 0 a.e. in Ω,

iii) β ≥ 0 and β̃ := β + 1
2 (b · n) ≥ β0 ≥ 0 onΓR,

iv) Let at least one of the following conditions be valid:
(a) µn−1(ΓD) > 0,
(b) σ > 0 andβ0 > 0.

Then there exists a unique solutionu ∈ H1(Ω) of the mixed boundary value problem (2.1).
Proof. The continuity ofa(·, ·) andf(·) follow via standard inequalities and i) - iii):

|a(u, v)| = |ε(∇u,∇v)Ω + ((b · ∇u + σu, v)Ω + (βu, v)ΓR
|

≤
(

ε + σ +
( n∑

i=1

‖bi‖2
∞;Ω

)1/2

+ C‖β‖∞;ΓR

)

‖u‖1‖v‖1 ≡ Ma‖u‖1‖v‖1

|f(v)| = |(f, v)Ω + (g, v)ΓR
| ≤ (‖f‖0 + C‖g‖0;ΓR

)‖v‖1 ≡ Mf‖v‖1.

Integration by parts of the advective term together with assumption∇ · b = 0 and the abbre-
viation β̃ := β + 1

2 b · n yield H1-ellipticity of a

a(v, v) = ε|v|21 + σ‖v‖2
0 +

∥
∥β̃

1
2 v
∥
∥

2

0;ΓR
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as
√

a(v, v) is equivalent to the standard norm onH1(Ω) if one of the assumptions in iv) is
valid. Finally, the Lax-Milgram theorem delivers the assertion.

The following existence result follows by standard arguments in optimal control [15].
THEOREM 2.2. Under the assumptions of Lemma 2.1 the optimal control problem (1.1)-

(1.2) admits a unique solution(u, qΩ, qΓ) ∈ V × Qad
Ω × Qad

Γ .

2.2. Regularity. For the convergence analysis below, statements on the regularity of the
solution of (2.1) are required. In general, the solution of this mixed boundary value problem
is not inW 2,p(Ω). A standard approach is to consider weighted Sobolev spaces. Let S be
the set of points (ford = 2) or edges (ford = 3) which subdivide the polyhedral boundary
∂Ω into smooth disjoint connected components. The spaceV k,p

β (Ω) denotes the closure of
C∞(Ω) w.r.t.

‖v‖V k,p

β
(Ω) =

( ∑

|α|≤k

∫

Ω

rp(β−k+|α|)|Dαu|p dx
) 1

p

wherer = r(x) = dist(x,S), β ∈ R, k ∈ N andp > 1. The parameterβ is defined via
eigenvalues of certain eigenvalue problems (in local coordinate systems at parts of the setS)
being associated with the mixed boundary value problem. As it is not the goal of this paper to
give sufficient conditions for the solution of problem (2.1)to belong toV k,p

β (Ω), we refer to
standard textbooks as [8, 11]. Moreover, we do not intend to consider graded finite element
meshes in the neighborhood of the setS although the forthcoming numerical analysis allows
such kind of refinement. For this approach to optimal controlproblems for elliptic problems,
we refer, e.g., to [1, 2].

Here we consider on a subdomainG ⊆ Ω the Sobolev-Slobodeckij spaces

W k+λ,p(G) := {v ∈ W k,p(G) :
( ∑

|α|=k

∫

G

∫

G

|Dαu(x) − Dαu(y)|p
‖x − y‖d+pλ

dx dy
) 1

p

︸ ︷︷ ︸

=:‖u‖k+λ,p,G

< ∞}.

with k ∈ N0, λ ∈ [0, 1), p ∈ (1,∞) and the obvious modifications in case ofp = ∞. The
spacesW k+λ,p(ΓR) are defined in a similar way.

REMARK 1. The following embeddingsV 2,2
β (Ω) ⊂ W

d
2 +κ,2(Ω) ⊂ C(Ω) are valid for

β < 2 − d
2 + κ with κ > 0, cf. [11]. In particular, for the Dirichlet case∂Ω = ΓD in

polyhedral domains there holdsβ ≤ 1
2 + κ, κ > 0.

Later on, Remark 1 motivates the regularity assumptionu ∈ W 1+λ,2(Ω), 1 + λ > d/2
for the solution of problem (2.1), see Assumption 1 below.

2.3. Optimality system. As problem (2.1) admits a unique solution, see Lemma 2.1,
we may define the linear continuous solution operator

S : L2(Ω) × L2(ΓR) → V, u = S(qΩ + f, qΓ + g).

The mapping(qΩ, qΓ) 7→ u is affine linear. Moreover, denoteSΓ := γ ◦ S with the trace
operatorγ. After substitutingu = S(qΩ + f, qΓ + g) andu|ΓR

= SΓ(qΩ + f, qΓ + g), we
obtain the reduced cost functional:

j(qΩ, qΓ) = J (qΩ, qΓ, S(qΩ, qΓ)) =
λΩ

2
‖S(qΩ + f, qΓ + g) − uΩ‖2

0;Ω

+
λΓ

2
‖SΓ(qΩ + f, qΓ + g) − uΓ‖2

0;ΓR
+

αΩ

2
‖qΩ‖2

0;Ω +
αΓ

2
‖qΓ‖2

0;ΓR
.

(2.2)
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Now the reduced optimization problem reads

Minimize j(qΩ, qΓ), (qΩ, qΓ) ∈ Qad
Ω × Qad

Γ . (2.3)

Henceforth we denote the optimal control of the problem by(qΩ, qΓ) and the correspond-
ing optimal state byu = S(qΩ + f, qΓ + g). The reduced cost functionalj is continuously
differentiable.

LEMMA 2.3. The first order derivatives of the reduced cost functionalj are given by

DqΩj(qΩ, qΓ) · kΩ = (αΩqΩ + p, kΩ)Ω, DqΓj(qΩ, qΓ) · kΓ = (αΓqΓ + p, kΓ)ΓR
(2.4)

where the adjoint statep ∈ V is the solution of the adjoint state problem

Find p ∈ V : aadj(p, v) = λΩ(u − uΩ)Ω + λΓ(u − uΓ)ΓR
∀v ∈ V, (2.5)

with

aadj(p, v) := ε(∇p,∇v)Ω − (b · ∇p, v)Ω + σ(p, v)Ω + ((β + b · n)p, v)ΓR
.

Proof. Formula (2.4) follows via standard arguments, see [15]. The solvability of the
adjoint state problem (2.5) is shown as in the proof of Lemma 2.1.

The necessary (and here also sufficient) optimality conditions for the reduced control
problem (2.3) read

DqΩj(qΩ, qΓ) · (kΩ − qΩ) = (αΩqΩ + p, kΩ − qΩ)Ω = 0, ∀kΩ ∈ Qad
Ω (2.6)

DqΓj(qΩ, qΓ) · (kΓ − qΓ) = (αΓqΓ + p, kΓ − qΓ)ΓR
= 0, ∀kΓ ∈ Qad

Γ (2.7)

wherep is the associated adjoint state to(qΩ, qΓ). This leads to

αΩqΩ + p = 0, in Ω αΓqΓ + p = 0 on ΓR. (2.8)

The optimality system (KKT-system) for the optimal controlproblem (1.1)-(1.2) is formed
by (2.8) together with the state problem (1.2) and the adjoint state problem (2.5).

The second order derivatives ofj(qΩ, qΓ) do not depend on(qΩ, qΓ) and admit the esti-
mates

DqΩqΩj(qΩ, qΓ) · (kΩ, kΩ) ≥ αΩ‖kΩ‖2
0,Ω, ∀kΩ ∈ Qad

Ω (2.9)

DqΓqΓj(qΩ, qΓ) · (kΓ, kΓ) ≥ αΓ‖kΓ‖2
0,ΓR

, ∀kΓ ∈ Qad
Γ . (2.10)

Motivated by Remark 1, we make the following regularity assumption for the solution of
the optimal control problem which allows later on Lagrangian interpolation of the solution.

ASSUMPTION 1. The optimal solution(u, p, qΩ, qΓ) of the optimal control problem
(1.1)-(1.2) belongs to[W 1+λ,2(Ω)]3 × W

1
2+λ,2(ΓR) with 1 + λ > d

2 .
Assume thatαΩ, αΓ > 0. Then assumption 1 is valid if the solutionu of (2.1) belongs

to W 1+λ,2(Ω), 1 + λ > d/2, eventually for sufficiently smooth datãf, g̃, β. Then the same
statement is valid for the solutionp of (2.5) for sufficiently smooth datauΩ, uΓ. Finally, the
regularity ofqΩ andqΓ follows via (2.8).

3. Stabilized discrete optimality system.In this section, we introduce the discretized
optimal control problem corresponding to (1.1)-(1.2). In particular, we apply a more general
approach to the discretization as in [5] by considering shape-regular finite element meshes
and a more flexible stabilization concept.
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3.1. Finite element spaces.Consider a family of shape-regular, admissible decomposi-
tionsTh of Ω into d-dimensional simplices, quadrilaterals ford = 2 or hexahedra ford = 3.
Let hT be the diameter of a cellT ∈ Th andh = maxT∈Th

hT . Let T̂ be a reference ele-
ment of the decompositionTh. Assume that, for eachT ∈ Th, there exists an affine mapping
FT : T̂ → T which mapsT̂ onto T . This quite restrictive assumption for quadrilaterals/
hexahedra can be weakened to asymptotically affine linear mappings [3].

Let us denote byEh the set of element faces (ford = 3) and element edges (ford = 2)
induced by the finite element meshTh on ∂Ω. Moreover, we assume that the Robin partΓR

of the boundary is exactly triangulated by elements ofEh.
SetPk,Th

:= {vh ∈ L2(Ω) ; vh ◦ FT ∈ Pk(T̂ ) , T ∈ Th} with the spacePk(T̂ ) of
complete polynomials of degreek ∈ {0, 1} defined onT̂ andQk,Th

:= {vh ∈ L2(Ω) ; vh ◦
FT ∈ Qk(T̂ ) , T ∈ Th} with the spaceQk(T̂ ) of all polynomials onT̂ with maximal degree
k in each coordinate direction. We shall approximate the space V by a finite element space
Vh ⊂ V such that

Vh ⊃ P1,Th
∩ V or Vh ⊃ Q1,Th

∩ V.

Similarly, letQh,Ω ⊂ H1(Ω) be a finite element space for the control variable andQh,Γ =
Qh,Ω|ΓR

its restriction toΓR.

3.2. Local projection stabilization (LPS) for the state problems. The basic Galerkin
discretization of the state problem (2.1) reads: Finduh ∈ Vh such that

a(uh, vh) = f(vh), ∀vh ∈ Vh. (3.1)

For 0 < ε ≪ 1, the solutionuh of (3.1) may suffer from spurious oscillations. As in [5]
we consider the local projection stabilization (LPS) approach which results in a symmetric
discrete optimality system. The idea of LPS methods is to split the discrete function spaces
into small and large scales and to add stabilization terms ofdiffusion-type acting only on the
small scales. There are two obvious choices of the space of large scales:

The two-level variantdetermines the large scales with the help of a coarse mesh. This
meshMh is constructed by coarsening the basic meshTh such that each macro-element
M ∈ Mh is the union of one or more neighbouring cellsT ∈ Th. The diameter ofM ∈ Mh

is denoted byhM . We assume that the decompositionMh of Ω is non-overlapping and
shape-regular. Additionally, the interior cells are supposed to be of the same size as the
corresponding macro-cell:

∃ C > 0 : hM ≤ ChT , ∀T ∈ Th, M ∈ Mh with T ⊂ M. (3.2)

The discrete spaceDh ⊂ L2(Ω) is the discontinuous finite element space of piecewise con-
stant functions defined on the macro-partitionMh. The restriction ofDh on M ∈ Mh is
denoted byDh(M) := {vh|M ; vh ∈ Dh}.

The next ingredient is a local projectionπM : L2(M) → Dh(M) which defines the
global projectionπh : L2(Ω) → Dh by (πhv)|M := πM (v|M ) for all M ∈ Mh. A standard
variant is the local orthogonalL2 projection. Denoting the identity onL2(Ω) by id, the
fluctuation operatorκh : L2(Ω) → L2(Ω) is defined byκh := id − πh.

The second approach, theone-level variant, consists in choosing the discontinuous finite
element spaceDh of piecewise constant functions on the original meshTh and constructing a
proper enriched spaceVh. The same abstract framework as in the first approach can be used
by settingMh = Th.

For both variants, the stabilized discrete formulation reads: finduh ∈ Vh such that

alps(uh, vh := a(uh, vh) + sh(uh, vh) = f(vh), ∀vh ∈ Vh, (3.3)
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where the additional stabilization term is given by

sh(uh, vh) :=
∑

M∈Mh

τM (κh (b · ∇uh) , κh (b · ∇vh) )M . (3.4)

The stabilizationsh acts solely on the small scales. The constantsτM will be determined
later based on a priori error analysis.

3.3. Some variants of one- and two-level variant.Different variants for the choice of
the discrete spacesVh andDh are given in [14]. Here we describe some details.

Theone-level approachwith Mh = Th starts from a given discontinuous spaceDh and
uses an enrichment of the spacesP1,Th

∩ V or Q1,Th
∩ V . For simplicial elements, we set

Dh := P0,Th
, Vh := {v ∈ V ; v|T ◦ FT ∈ P bub

1 (T̂ ) ∀T ∈ Th},

where

P bub
1 (T̂ ) := P1(T̂ ) + b̂ · P0(T̂ ), b̂(x̂) := (d + 1)d+1

d+1∏

i=1

λ̂i(x̂)

with the barycentric coordinateŝλi, i = 1, . . . , d + 1. For quadrilateral/hexahedral elements,
we can use eitherDh = P0,Th

or Dh = Q0,Th
. SettingD̂ = P0(T̂ ) or D̂ = Q0(T̂ ),

respectively, the spacesVh are constructed analogously as for simplices with

Qbub
1 (T̂ ) := Q1(T̂ ) + b̂ · D̂, b̂(x̂) :=

d∏

i=1

(1 − x̂2
i ), T̂ = (−1, 1)d.

FIG. 3.1.Two-level approach with meshesMh (bold lines) andTh (fine lines).

Now consider thetwo-level approach(cf. Figure 3.1 ford = 2). For quadrilateral/hexahedral
elements, eachM ∈ Mh is uniformly refined into2d subelements. In the simplicial case,
eachM ∈ Mh is divided intod + 1 simplices by connecting the barycentre ofM with the
vertices ofM . For simplices and for quadrilaterals/hexahedra, respectively, set

Vh := P1,Th
∩ V, Dh := P0,Mh

and Vh := Q1,Th
∩ V, Dh := Q0,Mh

.

Note that, for the two-level approach based on simplicial finite elements, the spaceVh

can be written in the form

Vh = {v ∈ V : v|M ◦ FM ∈ P1(T̂ ) ⊕ B̂1 ∀M ∈ Mh},

whereB̂1 ⊂ H1
0 (T̂ ) is a finite-dimensional space consisting of continuous piecewise poly-

nomial functions of degree1. Therefore, the simplicial two-level approach can be treated as
a one-level approach with respect to the meshMh.
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3.4. Discrete optimality system.The discretized control problem to (1.1)-(1.2) is for-
mulated inVh ×Qad

h,Ω ×Qad
h,Γ with Qad

h,Ω = Qad
Ω ∩Qh,Ω andQad

h,Γ = Qad
Γ ∩Qh,Γ as follows

min J(uh, qh,Ω, qh,Γ), uh ∈ Vh, qh,Ω ∈ Qad
h,Ω, qh,Γ ∈ Qad

h,Γ, (3.5)

subject to

alps(uh, vh) = (f + qh,Ω, vh) + (g + qh,Γ, vh)ΓR
, ∀vh ∈ Vh. (3.6)

This discrete optimal control problem admits a unique solution (uh, qh,Ω, qh,Γ). Now we
introduce a discrete solution operatorSh : Qad

Ω × Qad
Γ → Vh by

alps(Sh(qh,Ω, qh,Γ), vh) = (f + qh,Ω, vh)Ω + (g + qh,Γ, vh)ΓR
∀vh ∈ Vh.

Moreover, the discrete reduced cost functional is formulated as

jh(qh,Ω, qh,Γ) = J(Sh(qh,Ω, qh,Γ), γ ◦ Sh(qh,Ω, qh,Γ)).

For allkh,Ω ∈ Qad
h,Ω, kh,Γ ∈ Qad

h,Γ, the necessary (and sufficient) optimality conditions read

DqΩjh(qh,Ω, qh,Γ) · (kh,Ω − qh,Ω) = (αΩqh,Ω + ph, kh,Ω − qh,Ω)Ω = 0, (3.7)

DqΓjh(qh,Ω, qh,Γ) · (kh,Γ − qh,Γ) = (αΓqh,Γ + ph, kh,Γ − qh,Γ)ΓR
= 0, (3.8)

hence

αΩqh,Ω + ph = 0, αΓqh,Γ + ph, kh,Γ = 0.

Here the discrete adjoint stateph ∈ Vh is the solution of the discrete adjoint state problem

alps(vh, ph) = λΩ(uh − uΩ, vh)Ω + λΓ(uh − uΓ, vh)ΓR
. (3.9)

whereuh = Sh(qΩ, qΓ) is the associated discrete state to(qΩ, qΓ).
REMARK 2. The symmetry of the LPS term implies that the operations ”optimize” and

”discretize” commute, see [5].
Finally, the second order derivatives ofjh(qΩ, qΓ) do not depend on(qΩ, qΓ) and admit

the estimates

DqΩqΩjh(qΩ, qΓ) · (kh,Ω, kh,Ω) ≥ αΩ‖kh,Ω‖2
0,Ω, ∀kh,Ω ∈ Qad

h,Ω (3.10)

DqΓqΓjh(qΩ, qΓ) · (kh,Γ, kh,Γ) ≥ αΓ‖kh,Γ‖2
0,ΓR

, ∀kh,Γ ∈ Qad
h,Γ. (3.11)

4. A-priori error analysis for the optimal control problem. In this section, we pro-
vide the error analysis for the optimal control probem (1.1)-(1.2).

4.1. Some auxiliary results.It turns out that additional assumptions for the LPS method
are required. In order to control the consistency error of the stabilization term, the discontin-
uous spaceDh on the coarse meshMh has to be large enough; more precisely:

ASSUMPTION 2. The fluctuation operatorκh = id − πh, see Subsec. 3.2, satisfies for
s ∈ [0, 1] the following approximation property:

∃ Cκ > 0 : ‖κhq‖0,M ≤ Cκhs
M |q|s,M , ∀q ∈ W s,2(M), ∀M ∈ Mh. (4.1)
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REMARK 3. (i) Assumption 2 is valid if the localL2-projection operatorπh is chosen
in the definition of the fluctuation operatorκh = id − πh.
(ii) The original version of (4.1) in [14] only considerss ∈ {0, 1}.

Now we construct a special interpolationjh : V → Vh such that the errorv − jhv is L2-
orthogonal toDh for all v ∈ V . In order to conserve the standard approximation properties,
we additionally assume

ASSUMPTION3. There exists a constantβ > 0 such that, for anyM ∈ Mh,

inf
qh∈Dh(M)

sup
vh∈Yh(M)

(vh, qh)M

‖vh‖0,M‖qh‖0,M
≥ β > 0. (4.2)

whereYh(M) := {vh|M : vh ∈ Vh, vh = 0 onΩ \ M}.
REMARK 4. The inf-sup condition (4.2) implies that the spaceDh must not be too

rich. On the other hand,Dh must be rich enough to fulfil the approximation property (4.1) .
Assumption 3 is valid for the discrete spaces discussed in Subsec. 3.3, cf. [9], Section 4.

LEMMA 4.1. Let Assumption 3 be satisfied. Then there is an interpolationoperator
jh : V → Vh such that

(v − jhv, qh)Ω = 0, ∀qh ∈ Dh, ∀v ∈ V, (4.3)

and

‖v − jhv‖0,M + hM |v − jhv|1,M + h
1
2

M‖v − jhv‖0,E . h1+λ
M ‖v‖1+λ,2,M . (4.4)

or all M ∈ Mh and forv ∈ V ∩ W 1+λ,2(Ω) with 1 + λ > d
2 .

Proof. This is a simple extension of the proof withλ ∈ {0, 1} in [14]. In particular, the
modified analysis takes advantage of the Lagrangian interpolation properties of the spaceVh

∃ C > 0 : ‖v − Ihv‖m,T ≤ Ch1+λ−m
T ‖v‖1+λ,2,T , m ∈ {0, 1} (4.5)

for v ∈ W 1+λ,2(T ), ∀T ∈ Th with λ ∈ [0, 1) such that1 + λ > d
2 , see [7], Thm. 2.25 and

Remark 1. Moreover, forE ⊆ ∂T one obtains

∃ C > 0 : ‖v − Ihv‖0,E ≤ Ch
λ+ 1

2

T ‖v‖1+λ,2,T . (4.6)

4.2. Analysis of the state problems.The next goal is to derive error estimates for the
state problems (3.6) and (3.9). First, the stability of the scheme will be given in the mesh-
dependent norm

|||v||| :=
(

ε|v|21,Ω + σ‖v‖2
0,Ω + ‖β̃ 1

2 v‖2
0,ΓR

+ sh(v, v)
) 1

2

, ∀v ∈ V.

LEMMA 4.2. The LPS schemes (3.6) and (3.9) for the discrete state and theadjoint
states admit unique solutions.

Proof. For anyv ∈ V , integration by parts yields(b ·∇v, v)Ω = 1
2 ((b ·n)v, v)ΓR

, hence

alps(v, v) = ε|v|21,Ω + σ‖v‖2
0,Ω + ‖β̃ 1

2 v‖2
0,ΓR

+ sh(v, v) = |||v|||2, ∀v ∈ V (4.7)

with β̃ = β + 1
2b · n. This implies|||uh|||2 ≤ (f̃ , uh)Ω + (g̃, vh)ΓR

, hence existence and
uniqueness ofuh ∈ Vh in the scheme (3.6). The result for (3.9) follows similarly.



Optimal control of the advection-diffusion-reaction problems 9

The following a priori estimate can be proven using the standard technique of combining
stability and consistency results based on the auxiliary results of the last subsection. Here,
and in the following Lemma, we fix some controls(pΩ, pΓ) ∈ Qad

Ω ×Qad
Γ which will be later

on, in the proof of the main theorem, chosen as the Lagrangianinterpolants of the optimal
controls(qΩ, qΓ).

LEMMA 4.3. Let for (qΩ, qΓ) ∈ Qad
Ω × Qad

Γ , u = S(qΩ, qΓ) ∈ V be the solution of
the state problem (1.2) and for some(pΩ, pΓ) ∈ Qad

Ω × Qad
Γ , wh = Sh(pΩ, pΓ) ∈ Vh be the

solution of

alps(wh, vh) = (f + pΩ, vh)Ω + (g + pΓ, vh)ΓR
∀vh ∈ Vh. (4.8)

Let the stabilization parameters be chosen as

τM ∼ hM

νh−1
M + ‖b‖[L∞(M)]d

. (4.9)

Then, under the assumptions of Lemma 2.1, there holds the following a-priori error estimate

‖|u − wh‖| ≤ CΩ‖qΩ − pΩ‖0,Ω + CΓ‖qΓ − pΓ‖0,ΓR
(4.10)

+C
( ∑

M∈Mh

h2λ+1
M

{ |b · ∇u|2λ,2,M

νh−1
M + ‖b‖[L∞(M)]d

+ CM‖u‖2
1+λ,2,M

}) 1
2

with

CM :=
ε

hM
+ σhM + ‖b‖[L∞(M)]d + ‖β‖L∞(∂M∩ΓR) + ‖b · n‖L∞(∂M∩ΓR),

CΩ := min{ 1√
σ

;
CP√

ε
}; CΓ := min{ 1√

β0
;
CP√

ε
}.

Proof. The error is split intou − wh = (u − jhu) + (jhu− wh). For the approximation
erroru − jhu, Lemma 4.1 and Assumption 2 withs = 0 yield

|||u−jhu||| .
( ∑

M∈Mh

[

ε+σh2
M+τM‖b‖2

[L∞(M)]d+‖β̃‖L∞(∂M∩ΓR)hM

]

h2λ
M ‖u‖2

1+λ,2,M

) 1
2

.

(4.11)
Now we estimate the remaining partzh := jhu − wh using (4.7)

|||jhu − wh||| =
(a + sh)(jhu − wh, zh)

|||zh|||

=
(a + sh)(u − wh, zh)

|||zh|||
+

(a + sh)(jhu − u, zh)

|||zh|||
=: I + II.

We start with term I. Subtracting (4.8) from (2.1), one obtains the perturbed Galerkin orthog-
onality relation

(a+sh)(u−wh, vh) = sh(u, vh)+(qΩ−pΩ, vh)Ω +(qΓ−pΓ, vh)ΓR
, ∀vh ∈ Vh. (4.12)

Assumption 2 yields

|sh(u, vh)| ≤ s
1
2

h (u, u) s
1
2

h (v, v) ≤ C
( ∑

M∈Mh

τMh2λ
M |b · ∇u|2λ,2,M

) 1
2 |||vh||| ∀vh ∈ Vh.
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Moreover, under assumption of Lemma 2.1 there holds

(qΩ − pΩ, vh)Ω ≤ CΩ‖qΩ − pΩ‖0,Ω‖|vh‖|, CΩ := min{ 1√
σ

;
CP√

ε
}

(qΓ − pΓ, vh)ΓR
≤ CΓ‖qΓ − pΓ‖0,ΓR

‖|vh‖|, CΓ := min{ 1√
β0

;
CP√

ε
}

whereCP denotes the Poincare constant. Settingvh = zh, we obtain

I ≤ C
( ∑

M∈Mh

τMh2λ
M |b · ∇u|2λ,2,M

) 1
2

+ CΩ‖qΩ − pΩ‖0,Ω + CΓ‖qΓ − pΓ‖0,ΓR
.

Now we consider the terms ofII separately. Integration by parts and the orthogonality prop-
erty (4.3) and the estimate (4.4) yield forwh ∈ Vh that

a(jhu − u, wh)

‖|wh‖|
=

1

‖|wh‖|
(

ε(∇(jhu − u),∇wh)Ω − (κh(b · ∇wh), jhu − u)Ω

+σ(jhu − u, wh)Ω + (β̃(jhu − u), wh)ΓR

)

≤ C
( ∑

M∈Mh

h2λ
M

[

ε +
(
σ + τ−1

M

)
h2

M + ‖β̃‖L∞(∂M∩ΓR)hM

]

‖u‖2
1+λ,2,M

) 1
2

.

The estimate of the stabilization term follows using (4.1) with s = 0 and (4.4)

sh(jhu − u, wh)

‖|wh‖|
≤ C

( ∑

M∈Mh

h2λ
M τM‖b‖2

[L∞(M)]d‖u‖2
1+λ,2,M

) 1
2

. (4.13)

Summing up all inequalities in this proof gives the assertion.

|||jhu − wh||| ≤ C
( ∑

M∈Mh

h2λ
M

{

τM |b · ∇u|2λ,2,M + C̃M‖u‖2
1+λ,2,M

}) 1
2

+CΩ‖qΩ − pΩ‖0,Ω + CΓ‖qΓ − pΓ‖0,ΓR
(4.14)

with

C̃M := ε+σh2
M +τ−1

M h2
M +τM‖b‖2

[L∞(M)]d +
(
‖β‖L∞(∂M∩ΓR) +‖b ·n‖L∞(∂M∩ΓR)

)
hM .

In the advection-dominated case, the parametersτM are determined by balancing the terms
τ−1
M h2

M ∼ τM‖b‖2
[L∞(M)]d , henceτM ∼ hM

‖b‖
[L∞(M)]d

. In the diffusion-dominated case, we

balance the termsε ∼ τ−1
M h2

M . The combination of both cases leads to the choice (4.9).
Please note that a deterioration of the denominator ofτM in case ofb = 0 is avoided. Finally,
the triangle inequality concludes the proof.

REMARK 5. The constantsCΩ andCΓ are critical in the case of0 < ε ≪ 1 together
with 0 ≤ σ, β0 ≪ 1. Let us discuss some relevant situations:

• For singularly perturbed diffusion-reaction problems, i.e. withb ≡ 0, it is reason-
able to assume thatσ > 0 is independent ofε.

• For singularly perturbed advection-diffusion problems, there occurs the case that all
subcharacteristics of the first order operatorb · ∇ leave the domainΩ in finite time.
This excludes periodic subcharacteristics and stagnationpoints of b in Ω. Then it
is possible to transform the elliptic operator to the formL = −εL2 + b̃ · ∇+ c̃ with
c̃(x) ≥ σ with arbitrary largeσ.
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• For Robin boundary control (or regularized Dirichlet control), it is reasonable to
supposeβ + 1

2b · n ≥ β0 > 0 with β0 = O(1).
REMARK 6. In the limit caseλ = 1, i.e. for u ∈ H2(Ω), we obtain the well-known

optimal convergence rateO(h
3
2

M ) with respect tohM .

REMARK 7. The LPS method is still a matter of ongoing research. Recent results provide
improved stability and convergence results of the LPS method.

i) In Lemma 4.1 of [10], it is shown for the one-level method that the LPS-norm‖| · ‖|
gives control of the weighted streamline derivative

(∑

K τK‖b · ∇(·)‖2
0,K

) 1
2 .

ii) Theorem 2 of [9] states that, for simplicial elements, the one- and the two-level
approach are algebraically equivalent to a residual-basedstabilization scheme, to
the unusual Galerkin/Least-squares stabilization or algebraic subscale method [6].

Similarly, we obtain the following a-priori error estimatefor the adjoint problem (3.9).
LEMMA 4.4. Let for (qΩ, qΓ) ∈ Qad

Ω × Qad
Γ , p ∈ V be the solution of the adjoint

state problem (2.5) and let for some(pΩ, pΓ) ∈ Qad
Ω × Qad

Γ , yh ∈ Vh be the adjoint discrete
solution. Let the stabilization parameters be chosen as in (4.9). Then, there holds the a-priori
error estimate

‖|p − yh‖| ≤ (C2
ΩλΩ + C2

ΓλΓ)‖|u − wh‖| (4.15)

+ C
( ∑

M∈Mh

h2λ+1
M

{ |b · ∇p|2λ,2,M

νh−1
M + ‖b‖[L∞(M)]d

+ CM‖p‖2
1+λ,2,M

}) 1
2

with CM , CΩ andCΓ as in the previous Lemma.
Proof. The equations forp ∈ V andyh ∈ Vh

a(v, p) = λΩ(u − uΩ, v)Ω + λΓ(u − uΓ, v)ΓR
∀v ∈ V

a(vh, yh) + sh(yh, vh) = λΩ(wh − uΩ, vh)Ω + λΓ(wh − uΓ, vh)ΓR
∀vh ∈ Vh

lead to the error equation

a(vh, p−yh)+sh(p−yh, vh) = sh(p, vh)+λΩ(u−wh, vh)Ω+λΓ(u−wh, vh)ΓR
∀vh ∈ Vh.

The remaining part of the proof follows the lines of the previous proof.
REMARK 8. The term‖|u − wh‖| in (4.15) can be further estimated via Lemma 4.3.

4.3. Main result for unconstrained case.We are now in a position to prove the main
result for the unconstrained optimal control problem.

THEOREM4.5. Let the assumptions of Lemma 2.1 and Assumption 1 be valid. Moreover,
let (u, qΩ, qΓ) be the solution of the optimal control problem (1.1)-(1.2) and (uh, qh,Ω, qh,Γ)
the solution of the discretized problem (3.5)-(3.6). Finally, letαΩ, αΓ > 0. Then there exists a
constantC > 0 depending onλΩ, λΓ, αΩ, αΓ, CΩ, CΓ such that the following error estimate
holds:

‖qΩ − qh,Ω‖0;Ω + ‖qΓ − qh,Γ‖0;ΓR

≤ C

{
( ∑

M∈Mh

h1+2λ
E |qΩ|21+λ;2,M

) 1
2

+
( ∑

E∈Eh∩ΓR

h1+2λ
M |qΓ|21+λ;2,E

) 1
2

+
(∑

M

h1+2λ
M

( |b · ∇u|2λ;2,M

νh−1
M + ‖b‖[L∞(M)]d

+ CM‖u‖2
1+λ,2,M

)) 1
2

+
(∑

M

(

h1+2λ
M

|b · ∇p|2λ;2,M

νh−1
M + ‖b‖[L∞(M)]d

+ CM‖p‖2
1+λ,2,M

)) 1
2

}
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with CM , CΩ andCΓ as in Lemma 4.3.
Proof. Let (zh,Ω, zh,Γ) ∈ Qh,Ω×Qh,Γ be arbitrary so far. A straight-forward calculation

gives together with (3.10) and (3.11)

DqΩjh(zh,Ω, qh,Γ)(zh,Ω − qh,Ω) − DqΩjh(qh,Ω, qh,Γ)(zh,Ω − qh,Ω)

= DqΩ,qΩjh(qh,Ω, qh,Γ)(zh,Ω − qh,Ω, zh,Ω − qh,Ω)

≥ αΩ‖zh,Ω − qh,Ω‖2
0;Ω

DqΓjh(qh,Ω, zh,Γ)(wh,Γ − qh,Γ) − DqΓjh(qh,Ω, qh,Γ)(zh,Γ − qh,Γ)

= DqΓ,qΓjh(qh,Ω, qh,Γ)(zh,Γ − qh,Γ, zh,Γ − qh,Γ)

≥ αΓ‖zh,Γ − qh,Γ‖2
0,ΓR

.

As the gradient vanishes at the optimal point for the unconstrained case, there holds

DqΩjh(qh,Ω, qh,Γ)(zh,Ω − qh,Ω) = 0 = DqΩj(qΩ, qΓ)(zh,Ω − qh,Ω) (4.16)

DqΓjh(qh,Ω, qh,Γ)(zh,Γ − qh,Γ) = 0 = DqΓj(qΩ, qΓ)(zh,Γ − qh,Γ) (4.17)

which leads in the previous inequalities to

αΩ‖zh,Ω − qh,Ω‖2
0;Ω ≤ DqΩjh(zh,Ω, qh,Γ)(zh,Ω − qh,Ω) − DqΩj(qΩ, qΓ)(zh,Ω − qh,Ω)

αΓ‖zh,Γ − qh,Γ‖2
0;ΓR

≤ DqΓjh(qh,Ω, zh,Γ)(zh,Γ − qh,Γ) − DqΓj(qΩ, qΓ)(zh,Γ − qh,Γ).

Now the discrete analogue of Lemma 2.3 gives

αΩ‖zh,Ω − qh,Ω‖2
0;Ω ≤

(
αΩzh,Ω + yh,Ω, zh,Ω − qh,Ω

)

Ω
−
(
αΩqΩ + p, zh,Ω − qh,Ω

)

Ω

=
(
αΩ(zh,Ω − qΩ) + (yh,Ω − p), zh,Ω − qh,Ω

)

Ω
.

whereyh,Ω denotes the associated discrete adjoint state tozh,Ω. This implies

‖zh,Ω − qh,Ω‖0;Ω ≤ ‖zh,Ω − qΩ‖0;Ω +
CΩ

αΩ
‖|yh − p‖|

and via triangle inequality

‖qΩ − qh,Ω‖0;Ω ≤ 2‖zh,Ω − qΩ‖0;Ω +
CΩ

αΩ
‖|yh − p‖|. (4.18)

Similarly we obtain with the associated discrete adjoint stateyh,Γ to wh,Γ that

αΓ‖zh,Γ − qh,Γ‖2
0;ΓR

≤
(
αΓ(zh,Γ − qΓ) + (yh,Γ − p, zh,Γ − qh,Γ

)

ΓR
,

and

‖qΓ − qh,Γ‖0;ΓR
≤ 2‖zh,Γ − qΓ‖0;ΓR

+
CΓ

αΓ
‖|yh − p‖|. (4.19)

The continuous optimality system (1.2), (2.5)-(2.7) providesqΩ = − 1
αΩ

p and qΓ =

− 1
αΓ

p|Γ. Consequently, the regularity of the adjoint statep implies(qΩ, qΓ) ∈ W 1+λ,2(Ω)×
W

1
2+λ,2(ΓR) with 1 + λ > d

2 . This allows to selectzh,Ω andzh,Γ as the Lagrangian inter-
polants ofqΩ andqΓ, respectively; hence

‖zh,Ω − qΩ‖0;Ω ≤ C

(
∑

M∈Mh

h1+2λ
M |qΩ|21+λ;2,M

)1/2

, (4.20)

‖zh,Γ − qΓ‖0;ΓR
≤ C

(
∑

E∈Eh∩ΓR

h1+2λ
E |qΓ|21

2 +λ;2,E

)1/2

. (4.21)
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The estimates (4.18), (4.19) together with the latter interpolation estimates, Lemma 4.4
and Lemma 4.3 withpΩ := zh,Ω andpΓ := zh,Γ prove the assertion.

5. Regularized Dirichlet control. In applications, a Dirichlet boundary control

u = q

might be desirable. A review of different variants is given in [12]. One possibility is to
approximate the Dirichlet boundary control by an Robin boundary control of the form

δ∇u · n + β(u − q) = 0, β = O(1)

for δ → +0, but the choice of the regularization parameterδ is delicate. For the case of the
singularly perturbed problem (1.2), a rather natural choice isδ = ǫ. This allows to interpret
the Robin boundary control within this paper as a regularization of Dirichlet boundary control.
Nevertheless, some care is necessary.

In order to describe potential problems, define the subsetsΓ−, Γ0 andΓ+ of the bound-
ary ∂Ω, depending on the sign of(b · n)(x), as the inflow, characteristic and outflow part
for the flow fieldb. Typically, the solutionu of problem (1.2) has boundary layers at the
outflow partΓ+ with steep gradient|ǫ∇u · n| ∼ 1 and at characteristic boundariesΓ0 with
(at most)|ǫ∇u · n| ∼ √

ǫ. Clearly, at the inflow partΓ−, one has only|ǫ∇u · n| ∼ ǫ. This
observation motivates to exclude a Dirichlet control at theoutflow boundaryΓ+ whereas the
Robin regularization

ǫ∇u · n + β(u − q) = 0 (5.1)

with β + 1
2b · n ≥ β0 > 0 is a good approximation of the Dirichlet conditionu = q.

A typical situation is the flow in a domain of channel typeΩ = (0, L) × (−H
2 , H

2 ) with
the flow fieldb(x) = ((H

2 − |x2|)κ, 0)T with κ ≥ 0. The caseκ > 0 corresponds to a no-slip
condition of the flow fieldb whereasκ = 0 represents a slip-condition ofb. The solutionu
of (1.2) can be seen as a temperature field or as the density of some chemical reactant. Let us
describe two potential applications of Dirichlet control:

i) Regularization of inflow Dirichlet control:
A Dirichlet conditionu = g is given at a partΣ ⊂ Γ− = {0} × (−H

2 , H
2 ) whereas

a Robin boundary conditionǫ ∂u
∂x1

+ β(u − g) = 0 with β + 1
2b · n ≥ β0 > 0 is

prescribed onΓ− \ Σ. A ”do-nothing” conditionǫ ∂u
∂x1

= 0 might be prescribed on

Γ+ = {1} × (−H
2 , H

2 ). An ”insulation” conditionǫ ∂u
∂x2

= 0 is given at the channel

wallsΓ0 = (0, L) × {−H
2 , H

2 }.
ii) Regularization of wall Dirichlet control:

A Dirichlet conditionu = q is given at a partΣ ⊂ Γ0 of the channel walls whereas
a insulation condition is given onΓ0 \Σ. An inflow conditionǫ ∂u

∂x1
+ β(u− g) = 0

with β + 1
2b · n ≥ β0 > 0 is prescribed onΓ−. Again a ”do-nothing” condition

might be prescribed onΓ+.
Replacing the Dirichlet control onΣ ⊆ Γ− ∪ Γ0 by the Robin boundary control (5.1), one
can take advantage of the results of this paper. An analytical justification of this approach and
numerical experiments will be reported elsewhere.

6. Numerical experiments. Meanwhile, several authors contributed to the theoretical
and practical investigations of LPS methods. A detailed discussion of pro’s and con’s of the
one- and two-level variant can be found in [9]. As a result of the latter studies, no significant
preference of one of the methods was observed. For the following numerical experiments
with the two-level variant of the LPS method, the C++ libraydeal.II [4] is applied.
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The goal of the first example is to show the effect of stabilization and the convergence of
the method for vanishing regularization parameterαΩ.

Example 1: Consider the unconstrained optimization problem

min J(qΩ, qΓ, u) :=
1

2
‖u − uΩ‖2

L2(Ω) +
αΩ

2
‖qΩ‖2

L2(Ω)

such that

−ε∆u + b · ∇u + σu = qΩ in Ω = (0, 1)2

u = 0 on∂Ω
(6.1)

with ε = 10−3, b = (−1,−2)t, σ = 1. In order to obtain results on the convergence of the
control in the sense ofqΩ → qΩ,ref for αΩ → 0, we prescribe the control as

qΩ,ref (x) = (sin(πx1))
0.3(sin(πx2))

0.3.

Then we compute the solution of (6.1) with given source termqΩ and prescribe the solution
as desired stateuΩ.

Control State
αΩ L∞ L2 H1 L∞ L2 H1

1e+0 9.47E-01 6.97E-01 5.98E+00 4.01E-01 1.54E-01 3.45E+00
1e-1 6.92E-01 5.16E-01 9.54E+00 2.54E-01 1.02E-01 2.73E+00
1e-2 7.23E-01 2.63E-01 1.68E+01 1.51E-01 3.48E-02 4.32E+00
1e-3 2.43E+00 3.41E-01 4.48E+01 1.24E-01 2.07E-02 4.43E+00
1e-4 1.04E+01 1.11E+00 1.97E+02 7.67E-02 1.11E-02 2.35E+00
1e-5 2.23E+01 2.07E+00 3.87E+02 2.38E-02 2.84E-03 5.68E-01
1e-6 2.64E+01 2.43E+00 4.55E+02 3.19E-03 3.66E-04 7.18E-02

TABLE 6.1
Different error measures for the unstabilized scheme with mesh widthh = 2−5

Control State
αΩ L∞ L2 H1 L∞ L2 H1

1e+0 9.46E-01 6.97E-01 5.89E+00 4.09E-01 1.54E-01 3.55E+00
1e-1 6.87E-01 5.12E-01 5.31E+00 2.79E-01 1.03E-01 2.60E+00
1e-2 5.57E-01 2.23E-01 6.74E+00 8.54E-02 2.77E-02 9.67E-01
1e-3 2.96E-01 8.04E-02 5.29E+00 1.94E-02 4.37E-03 2.35E-01
1e-4 1.64E-01 2.74E-02 2.85E+00 3.57E-03 5.81E-04 4.77E-02
1e-5 4.95E-02 6.79E-03 9.53E-01 4.81E-04 7.06E-05 7.77E-03
1e-6 7.08E-03 9.81E-04 1.56E-01 5.12E-05 7.64E-06 9.45E-04

TABLE 6.2
Different error measures for LPS-stabilization withτ = 0.034h and mesh widthh = 2

−5

If problem (6.1) is solved without stabilization, then the control tries, in the case of small
values ofαΩ, to reduce the existing oscillations in order to reach the (smooth) desired state.
The convergence of the state is obtained as well for the unstabilized as for the stabilized case,
see Tables 6.1-6.2. Nevertheless, in the unstabilized case, the control is subject to spurious
oscillations whereas in the case of stabilization the convergence of the control is observed.�
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h = 2−l J(qh, uh) J(qh, uh) − J(q2h, u2h) num. conv. rate

2 3.08191E-01 - -
3 2.76675E-01 3.15159E-02 -
4 2.63904E-01 1.27704E-02 1.30
5 2.60156E-01 3.74789E-03 1.77
6 2.59242E-01 9.13856E-04 2.04
7 2.59068E-01 1.74289E-04 2.39
8 2.59057E-01 1.07450E-05 4.01

TABLE 6.3
Example 2: h-convergence of the cost functional

In the following example we revisit a problem which had been considered in [5] for the
case of box-constraints for the control. Here we consider the case without constraints. The
numerical solution in [5] forε = 10−3 with the two-level variant of the LPS method gave
strong oscillations in the boundary layer regions. Here, a significantly smaller valueε = 10−5

of the singular perturbation parameter is chosen.
Example 2: We consider the optimization problem

min J(qΩ, qΓ, u) :=
1

2
‖u − uΩ‖2

L2(Ω) +
αΩ

2
‖qΩ‖2

L2(Ω),

such that

−ε∆u + (b · ∇)u + σu = f + qΩ in Ω

u = 0 on ∂Ω

with qΩ ∈ L2(Ω) andε = 10−5, β = (−1,−2)t, σ = 1, f = 1, uΩ = 1 andαΩ = 0.1.
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FIG. 6.1.Optimal discrete control and state for example withε = 10−5 and LPS parametersτ = 0.1 h

Figure 6.1 shows the stabilized control and state for the problem. We present the discrete
solution on the coarse grid xfor the two-level approach withQ1-elements andh = 1

128 .
Notice that the spurious oscillations for the discrete control and state in the boundary layer
regions are significantly reduced as compared to the resultsgiven in [5].

Table 6.3 gives the convergence history of the cost functionalJ . Moreover, the numerical
convergence rate is computed. The averaged rate isr ≈ 2.30.
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Summary. Outlook. In this paper we considered the numerical analysis of discretized
optimal control problems governed by a linear advection-diffusion-reaction equation without
and with pointwise control constraints. The standard Galerkin discretization is stabilized via
the local projection approach which leads to a symmetric optimality system at the discrete
level. The optimal control problem simultaneously covers distributed and Robin boundary
control. In the singularly perturbed case, the boundary control at characteristic parts of the
boundary can be seen as regularization of a Dirichlet boundary control.

In a forthcoming paper [13], we consider the extension of theanalysis to the case of
box-constraints for the distributed and boundary control.In contrast to [5], we allow the
application of shape-regular, locally quasi-uniform meshes.
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2008-04 M. Michaelis, A. Schöbel Integrating Line Planning, Timetabling, and Ve-
hicle Scheduling: A customer-oriented approach

2008-05 O. Ivanyshyn, R. Kress, P. Ser-
ranho

Huygen’s principle and iterative methods in in-
verse obstacle scattering

2008-06 F. Bauer, T. Hohage, A. Munk Iteratively regularized Gauss-Newton method
for nonlinear inverse problems with random
noise

2008-07 R. Kress, N. Vintonyak Iterative methods for planar crack reconstructi-
on in semi-infinite domains

2008-08 M. Uecker, T. Hohage, K.T.
Block, J. Frahm

Image reconstruction by regularized nonlinear
inversion - Joint estimation of coil sensitivities
and image content
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