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Abstract. In this paper, we consider the numerical analysis of quadoatimal control problems governed by
a linear advection-diffusion-reaction equation withoahtrol constraints. In the case of dominating advectioa, th
Galerkin discretization is stabilized via the one- or twewdl variant of the local projection approach which leads to
a symmetric optimality system at the discrete level. Thénagtcontrol problem simultaneously covers distributed
and Robin boundary control. In the singularly perturbedecéise boundary control at inflow and/ or characteristic
parts of the boundary can be seen as regularization of anEtiboundary control.
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1. Introduction. In this paper, we consider some aspects of the numericaysiaalf
the quadratic optimal control problem

. Ao Ar ag
min J(u, go, qr) = —HU uall7 @5 = lu— UF”L2(PR)+ ”qQ”L2(Q)+ = larl3 (Tr)
(1.1)

where(u, ga, qr) € V x Q& x Q&4 with
V:{UEHl(Q) : uer :O}a Qad Lz( )a %d:L2(FR)
is subject to the linear mixed boundary value problem of ativa-diffusion-reaction type

—eAu+b-Vutou=f+qq inQ,
eVu-n+pu=g+qr onlg (1.2)
u=20 onl'p.

HereQ) c R%,d € {2,3} is a bounded polyhedral domain with Lipschitz boundafy =
T'rUTp, I'p NT'r = 0 and outer normal unit vectar. In (1.1), the desired states arg

in Q@ andur onT'g. The constantdqg, Ar > 0 with A% + A2 > 0 describe the weights of
different parts whereas,, ar > 0 with a3 +af > 0 serve as regularisation parameters. The
state equation (1.2) describes the dependence of theustet¢he controlqq, gr). Here we
consider the problem without restrictions of the controheTproblem with box-constraints
for the control will be considered elsewhere.

The linear-quadratic optimal control problem (1.1)-(1\&ithout and with control con-
straints has been considered by Becker and Vexler in [5]Hersingularly perturbed case
with 0 < ¢ < 1, see also the references therein. One goal of the presestigap consider
problem (1.1)-(1.2) simultaneously for distributed andjitd) boundary control. Notably, in
the singularly perturbed cage< ¢ <« 1, the Robin control at inflow and/or characteristic
parts of the boundary can be seen as regularization of aliétiboundary control.

The standard Galerkin discretization is stabilized as jrv[a the local projection ap-
proach (LPS for short below) which leads to a symmetric oglity system at the dis-
crete level. This implies that the operations "discretaat and "optimization” commute
as opposed to residual-based stabilization techniqueghi& standard streamline-diffusion
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method. Another aim of the present paper is a more generaldgpgach, including the
so-called two-level variant (as in [5]) and a one-level aatiintroduced in [14].

Let us emphasize two aspects of the analysis in the preseet:p&irstly, the regu-
larity of the solution of the mixed boundary value problen®{lis taken into account by
using Sobolev-Slobodeckij spaces and adapting the asalfshe LPS method. Secondly,
the analysis is performed for shape regular meshes (as eppogjuasi-uniform meshes in
[5]) which allows for (isotropic) mesh refinement at corneredges of the domain and in
boundary layers.

An outline of the paper is as follows: In Section 2, we addtbssexistence, unique-
ness and regularity of the solution of problem (1.1)-(1.2hen, in Section 3, we consider
the discretization of the state equation by means of fingmeht methods (FEM) with local
projection stabilization and derive the discretized oplity systems. In Section 4, we ana-
lyze the convergence properties of the discretized optimialrol problem. In Section 5, we
briefly address the interpretation of Robin boundary cdm@tsaegularized Dirichlet control.
Some numerical experiments will be presented in Section 6.

Throughout this paper, standard notations for Lebesgu&abdlev spaces are used. In
particular, theZ2-inner product and the corresponding norm in a dongaia €2 are denoted
by (-, )e and|| - ||o,¢, respectively. Usually, we omit the indéxif G = Q.

2. Continuous optimal control problem. Here we consider the optimality system for
thecontinuousoptimal control problem (1.1)-(1.2).

2.1. Solvability. To this goal, we first consider the solvability of the stateatepn (1.2)
with f := f + ¢gq andg := g + qr. The variational form of problem (1.2) reads

Findu € V:={v e H'(Q): v|r, =0}, st. a(u,v) = f(v) YoeV. (2.1)
with
a(u,v) :=e(Vu,Vu)q + (b - Vu + ou,v)q + (Bu, v)r,
f) = (f,v)a+ (3, v)rg.
The following result provides sufficient conditions for theique solvability of (2.1).
LEMMA 2.1. Let the following assumptions be valid:
I) b’LGLOO(Q)v 16{17 7d}a feLQ(Q)v QGLQ(FR)v ﬂELOO(FR)’
i) e>0,0>0and V-b=0 a.e.inQ,
i) 3>0andf:=F+i(b-n)>F >0 onlg,
iv) Let at least one of the following conditions be valid:
(@) pn-1('p) >0,
(b) o > 0andg, > 0.

Then there exists a unique solutiore H(Q2) of the mixed boundary value problem (2.1).
Proof. The continuity ofa(, -) and f(-) follow via standard inequalities and i) - iii):

la(u,v)| = [e(Vu, Vo)o + (b Vu + ou, v)a + (Bu, v)rg|
n 1/2
< (e+o+ (X lbillZn) "~ +CllBllosrs ) lulliolh = Molullslo]s
i=1

@) =1(f;v)a + (g, v)rl < (Ifllo+ Cllgllor)lvli = Mol

Integration by parts of the advective term together withuegstionV - b = 0 and the abbre-
viation 3 := 3+ 5 b - nyield H'-ellipticity of a

a(v,v) = elof? + olloll3 + |13 olf3..,
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asy/a(v,v) is equivalent to the standard norm &it(2) if one of the assumptions in iv) is
valid. Finally, the Lax-Milgram theorem delivers the asier. [
The following existence result follows by standard arguta@moptimal control [15].
THEOREM2.2. Under the assumptions of Lemma 2.1 the optimal control proffL.1)-
(1.2) admits a unique solutiofw, G, gr) € V x Q&% x Q4.

2.2. Regularity. For the convergence analysis below, statements on thearggulf the
solution of (2.1) are required. In general, the solutionhis tmixed boundary value problem
is not in W?2?(Q2). A standard approach is to consider weighted Sobolev spaegsS be
the set of points (fotl = 2) or edges (fokl = 3) which subdivide the polyhedral boundary
092 into smooth disjoint connected components. The sp%i:é(ﬂ) denotes the closure of
C>*(Q) w.rt.

=

HU||V;CP(Q)_ Z /Tpﬂ ktlal)| Doy P d:v)

|| <k

wherer = r(z) = dist(z,S), 3 € R, k € Nandp > 1. The parametef is defined via
eigenvalues of certain eigenvalue problems (in local coatd systems at parts of the 8t
being associated with the mixed boundary value problemt ot the goal of this paper to
give sufficient conditions for the solution of problem (2td)oelong toVﬁk’p(Q), we refer to
standard textbooks as [8, 11]. Moreover, we do not intendiwsicer graded finite element
meshes in the neighborhood of the Satlthough the forthcoming numerical analysis allows
such kind of refinement. For this approach to optimal comiroblems for elliptic problems,
we refer, e.g., to [1, 2].

Here we consider on a subdomainC (2 the Sobolev-Slobodeckij spaces

Deu(x) — D*u(y)|? 3
WktAe (@) .= [v € WFEP(G // | dx dy) < o0}
(@ =1 @ | ~ II:v—yIId“A J
=lullk+x,p,c

with & € No, A € [0,1),p € (1, 00) and the obvious modifications in casemwf co. The
spacedV*+*»(T'z) are defined in a similar way.

REMARK 1. The following embeddinds:*(Q) ¢ W2+%2(Q) ¢ C(Q) are valid for
08 <2— % + k with & > 0, cf. [11]. In particular, for the Dirichlet case)Q2 = I'p in
polyhedral domains there holgs < % + K,k > 0.

Later on, Remark 1 motivates the regularity assumptian W1+*2(Q), 1 + X > d/2
for the solution of problem (2.1), see Assumption 1 below.

2.3. Optimality system. As problem (2.1) admits a unique solution, see Lemma 2.1,
we may define the linear continuous solution operator

S:L*(Q) x L*(Tgr) =V,  u=S(qa+ f,qr +g).

The mappindgq, gr) — u is affine linear. Moreover, denotg- := ~ o S with the trace
operatory. After substitutingu = S(ga + f,qr + g) andu|r, = Sr(ga + f,qr + g), we
obtain the reduced cost functional:

. A
j(gasar) = J (g0, qr, (g0, ar)) = 52 S(ga + frar + 9)
2 (2.2)

A
+7F||5F((Jsz + fiar+9) —

||(Jsz||on + X
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Now the reduced optimization problem reads

Minimize j(qa,qr), (ga,qr) € Q‘;ld X Q%d. (2.3)

Henceforth we denote the optimal control of the problenidqy, g-) and the correspond-
ing optimal state byt = S(gq, + f,dr + g). The reduced cost functionglis continuously
differentiable.

LeEmMMA 2.3.The first order derivatives of the reduced cost functighaite given by

Dgoj(aa:qr) - ko = (aaqa +p,ke)o,  Dgrjlaa,qr) - kr = (arqr + p kr)r,  (2.4)
where the adjoint statg € V is the solution of the adjoint state problem
Find peV:  auq(p,v) = Aa(T —ua)o + Ar(@ —ur)r, Yvev, (2.5)
with

aadj(pvv) = E(vpa VU)Q - (b ! vav)fl + U(pa U)Q + ((6 + b- n)pa U)FR-

Proof. Formula (2.4) follows via standard arguments, see [15]e Sblvability of the
adjoint state problem (2.5) is shown as in the proof of Lemmal2

The necessary (and here also sufficient) optimality comtifor the reduced control
problem (2.3) read

Do (@0 Tr) - (ko — Tg) = (aalq + P, ka — @o)a =0, Vka € Q4 (2.6)
D3 (@q.ar) - (kr —qr) = (ar@r + P, kr — @r)r, =0, Vkr € Q4 (2.7)

wherep is the associated adjoint state(@,, ). This leads to
anfo+p=0, InQ argr +p=0 on I'g. (2.8)

The optimality system (KKT-system) for the optimal contpsbblem (1.1)-(1.2) is formed
by (2.8) together with the state problem (1.2) and the atigiate problem (2.5).

The second order derivatives fffyq, gr) do not depend ofyq, gr) and admit the esti-
mates

Dyagai(aa, ar) - (ka, ko) > aallkalf o, ko € Q4 (2.9)
Dgrqrilaq, ar) - (kr,kr) > ar|lkr||§ r,, Vkr € Q3% (2.10)

Motivated by Remark 1, we make the following regularity asption for the solution of
the optimal control problem which allows later on Lagramgigterpolation of the solution.

ASSUMPTION 1. The optimal solution®, p,gq,qr) of the optimal control problem
(1.1)-(1.2) belongs tHV 1 +22(Q)]> x Wz T32(Tg) with 1+ A > <.

Assume thatvg, ar > 0. Then assumption 1 is valid if the solutianof (2.1) belongs
to W1tA2(Q), 1 + X > d/2, eventually for sufficiently smooth day%;g, (5. Then the same
statement is valid for the solutignof (2.5) for sufficiently smooth datag,, ur. Finally, the
regularity ofg,, andgr. follows via (2.8).

3. Stabilized discrete optimality system.In this section, we introduce the discretized
optimal control problem corresponding to (1.1)-(1.2). articular, we apply a more general
approach to the discretization as in [5] by considering shaggular finite element meshes
and a more flexible stabilization concept.
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3.1. Finite element spacesConsider a family of shape-regular, admissible decomposi-
tions7;, of 2 into d-dimensional simplices, quadrilaterals tor= 2 or hexahedra fod = 3.
Let A be the diameter of a cell' € 7;, andh = maxreT, hr. Let T be a reference ele-
ment of the decompositidfy,. Assume that, for each € 7}, there exists an affine mapping
Fr : T — T which mapsl’ ontoT. This quite restrictive assumption for quadrilaterals/
hexahedra can be weakened to asymptotically affine lineppmgs [3].

Let us denote by}, the set of element faces (far= 3) and element edges (fdr= 2)
induced by the finite element megh on 0f2. Moreover, we assume that the Robin [gagt
of the boundary is exactly triangulated by elements;of

SetP.7, = {vn € L3(Q); v, o Fr € P(T),T € T} with the spaceP,(T) of
complete polynomials of degrdec {0, 1} defined onl” andQy. 7, := {vn € L*(Q) ; vy, o
Fr € Qu(T) ,T € Tp,} with the space)(T') of all polynomials oril” with maximal degree
k in each coordinate direction. We shall approximate the espaby a finite element space
Vi, € V such that

Vi DPip, NV or Vi DQiz NV.

Similarly, letQy,o C H'(2) be a finite element space for the control variable @ad- =
Qn.alry its restriction tol' .

3.2. Local projection stabilization (LPS) for the state prdblems. The basic Galerkin
discretization of the state problem (2.1) reads: FRipds V}, such that

a(up,vy) = f(vp), Yoy, € V. (3.1)

For0 < ¢ < 1, the solutionu,, of (3.1) may suffer from spurious oscillations. As in [5]
we consider the local projection stabilization (LPS) agmiowhich results in a symmetric
discrete optimality system. The idea of LPS methods is tibh #y@ discrete function spaces
into small and large scales and to add stabilization terndéfiafsion-type acting only on the
small scales. There are two obvious choices of the spaceg# szales:

Thetwo-level variantdetermines the large scales with the help of a coarse mesk. Th
mesh.M;, is constructed by coarsening the basic m&ghsuch that each macro-element
M € My, is the union of one or more neighbouring cdllss 7;,. The diameter ol € M,,
is denoted byhj,;. We assume that the decompositigt, of Q is non-overlapping and
shape-regular. Additionally, the interior cells are suggmbto be of the same size as the
corresponding macro-cell:

3C>0: hy <Chp, YT €T, MEeEM,withT C M. (3.2)

The discrete spacB;, C L?(Q) is the discontinuous finite element space of piecewise con-
stant functions defined on the macro-partitipty,. The restriction ofD;, on M € My is
denoted bth(M) = {'Uth ; vp € Dh}.

The next ingredient is a local projection, : L?(M) — Dy (M) which defines the
global projectionr;, : L?(Q2) — Dy, by (mpv)|ar := mar(v]ar) forall M € My,. A standard
variant is the local orthogondl? projection. Denoting the identity oh?(2) by id, the
fluctuation operatok,, : L2(Q2) — L2(2) is defined by, := id — .

The second approach, tbae-level variantconsists in choosing the discontinuous finite
element spac®;, of piecewise constant functions on the original m&stand constructing a
proper enriched spadé,. The same abstract framework as in the first approach candoke us
by settingM;, = 7j,.

For both variants, the stabilized discrete formulatiomeedindw;, € V}, such that

Aps (U, vp = a(un, v) + Sp(un, vn) = f(uvp), Yoy, € Vi, (3.3)
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where the additional stabilization term is given by

sp(un,vp) == Z v (kn (b Vug) , kn (b Vo) s (3.4)
MeMy,

The stabilizatiors;, acts solely on the small scales. The constaptsvill be determined
later based on a priori error analysis.

3.3. Some variants of one- and two-level variantDifferent variants for the choice of
the discrete spacés, and Dy, are given in [14]. Here we describe some details.

Theone-level approaclwith M, = 7;, starts from a given discontinuous spdgg and
uses an enrichment of the spadgsy, NV or Q1 7, N V. For simplicial elements, we set

Dy, = Po_’Th’, Vi = {’U S V; U|T olp e Plbub(T) VT € ,Th},
where
R R A+l
PMT) = P(T) +b- Po(T),  b(&) = (d+ 1) [ Xi@)
i=1
with the barycentric coordinates,i = 1,...,d + 1. For guadrilateral/hexahedral elements,

we can use eitheD, = Py, or D, = Qo.1,. SettingD = Py(T) or D = Qu(T),
respectively, the spacég are constructed analogously as for simplices with

POT) = Qu(T) +b-D, b)) =]](-427), T=(-1,1)%

FiG. 3.1.Two-level approach with meshggl;, (bold lines) andZ}, (fine lines).

Now consider théwo-level approaciicf. Figure 3.1 fo = 2). For quadrilateral/hexahedral
elements, each/ € M,, is uniformly refined inta2¢ subelements. In the simplicial case,
eachM € M, is divided intod + 1 simplices by connecting the barycentreMdfwith the
vertices of M. For simplices and for quadrilaterals/hexahedra, respgtset

= P17'Th NV, Dy:= PO,Mh and Vi = QLTh NV, Dy:= QO,Mh-

Note that, for the two-level approach based on simpliciatefielements, the spads,
can be written in the form

Vi={veV: vpyoFyeP ()& B VM e M},

whereB; C H} (T) is a finite-dimensional space consisting of continuouseuigse poly-
nomial functions of degree. Therefore, the simplicial two-level approach can be gdats
a one-level approach with respect to the magh.
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3.4. Discrete optimality system.The discretized control problem to (1.1)-(1.2) is for-
mulated inV;, x Q4% x Q% with Q4% = Q&' N Qn.0 andQyt = QLY N Qx r as follows

min J(un, gn.0, qn,r),  Un € Va, dno € Qi%, anr € Q% (3.9)
subject to
aips(un,vn) = (f + qn,0,vn) + (9 + qu,r, V)05, Yoy, € Vi (3.6)

This discrete optimal control problem admits a unique $ofut@y, g, o, g, r). Now we
introduce a discrete solution operatty : Q% x Q& — Vj, by

atps(Su(an,o, an,r),vn) = (f + qn.0,vn)e + (9 + qn,r, vn)ry Yoy € V.

Moreover, the discrete reduced cost functional is fornaaats

Jr(@n.0,qn,r) = J(Sh(gn.0, qn,r), 7 © Sh(gn.Q,qn,r))-

Forallkn.o € Q1% kn,r € Qf, the necessary (and sufficient) optimality conditions read

Dyojn(@n.0sTnr) - (kna —Tno) = (@lp.q + D kro — Tpa)a =0, (3.7)
Dy jn(@n.0:nr) - (knr —Qnr) = (arQyr + P, kar — @pr)re = 0, (3.8)

hence
aofno+b, = 0, arqy,r +Ppsknr = 0.
Here the discrete adjoint stgtg € V4, is the solution of the discrete adjoint state problem
aps(Vn, pr) = Ao (un — uq, vn)a + Ar(un — ur, vp)ry- (3.9)

whereu, = S (qq, gr) is the associated discrete statédg, gr).

REMARK 2. The symmetry of the LPS term implies that the operationsiritpe” and
"discretize” commute, see [5].

Finally, the second order derivatives f(qa, gr) do not depend ofyq, gr) and admit
the estimates

Dyoqoin(qa, qr) - (kn.o, kna) > CmHkh.,QH(QJ,Q, Vkno € QZ?Q (3.10)
Dyrarjn(ga, qr) - (knrs knr) > arllknrl§res  Vear € Q4% (3.11)
4. A-priori error analysis for the optimal control problem. In this section, we pro-
vide the error analysis for the optimal control probem ({1LP).

4.1. Some auxiliary results. It turns out that additional assumptions for the LPS method
are required. In order to control the consistency error efstabilization term, the discontin-
uous spacé);, on the coarse mesh,, has to be large enough; more precisely:

AsSsSUMPTIONZ2. The fluctuation operatok;,, = id — 7, see Subsec. 3.2, satisfies for
s € [0, 1] the following approximation property:

30, >0 : l6nglloar < Cuhiflalsar, Yq€ WH2(M), YM € Mj,. (4.1)
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REMARK 3. (i) Assumption 2 is valid if the local?-projection operatorr;, is chosen
in the definition of the fluctuation operatey, = id — .

(i) The original version of (4.1) in [14] only considersc {0, 1}.

Now we construct a special interpolatign: V' — V}, such that the errar — j,v is L?-
orthogonal taD, for all v € V. In order to conserve the standard approximation proggertie
we additionally assume

AssuUMPTION3. There exists a constagt> 0 such that, for any\f € M,

inf (vh ) Qh)M

sup > 3> 0. 4.2)
0 €D (M) v, v, (n1) VR llo,a1 [l gn

0,M

whereYy, (M) := {vn|pm : vn € Vi,vp, =00nQ\ M}

REMARK 4. The inf-sup condition (4.2) implies that the spabg must not be too
rich. On the other handD;, must be rich enough to fulfil the approximation property J4.1
Assumption 3 is valid for the discrete spaces discussedbaesu 3.3, cf. [9], Section 4.

LEMMA 4.1. Let Assumption 3 be satisfied. Then there is an interpolatjmerator
jn : V. — V, such that

(’U _jhU7Qh)Q = 01 VQh S Dh,v’l} S Va (43)
and
1
v = dnvllo,ar + harlv — Gnvliar + Billo = gavllo,e S hafMlvllisa2,m- (4.4)

orall M € M and forv € VN W HA2(Q) with1 + A > £.
Proof. This is a simple extension of the proof withe {0, 1} in [14]. In particular, the
modified analysis takes advantage of the Lagrangian inlggipn properties of the spadé,

3C>0:  |v—Iywlmr < CRE*™|v]l14227, me€ {0,1} (4.5)

forv € WA2(T),VT € T, with X € [0,1) such thatl + A > £, see [7], Thm. 2.25 and
Remark 1. Moreover, foE! C 9T one obtains

AL
3C>0:  |v=Iwlors < Chy 2 ||v]l1yrzr. (4.6)

4.2. Analysis of the state problems.The next goal is to derive error estimates for the
state problems (3.6) and (3.9). First, the stability of tbleesne will be given in the mesh-
dependent norm

1
~1 2
el = (elelf g+ ollol o + 152013 r, + sn(v,0) ", WoeW.
LEMMA 4.2. The LPS schemes (3.6) and (3.9) for the discrete state anddjoént
states admit unigue solutions.
Proof. For anyv € V/, integration by parts yield® - Vv, v)q = 3((b-n)v,v)r,, hence

L
aps (v,v) = e[vff o + alvllg o + 15205 ry + 50 (v, 0) = [IWl[]7, YweV (A7)

with 3 = 3+ 1b - n. This implies||jus||[> < (f,ur)a + (3 va)r,, hence existence and
uniqueness ofi;, € V4, in the scheme (3.6). The result for (3.9) follows similafy.
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The following a priori estimate can be proven using the stati¢echnique of combining
stability and consistency results based on the auxiliasulte of the last subsection. Here,
and in the following Lemma, we fix some contrd}s,, pr) € Q% x Q& which will be later
on, in the proof of the main theorem, chosen as the Lagrangtarpolants of the optimal
controls(gq, gr)-

LEMMA 4.3. Let for (qo,qr) € Q& x Q& u = S(qq,qr) € V be the solution of
the state problem (1.2) and for sofi&,, pr) € Q& x Q&, wy, = Sk(pa, pr) € V;, be the
solution of

aips (Wh, vp) = (f + pa,vn)a + (g + pr, vn)ry Yoy, € V. (4.8)

Let the stabilization parameters be chosen as

ha
T™ ~ —= . (4.9
vhy + 1Bl Lo (ary)e

Then, under the assumptions of Lemma 2.1, there holds thefioy a-priori error estimate

0.2 +Crllar — prilorrx (4.10)

|b'vu|§\2M
- 22 Cugllulfnaar) )
vhi + 1Bl (arye M

[lu —wal[| < Callga — pal

+C( - hi}\“{

MeMy,

=

with

g
Cy = E +ohy + ||b||[Loo(M)]d + ||5HL°°(8MHFR) + Hb : n||L°°(8MmFR)7
1 Cp . 1 Cp
L%y omminfs 2y,
Vo' e VB Ve

Cq := min{

Proof. The erroris splitinta, — wy, = (u — jru) + (jru — wy ). For the approximation
erroru — jpu, Lemma 4.1 and Assumption 2 with= 0 yield

1
] 2 2
Mu=snll S (3 [+omdirmanlblf e ooyt Bl onrmrayhas | Bl )

MeMy,
(4.11)
Now we estimate the remaining paft := jpu — wy, using (4.7)
: (a+ sn)(Jnu — wp, 21)
[ nu — wnl|] =
IIEA
_ (a+ sp)(u— wp,zp) n (a+ sp)(Jru — u, zp) T4l
iEAN IEAN

We start with term I. Subtracting (4.8) from (2.1), one obsathe perturbed Galerkin orthog-
onality relation

(a+sp)(u—wh,vn) = sp(u, vn)+ (g0 —po, vh)a+ (gr —pr, vn)ry, Yop € Vi, (4.12)

Assumption 2 yields

1 1 1
Isn(u,vn)| < sp (u,u) sj (v,0) < O( > b VUK,Q,M) Nowlll - You € Vi
MeMy,
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Moreover, under assumption of Lemma 2.1 there holds

1 C
(a0 = pa,vn)a < Callga —palloallonll,  Ca:=min{—=i =2
( Jew < Crlae = prloxallnll,  Cr o= minf s F)
qr —pPr,Vn)rg = Cr||qr — Prijo,rzI|VAl| r =My ———; ——=
" " VB Ve

whereCp denotes the Poincare constant. Settipg= z;,, we obtain

1
I< C( > Tahirlb- VU|§\727M) * + Callga — pallo.q + Crllar — prllors.
MeMy,

Now we consider the terms @ff separately. Integration by parts and the orthogonalitppro
erty (4.3) and the estimate (4.4) yield foy, € V}, that

a(jpu — u,wp) 1 ) )
= a(V(jhu—u),th)Q — (mh(b-th),jhu—u)Q
[[[wal] [[wall] (

+o(jnu — u,wp)o + (B(jau —w), wh)FR)

-

<c( Y mhe+ 0+ )R+ 1Bl @mrrahar | lulfa2ar)
MeMy,
The estimate of the stabilization term follows using (4.1thve = 0 and (4.4)
sh(jru — u, wp) 3
L= DI <o Mt el aoar) . (423)

Tonll o

Summing up all inequalities in this proof gives the assertio

=

linu=willl <€ w37l Vull o ar + Coarllulf s 200 )
MeMy,

+Callga — pallo,o + Crllgr — pr

0T (4.14)
with
Cwr = e+ 0l + 727 B+ Bl F s (aryga + (18] e @mmr ) + 101 Lo @rrr ) B

In the advection-dominated case, the parametgraire determined by balancing the terms

har —. In the diffusion-dominated case, we
Lo (M)

balance the terms ~ 7,,'h3,. The combination of both cases leads to the choice (4.9).
Please note that a deterioration of the denominatej0ih case ob = 0 is avoided. Finally,
the triangle inequality concludes the proidf.
REMARK 5. The constant§’, and Cr are critical in the case of0 < ¢ « 1 together
with 0 < o, By < 1. Let us discuss some relevant situations:
e For singularly perturbed diffusion-reaction problems.iwithb = 0, it is reason-
able to assume that > 0 is independent of.
e For singularly perturbed advection-diffusion problentsite occurs the case that all
subcharacteristics of the first order operafor V leave the domaif in finite time.
This excludes periodic subcharacteristics and stagngioints of b in 2. Then it
is possible to transform the elliptic operator to the fofm= —c L, + b - V + ¢ with
é(x) > o with arbitrary largeo.

7ot Par ~ "Il (apyjar hENCETN ~ o
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e For Robin boundary control (or regularized Dirichlet coaf), it is reasonable to
supposed + ib-n > 3, > 0 with 5y = O(1).
REMARK 6. In the limit case\ = 1, i.e. foru € H?(), we obtain the well-known
3
optimal convergence rat@(h,) with respect tdz ;.

REMARK 7. The LPS method is still a matter of ongoing research. Reesundts provide
improved stability and convergence results of the LPS naetho
i) In Lemma 4.1 of [10], it is shown for the one-level methaat thhe LPS-nornfl| - |||
1

gives control of the weighted streamline derivat{ie) , 7 [|b - V()[I3 x)*.
i) Theorem 2 of [9] states that, for simplicial elementse tbne- and the two-level
approach are algebraically equivalent to a residual-basgabilization scheme, to
the unusual Galerkin/Least-squares stabilization or hlgéc subscale method [6].
Similarly, we obtain the following a-priori error estimdta the adjoint problem (3.9).
LEMMA 4.4. Let for (go,qr) € Q% x Q, p € V be the solution of the adjoint
state problem (2.5) and let for sonign, pr) € Q& x Q%4, y, € Vj, be the adjoint discrete
solution. Let the stabilization parameters be chosen a4.@)( Then, there holds the a-priori
error estimate

e = ynlll < (C&Aa + CRAR)|[|u — wal| (4.15)

22+1 b VPK,Q,M 9 1
+ C( Z hiy { o1 b + CMHP|‘1+>\,27M})
MeMy vhpe + H H[LOO(M)]d

with Cys, Cq andCr as in the previous Lemma.
Proof. The equations fop € V andy;, € Vj,
a(v,p) = Aa(u — ug,v)o + Ar(u — ur, v)ry YveV
a(vn, yn) + sn(Yn, vn) = Aa(wn — ua, vr)a + Ar(wy —ur,vp)r, Yo, € Vi
lead to the error equation
a(Vh, p=Yn)+5n(P—Yn,vn) = sn(p, vn) +Aa(u—wn, vp)o+Ar(u—wn, vp)r, Yon € Vi.

The remaining part of the proof follows the lines of the poais proof[d
REMARK 8. The term|||u — wy ||| in (4.15) can be further estimated via Lemma 4.3.

4.3. Main result for unconstrained case.We are now in a position to prove the main
result for the unconstrained optimal control problem.

THEOREMA4.5. Let the assumptions of Lemma 2.1 and Assumption 1 be valicdvier,
let (w, g, gr) be the solution of the optimal control problem (1.1)-(1.8Y&us, G, o, Tp. 1)
the solution of the discretized problem (3.5)-(3.6). Findetaq, ar > 0. Then there exists a
constantC' > 0 depending on\g, Ar, ag, ar, Cq, Cr such that the following error estimate
holds:

170 — @n.ollose + [Gr — @ rllors

1 1

1+2X = (2 2 1+2X = |2 2

< C{( E hg |QQ|1+/\;2,M) +( E hoy |QF|1+>\;2,E)
MeMy, Ee&E,Nl'r

b Val3, 3
+ ( hl*”( - = + Culalliyze M))
%: M vhy + 1Bl 2o (ar)e A2

(S T e o e )
M = / A2, M
IY; vhy + 1Bl 2o a1y
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with Cy;, Cq andCr asin Lemma 4.3.
Proof. Let (z, 0, 2n.1r) € Qrn.a X Qn,r be arbitrary so far. A straight-forward calculation
gives together with (3.10) and (3.11)
Do jn(2h,9, T 1) (20,0 = o) = Daadn(@n.0sTnr)(2h0 — Tp0)
= Dyq,a0Jn(@n,0:Tnr) (20,0 = Th.0s 20,0 — Tn.a)
> aqllzn.a = Gy 0l 3;9
Dy jn (@ 05 20.0)(Whr = Tpr) — Dardn(@n.0,@nr)(2hr — Tnr)

= Dyrgrn(@n.0,Tnr) (20, — D1 200 — Q1)

> arllznr — qh,l“”(z),FR'
As the gradient vanishes at the optimal point for the uncairstd case, there holds
Do jn(@n.0:Tnr)(2h.0 — Tno) =0 = Dyoj(@q, Tr)(2n.0 — Tn.o) (4.16)
Dy jn (@05 Tn.r)(zhr = Tpr) =0 = Do (@, ar)(2n,r — Tp.r) (4.17)
which leads in the previous inequalities to

aqllzne = Tnalto < Daain(zha: Gnr) (zha = @h.a) — Daod(@a,Tr) (2ha — Tha)

t:0n < Dardn(@n.0s20,0) (200 = Gnr) — Dar i (@0 Tr) (2,0 — Tnr)-

Now the discrete analogue of Lemma 2.3 gives

ar|lza,r — T r

aollzne = Tnollio < (@azne + yna 2ne — Tha)g — (@0lo + P, 2ne —Tha)g
= (asz(zh,sz —Ta)+ (Wno —D)s 2n0 — ﬁh,sz)g-

wherey;, o denotes the associated discrete adjoint statg tp This implies

_ _ Ca _
lzh.0 = T alloe < llzn.0 —Talloa + a—ﬂﬂlyh il

and via triangle inequality

_ _ Ca _
1 — Qh,QHO;Q < 2||Zh,9 — g 0; T a_ﬂ|||yh -7l (4.18)

Similarly we obtain with the associated discrete adjoiatesy;, r to wy, r that

arl|znr — G 1l g;FR < (er(znr —qr) + (ynr =D, 20T — qh,l")r‘Rv

and

_ _ Cr _
lZr —@nrllors < 2lzn,r —Grllors + a—r|\|yh -7l (4.19)

The continuous optimality system (1.2), (2.5)-(2.7) pd®dqg, = —%ﬁ andgr =
—a—lrﬁh‘. Consequently, the regularity of the adjoint s@atenplies(gq,, gr) € W T42(Q) x

W%+A72(FR) with 1+ X\ > %. This allows to select;, o andz, r as the Lagrangian inter-
polants ofg, andgr, respectively; hence

1/2
lzn,0 = Talloe < C < Z h}\}_2)\|§Q|§+>\;2,M> ; (4.20)
MeMy,
1/2
lzn.r = rllor, < C < > h};”|ar|;w> : (4.21)
Ec&E,nl'r
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The estimates (4.18), (4.19) together with the latter pa&ation estimates, Lemma 4.4
and Lemma 4.3 witlpg, := 25, o andpr := z, r prove the assertioifl

5. Regularized Dirichlet control. In applications, a Dirichlet boundary control
u=4q

might be desirable. A review of different variants is given[12]. One possibility is to
approximate the Dirichlet boundary control by an Robin ketany control of the form

oVu-n+pu—q) =0, =0(1)

for 6 — +0, but the choice of the regularization parametés delicate. For the case of the
singularly perturbed problem (1.2), a rather natural chié@ = €. This allows to interpret
the Robin boundary control within this paper as a reguléionaf Dirichlet boundary control.
Nevertheless, some care is necessary.

In order to describe potential problems, define the suliset$’, andl" of the bound-
ary 91, depending on the sign ¢b - n)(x), as the inflow, characteristic and outflow part
for the flow fieldb. Typically, the solutionu of problem (1.2) has boundary layers at the
outflow partl’ ;. with steep gradientVw - n| ~ 1 and at characteristic boundariEgs with
(at most)|eVu - n| ~ /e. Clearly, at the inflow parf'_, one has onlyeVu - n| ~ €. This
observation motivates to exclude a Dirichlet control atah#low boundary’ ;. whereas the
Robin regularization

eVu-n+ pGu—q)=0 (5.1)

with 5 + %b -n > [y > 0is a good approximation of the Dirichlet conditian= q.

A typical situation is the flow in a domain of channel tyde= (0, L) x (—Z, Z) with
the flow fieldb(z) = ((£ — |z2[)*,0)T with > 0. The case: > 0 corresponds to a no-slip
condition of the flow fieldo whereas: = 0 represents a slip-condition bf The solutionu
of (1.2) can be seen as a temperature field or as the densitynaf shemical reactant. Let us
describe two potential applications of Dirichlet control:

i) Regularization of inflow Dirichlet control:
A Dirichlet conditionu = g is given ata parE ¢ I'_ = {0} x (—Z, Z) whereas
a Robin boundary conditioaf“ + 3(u — g) = O with §+ 3b-n > §, > 0'is
prescribed of'_ \ X. A "do-nothing” conditionea%“1 = 0 might be prescribed on

Iy = {1} x (=&, &). An"insulation” conditione 2 = 0 is given at the channel

wallsTy = (0,L) x {-&, Z}.
i) Regularization of wall Dirichlet control:
A Dirichlet conditionu = ¢ is given at a parE C I'y of the channel walls whereas
a insulation condition is given oy \ . An inflow conditionea‘a—;‘1 +Bu—g)=0
with 5 + %b -n > By > 0is prescribed od’_. Again a "do-nothing” condition
might be prescribed ofi, .
Replacing the Dirichlet control ol C I'_ U I'y by the Robin boundary control (5.1), one
can take advantage of the results of this paper. An analyis@#ication of this approach and
numerical experiments will be reported elsewhere.

6. Numerical experiments. Meanwhile, several authors contributed to the theoretical
and practical investigations of LPS methods. A detailedwdision of pro’s and con’s of the
one- and two-level variant can be found in [9]. As a resulthef latter studies, no significant
preference of one of the methods was observed. For the fiolipnumerical experiments
with the two-level variant of the LPS method, the C++ libdsal . | | [4] is applied.
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The goal of the first example is to show the effect of stabiiiraand the convergence of

G. LUBE and B. TEWS

the method for vanishing regularization parametgr
Example 1: Consider the unconstrained optimization problem

. 1
min J(gq, gr, u) = 5 llu — ug||72q) + 7||Qsz||2L2(Q)
such that
—eAu+b-Vu+ou=qq in Q=(0,1) 6.1)
u=0 onoN '

with e = 1073, b = (=1, -2)!, o = 1. In order to obtain results on the convergence of the

aqQ

control in the sense af, — ¢q ¢ fOr ag — 0, we prescribe the control as

Then we compute the solution of (6.1) with given source tegnand prescribe the solution

as desired state,.

qa,ref(x) = (sin(r21))

0.3(

sin(mz2))

0.3

Control State

g L | L? | HT L | L? | H!
le+0|| 9.47E-01| 6.97E-01| 5.98E+00|| 4.01E-01| 1.54E-01| 3.45E+00
le-1|| 6.92E-01| 5.16E-01| 9.54E+00|| 2.54E-01| 1.02E-01| 2.73E+00
le-2|| 7.23E-01| 2.63E-01| 1.68E+01| 1.51E-01| 3.48E-02| 4.32E+00
le-3 || 2.43E+00| 3.41E-01| 4.48E+01| 1.24E-01| 2.07E-02| 4.43E+00
le-4|| 1.04E+01| 1.11E+00| 1.97E+02|| 7.67E-02| 1.11E-02| 2.35E+00
le-5|| 2.23E+01| 2.07E+00| 3.87E+02|| 2.38E-02| 2.84E-03| 5.68E-01
le-6|| 2.64E+01| 2.43E+00| 4.55E+02| 3.19E-03| 3.66E-04| 7.18E-02

TABLE 6.1
Different error measures for the unstabilized scheme wigstwidthh = 2—5
Control State
oo L | L? | H! L™ | L? | HT

le+0|| 9.46E-01| 6.97E-01| 5.89E+00|| 4.09E-01| 1.54E-01| 3.55E+00

le-1|| 6.87E-01| 5.12E-01| 5.31E+00|| 2.79E-01| 1.03E-01| 2.60E+00

le-2|| 5.57E-01| 2.23E-01| 6.74E+00|| 8.54E-02| 2.77E-02| 9.67E-01

le-3|| 2.96E-01| 8.04E-02| 5.29E+00|| 1.94E-02| 4.37E-03| 2.35E-01

le-4|| 1.64E-01| 2.74E-02| 2.85E+00|| 3.57E-03| 5.81E-04| 4.77E-02

le-5| 4.95E-02| 6.79E-03| 9.53E-01| 4.81E-04| 7.06E-05| 7.77E-03

le-6| 7.08E-03| 9.81E-04| 1.56E-01|| 5.12E-05| 7.64E-06| 9.45E-04

TABLE 6.2

Different error measures for LPS-stabilization with= 0.034k and mesh widtth = 2—°

If problem (6.1) is solved without stabilization, then thentrol tries, in the case of small
values ofag, to reduce the existing oscillations in order to reach tiheo@th) desired state.
The convergence of the state is obtained as well for the bitiged as for the stabilized case,
see Tables 6.1-6.2. Nevertheless, in the unstabilized t@seontrol is subject to spurious
oscillations whereas in the case of stabilization the cayemce of the control is observed.
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[ h=2""] Jaunu) | J@n8n) — J@ap, T2n) | NUM. conv. ratel
2 3.08191E-01 - -
3 2.76675E-01 3.15159E-02 -
4 2.63904E-01 1.27704E-02 1.30
5 2.60156E-01 3.74789E-03 1.77
6 2.59242E-01 9.13856E-04 2.04
7 2.59068E-01 1.74289E-04 2.39
8 2.59057E-01 1.07450E-05 4.01
TABLE 6.3

Example 2: h-convergence of the cost functional

In the following example we revisit a problem which had beensidered in [5] for the
case of box-constraints for the control. Here we considercdse without constraints. The
numerical solution in [5] foe = 10~3 with the two-level variant of the LPS method gave
strong oscillations in the boundary layer regions. Herggmificantly smaller value = 10~°
of the singular perturbation parameter is chosen.

Example 2: We consider the optimization problem
«
< llgall?z o).

. 1
min J(qo, qr, u) = §||U — uol|72) +

such that

—eAu+ (b-V)u+ou=f+qq in Q
u=20 on 901}

with go € L?(Q) ande = 1075, 3 = (—1,-2)', o =1, f =1, ug = 1 andag = 0.1.

FiG. 6.1.Optimal discrete control and state for example witk= 10~5 and LPS parameters = 0.1 h

Figure 6.1 shows the stabilized control and state for thblpro. We present the discrete
solution on the coarse grid xfor the two-level approach wthelements and = 1—58
Notice that the spurious oscillations for the discrete mardand state in the boundary layer
regions are significantly reduced as compared to the ragiuts in [5].

Table 6.3 gives the convergence history of the cost funatidnMoreover, the numerical
convergence rate is computed. The averaged rate=ig.30.
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Summary. Outlook. In this paper we considered the numerical analysis of dize®
optimal control problems governed by a linear advectidfusdion-reaction equation without
and with pointwise control constraints. The standard Galeiscretization is stabilized via
the local projection approach which leads to a symmetriamogdity system at the discrete
level. The optimal control problem simultaneously covertributed and Robin boundary
control. In the singularly perturbed case, the boundaryrobat characteristic parts of the
boundary can be seen as regularization of a Dirichlet boyrztatrol.

In a forthcoming paper [13], we consider the extension ofahalysis to the case of
box-constraints for the distributed and boundary conttal.contrast to [5], we allow the
application of shape-regular, locally quasi-uniform messh
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