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LOCAL PROJECTION STABILIZATION FOR INCOMPRESSIBLE FLOWS: EQUAL-ORDER
VS. INF-SUP STABLE INTERPOLATION

G. LUBE, G. RAPIN AND J. L̈OWE∗

Abstract. A standard approach to the non-stationary, incompressibleNavier-Stokes model is to split the problem into linearized
auxiliary problems of Oseen type. In this paper, we present aunified numerical analysis for finite element discretizations using the
local projection stabilization method with either equal-order or inf-sup stable velocity-pressure pairs in the case of continuous pressure
approximation. Moreover, a critical comparison of both variants is given.
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1. Introduction. Consider the non-stationary incompressible Navier-Stokes model

∂tu − ν△u + (u · ∇)u + ∇p = f̃ in Ω × (0, T )

∇ · u = 0 in Ω × (0, T )

for velocity u and pressurep in a bounded domainΩ ⊂ Rd, d = 2, 3. A usual approach is to semi-
discretize in time first with anA-stable implicit scheme [17]. In each time step, the resulting problems can
be solved via fixed-point or Newton-type scheme [17, 22]. This leads to auxiliary problems of Oseen type

LOs(u, p) := −ν△u + (b · ∇)u + σu + ∇p = f in Ω (1.1)

∇ · u = 0 in Ω (1.2)

with a new right hand sidef ∈ [L2(Ω)]d, with coefficientsb ∈ [H1(Ω) ∩ L∞(Ω)]d andσ ≥ 0 (stemming
from time discretization).

The Galerkin approximation of (1.1), (1.2) may suffer from two problems: violation of the discrete
inf-sup (or Babuška-Brezzi) stability condition and dominating advection, i.e.ν ≪ ‖b‖[L∞(Ω)]d . The
traditional way to cope with both problems in a common framework is the combination of the streamline-
upwind/Petrov-Galerkinmethod (SUPG) [7] and the pressure-stabilization/Petrov-Galerkinmethod (PSPG)
[18]. An overview about residual stabilized methods can be found in [24, 5]. More recent results forhp
finite elements are proven in [20].

This class of residual based stabilization techniques is still quite popular, since they are robust and
easy to implement. Nevertheless, they have severe drawbacks which mainly stem from the strong coupling
between velocity and pressure in the stabilization terms [5]. Therefore, other stabilization techniques
have appeared recently, in particular the edge-stabilization method [8, 5] and variational multiscale (VMS)
methods [15, 16, 13, 9]. We emphasize that almost all stabilization methods can be interpreted as special
VMS methods. The key idea of VMS methods is a separation of scales: large scales, small scales and
unresolved scales. The influence of the unresolved scales onthe other scales has to be modeled. Mostly, it
is assumed that the unresolved scales do not influence the large scales.

Currently, there are two variants to apply VMS methods to thefull Navier-Stokes model. In most of
the papers, an equal-order interpolation of velocity-pressure is applied, e.g., in [2, 9]. Besides the rather
simple implementation into existing codes, a formal reasonis appearantly that in the Euler limitν → 0 no
second-order derivatives occur. Other authors prefer discrete inf-sup stable velocity-pressure pairs [16] as
this is the ”natural” choice from regularity point of view for fixedν > 0. A comparison of both approaches
is still missing.

Local projection stabilization (LPS) as special VMS-type methods are of current interest [4, 21]. Here
the influence of the unresolved scales on the small scales is modeled by additional artificial diffusion terms
for the small scales. In particular, the sub-grid viscositymodel [14] can be interpreted as a special LPS
method. In Section 3 of this paper, we present a unified theoryof LPS methods for equal-order and inf-sup
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stable pairs in the case of continuous pressure approximation. In Section 4, a comparison of both variants
is given with respect to theory and simple numerical experiments.

Throughout this paper, the standard notation‖ · ‖k,G for the norm in the Sobolev spacesHk(G) =
W k,2(G), G ⊆ Ω are used. TheL2-inner product in a domainG is denoted by(·, ·)G. The norm inL∞(G)
is denoted by‖ · ‖L∞(G). ForG = Ω the index is eventually omitted.

2. Variational Formulation and Stabilization. Here, the basic Galerkin finite element formulation
and its stabilized variants via local projection (LPS) are introduced. Moreover, different technical tools are
given.

2.1. Basic Galerkin Approximation. The basic variational formulation for the Oseen problem (1.1),
(1.2) with homogeneous Dirichlet data reads: FindU = (u, p) ∈ V ×Q := [H1

0 (Ω)]d ×L2
0(Ω), such that

(ν∇u,∇v)Ω + ((b · ∇)u + σu, v)Ω − (p,∇ · v)Ω + (q,∇ · u)Ω
︸ ︷︷ ︸

=:A(U,V )

= (f , v)Ω
︸ ︷︷ ︸

=:L(V )

(2.1)

for all V = (v, q) ∈ V × Q.
ASSUMPTION1. Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded, polyhedral domain. Moreover, assume that

ν ∈ L∞(Ω) with ν > 0 in Ω, f ∈ [L2(Ω)]d, b ∈ [L∞(Ω)∩H1(Ω)]d with∇·b = 0 a.e. inΩ and constant
σ ≥ 0.

REMARK 1. Usually, b is a finite element solution of the Oseen equations. Especially there holds
(∇ · b, qh) = 0 for certain test functionsqh. Therefore,∇ · b is small but does not vanish in general.
A remedy for iterative methods within a Navier-Stokes simulation is to replace((b · ∇)u,v)Ω by 1

2 ((b ·
∇)u,v)Ω − 1

2 ((b · ∇)v,u)Ω − 1
2 ((∇ · b)u,v)Ω.

REMARK 2. Is is possible to extend the analysis in this paper to a situation resulting from Newton
iteration including the term(u · ∇)b. Assuming a small time step, resulting in a sufficiently large σ ≥
2‖∇b‖(L∞(Ω))d×d , ensures coercivity of the Oseen operator since(σu, u)Ω + ((u · ∇)b, u)Ω ≥ (σ −
‖∇b‖(L∞(Ω))d×d)‖u‖2

0 ≥ 1
2σ‖u‖2

0.
Consider a shape-regular, admissible decompositionTh of Ω into d-dimensional simplices, quadrilat-

erals in the two-dimensional case or hexahedra for three dimensions.hT is the diameter of a cellT ∈ Th

andh is the maximum of allhT , T ∈ Th. Let T̂ be a reference element of the decompositionTh.
Set

Pk,Th
:= {vh ∈ L2(Ω) | vh|T ◦ FT ∈ Pk(T̂ ) , T ∈ Th}

with the spacePk(T̂ ) of complete polynomials of degreek defined onT̂ and

Q̃k,Th
:= {vh ∈ L2(Ω) | vh|T ◦ FT ∈ Qk(T̂ ) , T ∈ Th}

with the spaceQk(T̂ ) of all polynomials onT̂ with maximal degreek in each coordinate direction. The
finite element space of the velocity is given byVh,ku

= [Q̃ku,Th
]d ∩ V or Vh,ku

= [Pku,Th
]d ∩ V with

scalar componentsYh,ku
of Vh,ku

.
For simplicity, we restrict the analysis to continuous discrete pressure spacesQh,kp

= Q̃kp,Th
∩C(Ω)

or Qh,kp
= Pkp,Th

∩ C(Ω). For an extension to discontinuous pressure spaces, we refer to [23].
The subsequent numerical analysis takes advantage of the inverse inequalities

∃µinv | |v|1,T ≤ µinvk2
uh−1

T ‖v‖0,T , ∀T ∈ Th, ∀vh ∈ V h,ku
(2.2)

and of the interpolation properties of the finite element spaceVh,ku
. For the Scott-Zhang quasi-interpolant

operatorIu
h,ku

[26, 1], one obtains forv ∈ H1
0 (Ω) ∩ Ht(Ω), t > 1

2 with v|ωT
∈ Hr(ωT ), r ≥ t, on the

patchesωT :=
⋃

T ′∩T 6=∅ T ′

∃C > 0 | ‖v − Iu
h,ku

v‖m,T ≤ C
hl−m

T

kr−m
u

‖v‖r,ωT
, 0 ≤ m ≤ l = min(ku + 1, r). (2.3)

This property can be extended to the vector-valued case withIu
h,ku

: V → V h. Similarly, an interpolation
operatorIp

h,kp
satisfying (2.3) can be defined for the pressure.
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2.2. Local Projection Stabilization (LPS). The idea of LPS-methods is to split the discrete function
spaces into small and large scales and to add stabilization terms of diffusion-type acting only on the small
scales. Consider two obvious choices of the large scale space:

(i) The first variant [4, 6, 21] is to determine the large scales with the help of a coarse mesh. The coarse
meshMh = {Mi}i∈I is constructed by coarsening the basic meshTh such that each macro element
M ∈ Mh with diameterhM is the union of one or more neighboring cellsT ∈ Th. Assume that the
decompositionMh of Ω is non-overlapping and shape-regular. Moreover, the interior cells are supposed
to be of the same size as the macro cell:

∃C > 0 | hM ≤ ChT , ∀T ∈ Th, M ∈ Mh with T ⊂ M. (2.4)

Following the approach in [21] we define the discrete spaceDu
h for the velocity as a discontinuous finite

element space defined on the macro partitionMh. The restriction on a macro-elementM ∈ Mh is denoted
by Du

h(M) := {vh|M | vh ∈ Du
h}.

The next ingredient is a local projectionπu
M : L2(M) → Du

h(M) which defines the global projection
πu

h : L2(Ω) → Du
h by (πu

hv)|M := πu
M (v|M ) for all M ∈ Mh. Denoting the identity onL2(Ω) by id,

the associated fluctuation operatorκu
h : L2(Ω) → L2(Ω) is defined byκu

h := id − πu
h . These operators

are applied to vector-valued functions in a component-wisemanner. This is indicated by boldface notation,
e.g.πu

h : [L2(Ω)]d → [Du
h ]d andκu

h : [L2(Ω)]d → [L2(Ω)]d.
(ii) The second choice [10, 21] consists in choosing a finite element discretizationDu

h of lower order
on the original meshTh or by enriching the spacesV h,ku

andQh,kp
. The same abstract framework as in

the first approach can be used by settingMh = Th.
Analogously a discrete spaceDp

h and a fluctuation operatorκp
h can be defined. The stabilized discrete

formulation reads: findUh = (uh, ph) ∈ V h,ku
× Qh,kp

such that

A(Uh, Vh) + Sh(Uh, Vh) = L(Vh), ∀Vh = (vh, qh) ∈ V h,ku
× Qh,kp

, (2.5)

where the additional stabilization term is given by

Sh(Uh, Vh) :=
∑

M∈Mh

[

τM (κu
h ((b · ∇)uh) , κu

h ((b · ∇)vh) )M

+µM (κp
h (∇ · uh) , κp

h (∇ · vh))M + αM (κu
h(∇ph), κu

h(∇qh))M

]

. (2.6)

REMARK 3. Another variant is to replace the first right hand side term ofSh(·, ·) with

∑

M∈Mh

δM (κu
h (∇uh) , κu

h (∇vh))M ,

see the corresponding result in Remark 7.
The constantsτM , µM , αM andδM will be determined later on based on an a priori estimate. Please

notice that the stabilizationSh(·, ·) acts solely on the small scales. Of course, there is some moredegree of
freedom in the choice ofSh, see also [21, 4].

In order to control the consistency error of theκu
h-dependent stabilization terms, the spaceDu

h has to
be large enough; more precisely:

ASSUMPTION 2. The fluctuation operatorκu
h satisfies for0 ≤ l ≤ ku, the following approximation

property:

∃Cκ > 0 | ‖κu
hq‖0,M ≤ Cκ

hl
M

kl
u

|q|l,M , ∀q ∈ H l(M), ∀M ∈ Mh. (2.7)

Due to the consistency of theκp
h-dependent stabilization term, thus involving the spaceDp

h, we do not
need such a condition forDp

h. In Section 3.5 several choices for the discrete spaces willbe presented.
For the analysis, the following properties of the stabilization term (2.6) are required.
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LEMMA 2.1. There holds for allU, V ∈ V × [Q ∩ H1(Ω)]

(i) |Sh(U, V )| ≤ Sh(U, U)
1
2 Sh(V, V )

1
2 (2.8)

(ii) Sh(U, U) ≥ 0 (2.9)

(iii) Sh(U, U) ≤ CS |u|21 + C2
κ

(

max
M∈Mh

αM

)

|p|21, U = (u, p) (2.10)

with CS := C2
κ maxM∈Mh

[

τM‖b‖2
(L∞(M))d + µM

]

.

Proof. Property (ii) is trivial and (i) follows via Cauchy-Schwarz inequality. Inequality (iii) can be
derived by

Sh(U, U) ≤ C2
κ

∑

M∈Mh

[

τM‖b‖2
(L∞(M))d |u|21,M + µM |u|21,M + αM |p|21,M

]

using Assumption 2 withl = 0 for the fluctuation operator. �

2.3. Special interpolation operator. Following [21], we construct a special interpolantju
h : H1(Ω) →

Yh for the velocity, such that the errorv − ju
hv is L2-orthogonal toDu

h for all v ∈ H1
0 (Ω). In order to

conserve the standard approximation properties, let us suppose
ASSUMPTION3. There exists a constantβu > 0 (possibly depending onku) such that

inf
qh∈Du

h

sup
vh∈Yh,ku (M)

(vh, qh)M

‖vh‖0,M‖qh‖0,M
≥ βu > 0 (2.11)

whereYh,ku
(M) := {vh|M | vh ∈ Yh,ku

, vh = 0 onΩ \ M}.
REMARK 4. The spaceDu

h must not be too rich, since the inf-sup condition (2.11) has to be satisfied.
On the other handDu

h must be rich enough to fulfill the approximation property (2.7) . Later on, we will
present several function spacesDu

h satisfying (2.11)
In the following, we use the notationa . b, if there exists a constantC > 0 independent of all relevant

sizes like mesh size, polynomial degree or coefficients.
LEMMA 2.2. Let Assumption 3 be satisfied. Then there are interpolation operatorsju

h : H1
0 (Ω) → Yh

andju
h : V → V h,ku

such that

(v − ju
hv, qh)Ω = 0, ∀qh ∈ Du

h , ∀v ∈ H1
0 (Ω) (2.12)

‖v − ju
hv‖0,M +

hM

k2
u

|v − ju
hv|1,M .

(

1 +
1

βu

)
hl

M

kl
u

‖v‖l,ωM
(2.13)

for all v ∈ H l(Ω) ∩ H1
0 (Ω) and

(v − ju
hv, qh)Ω = 0, ∀qh ∈ [Du

h]d, ∀v ∈ V (2.14)

‖v − ju
hv‖0,M +

hM

k2
u

|v − ju
hv|1,M .

(

1 +
1

βu

)
hl

M

kl
u

‖v‖l,ωM
(2.15)

for all v ∈ [H l(Ω)]d ∩ V , for all M ∈ Mh and1 ≤ l ≤ ku + 1. ωM :=
⋃

T⊂M ωT is a neighborhood of
M ∈ Mh.

For better readability, we shift the proof to the Appendix. Analogously, a corresponding result can be
proved for the pressure.

LEMMA 2.3. Suppose that there exists a constantβp > 0 (possibly depending onkp) such that

inf
qh∈Dp

h

sup
vh∈Qh,kp (M)

(vh, qh)M

‖vh‖0,M‖qh‖0,M
≥ βp. (2.16)
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Then there exists an interpolation operatorjp
h : Q → Qh,kp

such that

(v − jp
hv, qh)Ω = 0, ∀qh ∈ Dp

h (2.17)

‖v − jp
hv‖0,M +

hM

k2
p

|v − jp
hv|1,M .

(

1 +
1

βp

)
hl

M

kl
p

‖v‖l,ωM
, ∀v ∈ Q ∩ H l(Ω). (2.18)

REMARK 5. The estimates of Lemmata 2.2 and 2.3 are optimal with respectto hM . The estimates in
the norm| · |1,M are seemingly sub-optimal regarding toku andkp.

3. A priori Analysis. The next goal is an error estimate for the scheme (2.5). Therefore, further
assumptions on the finite element spacesV h,ku

, Dh,ku
, Qh,kp

andDh,kp
are required.

3.1. Stability. First, the stability of the scheme will be proven. The standard approach is to provide
this in the mesh-dependent norm

‖|V |‖ :=
(
|[V ]|2 + δ‖q‖2

0

) 1
2 , |[V ]|2 := ‖ν 1

2∇v‖2
0 + ‖σ 1

2 v‖2
0 + Sh(V, V )

for V = (v, q) ∈ V × Q with suitableδ > 0. Here we prefer a separated approach for velocity and
pressure by using first the|[·]| semi-norm and then a post-processing argument for the pressure.

LEMMA 3.1. The following a-priori estimate is valid

‖ν 1
2∇uh‖2

0 + ‖σ 1
2 uh‖2

0 ≤ |[Uh]|2 ≤ (f , uh)Ω. (3.1)

Hence, uniqueness and existence ofuh ∈ V h,ku
in the scheme (2.5) follows.

Proof. Integration by parts yields((b · ∇)uh, uh)Ω = − 1
2 ((∇ · b)uh, uh)Ω = 0, hence

(A + Sh)(Uh, Uh) = ‖ν 1
2∇uh‖2

0 + ‖σ 1
2 uh‖2

0 + Sh(Uh, Uh) = |[Uh]|2. (3.2)

This implies (3.1), hence uniqueness and existence of the discrete velocity fielduh ∈ V h,ku
of the scheme

(2.5). �

The corresponding result for the pressureph ∈ Qh,kp
follows from Lemma 3.2 and Lemma 3.1. Here, we

use the notationν∞ = ‖ν‖L∞(Ω), ν0 = infΩ ν(x), b∞ = ‖b‖(L∞(Ω))d .
LEMMA 3.2. There exists a constantγ > 0 dependent on the continuous inf-sup constantβ and on

the polynomial degreeku but independent of the mesh sizeh such that

‖ph‖0 ≤ γ
(√

ν∞ +
√

CP σ +
CP b∞

√

ν0 + σC2
P

+
√

CS + CT

)

|[Uh]| +
1

β
‖f‖−1. (3.3)

with CS = C2
κ maxM∈Mh

[

τM‖b‖2
(L∞(M))d + µM

]

andCT = 1
β maxM

CκhM

ku
√

αM
. CP is the constant in

the Poincaŕe inequality.
Proof. Using the closed range theorem, the continuous inf-sup condition yields the existence ofv ∈

[H1
0 (Ω)]d with ∇·v = −ph and|v|1 ≤ 1

β‖ph‖0. We setvh := ju
hv. Lemma 2.2 together with the triangle

inequality imply

|vh|1 ≤ |v|1 + C
(

1 +
1

βu

)

ku|v|1 ≤ 1

β

[

1 + C
(

1 +
1

βu

)

ku

]

‖ph‖0 =: CA‖ph‖0.

Consider now

(f , vh)Ω = (A + Sh)(Uh, (vh, 0)) = −(ph,∇ · v)Ω −
3∑

i=1

Ti = ‖ph‖2
0 −

3∑

i=1

Ti (3.4)

with termsTi given below. Standard inequalities and integration by parts imply

T1 = (ν∇uh,∇vh)Ω + (σuh, vh)Ω + ((b · ∇)uh, vh)Ω

≤
(

ν
1
2∞ + (σCP )

1
2 +

CP b∞
√

ν0 + σC2
P

)(

‖ν 1
2∇uh‖2

0 + ‖
√

σuh‖2
0

) 1
2 |vh|1

≤
(

ν
1
2∞ + (σCP )

1
2 +

CP b∞
√

ν0 + σC2
P

)

CA|[Uh]| ‖ph‖0
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whereCP stems from the Poincaré inequality‖vh‖0 ≤ C
1
2

P |vh|1. Lemma 2.1 gives

T2 = Sh(Uh, (vh, 0)) ≤ Sh(Uh, Uh)
1
2 Sh((vh, 0), (vh, 0))

1
2

≤
√

CS |[Uh]| |vh|1 ≤
√

CSCA |[Uh]| ‖ph‖0.

Integration by parts (for continuous discrete pressure space) and Lemma 2.2 yield

T3 = |(∇ · (vh − v), ph)Ω| = |(vh − v,∇ph)Ω| = |(vh − v, κu
h∇ph)Ω|

≤
(
∑

M

C2
κh2

M

k2
uαM

|v|21,M

) 1
2

|[Uh]| ≤ 1

β
max

M

CκhM

ku
√

αM
|[Uh]| ‖ph‖0.

Furthermore, there holds(−f , vh)Ω ≤ ‖f‖−1|vh|1 with the norm‖ · ‖−1 in [H−1(Ω)]d. Using all these
estimates, we obtain from (3.4)

‖ph‖0 ≤
(

CA

[√
ν∞ +

√

CP σ +
CP b∞

√

ν0 + σC2
P

+
√

CS

]

+ CT

)

|[Uh]| + CA||f ||−1. (3.5)

with CT := 1
β maxM

CκhM

ku
√

αM
. This concludes the proof. �

3.2. Approximate Galerkin orthogonality. In LPS methods the Galerkin orthogonality is not ful-
filled and a careful analysis of the consistency error has to be done.

LEMMA 3.3. Let U ∈ V × Q and Uh ∈ V h,ku
× Qh,kp

be the solutions of (2.1) and of (2.5),
respectively. Then, there holds

(A + Sh)(U − Uh, Vh) = Sh(U, Vh), ∀Vh ∈ V h,ku
× Qh,kp

. (3.6)

Proof. The assertion (3.6) follows by subtracting (2.5) from (2.1). �

Now the consistency error can be estimated with the help of Lemma 2.1.
LEMMA 3.4. Let Assumption 2 be fulfilled and(u, p) ∈ V × Q with (b · ∇)u ∈ (H lu+1(M))d,

∇ · u = 0, p ∈ H lp+1(M) for all M ∈ Mh. Then, we obtain for0 ≤ lu, lp ≤ ku

|Sh(U, Vh)| .
( ∑

M∈Mh

τM
h2lu

M

k2lu
u

|(b · ∇)u|2lu,M + αM
h

2lp
M

k
2lp
p

|p|2lp+1,M

) 1
2 |[Vh]|. (3.7)

Proof. Lemma 2.1 yields

Sh(U, Vh) ≤ Sh(U, U)
1
2 Sh(Vh, Vh)

1
2 ≤ Sh(U, U)

1
2 |[Vh]|.

Assumption 2 and∇ · u = 0 imply

Sh(U, U) .
∑

M∈Mh

τM
h2lu

M

k2lu
u

|(b · ∇)u|2lu,M + αM
h

2lp
M

k
2lp
p

|p|2lp+1,M .

Now the assertion follows from these estimates. �



Local projection stabilization for incompressible flow 7

3.3. A priori error estimate. The a priori estimate can be proven using the standard technique of
combining the stability and the consistency results of the last subsections.

THEOREM 3.5. Let U = (u, p) ∈ V × Q be the continuous solution of (2.1) andUh = (uh, ph) ∈
V h,ku

× Qh,kp
the discrete solution of (2.5). We assume that the solutionU = (u, p) ∈ V × Q is

sufficiently regular, i.e.p ∈ H lp+1(Ω), u ∈ [H lu+1(Ω)]d and (b · ∇)u ∈ [H lu(Ω)]d. Furthermore, let
the Assumptions 2 and 3 for the coarse velocity spaceDu

h be satisfied. For the spaceDp
h we assume that

(2.16) is satisfied. Then, there holds for1 ≤ lu ≤ ku and1 ≤ lp ≤ min{kp, ku}

|[U − Uh]|2 .
∑

M∈Mh

(

τM
h2lu

M

k2lu
u

‖(b · ∇)u‖2
lu,ωM

(3.8)

+
(

1 +
1

βu

)2 h2lu
M

k2lu−2
u

Cu
M‖u‖2

lu+1,ωM
+
(

1 +
1

βp

)2 h
2lp
M

k
2lp−2
p

Cp
M‖p‖2

lp+1,ωM

)

with

Cu
M := ‖ν‖L∞(M) +

h2
M

k4
u

(σ +
1

τM
+

1

αM
) + µM + ‖b‖2

(L∞(M))dτM

Cp
M := αM +

1

µM

h2
M

k4
p

.

Proof. The error is split into two parts

U − Uh = (u − uh, p − ph) = (u − ju
hu, p − jp

hp) + (ju
hu − uh, jp

hp − ph).

We start with the approximation error(u − ju
hu, p − jp

hp). Lemma 2.2 (i) and Lemma 2.3 yield

|[(u − ju
hu, p − jp

hp)]| .
(

1 +
1

βp

)( ∑

M∈Mh

h
2lp
M

k
2lp−2
p

αM‖p‖2
lp+1,ωM

) 1
2

(3.9)

+
(

1 +
1

βu

)( ∑

M∈Mh

[

‖ν‖L∞(M) + σ
h2

M

k4
u

+ µM + τM‖b‖2
(L∞(M))d

] h2lu
M

k2lu−2
u

‖u‖2
lu+1,ωM

) 1
2

.

Now we estimate the remaining partWh := (wh, rh) = (ju
hu − uh, jp

hp − ph) via Lemma 3.1

|[(ju
hu − uh, jp

hp − ph)]| =
(A + Sh)((ju

hu − uh, jp
hp − ph), Wh)

|[Wh]|

=
(A + Sh)((u − uh, p − ph), Wh)

|[Wh]|
︸ ︷︷ ︸

:=I

+
(A + Sh)((ju

hu − u, jp
hp − p), Wh)

|[Wh]|
︸ ︷︷ ︸

=:II

.

Applying Lemmata 3.3 and 3.4, the first term is bounded by

I =
Sh((u, p), Wh)

|[Wh]| .
∑

M∈Mh

(

τM
h2lu

M

k2lu
u

‖(b · ∇)u‖2
lu,M + αM

h
2lp
M

k
2lp
p

‖p‖2
lp+1,M

) 1
2

.

Now we consider the terms ofII separately. Integration by parts and property (2.14) yield

(ν∇(ju
hu − u),∇wh)Ω + (σ(ju

hu − u), wh)Ω + ((b · ∇)(ju
hu − u), wh)Ω

= (ν∇(ju
hu − u),∇wh)Ω + (σ(ju

hu − u), wh)Ω − (κu
h((b · ∇)wh), ju

hu − u)Ω

.
(

1 +
1

βu

)( ∑

M∈Mh

h2lu
M

k2lu−2
u

[

‖ν‖L∞(M) +
(
σ +

1

τM

)h2
M

k4
u

]

‖u‖2
lu+1,ωM

) 1
2 |[Wh]|.
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The orthogonality property (2.14) results in

|(p − jp
hp,∇ · wh)Ω| = |(p − jp

hp, κp
h∇ · wh)Ω|

.
(

1 +
1

βp

)( ∑

M∈Mh

h
2lp+2
M

k
2lp+2
p

µ−1
M ‖p‖2

lp+1,ωM

) 1
2 |[Wh]|, .

Integration by parts (thanks to continuous discrete pressure) and (2.14) lead to

|(rh,∇ · (ju
hu − u))Ω| ≤ |(∇rh, ju

hu − u)Ω| = |κu
h(∇rh), ju

hu − u)Ω| (3.10)

.
(

1 +
1

βu

)( ∑

M∈Mh

1

αM

h2lu+2
M

k2lu+2
u

‖u‖2
lu+1,ωM

) 1
2 |[Wh]|.

The estimation of the stabilization term is straightforward

|Sh((ju
hu − u, jp

hp − p), Wh)

≤ (Sh((ju
hu − u, jp

hp − p), (ju
hu − u, jp

hp − p))
1
2 (Sh(Wh, Wh))

1
2

.
(

1 +
1

βu

)( ∑

M∈Mh

h2lu
M

k2lu−2
u

[

τM‖b‖2
(L∞(M))d + µM

]

‖u‖2
lu+1,ωM

) 1
2 |[Wh]|

+
(

1 +
1

βp

)( ∑

M∈Mh

αM
h

2lp
M

k
2lp−2
p

‖p‖2
lp+1,ωM

) 1
2 |[Wh]|.

Adding up all inequalities for the estimate of|[Wh]|2 = I + II together with the estimate of (3.9) gives
the assertion. �

CORROLARY 3.1. Under the assumptions of Theorem 3.5 and the notation of Lemma 3.2 we obtain

‖p− ph‖0 . γ
(√

ν∞ +
√

CP σ + min
( CP√

ν0
;

1√
σ

)
b∞ +

√
CS

β
+ CT

)

|[U − Uh]| (3.11)

with constantsγ, CS , CT andβ as in Lemma 3.2.
Proof. The proof mimics the proof of Lemma 3.2. In equation (3.4), one has to replaceUh = (uh, ph)

by U − Uh = (u − uh, p − ph) and(f, vh)Ω by Sh(U − Uh, (ju
hv, 0)). �

3.4. Parameter design.Now we will calibrate the stabilization parametersαM , τM andµM with
respect to the local mesh sizehM , the polynomial degreesku andkp of the discrete ansatz functions and
problem data. The parameters are determined by minimizing and balancing the terms of the right hand side
of the general a priori error estimation.

First, equilibrating theτM -dependent terms inCu
M yields

τM ∼ hM

‖b‖(L∞(M))dk2
u

. (3.12)

Similarly, equilibration of the terms inCu
M andCp

M involving µM andαM yields

µM ∼ h
lp−lu+1
M

klp−lu+2
, αM ∼ h

lu−lp+1
M

klu−lp+2
(3.13)

where we usedk ∼ ku ∼ kp. For the following result, we assume that the solution(u, p) of the continuous
Oseen problem is sufficiently smooth.
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CORROLARY 3.2. For equal-order interpolationk = ku = kp ≥ 1, let l = lu = lp ≤ k and

µM =
µ0hM

k2
, αM =

α0hM

k2
, τM =

τ0hM

‖b‖(L∞(M))dk2
. (3.14)

Then we obtain under the assumptions of Theorem 3.5

|[U − Uh]|2 .
∑

M∈M

((

1 +
1

βp

)2 h2l+1
M

k2l
‖p‖2

l+1,ωM
+

h2l+1
M

k2l+2
‖( b

‖b‖(L∞(M))d

· ∇)u‖2
l,ωM

+
(

1 +
1

βu

)2
[

‖ν‖L∞(M) + σ
h2

M

k4
+ ‖b‖(L∞(M))d

hM

k2

]
h2l

M

k2l−2
‖u‖2

l+1,ωM

)

.

For inf-sup stable interpolation withku = kp + 1, we assumelu = lp + 1 = ku and set

αM =
α0h

2
M

k3
u

, µM =
µ0

ku
, τM =

τ0hM

‖b‖(L∞(M))dk2
u

. (3.15)

Then we obtain under the assumptions of Theorem 3.5

||[U − Uh]|2 .
∑

M∈M

((

1 +
1

βp

)2 h2lu
M

k2lu+1
u

‖p‖2
lu,ωM

+
h2lu+1

M

k2lu+2
u

‖( b

‖b‖(L∞(M))d
· ∇)u‖2

l,ωM

+
(

1 +
1

βu

)2
[

‖ν‖L∞(M) + σ
h2

M

k4
u

+ ‖b‖(L∞(M))d

hM

k2
u

+
1

ku

]
h2lu

M

k2lu−2
u

‖u‖2
l+1,ωM

)

.

This result requires some further discussion:
• For equal-order pairsVh,k × Qh,k and for (inf-sup stable) Taylor-Hood pairsVh,k+1 × Qh,k,

respectively, we obtain the optimal convergence ratesO(h
k+ 1

2

M ) and O(hk+1
M ), respectively, with

respect tohM .
• Due to the non-optimal convergence order of the interpolation operatorsju

h, jp
h in the | · |1-norm,

these estimates are presumably not optimal with respect to polynomial degreeku. Let us assume
that in Lemma 2.2 there holds

hM

ku
|v − ju

hv|1,M .

(

1 +
1

βu

)
hl

M

kl
‖v‖l,ωM

(3.16)

and a similar result in Lemma 2.3 too. A careful check of the proofs leads to

µM = µ0
hM

k
, αM = α0

hM

k
, τM = τ0

hM

‖b‖(L∞(Ω))dku
(3.17)

for equal-order pairs withk = ku = kp and

αM = α0
h2

M

k2
u

, µM = µ0 ∼ 1, τM = τ0
hM

‖b‖(L∞(Ω))dku
(3.18)

for inf-sup stable pairs withku = kp + 1. Then the a-priori estimate (3.8) in Theorem 3.5 would
be optimal with respect toku andkp too with the possible exception of the factors depending on
βu andβp. The latter reason eventually leads to a non-optimal parameter design w.r.t.ku.

• The formulas for the stabilization parameters and the errorestimates are only asymptotic state-
ments. To our best knowledge, there is so far no general concept for a more precise design of the
stabilization parameters (with the possible exception of one-dimensional problems with constant
coefficients). Unfortunately, this leaves the practitioner with the problem of choosingτ0, ν0, α0.
Table 4.1 below might give an impression on suitable values in our experiments for an academic
problem.
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REMARK 6. The SUPG parameterτM in residual-based stabilization methods has the typical design

τM ∼ min
(

hM

‖b‖
(L∞(M))d)

ku
; 1

σ ;
h2

M

k2
uν

)

, see [20]. This can be rewritten asτM ∼ min
(

h2
M

νk2
u

min
(
1; 1

ReM

)
; 1

σ

)

with the local Reynolds numberReM =
hM‖b‖

[L∞(M)]d)

kuν .
This means that the design of the SUPG-like parameterτM in (3.17)-(3.18) is strongly simplified for

the LPS method thanks to the symmetric stabilization termSh. This choice will not cause problems for
locally vanishingb as the corresponding stabilization term is

∑

M τM (κu
h((b · ∇)uh, κu

h((b · ∇)vh))M .
Clearly, a proper implementation is required.

In the Stokes limitb = 0, the SUPG-type stabilization term given above does not occur, henceτM = 0.
The other terms scaling withαM andµM may appear, although the PSPG-type term can be omitted for
inf-sup stable elements. As a consequence, no suboptimality occurs in the analysis for the Stokes limit.

REMARK 7. The corresponding result for the LPS scheme with local projection of the full velocity
gradient, see Remark 3, leads to the designδM ∼ hM/k2

u (or δM ∼ hM/ku). Please note that the error
estimates deteriorate if the local projection of the divergence terms is omitted. Then, the critical term in
the proof of Theorem 3.5 is|(p − jp

hp,∇ · wh)Ω|.

3.5. Choice of the discrete spaces.The paper [21] presents different variants for the choice ofthe
discrete spacesVh,ku

×Qh,kp
andDu

h ×Dp
h using simplicial and hexahedral elements. There are basically

two variants:
• a two-level variant with a suitable refinementTh of Mh (formally denoted byMh = T2h) and
• a one-level variant withMh = Th, hencehM = hK , with a proper enrichment ofPku,Th

by using
bubble functions.

In the numerical results below, we restrict ourselves to thetwo-level approach, but the theory also covers
the one-level approach. Please note that the present analysis covers only the case of continuous pressure
approximation. For an extension to discontinuous discretepressure approximation, in particular to the case
of Qk/P−(k−1)-elements, we refer to [23].

The discontinuous coarse spaces are defined on the coarser meshMh with polynomials of one degree
less. Thus, for hexahedral elements the coarse spaces are given by

Du
h = Qku−1,Mh

Dp
h = Qkp−1,Mh

.

For simplicial elements we obtain

Du
h = Pku−1,Mh

Dp
h = Pkp−1,Mh

.

Obviously, Assumption 2 is valid for our discrete spaces if the localL2-projectionπu
M : L2(M) → Du

h(M)
for the velocity and similarly for the pressure is applied, see [21]. Moreover, for these choices the constants
βu/p in Assumption 3 and in (2.16) scale likeO(1/

√
ku/p) for simplicial elements and likeO(1) for

quadrilateral elements in the affine linear case, see [23].

4. Numerical Results.

4.1. Oseen problem.A proper calibration of the stabilization parameters requires careful numerical
experiments going beyond the scope of this paper. Some papers validate the parameter design and the
theoretical convergence rates for the Oseen problem

LOs(u, p) := −ν△u + (b · ∇)u + σu + ∇p = f in Ω (4.1)

∇ · u = 0 in Ω

in Ω = (0, 1)2 with the smooth solution

u(x1, x2) =
(
sin(πx1),−πx2 cos(πx1)

)
, p(x1, x2) = sin(πx1) cos(πx2)

and datab = u. The source termf and the Dirichlet data follow fromu.
So we refer to a study in [25] of the one-level variant for equal-order pairs with enrichment of the

velocity space by using bubble functions. The two-level variant with inf-sup stable pairs can be found in
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[19] for equal-order and for inf-sup stable pairs. For the latter case, see also [23]. In all these cases, the
localL2-projection is used for the definition of the fluctuation operatorsκu/p

h .
As an example, some typical results are presented for the two-level variant withQ2/Q1 and theQ2/Q2

pairs on unstructured, quasi-uniform meshes. More precisely, the coarse spacesDu
h is constructed as

discussed in Subsection 2.2. Moreover we setDp
h = {0} which results in full grad-div-stab stabilization,

i.e. κp
h = id. The results in Table 4.1 with the errorseu = u − uh andep = p − ph for the advection-

Table 4.1: Two-level LPS scheme: Comparison of different variants of stabilization for problem (4.1) with
Q2/Q1 andQ2/Q2 pairs andν = 10−6, σ = 1, h = 1

64

Pair τ0 µ0 α0 |eu|1 ‖eu‖0 ‖∇ · uh‖0 ‖ep‖0

0.000 0.000 0.000 2.56E-1 5.42E-4 2.02E-1 2.31E-4
0.056 0.562 0.010 1.91E-3 6.21E-6 1.82E-4 9.08E-5

Q2/Q1 0.056 0.562 0.000 1.91E-3 6.20E-6 1.66E-4 8.06E-5
0.000 0.562 0.000 2.61E-3 7.42E-6 1.72E-4 8.05E-5
3.162 0.000 0.000 1.87E-2 7.50E-5 1.56E-2 1.08E-4
0.000 0.000 0.000 2.38E+1 5.35E-2 1.45E+1 1.66E+3
0.000 0.000 0.018 1.65E-2 3.48E-5 9.37E-3 6.96E-6

Q2/Q2 0.056 1.000 0.018 9.30E-4 2.85E-6 2.14E-4 4.31E-6
0.056 0.000 0.018 1.77E-3 4.18E-6 1.46E-3 3.25E-6
0.000 5.623 0.018 3.26E-3 7.20E-6 2.00E-4 7.56E-6

dominated caseν = 10−6 show comparable results for the best variants ofQ2/Q1 andQ2/Q2, although
the results forQ2/Q2 are slightly better due to the better pressure approximation.

Nevertheless, the importance of the stabilization terms isdifferent. The small-scale SUPG- and PSPG-
type terms are necessary for the equal-order case but not forthe inf-sup stable pair. At least the PSPG-type
term can be omitted for the inf-sup stable case. On the other hand, the divergence-stabilization gives clear
improvement for the inf-sup stable case and some improvement for the equal-order case. Let us remark that
the divergence stabilization without local projection hasbetter algebraic properties than its LPS variant.

In Figure 4.1, convergence plots are shown for the two-levelLPS scheme with optimized parameters
in the diffusion- and advection-dominated cases withν = 1 andν = 10−6, respectively. The numerical
convergence rates confirm the theoretical results. Interestingly, no gain of the better pressure approximation
for theQ2/Q2 pair can be observed in the diffusion-dominated case.

Let us finally check the effect of increasing polynomial degree for inf-sup stable Taylor-Hood pairs
Qr/Qr−1 with r ∈ {2, 3, 4, 5}. This is shown in Figure 4.2 forν = 10−6, σ = 1 and different values of
h. Similar results are obtained (but non shown) for equal-order approximation withQr/Qr-elements with
r ∈ {1, 2, 3, 4, 5}.

4.2. Navier-Stokes problem.Finally, we apply the LPS stabilization to the lid-driven cavity flow as a
standard Navier-Stokes benchmark problem (4.1) withb = u, σ = 0 andf = 0. Homogeneous Dirichlet
data are prescribed with the exception of the upper part of the boundary whereu = (1, 0)T is given. An
unstructured quasi-uniform mesh is used together with the Taylor-Hood pairQ2/Q1 and the equal-order
Q2/Q2 pair using the two-level variant of LPS stabilization with scaling parameterτ0 andµ0 according to
our theory andα0 = 0. In particular, the casesτ0 = µ0 = 0 correspond to no stabilization.

In Figure 4.3, we present typical solution profiles of the velocity for the case ofRe = 5, 000. The
results forh = 1

64 for both variants are in excellent agreement with the reference data by [11] where
the streamfunction/ vorticity formulation of the Navier-Stokes problem on very fine meshes with up to
601 × 601 nodes is used. In particular, the boundary layers are well resolved even on this quasi-uniform
mesh. Moreover, the solution for a coarse grid withh = 1

16 is in good agreement with the data in [11] away
from the boundary layers. The results confirm the previous remarks for the linearized problem of Oseen
type. For theQ2/Q1 element, only the divergence stabilization is necessary whereas for theQ2/Q2 pair
all stabilization terms are important.

Then, we compare in Table 4.2 the positions and values of extrema of the velocity profiles for different
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Fig. 4.1:h-convergence for the Oseen problem withν = 1 (left) andν = 10−6 (right) with σ = 1
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Fig. 4.2: Polynomial convergence for the Oseen problem withν = 10−6, σ = 1 for fixedh

values ofRe. The results for the two-level LPS scheme with theQ2/Q1 pair on the fine mesh with
h ≈ 1/256 are in good agreement with the results in [3, 27]. Moreover, the LPS results on the coarser grid
with h ≈ 1/32 are in good agreement with the caseh ≈ 1/256. This is verified inh-convergence studies
in [19].

Finally, we compare in Table 4.3 the position(xc, yc) of the main vortex and the values of the stream-
functionΨmine and of the vorticityωc in the(xc, yc). for two values ofRe. The results for the two-level
LPS scheme with theQ2/Q1 pair on the fine mesh withh ≈ 1/256 are in very good agreement with the
results in [11, 3],but slightly different from the results in [27]. Studies ofh-convergence can be found in
[19].

5. Summary. A unified a-priori analysis of stabilized methods via local projection (LPS) is given
for equal-order and inf-sup stable velocity-pressure pairs on isotropic meshes. The error estimates are
comparable to classical residual-based stabilized (RBS) methods. This shows that only the stabilization of
the fine scales is necessary. Compared to the RBS methods, thedesign of the stabilization parameters is
much simpler for LPS schemes as the strong coupling of velocity and pressure in the stabilization terms
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Fig. 4.3: Lid driven-cavity problem withRe = 5, 000: Cross-sections of the discrete solutions forQ2/Q1

pair with τ0 = α0 = 0 andµ0 = 0.562 andQ2/Q2 pair with τ0 = 0.056, α0 = 0.018, µ0 = 1

Table 4.2: Lid driven-cavity problem for different values of Re: Maxima and minima on cross-sections
x = 0.5 andy = 0.5; a) LPSQ2Q1, h ≈ 1/32, b) LPSQ2Q1, h ≈ 1/256, c) [12]
h = 1/256, d) [27] h = 1/256, e) [3] spectral method withN = 1/160

Re umin ymin vmax xmax vmin xmin

100 a) −0.21399 0.45703 0.17951 0.23828 −0.25376 0.80859
b) −0.21404 0.45703 0.17957 0.23828 −0.25378 0.80859
d) −0.21411 0.45898 0.17946 0.23633 −0.25391 0.81055
e) −0.21404 0.4581 0.17957 0.2370 −0.25380 0.8104

1000 a) −0.38512 0.17578 0.37404 0.16016 −0.52295 0.90625
b) −0.38857 0.17188 0.37692 0.15625 −0.52701 0.91016
d) −0.39009 0.16992 0.37847 0.15820 −0.52839 0.90820
e) −0.38857 0.1717 0.37695 0.1578 −0.52708 0.9092

7500 a) −0.43940 0.07031 0.43749 0.07813 −0.56560 0.96484
b) −0.45478 0.06250 0.45836 0.06641 −0.58043 0.96484
c) −0.43590 0.0625 0.44030 0.0703 −0.55216 0.9609
d) −0.46413 0.06445 0.47129 0.06836 −0.58878 0.96289

does not occur.
Numerical results from the literature and our own experiments confirm both, the design of the sta-

bilization terms and the theoretical convergence rates. A major difference between equal-order pairs and
inf-sup stable pairs is that LPS-stabilization is always necessary for equal-order pairs. For inf-sup stable
pairs, the necessity of stabilization is seemingly much less pronounced as for equal-order pairs. In partic-
ular, the grad-div stabilization is much more important than the fine-scale SUPG stabilization. Moreover,
the fine-scale PSPG part seems to be superfluous.
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Appendix. LEMMA 5.1. Let Assumption 3 be satisfied. Then there are interpolation operatorsju
h :

H1
0 (Ω) → Yh andju

h : V → V h,ku
such that

(v − ju
hv, qh)Ω = 0 ∀qh ∈ Du

h , ∀v ∈ H1
0 (Ω) (5.1)

‖v − ju
hv‖0,M +

hM

k2
u

|v − ju
hv|1,M .

(

1 +
1

βu

)
hl

M

kl
u

‖v‖l,ωM
(5.2)

for all v ∈ H l(Ω) ∩ H1
0 (Ω) and

(v − ju
hv, qh)Ω = 0 ∀qh ∈ [Du

h ]d, ∀v ∈ V , (5.3)

‖v − ju
hv‖0,M +

hM

k2
u

|v − ju
hv|1,M .

(

1 +
1

βu

)
hl

M

kl
u

‖v‖l,ωM
, (5.4)

for all v ∈ [H l(Ω)]d ∩ V , for all M ∈ Mh and1 ≤ l ≤ ku + 1. ωM :=
⋃

T⊂M ωT is a neighborhood of
M ∈ Mh.

Proof. We follow the lines of the proof of [21], Th. 2.2, but we take into account the dependency of
the constants on the polynomial order and the inf-sup constant βu.

Define the linear continuous operatorBh : Yh(M) → Du
h(M)′ by

〈Bhvh, qh〉 := (vh, qh)M , ∀vh ∈ Yh(M), qh ∈ Du
h(M).

The Closed-Range Theorem yields via Assumption 3 thatBh is an isomorphism fromWh(M)⊥ onto
Du

h(M)′ with βu‖vh‖0,M ≤ ‖Bhvh‖Du
h
(M)′ , vh ∈ Wh(M)⊥. Wh(M)⊥ is the orthogonal complement of

Wh(M) := Ker(Bh) with respect to(·, ·)M .
Let M ∈ Mh andv ∈ H1

0 (Ω) be arbitrary. Then, there exists a uniquezh(v, M) ∈ Wh(M)⊥ with
‖zh(v, M)‖ ≤ 1

β u
‖v − Ih,ku

v‖0,M such that

〈Bhzh(v, M), qh〉 = (zh(v), qh)M = (v − Ih,ku
v, qh)M , ∀qh ∈ Du

h(M). (5.5)

Now, we define local operatorsju
h,M : H1

0 (Ω) → Yh(M), M ∈ Mh, byju
h,Mv := (Iu

h,ku
v)|M +zh(v, M).

SinceMh is a partition ofΩ, we can define a global operatorju
h : H1

0 (Ω) → Yh by (ju
hv)|M := ju

h,Mv.
Due to (2.3) the operatorju

h satisfies for1 ≤ l ≤ ku + 1 and allT ∈ Th, v ∈ H1
0 (Ω) ∩ H l(Ω)

‖v − ju
hv‖2

0,M ≤
(

1 +
1

βu

)2

‖v − Iu
h,ku

v‖2
0,M ≤ C

(

1 +
1

βu

)2 ∑

T⊂M

T∈Th

h2l
T

k)2l
u

‖v‖2
l,ωT

. (5.6)

The approximation property in theH1-seminorm follows from inequality (2.2)

|zh(v, M)|21,M ≤
∑

T⊂M

T∈Th

µinvk2
uh−1

T ‖zh(v, M)‖2
0,T ≤ µ2

inv

βu

∑

T⊂M

T∈Th

k4
uh−2

T ‖v − Iu
h,ku

v‖2
0,T

and using the approximation property (2.3)

|v − ju
hv|21,M = |v − Iu

h,ku
v − zh(v, M)|21,M ≤ 2|v − Iu

h,ku
v|21,M + 2|zh(v, M)|21,M

.

(
1

ku
+

µinv

β2
u

)
hl−1

M

kl−2
u

|v|l,ωM
.

Finally, the orthogonality property (5.1) is a consequenceof (5.5). �
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2007-28 G. Lube, G. Rapin, J. Löwe Local projection stabilization for incompressible
flows: Equal-order vs. inf-sup stable interpolati-
on


