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LOCAL PROJECTION STABILIZATION FOR INCOMPRESSIBLE FLOWS: EQUAL-ORDER
VS. INF-SUP STABLE INTERPOLATION
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Abstract. A standard approach to the non-stationary, incompreshbiblger-Stokes model is to split the problem into linearized
auxiliary problems of Oseen type. In this paper, we presentified numerical analysis for finite element discretizagiaising the
local projection stabilization method with either equadier or inf-sup stable velocity-pressure pairs in the césemtinuous pressure
approximation. Moreover, a critical comparison of bothiamats is given.
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1. Introduction. Consider the non-stationary incompressible Navier-Stokedel

du—vhu+ (u-Viu+Vp=f inQ x (0,7)
V-u=0 inQx (0,7)

for velocity u and pressure in a bounded domaif2 ¢ R?, d = 2,3. A usual approach is to semi-
discretize in time first with ami-stable implicit scheme [17]. In each time step, the resglroblems can
be solved via fixed-point or Newton-type scheme [17, 22]sTéads to auxiliary problems of Oseen type

Los(u,p) = —vAu+ (b-VIu+ou+Vp=f in Q (1.1)
V-u=0 in Q (1.2)

with a new right hand sid¢ € [L2(Q)]¢, with coefficientsh € [H*(Q) N L>(Q2)]¢ ando > 0 (stemming
from time discretization).

The Galerkin approximation of (1.1), (1.2) may suffer fromotproblems: violation of the discrete
inf-sup (or Babuska-Brezzi) stability condition and doting advection, i.er < [|bl/jL~qye. The
traditional way to cope with both problems in a common frameuws the combination of the streamline-
upwind/Petrov-Galerkin method (SUPG) [7] and the presstabilization/Petrov-Galerkin method (PSPG)
[18]. An overview about residual stabilized methods candasél in [24, 5]. More recent results fap
finite elements are proven in [20].

This class of residual based stabilization techniquesilisgsite popular, since they are robust and
easy to implement. Nevertheless, they have severe drawhdikh mainly stem from the strong coupling
between velocity and pressure in the stabilization ternps [Eherefore, other stabilization techniques
have appeared recently, in particular the edge-stahdizatethod [8, 5] and variational multiscale (VMS)
methods [15, 16, 13, 9]. We emphasize that almost all sraidin methods can be interpreted as special
VMS methods. The key idea of VMS methods is a separation déscdarge scales, small scales and
unresolved scales. The influence of the unresolved scalgsemther scales has to be modeled. Mostly, it
is assumed that the unresolved scales do not influence tedaales.

Currently, there are two variants to apply VMS methods tofttieNavier-Stokes model. In most of
the papers, an equal-order interpolation of velocity-pues is applied, e.g., in [2, 9]. Besides the rather
simple implementation into existing codes, a formal redas@ppearantly that in the Euler limit— 0 no
second-order derivatives occur. Other authors preferetisénf-sup stable velocity-pressure pairs [16] as
this is the "natural” choice from regularity point of viewrfixed v > 0. A comparison of both approaches
is still missing.

Local projection stabilization (LPS) as special VMS-typethods are of current interest [4, 21]. Here
the influence of the unresolved scales on the small scalesdeled by additional artificial diffusion terms
for the small scales. In particular, the sub-grid viscositydel [14] can be interpreted as a special LPS
method. In Section 3 of this paper, we present a unified thelrfS methods for equal-order and inf-sup
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stable pairs in the case of continuous pressure approximdti Section 4, a comparison of both variants
is given with respect to theory and simple numerical experits.

Throughout this paper, the standard notatjon| : for the norm in the Sobolev spacég’(G) =
Wk2(@),G C Qare used. Thé&?-inner productin a domai@ is denoted by, -). The norm inL>(G)
is denoted byf| - ||~ (¢). ForG = Q the index is eventually omitted.

2. Variational Formulation and Stabilization. Here, the basic Galerkin finite element formulation
and its stabilized variants via local projection (LPS) artedduced. Moreover, different technical tools are
given.

2.1. Basic Galerkin Approximation. The basic variational formulation for the Oseen problert) 1.
(1.2) with homogeneous Dirichlet data reads: Fihe: (u,p) € V x Q := [H} ()] x L2(2), such that

wVu,Vou)g + (b-V)u+ou,v)g— (p,V-v)a+ (¢, V-u)g = (Ff,v)a (2.1)
——
=A(U,V) =:L(V)

forall V = (v,q) € V x Q.

AssSUMPTIONL. LetQ C R4 d € {2,3} be a bounded, polyhedral domain. Moreover, assume that
ve L®(Q)withy > 0in €, f € [L2(Q)]4, b € [L=(Q) N H(Q)]¢ with V-b = 0 a.e. inQ and constant
o> 0.

REMARK 1. Usually, b is a finite element solution of the Oseen equations. Espgdredre holds
(V - b,qn) = 0 for certain test functiong,,. Therefore,V - b is small but does not vanish in general.
A remedy for iterative methods within a Navier-Stokes satir is to replace((b - V)u, v)q by 2 ((b -
Viu,v)a — 3((b- V)v,u)g — (V- b)u,v)q.

REMARK 2. Is is possible to extend the analysis in this paper to a sibmatesulting from Newton
iteration including the term{u - V)b. Assuming a small time step, resulting in a sufficiently darg>
2[IVb| (10 (2))axa, €NSUres coercivity of the Oseen operator sifea, u)o + ((u - V)b,u)o > (0 —
19]] (1 ayyaxa) [all3 > Lollull3.

Consider a shape-regular, admissible decomposfioof €2 into d-dimensional simplices, quadrilat-
erals in the two-dimensional case or hexahedra for threemsions.h is the diameter of a cell’ € 7,
andh is the maximum of alhy, T € 7;,. LetT be a reference element of the decomposifign

Set

Pi1, = {vn € L*(Q) | vp|r o Fr € Pu(T) , T € Tp,}
with the spacé”k(T) of complete polynomials of degréedefined oril” and
Qk7, :={vn € L*(Q) | valr o Fr € Qu(T) , T € Tp,}

with the spac@k(T) of all polynomials ori” with maximal degreé in each coordinate direction. The
finite element space of the velocity is given ¥y, ., = [Qk,.7,]* NV or Vi, 1, = [Pr,.7,]* NV with
scalar components;, 5, of Vi, 1. .

For simplicity, we restrict the analysis to continuous dése pressure spaces, i, = QkP,Th nc(Q)

or Qn,k, = Pr, 7, N C(£2). For an extension to discontinuous pressure spaces, waog&s].
The subsequent numerical analysis takes advantage ofis@inequalities

Jpine | Wl < pinokihz ollor, VT € Th, Yo € Vi, (2.2)
and of the interpolation properties of the finite elementspé;, ., . For the Scott-Zhang quasi-interpolant
operatorl} , [26, 1], one obtains fov € Hy(Q2) N H' (), t > 1 with v|,, € H"(wr), r > t, on the
patchesor := Ugrzzp T

l—m

h
I < C—L— 0]y or, 0<m <I1=min(k, +1,r). (2.3)

krfm
u

IC>0] |v—1Iy,v

This property can be extended to the vector-valued caseMjith : V' — V. Similarly, an interpolation
operatorl,ﬁ”kp satisfying (2.3) can be defined for the pressure.
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2.2. Local Projection Stabilization (LPS). The idea of LPS-methods is to split the discrete function
spaces into small and large scales and to add stabilizatiorstof diffusion-type acting only on the small
scales. Consider two obvious choices of the large scaleespac

(i) Thefirstvariant[4, 6, 21] is to determine the large ssaléth the help of a coarse mesh. The coarse
meshM,;, = {M;};c; is constructed by coarsening the basic m&stsuch that each macro element
M € M; with diameterhy, is the union of one or more neighboring cellse 7,. Assume that the
decompositionM,, of €2 is non-overlapping and shape-regular. Moreover, theioteells are supposed
to be of the same size as the macro cell:

AC >0| hy <Chp, VT €Ty, M € My withT C M. (2.4)

Following the approach in [21] we define the discrete spagefor the velocity as a discontinuous finite
element space defined on the macro partifidp. The restriction on a macro-elemevit € M, is denoted
byD%(]\/f) = {Uh|M | vV € DZ}

The next ingredient is a local projectiaty, : L?(M) — D¥(M) which defines the global projection
s L2(Q)) — D by (7iv)| v := 7, (v]ar) for all M € M,,. Denoting the identity orL?(2) by id,
the associated fluctuation operatdr : L*(Q2) — L?*(Q) is defined byx¥ := id — 7. These operators
are applied to vector-valued functions in a component-wisaner. This is indicated by boldface notation,
e.g.w : [L2(Q))? — [D¥4 andkl : [L2(0)]? — [L2(Q)]4.

(if) The second choice [10, 21] consists in choosing a finkkenent discretizatio®}* of lower order
on the original mesH;, or by enriching the spacég,, ., andQy x,. The same abstract framework as in
the first approach can be used by settivig, = 7},.

Analogously a discrete spad#, and a fluctuation operataf, can be defined. The stabilized discrete
formulation reads: find/;, = (un,pr) € Vi, X Qn,k, sSuch that

A(Un, Vi) + Su(Un, Vi) = L(Vp), VWi = (Vn,qn) € Vi, X Qhk,, (2.5)

where the additional stabilization term is given by

S Un Vi)=Y |7k (b~ Vyun) .k (b~ V)or) Jas
MeMy,

+pnr (55, (V-un) k5 (V- vn)) v+ anr (K5 (Vpn), 65 (Van)) o } (2.6)
REMARK 3. Another variant is to replace the first right hand side ternbgf-, -) with

> dm(kk (Vun) , &5 (Vo))
MeMy,

see the corresponding result in Remark 7.

The constants,,, ua, aar andoy, will be determined later on based on an a priori estimateadele
notice that the stabilizatiof, (-, -) acts solely on the small scales. Of course, there is somedegree of
freedom in the choice of},, see also [21, 4].

In order to control the consistency error of thig-dependent stabilization terms, the spagehas to
be large enough; more precisely:

ASsSUMPTION2. The fluctuation operatok} satisfies fol0 < [ < k,, the following approximation
property:

hl
3Cx >0 | lknallonr < Onk_]lw|Q|l,Ma Vg € H' (M), YM € M, (2.7)

Due to the consistency of the -dependent stabilization term, thus involving the spage we do not
need such a condition fdp} . In Section 3.5 several choices for the discrete spacedwifiresented.
For the analysis, the following properties of the stabilmaterm (2.6) are required.
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LEMMA 2.1.There holds forall/, V € V x [Q N H'(Q)]

(i) [Sh(U. V)| < Su(U,U)% Sy(V,V)* (2.8)
(it) Sn(U,U) 20 (2.9)
(4ii) Sp(U,U) < Cslulf + C2 (Mné%(h aM> Iplf, U = (u,p) (2.10)

with Cs := C? maxprenm,, [TMHbH%Lm(M))d + /LM].
Proof. Property (ii) is trivial and (i) follows via Cauchy-Schwainequality. Inequality (iii) can be
derived by

Sn(U,U) < C2 Z [TMHbH%LOO(M))dluﬁ,IM + MM|U|%.,M + O‘M|p|iM}
MeMy,

using Assumption 2 withh = 0 for the fluctuation operator. O

2.3. Special interpolation operator. Following [21], we construct a special interpolgfit: H'(2) —
Y, for the velocity, such that the errer— ji‘v is L?-orthogonal toD} for all v € H{(€2). In order to
conserve the standard approximation properties, let usosgp

AsSsUMPTION3. There exists a constapnt, > 0 (possibly depending ok,) such that

inf sup M > Pu>0 (2.11)

€D} vy, 1, (M) [Vnllo,arllanllo,ns
WhereYthu (M) = {Uh|M | v € Yh,kuavh =0o0n{ \ M}

REMARK 4. The spaceD}’ must not be too rich, since the inf-sup condition (2.11) ledset satisfied.
On the other hand)}* must be rich enough to fulfill the approximation property7{2. Later on, we will
present several function spacBy satisfying (2.11)

In the following, we use the notation< b, if there exists a constagt > 0 independent of all relevant
sizes like mesh size, polynomial degree or coefficients.

LEMMA 2.2. Let Assumption 3 be satisfied. Then there are interpolatg@rators; : Hi(Q) — Y,
andj; : V — V1. such that

(v—Jiv,qn)e =0, Vau € Dy, Vv € Hy() (2.12)
o= vl + 2210 = ol S (14 1) Bl 2.1
forallv € H(Q) N HE(Q) and
(v —jiv,q,)a =0, Vg, <€ [DM4 YveV (2.14)
lv—=gnvllom + hk—]§|v —Jmhim S (1 + i) %|v| Lwn (2.15)

forallv e [H'(Q)]" NV, forall M € M, and1 < I < ky, + 1. was := Uy wr IS @ neighborhood of
M e My,

For better readability, we shift the proof to the Appendimatogously, a corresponding result can be
proved for the pressure.

LEMMA 2.3. Suppose that there exists a constant> 0 (possibly depending ok),) such that

inf sup M > B, (2.16)
an €D} vy, €y, (M) lvnllo,nrllanllo,nr
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Then there exists an interpolation operap'gir: Q — Qn,k, such that

(v —Jjpv,an)a =0, Vqn € Dj, (2.17)
har 1\ R

o= ol + 5o = s < (14 5-) ol Yo cQn @), 219
p D

REMARK 5. The estimates of Lemmata 2.2 and 2.3 are optimal with regpégt;. The estimates in
the norm| - |1 »; are seemingly sub-optimal regardingtg andk,,.

3. A priori Analysis. The next goal is an error estimate for the scheme (2.5). Torerefurther
assumptions on the finite element spa®@sy.,, , D k., , Qn,k, andDy, i, are required.

3.1. Stability. First, the stability of the scheme will be proven. The staddgpproach is to provide
this in the mesh-dependent norm
VIl = (VIP +8llal3)® [VIIZ = w2 Vollg + llozol§ + Su(V, V)

for V. = (v,q) € V x @ with suitabled > 0. Here we prefer a separated approach for velocity and
pressure by using first the]| semi-norm and then a post-processing argument for theypeess
LEMMA 3.1.The following a-priori estimate is valid

1> Vs[5 + o2 wnlld < UL < (£, un)o. (3.1)
Hence, uniqueness and existencespfe V', 1, in the scheme (2.5) follows.

Proof. Integration by parts yield§b - V)up, up)o = —%((V “b)up,up)o = 0, hence

(A + Sp)(Un, Un) = llv2Vunl§ + lo2unlli + Su(Un, Un) = U] (3.2)
This implies (3.1), hence uniqueness and existence of tueate velocity fields;, € V', 1, of the scheme
(2.5). O

The corresponding result for the pressprec Qp x, follows from Lemma 3.2 and Lemma 3.1. Here, we
use the notation,, = ||V L= (q), Yo = infa v(x), boe = [|b]| (L ()

LEMMA 3.2. There exists a constant > 0 dependent on the continuous inf-sup constaand on
the polynomial degrek, but independent of the mesh sizeuch that

Ipnllo < 7(\/%0 +VCpo+ ———= \/W + Vs + CT) [Un]] + = ||f||—1- (3.3)

with Cs = C? max e, [rMHbH(L\,,o M))d +uM} andCr = B maxs k ﬁ Cp is the constant in
the Poincaé inequality.

Proof. Using the closed range theorem, the continuous inf-sugition yields the existence af
[Hg (Q)]* with V- v = —py, and|v|1 < 5|[psllo. We set), := jjv. Lemma 2.2 together with the triangle
inequality imply

forls < fols +O(1+ 7 Jkuloh < 5 [1+0(1+ )k Ipnllo = Callpil

Consider now

3
(£ vn)a = (A+ Su)(Un; (vr,0)) = =(pn, V- v)a —ZT Ilpally =T (3.4)

with termsT; given below. Standard inequalities and integration byspanply

T = WVun, Vop)a + (oun, vi)a + (b V)un, vi)a
Cpbe 1 2 o\ %
s ) (A Vuall + IvFwlE) o

Cpba

\/y0+ac};

< (l/fo + (UCP)% +

< (vd + (0Cp)* + )Callval] lipalo
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. L - 1 .
whereC'p stems from the Poincaré inequaljtyy, |lo < C2|vx|1. Lemma 2.1 gives

Su(Un, (vr,0)) < Sp(Un, Un)2 Sn((v5,0), (v3,0)) 2

<V Cs |[Un]] lvnlr £ v/ CsCa |[Un]] [Ipallo-

Integration by parts (for continuous discrete pressureespand Lemma 2.2 yield

T3 =|(V-(vn —v),pn)al = [(vh — v, Vpp)a| = |(vh — v, 65 VDh)al

C2h2 : 1 Cuh
< M g2 Unll < = 2w, :
< <M 2o Ivll,M> [Un]] < ki ku\/a—MI[ n]l lpallo

Furthermore, there holds-f, vi)a < |||l —1|va|1 with the norm| - ||y in [H~1(£2)]¢. Using all these
estimates, we obtain from (3.4)

Cpbs
Iprllo < (Ca [V +V/Cpo + ——=22 + \/Cs | + Cr ) [Ull + CallFll 1. (35)
Vo +0Ch
with Cr = maxM Crh This concludes the proof. O

Fwanr”

3.2. Approximate Galerkin orthogonality. In LPS methods the Galerkin orthogonality is not ful-
filled and a careful analysis of the consistency error hagtddne.

LEMMA 3.3. LetU € V x Q andU;, € Vi, x Qni, be the solutions of (2.1) and of (2.5),
respectively. Then, there holds

(A + Sh)(U — Uy, Vh) e Sh(U, Vh), YV, € Vh,ku X Qh,kp- (3.6)

Proof. The assertion (3.6) follows by subtracting (2.5) from }2.1 O

Now the consistency error can be estimated with the help ofrha 2.1.
LEMMA 3.4. Let Assumption 2 be fulfilled an@, p) € V x Q with (b- V)u € (H'™'(M))?,
V-u=0,pe H»T(M)forall M € M, Then, we obtain fod < I,,,1, < k,

B2l
D)l g+ ant BBl 1) VAL (3.7)
P

[N

1S (U, Vi) (

MeMy,

Proof. Lemma 2.1 yields
Su(U, Vi) < Sp(U.U)%S(Vi, Vi) * < Si(U,U)2|[Va]l.

Assumption 2 and/ - u = 0 imply

h2l 2lp
M 2 M )2
g ™ —5— k2lu V)uli, ar + OéM—kglp pl7, 1,01
T e, P

Now the assertion follows from these estimates. O



Local projection stabilization for incompressible flow 7

3.3. A priori error estimate. The a priori estimate can be proven using the standard tgeéarof
combining the stability and the consistency results of #s¢ $ubsections.

THEOREM 3.5. LetU = (u,p) € V x Q be the continuous solution of (2.1) abtl = (un,pr) €
Vik, X Qnp, the discrete solution of (2.5). We assume that the solutior= (u,p) € V x Q is
sufficiently regular, i.ep € H»*1(Q), w € [H!»T1(Q)]? and (b - V)u € [H'+(Q)]?. Furthermore, let
the Assumptions 2 and 3 for the coarse velocity spafde satisfied. For the spade) we assume that
(2.16) is satisfied. Then, there holds fox [, < k,, and1 < I, < min{k,, k,}

h?l
-0 s 3 (gl oVl ., (38)
MeMy,
12 K2k 112 hil{
+(1+E) WCMHU zu+1wM+( ﬁp) —3i,—2 M”p”l +1 wM)
with
o h2, 11 ,
v = vl ) + 75 i Mo+ EJFE)JFMMJF 1017 oe (ary)2 ™
1 h2
CM =y + —ﬁ

Proof. The error is split into two parts
U—Un=(u—unp—pn) = (u—735up—jip) + (Gru — wn j5p — Pr).

We start with the approximation erréa — j,u,p — j;'p). Lemma 2.2 (i) and Lemma 2.3 yield

N , 1 B2l :
lw =gt =il (14 5 ) (2 atonlplf ) (39)
p MeMy,
1 h h2lu 1
+(1 + E) ( Z [”V”L“’(M) +o— k4 L+ par + ||| Lm(M))d} WH P, wM) :

MeMy,

Now we estimate the remaining pat, := (wp, ) = (Jpu — un, jip — pr) Via Lemma 3.1

(A4 Sp)((Fhuw — wn, jip — pn), W)

[(Ghw = wn, jyp — )]l =

W]
_ (A+ Sn)((w—un,p—pn), W) (A + Sp)((Fhw — w, jip — p), Wh)
|[Wh]| |[Wh]| '
=1 =11

Applying Lemmata 3.3 and 3.4, the first term is bounded by

20,
v)u”lQu,M + OCM# ||p||12p+1,M)

=

Sh((u,p), Wh) s
1 L < v —2L || (b
|[Wh]| ~ Z M kilu H(

MeMy,
Now we consider the terms @f separately. Integration by parts and property (2.14) yield
WV (Ghu —u), Vwn)o + (0(Fpu —w), wp)o + ((b- V)([Fru —u), wa)g
= (WV(Jpu —u),Vwy)a + (0(jru — u), wn)e — (K4((b- V)ws), jhu — u)g

1 h,2lu h 5
S+ T 2 [lan + o+ ) 8l o, ) 00
u MeMy,
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The orthogonality property (2.14) results in

l(p— jbp, V-wp)al = |(p— iip, LV - wp)al
h2l pt+2

< (1 5)( S st bl ) I

MeMy,

Integration by parts (thanks to continuous discrete pre$sund (2.14) lead to

09 3 =)ol (97—l = (V) s~ 3.10)
< S L )
L+ )( _Ql—4—2||u||lu+1wh,) |[Wh]|
ﬁu MEMhaMk“

The estimation of the stabilization term is straightfordvar

|Sh((JZu - Ua]ﬁp _p)7 Wh)

N
[V

< (Sn((hw —u, jyp —p), (Gru —w, jyp — p))? (Sp(Wh, Wh))

(NIEg

1 h3ke
S45) (X 25 [l e + o] Tl s, ) 1
v Memy MU
1 i 3
1) (X onemtg ol ) 091
p MeMy, k

Adding up all inequalities for the estimate f1/,]|> = I + IT together with the estimate of (3.9) gives
the assertion. d

CORROLARY 3.1. Under the assumptions of Theorem 3.5 and the notation of laeBa?nwe obtain

VCs
p

1
/— \/_
with constantsy, Cs, Cr andg as in Lemma 3.2.

Proof. The proof mimics the proof of Lemma 3.2. In equation (3.4 bas to replacE;, = (up, pr)
byU - Uh = (’U, — Up,P _ph) and(favh)ﬂ by Sh(U - Uh7 (j}?,va O)) 0

P = pnllo 57(\/uoo+ Opcr+mm( —)boo + 2 +CT)|[U—Uh]| (3.11)

3.4. Parameter design.Now we will calibrate the stabilization parameterg;, 7y and p; with
respect to the local mesh sizg,, the polynomial degreés, andk, of the discrete ansatz functions and
problem data. The parameters are determined by minimiziddpalancing the terms of the right hand side
of the general a priori error estimation.

First, equilibrating the;,-dependent terms i@}, yields

har
VRS U S (3.12)
16l (oo (ar))a k2

Similarly, equilibration of the terms i6"}, andC?, involving 1.5 anda,, yields

hlpfl w1 hzufz pH1
Har ~ ma Qpp m (3.13)
where we used ~ k, ~ k,. For the following result, we assume that the solutierp) of the continuous

Oseen problem is sufficiently smooth.
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CORROLARY 3.2. For equal-order interpolatiotk = &, =k, > 1, letl =1, =1, < kand

Lol aohy Tohn
Py = ; ay = —5—, TM= 75" (3.14)
k2 k2 ||b||(Loo(]M))dk2
Then we obtain under the assumptions of Theorem 3.5
h2l+1 h2l+1 b
U-Ul* < ((1+ ) o + Y V)ul?,
|[ h]' M;V[ ﬁp kgl ” ||l+1 M L20+2 ||(||b||(Loo(I\[))d ) ”l7 M
1\2 h ha] R3
+(1 + E) {”V”Lm(M) +o2 + 6]l (a1))e ye) kTA_Ig”u”lz-i—l,wM)'
For inf-sup stable interpolation with, = k, + 1, we assumé, = [, + 1 = k,, and set
aoh3, o Toha
= ;= (= 3.15
an g3 M= T ol ooy (3.15)

Then we obtain under the assumptions of Theorem 3.5

, 112 jp2le , h2l utl b )
o =valP 5 30 ((1+5) st bl + 3 V)u
MeM w

18]l (o (ar))?

1\2 h3, hy 1] Ry
+(1+E) [|V|L°°(M)+Uk4 —I—HbH Lo (M) 75 k2 +k_ WH HlJrle)

This result requires some further discussion:
e For equal-order pair¥}, ;, x Q. and for (inf-sup stable) Taylor-Hood paif§, +1 %X Qn k.

respectively, we obtain the optimal convergence raﬂé&ﬁﬁ) and (’)(h’f\j 1y, respectively, with
respect tdy,.

e Due to the non-optimal convergence order of the interpmtediperatorg,, 57 in the| - |;-norm,
these estimates are presumably not optimal with respediympmial degred:,,. Let us assume
that in Lemma 2.2 there holds

l
1o = gt 5 (14 7 ) Bl (316)

and a similar result in Lemma 2.3 too. A careful check of theofs leads to

h]\,{ hM hM
UM = o——, OQp = 0pg——, T™M =TT (3.17)
*k "k 116l 2~ 2yt
for equal-order pairs witk = &,, = k, and
h3, har
apn = g———, HUnr = [ Nl, ™ = T077 (318)
k2 0 0 16l (Lo )y Fu

for inf-sup stable pairs witlt,, = &, + 1. Then the a-priori estimate (3.8) in Theorem 3.5 would
be optimal with respect tb,, andk, too with the possible exception of the factors depending on
B, andf,. The latter reason eventually leads to a non-optimal paterdesign w.r.tk,,.

e The formulas for the stabilization parameters and the exstimates are only asymptotic state-
ments. To our best knowledge, there is so far no general pbofmea more precise design of the
stabilization parameters (with the possible exceptionm&-dimensional problems with constant
coefficients). Unfortunately, this leaves the practitiowéh the problem of choosingy, vy, ag.
Table 4.1 below might give an impression on suitable valonasur experiments for an academic
problem.
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REMARK 6. The SUPG parameter,, in residual-based stabilization methods has the typicalgte

~ 1 - hnm 1 h’IW i i ~ 1 h]u 1 N l
Ty ~ min (Hb”@m(wd)k ;L k2u)’ see [20]. This can be rewritten ag; ~ min (sz min (1; ); )

’ RG]\[ g

harl1Bll 7
with the local Reynolds numbéie,; = m

This means that the design of the SUPG like parametein (3.17)-(3.18) is strongly simplified for
the LPS method thanks to the symmetric stabilization t&mThis choice will not cause problems for
locally vanishingb as the corresponding stabilization termys, , 7as (k! ((b - V)ug, £} ((b - V)va))mr
Clearly, a proper implementation is required.

In the Stokes limib = 0, the SUPG-type stabilization term given above does notrplsencery, = 0.
The other terms scaling withy, and pps may appear, although the PSPG-type term can be omitted for
inf-sup stable elements. As a consequence, no suboptiretitrs in the analysis for the Stokes limit.

REMARK 7. The corresponding result for the LPS scheme with local ptaje of the full velocity
gradient, see Remark 3, leads to the design~ has/k2 (or dp ~ har/ky). Please note that the error
estimates deteriorate if the local projection of the divarge terms is omitted. Then, the critical term in
the proof of Theorem 3.5 {$p — ji'p, V - wy)ql.

3.5. Choice of the discrete spacesThe paper [21] presents different variants for the choicthef
discrete spacel, ., x Qn,x, andDj' x D} using simplicial and hexahedral elements. There are bsica
two variants:

e atwo-level variant with a suitable refinemeéht of M, (formally denoted byM;, = 73;) and
e aone-level variant wittM;, = 7;,, henceh,; = hx, with a proper enrichment d?,, 1, by using
bubble functions.
In the numerical results below, we restrict ourselves tatteelevel approach, but the theory also covers
the one-level approach. Please note that the present anaby®rs only the case of continuous pressure
approximation. For an extension to discontinuous disqgredesure approximation, in particular to the case
of Qr/P_(;,—1)-elements, we refer to [23].

The d|scont|nuous coarse spaces are defined on the coarsdeMhewith polynomials of one degree

less. Thus, for hexahedral elements the coarse spacevangyi

_ P _
h=Qr,—1M, D= Qry1.M,-
For simplicial elements we obtain
Dy =Pe,—im, Dy =Pe,—am,-

Obviously, Assumption 2 is valid for our discrete spacelséfibcalL?-projectionr?, : L2(M) — D (M)

for the velocity and similarly for the pressure is appliezk §£21]. Moreover, for these choices the constants
Bu/p IN Assumption 3 and in (2.16) scale liké(1/,/k,,) for simplicial elements and lik€(1) for
guadrilateral elements in the affine linear case, see [23].

4. Numerical Results.

4.1. Oseen problem.A proper calibration of the stabilization parameters reegicareful numerical
experiments going beyond the scope of this paper. Some papbdate the parameter design and the
theoretical convergence rates for the Oseen problem

Los(u,p) = —vAu+(b-V)u+ou+Vp=f in Q (4.2)
V-u=0 in Q

in Q = (0,1)? with the smooth solution
u(z1, w2) = (sin(mrzy), —7w2 cos(mz1)), p(x1, x2) = sin(mxy) cos(mzs)

and datab = u. The source ternf and the Dirichlet data follow frona.
So we refer to a study in [25] of the one-level variant for depraer pairs with enrichment of the
velocity space by using bubble functions. The two-levelarmrwith inf-sup stable pairs can be found in
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[19] for equal-order and for inf-sup stable pairs. For thitelacase, see also [23]. In all these cases, the
local L2-projection is used for the definition of the fluctuation CﬂIerSIiZ/p.

As an example, some typical results are presented for thégved variant withQ), /Q1 and theRs / Q2
pairs on unstructured, quasi-uniform meshes. More prigcitiee coarse spaceB} is constructed as
discussed in Subsection 2.2. Moreover wel3gt= {0} which results in full grad-div-stab stabilization,
i.e. k), = id. The results in Table 4.1 with the errags = w — u;, ande,, = p — pj, for the advection-

Table 4.1: Two-level LPS scheme: Comparison of differeniavds of stabilization for problem (4.1) with
Q2/Q1 andQ2/Q: pairsands = 107%,0 = 1,h = &;

Pair | 70 a0 | Jedi Tlealo IV -unle Tl
0.000 0.000 0.000 2.56E-1 5.42E-4 2.02E-1 2.31E-
0.056 0.562 0.010 1.91E-3 6.21E-6 1.82E-4 9.08E-
Q2/Q1 || 0.056 0.562 0.000 1.91E-3 6.20E-6 1.66E-4 8.06E-
0.000 0.562 0.000 2.61E-3 7.42E-6 1.72E-4 8.05E-
3.162 0.000 0.000 1.87E-2 7.50E-5 1.56E-2 1.08E-
0.000 0.000 0.000 2.38E+1 5.35E-2 1.45E+1 1.66E+
0.000 0.000 0.018 1.65E-2 3.48E-5 9.37E-3 6.96E-
Q2/Q2 || 0.056 1.000 0.018 9.30E-4 2.85E-6 2.14E-4 4 .31E-
0.056 0.000 0.018 1.77E-3 4.18E-6 1.46E-3 3.25E-
0.000 5.623 0.018 3.26E-3 7.20E-6 2.00E-4 7.56E-

O OO0 »O1TOTOTH

dominated case = 10~% show comparable results for the best variant®ef @, andQ2/Q-, although
the results foQ2/ Q- are slightly better due to the better pressure approximatio

Nevertheless, the importance of the stabilization terndiffierent. The small-scale SUPG- and PSPG-
type terms are necessary for the equal-order case but nibiefanf-sup stable pair. At least the PSPG-type
term can be omitted for the inf-sup stable case. On the otlrad Hthe divergence-stabilization gives clear
improvement for the inf-sup stable case and some improveioethe equal-order case. Let us remark that
the divergence stabilization without local projection baster algebraic properties than its LPS variant.

In Figure 4.1, convergence plots are shown for the two-IEfAS scheme with optimized parameters
in the diffusion- and advection-dominated cases with- 1 andv = 10~°, respectively. The numerical
convergence rates confirm the theoretical results. Intiaghg no gain of the better pressure approximation
for the@2/Q- pair can be observed in the diffusion-dominated case.

Let us finally check the effect of increasing polynomial degfor inf-sup stable Taylor-Hood pairs
Qr/Q.—1 with r € {2,3,4,5}. This is shown in Figure 4.2 far = 107, o = 1 and different values of
h. Similar results are obtained (but non shown) for equakobagproximation withQ,. / Q..-elements with
re{1,2,3,4,5}.

4.2. Navier-Stokes problem.Finally, we apply the LPS stabilization to the lid-drivervitg flow as a
standard Navier-Stokes benchmark problem (4.1) With u, 0 = 0 andf = 0. Homogeneous Dirichlet
data are prescribed with the exception of the upper parteobtiundary wheres = (1,0)7 is given. An
unstructured quasi-uniform mesh is used together with gwof-Hood pairQ2/@Q1 and the equal-order
2/ Q- pair using the two-level variant of LPS stabilization witaing parameter, andpo according to
our theory andyy = 0. In particular, the cases = po = 0 correspond to no stabilization.

In Figure 4.3, we present typical solution profiles of theoedly for the case ofRe = 5,000. The
results forh = 6l4 for both variants are in excellent agreement with the refegedata by [11] where
the streamfunction/ vorticity formulation of the Naviete8es problem on very fine meshes with up to
601 x 601 nodes is used. In particular, the boundary layers are wadilved even on this quasi-uniform
mesh. Moreover, the solution for a coarse grid itk % is in good agreement with the data in [11] away
from the boundary layers. The results confirm the previoosr&s for the linearized problem of Oseen
type. For theR,/Q; element, only the divergence stabilization is necessamreds for the&), /Q- pair
all stabilization terms are important.

Then, we compare in Table 4.2 the positions and values ofmeof the velocity profiles for different
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Fig. 4.1: h-convergence for the Oseen problem with= 1 (left) andy = 1076 (right) witho = 1
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Fig. 4.2: Polynomial convergence for the Oseen problem with10-6, o = 1 for fixed h

values of Re. The results for the two-level LPS scheme with e/Q, pair on the fine mesh with
h =~ 1/256 are in good agreement with the results in [3, 27]. Moreover 1PS results on the coarser grid
with h &~ 1/32 are in good agreement with the case: 1/256. This is verified inh-convergence studies
in[19].

Finally, we compare in Table 4.3 the positior., y..) of the main vortex and the values of the stream-
function¥,,,;,. and of the vorticityw, in the (z., y.). for two values ofRe. The results for the two-level
LPS scheme with th€,/Q: pair on the fine mesh with ~ 1/256 are in very good agreement with the

results in [11, 3],but slightly different from the results[R7]. Studies ofi-convergence can be found in
[19].

5. Summary. A unified a-priori analysis of stabilized methods via locabjpction (LPS) is given
for equal-order and inf-sup stable velocity-pressurespair isotropic meshes. The error estimates are
comparable to classical residual-based stabilized (RBShoas. This shows that only the stabilization of
the fine scales is necessary. Compared to the RBS method$eshgn of the stabilization parameters is
much simpler for LPS schemes as the strong coupling of viglacid pressure in the stabilization terms
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Fig. 4.3: Lid driven-cavity problem wittiRe = 5, 000: Cross-sections of the discrete solutionsbr/ Q4
pair with 7y = ap = 0 andp = 0.562 andQ2/ Q2 pair withp = 0.056, g = 0.018, o = 1

Table 4.2: Lid driven-cavity problem for different valuek Be: Maxima and minima on cross-sections
z = 0.5 andy = 0.5; a) LPSQ2Q1, h ~ 1/32, b) LPSQ2Q1, h ~ 1/256, c) [12]
h =1/256, d)[27]h = 1/256, e) [3] spectral method withv = 1/160

Re Umin Ymin Umaz Lmax Umin Tmin
100 | a) | —0.21399 0.45703 0.17951 0.23828 —0.25376 0.80854
b) | —0.21404 0.45703 0.17957 0.23828 —0.25378 0.80854
d) | —0.21411 0.45898 0.17946 0.23633 —0.25391 0.81055
e) | —0.21404 0.4581| 0.17957 0.2370| —0.25380 0.8104
1000 | a) | —0.38512 0.17578 0.37404 0.16016 —0.52295 0.90625
b) | —0.38857 0.17188 0.37692 0.15625 —0.52701 0.91016
d) | —0.39009 0.16992 0.37847 0.1582Q —0.52839 0.9082(
e) | —0.38857 0.1717| 0.37695 0.1578 | —0.52708 0.9092
7500| a) | —0.43940 0.07031 0.43749 0.07813 —0.56560 0.96484
b) | —0.45478 0.06250 0.45836 0.06641 —0.58043 0.96484
c) | —0.43590 0.0625| 0.44030 0.0703| —0.55216 0.9609
d) | —0.46413 0.064453 0.47129 0.06836 —0.58878 0.96284

does not occur.

Numerical results from the literature and our own experite@onfirm both, the design of the sta-
bilization terms and the theoretical convergence rates.aforrdifference between equal-order pairs and
inf-sup stable pairs is that LPS-stabilization is alwaysassary for equal-order pairs. For inf-sup stable
pairs, the necessity of stabilization is seemingly much f@enounced as for equal-order pairs. In partic-
ular, the grad-div stabilization is much more importanttliize fine-scale SUPG stabilization. Moreover,
the fine-scale PSPG part seems to be superfluous.
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Appendix. LEMMA 5.1. Let Assumption 3 be satisfied. Then there are interpolaterators;; :
HY(Q) — Y, andj) : V — V), ., such that

(v —jiv,qn)a = 0 Vg, € Dj;, Vv € Hy(Q) (5.1)
o= sivlloss + 2210 = gtvlar € (14 3 ) Bl 52)
forallv € H{(Q) N H(Q) and
(v —3jiv,q,)0 =0 Vg, € [D¥)?, Yo €V, (5.3)
o= divloss + 2210~ sivlaar S (14 ) 2ol (5.

forall v € [H'(Q)]* NV, forall M € My, and1 < < ky + 1. war := Uy, wr is @ neighborhood of
M e My,

Proof. We follow the lines of the proof of [21], Th. 2.2, but we tak#a account the dependency of
the constants on the polynomial order and the inf-sup cahgta

Define the linear continuous operat®y, : Y3 (M) — Dj' (M)’ by

(Bhon, qn) == (Vn,qn)m, Yo, € Yi (M), qn € Dy(M).

The Closed-Range Theorem yields via Assumption 3 fBatis an isomorphism froni;, (M) onto
Dy (M) with Bullvnllo.nr < | Bronllpu(ary s vn € Wi (M)*. Wi (M)* is the orthogonal complement of
Wi(M) := Ker(By) with respect td-, -) as.

Let M € M;, andv € H}(Q) be arbitrary. Then, there exists a uniqugv, M) € W, (M) with
th(v, M)H < %UH’U — Ih,ku'U”O,M such that

(Brzn(v, M), qn) = (2n(v), qn)m = (v = In kv, qn) M,  Van € Dy(M). (5.5)

Now, we define local operatog ,, : Hq () — Yi(M), M € My, by jit v = (I} v)|ar+2n(v, M).
SinceM,, is a partition ofQ2, we can define a global operatgf : Hi(Q2) — Y3 by (jiv)|a := IV
Due to (2.3) the operatgy® satisfies forl <1 <k, + 1 andallT € Ty, v € H3(Q) N H'(2)

2 2
” 1 N 1 h#
o= toliar < (145 ) lo-BaolBar e (145 ) ¥ fhlblie,. 68
u u TCM u

TET),
The approximation property in thé!-seminorm follows from inequality (2.2)

2
(0, M) <3 pinokZhz o (o, M) 7 < Bime 5™ R n2 o — 1y 0

TCM U pcm
TET, TeTy,

|2
0,7

and using the approximation property (2.3)

v — jﬁ”ﬁ,M = |v— Iy, v— zu(v, M)EM <2 — Iﬁ,kuvﬁ,M + 2[zn (v, M)EM

1 Minv hl_l
S (k_+ 62 ) k%g'“'th'

Finally, the orthogonality property (5.1) is a consequeniog.5). O
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