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We consider stabilised finite element methods for the generalised Oseen prob-
lem. The unique solvability based on a modified stability condition and an error
estimate are proved for inf-sup stable discretisations of velocity and pressure.
The analysis highlights the role of an additional stabilisation of the incom-
pressibility constraint. It turns out that the stabilisation terms of streamline-
diffusion (SUPG) type play a less important role. The analysis extends a recent
result to general shape-regular meshes and to discontinuous pressure interpo-
lation. Some numerical observations support the theoretical results.



1 Introduction

Let us consider the instationary, incompressible Navier—Stokes problem with homogeneous
Dirichlet boundary conditions

ou—vAu+ (u-Vu+Vp=f in Q x (0,7,
divu =0 in Q2 x (0,7),
u=20 on 02 x (0,77,

Ult:() = Up in Q,

(1)

for the velocity u and the pressure p in the space-time cylinder  x (0, 7") with a polyhedral
domain Q € R%, d = 2,3, and a time T > 0. The given source term is denoted by f. A
typical algorithmic approach for solving (1) is to semidiscretise first in time and to apply
then a fixed-point iteration within each time step. This leads in each step of this iteration
to an auxiliary problem of Oseen type

Lo(b;u,p) = —vAu+ (b-V)u+ou+Vp=f in Q,
divu =0 in €, (2)
u=20 on 0S.

Also the iterative solution of the steady-state Navier-Stokes equations may lead to prob-
lems of type (2) with o = 0 if a fixed-point iteration is applied.

The basic Galerkin finite element method (FEM) for (2) may suffer from two problems:
the dominating advection (and reaction) in the case of 0 < v < [|b||r(q), and/or the
violation of the discrete inf-sup (or Babuska Brezzi) stability condition for the velocity
and pressure approximations. The streamline-upwind/Petrov—Galerkin method (SUPG),
introduced in |3|, and the pressure-stabilisation/Petrov-Galerkin method (PSPG), intro-
duced in [10, 11|, opened the possibility to treat both problems in a unique framework using
rather arbitrary FE approximations of velocity-pressure, including equal-order pairs. Ad-
ditionally to the Galerkin part, the elementwise residual Lo(b; u, p)— f is tested against the
(weighted) non-symmetric SUPG/PSPG parts (b- V)v + Vq of Lo(b;v,q). An additional
elementwise stabilisation of the divergence constraint divu in (2), henceforth denoted as
grad-div stabilisation, is important for the robustness if 0 < v < ||b]|z>(q), see [5] for
equal-order interpolation.

For a unified a-priori analysis of classical residual-based stabilisation (RBS) techniques,
we refer to |[12]. We emphasise that the design of the stabilisation parameters for equal-
order interpolation significantly differs from that for inf-sup stable pairs. In particular,
the grad-div stabilisation is much more important in the advection-dominated case if an
inf-sup stable interpolation is applied, see also [6, 15].

One of the critical aspects of these RBS techniques for incompressible flows is the strong
coupling between velocity and pressure in the stabilising terms. Several attempts have been
made to relax this problem, see |2| for an overview. In particular, we mention the promising
idea of weakly-consistent, symmetric stabilisation techniques (e.g., via edge stabilisation
or local projection).



Within the framework of strongly consistent RBS techniques, one natural idea is to skip
the PSPG term in the case of inf-sup stable discretisations of velocity and pressure. We
considered this possibility in [6]. The analysis of the so-called reduced stabilised scheme
is so far restricted to the quasi-uniform case and to continuous pressure approximation.
Moreover, the analysis is seemingly not optimal for the case v? + 0> — +0, whereas
numerical experiments show stable results for this case too.

The goal of the present paper is to refine the analysis in [6] for the reduced stabilised
scheme and to relax the assumptions of quasi-uniform meshes and continuous pressure
discretisations. We prove an inf-sup stability condition of the scheme which is uniformly
valid for 0 < v < 1 and an a-priori error estimate. A refined design of the grad-div
and SUPG-stabilisation parameters highlights the role of the additional stabilisation of the
incompressibility constraint. Moreover, it turns out that the SUPG-stabilisation is less
essential. An important technical ingredient is the application of quasi-local interpolation
operators preserving the discrete divergence [8]. For brevity, we consider only conforming
FEM.

The paper is organised as follows. In Section 2, we introduce notation and the stabilised
Galerkin discretisation of the Oseen problem. Then, we analyse the method in Section 3
and discuss the results in Section 4. Finally in Section 5, we consider some open problems.

2 Notation. The discrete problem

Let Q C R? d = 2,3, be a bounded polygonal or polyhedral domain. For a subdomain G' C
€2, the usual Sobolev spaces WP (G) with norm || - ||, p. and semi-norm |- |, , ¢ are used.
In the case p = 2, we have H™(G) = W™?(@G) and the index p will be omitted. The L?
inner product on G is denoted by (-, -)¢. Note that the index G will be omitted for G = €.
This notation of norms, semi-norms, and inner products is also used for the vector-valued
and tensor-valued case. We set X := (H&(Q))d, M = L}(Q) == {q € L*() : (¢,1) =0}
and H (div, Q) := {v € [L*(Q)]? : divv € L*(Q)}.
The generalised Oseen equations with homogeneous Dirichlet boundary conditions are
given by
—vAu+ (b-V)u+ou+Vp=f in Q,
divu =0 in Q, (3)
u=20 on 0f)

with constants v > 0, ¢ > 0 and a given convection field b € H(div, ) N (LOO(Q))d with
divb = 0. For u,v € X, p,q € M, the bilinear forms A, b and linear form L are given by

A((u,p), (v, q)) =
b(v,q) =
L((v,q)) =

v(Vu, Vu) + ((b -V)u, v) + o(u,v) — b(v,p) + b(u, q),
(q,div o),
(fsv).



Note that the following integration by parts
((b-V)v,w) =—=((b- V)w,v) (4)

holds true for all v, w € X due to divb = 0.
A weak formulation of the generalised Oseen equations (3) reads:

Find (u,p) € X x M such that

A(u,p), (v,9)) = L((v,q))  VY(v,q) € X x M. (5)

Let {7,} be a family of shape-regular and exact triangulations of the domain  such

that B B
Q= (J K
KeT,

holds true for all triangulations 7.

Let X}, be a conforming finite element space based on 7, for approximating the velocity.
The space M, for approximating the pressure may consist of continuous or generally dis-
continuous functions. We are interested in inf-sup stable discretisations, i.e., the condition

di
inf  sup ( IVUha(Jh)

> 6o >0 6
WEMn vyex, V)1 |lanllo o)

is valid for all 7;, with a positive constant 3y which is independent of the mesh parameter h.
Examples for such pairs are the Taylor-Hood family P,/P;_1, K > 2, on simplices and
Qr/Qk—1, k > 2, on quadrilaterals and hexahedra, see [7| and the references therein.
Furthermore, Qi /P&, k > 2, fulfils the inf-sup condition on quadrilaterals and hexahedra,
see [7, 14].

We assume that for all cells K € 7, the following inverse inequalities

[Avllore < phi [Vonllox Vo € Xa,

L|| divonllox < [IVonlloe < phi loallose Yoy, € X, (7)
Vd

IVanllox < phit llgnllo.x Vay € My,
are valid with a constant y which depends only on the shape-regularity parameter of the
family of triangulations.

We assume that the discrete velocity space X}, is based on finite elements of order k.
One can think of the case there X} consists of all continuous function those restrictions
to a single cell K of the triangulation 7, belongs to Py (for simplicial cells) or to Q. (for
quadrilateral and hexahedral cells). The discrete pressure space M), is assumed to be based
on finite elements of order ¢ > 1. This means that the restriction of a function from M/},
to a cell K € 7, belongs to P, or Qy. Note that P, can be used also on quadrilaterals and
hexahedra if no continuity is required in Mj,.



The standard finite element interpolation operator .J, : M — M, fulfils for all K € 7,
the estimate

7= Tn@lmx < CRE gl Vg€ HPH(Q)NM, m=0,... (+1,

where the constant C' is independent of h, see [4]. We choose from [8| for the velocity the
quasi-local interpolation operator which preserves the discrete divergence. Hence, we have
for the interpolation operator I, : X — X, the estimate

|'U_Ih'U|m,K < Ch];{+1_m||v||k+l,w(K) Vo € (H]H—l(Q))dﬂXa m:O>"'ak+1>
where w(K) is a suitable neighbourhood of K and C'is independent of h, see [8]. Moreover,
(divIyv, qn) = (dive,qn)  Ygu € My, Vv € X, (8)

holds true.
Using the finite element spaces X, and M), we can formulate the standard Galerkin
discretisation of (5) which reads

Find (up, pn) € Xp, X My, such that
A((unspn), (v, an)) = L((vn, qn)) V(vn, qn) € Xp X Mp,. (9)

In the case of locally dominating convection, one may get solutions of (9) with spurious
oscillations which are in general not localised to regions with dominating convection. In
order to stabilise the discrete problem, we introduce a modified bilinear form and a modified
linear form by

AS((u,p), (v, q)) ::A((u,p), (v, q)) + y(divu, divv)

+ Z (—vAu+(b-V)u+ou+Vp,ox(b-V)v),.,
KeTy,

Ls((v,q)) ==L((v,q)) + Z (f,0x(b-V)v),

KeTy,

where 0 is a cell-dependent parameter while v is a global user-defined parameter. A
detailed study of the choice of these parameters will be given later.

The stabilised discrete problem reads

Find (up, pn) € Xp, X My, such that
As ((un,pn), (wnyqn)) = Ls((on, 1)) V(vn, qn) € X X M. (10)

Since the additional terms in Ag and Lg vanish in sum for a smooth solution, the
stabilised problem is of residual type. Hence, we have the Galerkin orthogonality

As((u—un,p = pn), (Un,qn)) =0 V(va,qn) € Xn x M, (11)

where (up, pr) € X X My, is the solution of (10) and the solution (u,p) € X x M of (5)
satisfies additionally the regularity requirement u € (H2(Q))d and p € H'(Q).



Remark 1. [t is possible to consider the fully stabilised discrete problem which includes a
PSPG term. In this case, the bilinear form Ap and the linear form Lg are defined by

Ap ((un, pr), (vn, qn)) = As((un, pr), (vn, qn)) + Z (Lo ((un, pr), ek V)
KeT,

Lr((vn,qn)) = Ls((vn, an)) + Z (f,axVaq)

KeT,

where ag are user-chosen parameters. Using similar techniques as below, corresponding
error estimates and parameter designs can be derived for the fully stabilised scheme. Al-
though the PSPG stabilisation is not needed for inf-sup stable discretisation from the point
of stability, the additional term might improve the accuracy of the pressure approximation.

We introduce the norms

[0]? := vlold + o llollf + Il divolls + > dxll(b- Vol
KeT,

o, @) |* = 110]1? + allglf2.

Note that the norms are well-defined on X and X x M, respectively.
The positive constant « will be chosen later on in the proof of Lemma 2. A lower bound
is given in (20). Furthermore, we set

bK = HbH0,00,K’ boo = HbHO,oo-

In this paper, the generic constant C' may have different values at different places but it
will be always independent of the mesh size h and the parameter v.

3 Analysis of the method

3.1 Stability and solvability of the discrete problem

To show that our stabilised discrete problem (10) is uniquely solvable, we will prove for
the bilinear form Ag an inf-sup condition on X} x M) where the constant is independent
of the mesh size h and parameter v.

It turns out that our stability analysis requires an upper bound of the SUPG-parameters
0 which is basically dictated by an upper bound of the advective Galerkin term. We define

.1 Cp
= ./ 2 /
¢ :=1/v+0Ck + 2bs, min <\/E’ \/;> +/d (12)

where CF is the Friedrichs constant for 2. We assume that the stabilisation parameters

fulfil o g
. L1 CF L hg 5
0<#, 0 <0 < min <Bmm <E’7)’ %/ﬂ@z) (13)
where p is the constant from the inverse inequalities (7) and [y the inf-sup constant for

the pair (X, My).




Lemma 2. Let the stabilisation parameters fulfil (13). Then, there exists a positive con-
stant Bg independent of the mesh size h and parameter v such that

AS((Uh7 Qh)v (wh’rh)m > Bg >0 (14)
Th) -

inf sup
(o) (onn) [ m an) ]I

holds true where the infimum and supremum are taken over X; x M.

Proof. Let (v, q,) be an arbitrary element of X, x M. During the proof, we will use the
following abbreviations:

=Y Skll(b- V)unllS 7% = div oy,
KeTy,
2. 2 2 . 2
V2= Y okl —vAvn+ovn+ Valls g, B = llanlds
KeT,

A? = vluw[i + o flunll5,

which give immediately that |[v,]]? = A% + X2 + Z2.

The outline of the proof is as follows.

1. We show As((vh,qh) (Uh.qn)) = Ci|[vp]]* — 0 B* with constants Cy and 6. The
critical constant § scales like dx /h%, see (16).

2. We get from the inf-sup condition (14) the existence of a function z;, € X, such that
AS((Uh, qh), (—Zh, 0)) > %ﬂo B2 — Cg |[Uh”2 with Cg scaling like g02, see (18)

3. The function (wp, 1) := (vn, qn) + A(—21,0) € X} X M), with a suitably chosen A > 0
satisfies AS((Uh, qh), (wh, Th)) Z Cgm Up,, qh ‘Hz and m(wh, ’/’h)m S 04‘”(1);“ qh)m which
together result in the assertion of this lemma.

Step 1. Using the definition of the bilinear form Ag, we obtain via the Young inequality
and integration by parts (see (4))
3 1

As((on, @), (vms@0)) = [[on] 2 = XY = [fon] | = 5X2 = ¥,

The terms will be estimated separately. Exploiting (7), (13) and ;—i <1, we get

Y? <2 Z OxIVanlls & + x|l — vAvy + ounll§ &)

KeTy,
20
<y Bt Szl 4( 3 Sl + 3 ool k)
KeT, KeT, K KeT, (15)
251{#
<Y Sl +4( X T Sl + Y eoll)
KeTy, KeTy, KeTy,
<2 max <5 5 )Bz+ — A%
KeTy, h



where [y < 1 was applied, which is always possible to choose, see (6). Hence, we obtain

2

O 1
As((vn, qn), (n, qn)) = = |[oa]]? — 3 max ( 3] )32- (16)

Step 2. Due to the inf-sup condition (6) for (X}, My), there exists z;, € X}, such that

|2ul1 = llgnllo = B, (div 2, qn) > Bo |2al1 llgnllo = Bo B*.

We have ,
As((vn, qn), (—24,0)) > o B* — ZTZ

=1

where
Ty :=v(Von, V) + ooy, 21) — (0 V)zp, vp), Ty = ~(div vy, div z3),
= dx(—vhvy+ o+ Van, (- V)z)k,  Ti= Y k(b V)vn, (b V)z)x

KeT, KeTy

These four terms will be estimated individually. Applying the Cauchy Schwarz inequality,
we obtain

1/2 1/2
T3] < (vlonl2 + o llonll2) " (vlenl? + 0C21zl2) Y + 3 bicllvnllo.rcl2nln i

KeT,
<\/v+0C%AB + Z brcl|vnllo,x|2nl1 1

KeTy

The last term can be estimated in two ways

b
brc||vnllo.x|znlix < s (Vo llvnllox)lznl1x < boo—=AB
v 7

KeTy, KeT,
or
Cr
Z brc||lvnllo.r|2n|1,x < Z \/_||Uh||0K)|Zh|1K < bso \/;AB-
KeT, KeTh

Hence, we get the estimate

1 Cr
Ti| < \/v+ cC2AB + by m1n< )AB
| 1| \/— \/—

which is governed by the bound of the advective term ((b-V)zp, vy,). Furthermore, we have

. 1/2
|To| < Al divonlloy/A ) divzallo < Z 7d< 3 |zh|3K> _ /~dZB

KeTy,



and

1) < (3 ol - voson+ o+ Vali) (3 el yalig)

KeTy, KeTy,
1/2
(5 ki) = g (/)5
€lp

Using (13) and (15), we obtain Y? < %%832 + £ A% which gives Y < M%%B + \/%A.

Furthermore, we have
2 2 6yl 1 . 1 Cp
131 < 2 (mas (/) a2 Loy (L S o
| 3|_\/ﬁ max | Og\/ 0K + 30 9 2 V15 min =

< 75z (g (o) ) a8 + g

It remains to bound 7. We obtain
s \1/2 s \ /2
Tl < (D0 ol Vyunla) (D0 dxllo-V)allda) < max (ba/ox ) XB.
KeTy, KeT,

We proceed with estimating the max-term via the first argument of the min-term in (13)

max (bK\/7> b min (%, %) (17)

Note that, due to the upper bound of |T}|, no gain is obtained if the second argument of
the min-term in (13) is used. Using (17) and the estimates for 77,..., Ty, we end up with

gﬂggﬂﬂg(wy—l—ac% 17b mm(\/l, \C/§)>AB

b mm< )XB+\FZB+ 05032

i
<(A+ X+ Z)pB + %/@032-

To summarise, we have
1
As((vn, qn), (—21,0)) > B B* — (A + X+ 2)pB — —6032

5 ¢”
= B2 - B2
> B - o B - 5

2
= 6B - g% fon . (18)

T (A2 4+ X2+ 77



Step 3. We define (wp, 1) := (vn, qn) + A(—2n,0) with A > 0. Using the estimates (16)
and (18), we obtain

1 5Xp? 2 2 Srcp?
As((o ) on) 2 (3 = 550 Yl + (5700 = S (G5) o

We choose \ and « such that

L R EE T T T )
128 30 M 34 T 3kem \anZ) 300
We obtain 13 g2 26 52 5o
b= Tpppe mnd =50 — 20 <ah§{>
We can bound « from below and above via (13) as follows
16 33 26 533
Our choice of A\ and « results in
Ag((vn, qn), (wn,r4)) > 30 H} (Vn, qn) m
Finally, we will show that }H(wh,rh)m < C’H}(vh, an m To this end, we start with
[l Cons i) < lCons @) + Al (=2, 0]
and see that it suffices to estimate ||(—z,0)||. We have
(=20, O)I” = vlzal} + ollzalls + vl divznlly + D Sxll b V)anllf i
KeT,
<Y (W +0Ch +vd + bidk)|znlf
KeT,
2
< @*B* < %M(Um%)mz
where we have used (17) to bound 0% dr. Using the above estimate, we obtain
A
ol = (1+ 22wl
Exploiting the choice of A in (19) and the lower bound of a in (20), we have
Yoy B B 1 T
Q=1+ 2 S 5 2%\ 16 2 150
which results in
1
As((vn, qn), (wn,r4)) > mm(vhvQh)HHH(wharh)M'
Hence, the inf-sup constant (g := 1/(300Q)) is independent of v and h. O

10



3.2 A preliminary a-priori error estimate

First, we will state and prove a continuity estimate for the bilinear form Ag.

Lemma 3. Letu € (Hk“(Q))dﬂX and p € H* Q)N M. Moreover, Iu is the interpolant
of u which preserves the discrete divergence, see (8), while Jyp is the standard finite element
interpolant of p. Then, for all (wy,ry) € X X My, the following estimate holds true

Ag((w = Inu,p — Jup), (wh, m4))
[l Con, )|

SC( > [V+ah§<+fyd+5l<b§<+
KeTy,

2dh? 1/2
+ 30 (o Rl )
KeTy, v + fyd

303 h3
Ok b3 + v+ o h¥

P el

Proof. Let w := u—Iyuand r := p— Jyp. As the following estimate of As((w, ), (wp, rh))
is straightforward, we only emphasise some important aspects. By separation of symmetric
and non-symmetric terms and using the definitions of |[w]| and || (ws, r4)]|, we obtain

As((w, ), (wn,ra) < [l (wn, ) | + ‘ S Gk (= vAw+ ow+ Vr, (b- V)wh)K‘

+ ‘(rh,divw)‘ + ‘(7“, divwh)‘ + }((b~V)w,wh)‘.

The estimates for the interpolation error result in

wi<cy [(umhi o +vd)h%f||u||z+1,wm].
KeTy,

Now, the remaining terms are estimated separately. We obtain

Z ok (—vAw + ow + Vr, (b-V)wh)K

KeTy,

1/2
< (' [+ oh3h3E Nl + k3P i ) I, )]
KeT,

where we have used that vdx < Ch% and dxo < C by (12)-(13). Since the interpolation
operator I, preserves the discrete divergence, see (8), we have (r,,divw) = 0. Note that
this term is in general non-zero for standard interpolation operators. An estimate would
involve a negative power of o causing additional difficulties. Please note that also the Ritz
projection of the Stokes problem would not be sufficient.

The term |(r, divwy)| can be handled in two ways

. _1 .
|(r,divawn)| < 72 Irlloy/All divwn o

11



1/2
<O( 3 v BRIl ) o]

KeT,
or
1/2
|(r, div wy,))| ( Z dvH|r|l3 K) ( Z V‘whﬁ,[()
KeTy, KeT,
1/2
<O( X dv hE P plit)  llwn )
KeT,
This gives
: 2d ey 10 )1/2
o divwn] < ¢ 32 g i)l ol

There are several ways for estimating the remaining term

b? / /
}((b-V)w,wh)} < Z brclwli rellwallo,x < (Z;K |w|iK>1 2( Z a ||wh||3,K>1 :

KeT, K KeT,
b2 1/2
< C( Z Sy i [ W(K) ) H‘(wh’ Th)m
K

or using integration by parts

[((0- V)w,wy)| = |((b- V)wp,w)| < Z bic|wn1.x || wlo.x

KeTy,
b2 1/2 1/2
< (Y Elwlit) (D vlwalix)
K KeT,

b2 1/2
< (X Rl 1) )]
K
or

‘((b . V)w,wh)‘ = ‘((b . V)wh,w)‘

- ( Z 51}1|Iw||(2)7K>1/2< Z 5KH(b'V)whH§7K)1/2

KeTy, KeTy,
B 1/2
< O( S slhake? ||u||§+1,w(K)> Il on, 7).
KeT,
These three estimates give together

3b2 h2 1/2
(-9 < (3 F g tlulinnn) el

The combination of all above estimates gives the assertion of the Lemma.

12



We are now in a position to derive a preliminary a-priori error estimate using the previous
stability and continuity estimates.

Lemma 4. Let (u,p) € (X NH*1(Q)?) x (M NH*YQ)) and (uy, pr) € Xy, x M), be the
solutions of (5) and (10), respectively. Moreover, we assume that the assumptions (12)
(13) are valid. Then, the following estimate holds true

dh?
lw = un =l < € 3 (S Dol 21)
KeT,

b i

Ok b + v+ o hi

+ {y + ah% + 5Kb§{ + vd + ] h% ||U||2+1,W(K))-

Proof. Using the triangle inequality, we obtain

| (w = un,p = pu) || < ||| (w = Inw, p = Jup) || + ||| (Znw — wn, Jup — pa) ||

where Jp,p is the standard finite element interpolant of p and I,u the interpolant of v which
additionally preserves the discrete divergence, see (8). The inf-sup condition for Ag given
by Lemma 2 ensures the existence of (wp,r,) € X}, x M), such that

As((Inu = up, Jup — pr), (W, 1))
Il Cwons )|

~ As((Unu =, Jup = p), (wn, 71))

| Con, )|

Bs||(Inw = wn, Jop — pp)|[| <

where we also used the Galerkin orthogonality (11). Application of Lemma 3 yields

ﬂsm(fhu — Up, Jpp — Dn) m

3 b% h?
<C <1/+<7h2 + 0% +yd + KK Wi lullf
Keth [ K K 5Kb§<+u+ah%(] KTkt Lw(K)
2dh? 1/2
+ [or+ S WPl k)

We use the assumptions (12) (13) for the estimates

h3, dh? dh?
K s o0p2>C d 0w < O—K <« 0K
o — 2 Clvtad), =202 = v 4qd

This allows a simplification of the [-]-factors of the previous estimate.
The interpolation error estimates for I, and Jj, give

[ =t p= Tp)||* < C 3 | (vo+ 0 B v+ 0xcbie) B3 Nl ey + @ PRSI e
KeT,

13



We can simplify the right hand side by using (12) (13), (20) and

dh2,
v+yd

dhe _ o dh

h2 < C .
W = 2 T v+d

K=<
Putting together all estimates and applying the triangle inequality from the beginning of
this proof gives the assertion. O

4 A-priori error estimate. Parameter design

Here we will apply the result of Lemma 4 in order to design the stabilisation parameters
0 and 7, and to refine the a-priori error estimate.

Our first goal is the design of the grad-div parameter . We observe from (21) that a
positive, h-independent « prevents a degeneration of the [-]-factor of the p-dependent term
if v — 40. On the other hand, v as the scaling parameter of the grad-div stabilisation
term must not be too large due to the large kernel of the div-operator. Moreover, for

2
dimensional reasons, 7 should scale like other terms in p? ~ v+ cC%+ 0% min (C—VF, %) +7.
The extreme cases of very large or small values of ¢ motivate a balance of the o-dependent
terms in 2, i.e. 0C% ~ b% /0. This leads to the proposal

boo C'F

v =7V + bxCr) = ¥'v(1 + Reg), Req = 1/

(22)

with a constant v* > 0 and Cp ~ diam(§). This implies ¢? ~ v + b oCp + 0C% +
b2, min (C—% %) and

v )

* 1,2 1
0" i 0< 6 < —. (23)

0<dx < ’
v+ by Cp + oC% + b2 min <C—f,§> 30

Here we used that the first argument in the min-term of the upper bound of x in (13)
can be omitted for sufficiently small hg. Moreover, recall that the upper bound of 0k is
basically caused by the advective Galerkin term.

Finally, we observe from (23) that dxb% < b% min (%7 ). Combining Lemma 4 with
the latter estimates, we obtain the following refined a-priori error estimate.

Theorem 5. Let (u,p) € (X N H*(Q)4) x (M N0 H Q) and (up, pr) € Xi x My, be
the solutions of (5) and (10), respectively. Then, with the design conditions (22) and (23),
the a-priori error estimate reads

h2 1
m(u—uh,P—Ph)mz < C’Z <{V+booCF+0h%<+b%<mm <7K7;>]h%€ ||u||2+1,w(K)
KeT,

1 2(0+1)
+mhK HPH?H,K)- (24)
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Theorem 5 clarifies and generalises several aspects of the result of Theorem 4.1 in [6].
The new result relaxes the assumption of quasi-uniformity of the mesh to shape-regularity
and the assumption of continuous pressure approximation to a (potentially) discontinuous
ansatz. Finally, the H2-regularity result for the Stokes problem which is used in [6] can be
avoided (as a technical tool).

Let us discuss various aspects of the result of Theorem 5:

i) We emphasise that, for inf-sup stable interpolation of velocity-pressure, the param-
eter design according to (22)-(23) differs from that for equal-order interpolation,
see |5, 9]. Besides the missing PSPG terms, estimate (24) remains valid even if
the SUPG-stabilisation is switched off (of course the SUPG-part in the norm H} . H}
will vanish). This underlines the important role of the grad-div stabilisation which
is nothing but the classical augmented Lagrangian approach to the incompressibil-
ity constraint. These facts can be observed in the numerical experiments below, see
also [6]. Moreover, note that the design (22) of the grad-div parameter ~ is favourable
for the efficient solution of the corresponding algebraic systems, see [1, 15].

ii) There are two critical terms on the right hand side term in (24): The first term is oh%.
For an implicit time discretisation of the non-stationary Navier—Stokes problem (1),
there holds o ~ §t~! with time step dt. The error estimate (24) suggests to impose
the (reasonable) restriction oh? ~ h2. /5t < O(1).

The other critical term is b% min (h ) We observe that

2 2 72
b3, min <h7 %) < bxCr if VZmI?X bz]g; or UZZ—F. (25)

Under the assumptions of Theorem 5, of (25) and with (time step) restriction oh% <
O(1), the a-priori error estimate reads

h2€+2

= o =)l < € 32 (5 ol + [+ b Cr] B ulsse) )
KeT, 0

iii) The last right hand side term of estimate (21) suggests that an appropriate choice
of the SUPG-parameters 0 > C’h% would result in an a-priori estimate which is
uniformly valid with respect to v? + 0% — +0. Unfortunately, this is not possible
due to the upper bound of 05 < 6*h3 /p* < 5*% max (& ;o) in (23) where the size
of ©? is mainly dictated by the estimate of the advective FGalerkin term.

So it remains open whether the resulting term b% min (h77 ;) in (24) is sharp for
v,0 — 0. In the "stationary” case o = 0, it behaves like vRe? with mesh Reynolds
number Rey = thK . Although the restriction vRe?% < 1 might be not too restrictive
for some flows, the case of 0 = 0, — 40 is not of large physical relevance as the
(Navier—Stokes) flow is typically unsteady for large Reynolds numbers. Therefore, an
implicit time-stepping leading to auxiliary Oseen problems is a reasonable approach.
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iv) Using o ~ 1/6t, condition (23) reads:
§*h3,
Cc? . (C3 '
v+ b Cp + 5= + b2 min (TF’ 515)

0<dg <

(26)

For moderate time steps §t ~ 1, we recover the choice dx < O(h3%) from [6]. However,
the upper bound of dx becomes very small with either very small time steps 6t or

very large time steps 0t > 07% > 1. This supports the arguments given in 1i).

v) Let us briefly consider the case of the Stokes problem, i.e., b = 0, hence by, = 0.
This case has been discussed very carefully in |15] for the cases o € {0,1}. The
analysis shows that the grad-div stabilisation with v = O(1) results in improved
error bounds for inf-sup stable velocity-pressure approximations. Nevertheless, the
error bounds are not optimal for the time-discretised problem with 6t ~ o=! — 4-0.
Let us remark that the present error analysis is consistent with the result in [15] by
replacing condition (22) with v = O(1).

We conclude the discussion with two examples. To be as close as possible to the Navier
Stokes model, the solution u is chosen as the convective field b. The first example with a
smooth and v-independent solution serves to check some aspects of the a-priori analysis.
Then we consider a problem with a v-dependent solution.

The stabilisation parameters are chosen according to (22) (23) with Jx according to
the upper bound in (26). It is not possible to discuss the dependence of the scheme with
respect to all parameters and data in this paper. In particular, we restrict ourselves to the
simplest Taylor-Hood pair 2/@Q1 on unstructured, quasi-uniform, quadrilateral meshes.
For a more detailed consideration, we refer to |16].

Example 1. We solve the Oseen problem (2) on 2 = (0,1)? with b = u and solution

u = (ui(z,y),us(x,y))" = (sin(rx), —wy cos(mwx)), p(z,y) = sin(mx) cos(my).

First, we look for the optimal grad-div parameter +*, exemplarily for v = 1078, ¢ = 1 and

§* = 1072 In Fig. 1, we present the dependence of the velocity error |[e,]| := |[u — u4]|
and of the pressure error ||e,|lo := ||[p — pulloo on 7* for a sequence of grids. Although
a proper choice of v* has no visible influence on |ley||o, it improves |[e,]| significantly.
For the coarsest grid, Table 1 clarifies the remarkable influence of grad-div stabilisation.
Moreover, the influence of SUPG-stabilisation is negligible for this example. Please note
that the parameter choice for the case of inf-sup stable elements differs completely from
the case of equal-order interpolation [5].

Fig. 2 shows the h-convergence for the optimised value of v* and for the SUPG-parameters
0 as above for v = 107% and o € {0, 10*}. Together with the former results, we observe
robustness for ¢ = 0 (stationary case), for o = 1 (moderate time steps) and for ¢ = 102
(small time steps). The error of the ’streamline derivative’ (3, dx|/(b - V)euHaK)% is
not shown since it is negligible in comparison to the other terms.
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Figure 1: Choice of v* for fixed v = 1078, 0 = 1 and §* = 0.01 on a sequence of grids.

Table 1: Absolute errors for optimal parameters and v = 107¢, ¢ = 1 and h =~ 1/16.

leullo leuh IV - ullo lenllo
unstabilised 0.00515282  0.73055200 0.59034800 0.00261003
supg + grad-div | 0.00021771 0.02457250 0.00169816  0.00045265
grad-div 0.00021790  0.02460060 0.00169836 0.00045265
supg(8* = 0.01) | 0.00507245 0.72140500 0.58406400 0.00257348
supg(d* =5) | 0.00273604 0.33109400 0.31021400 0.00186871

Finally, Fig. 3 shows that the numerical results with v* = 0.1 are basically independent
of 0* for |[e,]| and |e,|lo. SUPG-stabilisation is indeed not necessary for this example. [J

Example 2. We solve the Oseen problem (2) on Q = (0,1)? with b = u and solution

() (1 <27r(eR1m1 — 1))) , (27T(6R2w2 — 1)) Ry M2
U\r = —CoOS |\ ——F——7F— S1n -
! e — 1 efe —1 )2 (efe — 1)

() “in (27r(ele1 — 1)) <1 o (27r(eR2”C2 — 1))) R, efim
r) = —sin|—~ — -/ Ty =~ -
? e — 1 el — 1 27 (B — 1)

_2m(efr — 1)\ om(effere — 1) efiam ghia:
pla,y) = RiRysin (W) ° < eRz — 1 )(eR1 —1)(ef = 1)

The velocity field resembles a counter-clockwise vortex with the centre at (xg1,zg2) =

(7 log (<52), ; log (<5

0.5125 and R; such that zg; =1 — V%, i.e. the centre moves with decreasing v to the right
boundary. This leads to a v-dependent solution with ||[Vullg ~ %3 and ||p||o ~ v~ %12.

First, we look again for the optimal grad-div parameter v*, exemplarily for v = 1073,
o =0 and §* = 0.1. In Fig. 4, we present the dependence of the velocity error |[e,]| :=
|[u — up]| and of the pressure error |le,||o == ||p — pulloo on 7* for a sequence of grids. The
results are very similar to those of the first example, see Fig. 1.

). The parameter are chosen as Ry, = 0.1 leading to xgo =

17



error

e |u—uh|1

—a— ”U_UhHO —g— ”u_uhllo

10 k| 10 1
e Tl el
AR Iyl
10_7 1 1 n n n n 1077 1 1 1 1 n n
-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -6.5 -6 -55 -5 -4.5 -4 -3.5 -3
meshsize h (Iogz) meshsize h (Iogz)

Figure 2: Convergence plots for v = 107% ¢ = 0 (left) and o = 10? (right).
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Figure 3: Dependence on §* for v* = 0.1 and v = 1078, 0 = 1.

Fig. 5 shows the h-convergence for |[e,]| and ||e,||o (scaled by appropriate Sobolev norms
of the solution) for the optimised value of v* and §* as above for different values of v =
10744 = 2,3,4,5,6 and 0 = 0. We observe that second order accuracy is reached for the
larger values of v and for the smaller values at least on sufficiently fine grids as full accuracy
can only be obtained for a mesh which resolves the boundary layer effects at x1 = 1.

Finally, we consider the robustness of the scheme with optimised parameters for a wide

1

range of values of v and o and h = &;. Fig. 6 shows a rather weak dependence of the

accuracy with respect to both parameters.
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Figure 5: Convergence plots for different values of v, o = 0.

5 Summary. Outlook

In the present paper, we considered stabilised finite element methods for the generalised
Oseen problem. We proved for inf-sup stable discretisations of velocity and pressure the
unique solvability based on a modified stability condition and an error estimate. The
main results are as follows: First of all, we emphasise the important role of an addi-
tional stabilisation of the divergence constraint via grad-div stabilisation. Secondly, the
streamline-diffusion (SUPQG) stabilisation is obviously less important in the case of inf-sup
velocity-pressure pairs. Thirdly, our analysis extends the recent result in [6] on quasi-
uniform meshes and continuous pressure approximations to general shape-regular meshes
and to discontinuous pressure interpolation. Moreover, we were able to refine the design
of the stabilisation parameters given in |6].
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Figure 6: Convergence rates plots for h ~ 6i4 depending on v and o.

Let us finally mention some open problems:

e We didn’t discuss the dependence on the polynomial degree of the finite elements.
This appears in the stability estimate of Lemma 2 and in the upper bound of dx.

e The upper bound of the SUPG-parameter d5 in formula (23), which stems from the
stability analysis, might be not convincing. Let us emphasise that such restriction
does not exist for the symmetric stabilisation of local projection type, see e.g. [13].

e The grad-div stabilisation with v ~ 1 may lead to problems for iterative solvers of
the mixed algebraic problem as the kernel of the div-operator is large. To a certain
extent, this is discussed for the Stokes model in [15| and for the Oseen problem in [1].
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