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onsider stabilised �nite element methods for the generalised Oseen prob-lem. The unique solvability based on a modi�ed stability 
ondition and an errorestimate are proved for inf-sup stable dis
retisations of velo
ity and pressure.The analysis highlights the role of an additional stabilisation of the in
om-pressibility 
onstraint. It turns out that the stabilisation terms of streamline-di�usion (SUPG) type play a less important role. The analysis extends a re
entresult to general shape-regular meshes and to dis
ontinuous pressure interpo-lation. Some numeri
al observations support the theoreti
al results.
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1 Introdu
tionse
:intro Let us 
onsider the instationary, in
ompressible Navier�Stokes problem with homogeneousDiri
hlet boundary 
onditions
∂tu − ν△u + (u · ∇)u + ∇p = f̃ in Ω × (0, T ),

div u = 0 in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ],

u|t=0 = u0 in Ω,

(1) Null.1for the velo
ity u and the pressure p in the spa
e-time 
ylinder Ω×(0, T ) with a polyhedraldomain Ω ⊂ R
d, d = 2, 3, and a time T > 0. The given sour
e term is denoted by f̃ . Atypi
al algorithmi
 approa
h for solving (1) is to semidis
retise �rst in time and to applythen a �xed-point iteration within ea
h time step. This leads in ea
h step of this iterationto an auxiliary problem of Oseen type
LO(b; u, p) := −ν△u + (b · ∇)u + σu + ∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

(2) Null.2Also the iterative solution of the steady-state Navier�Stokes equations may lead to prob-lems of type (2) with σ = 0 if a �xed-point iteration is applied.The basi
 Galerkin �nite element method (FEM) for (2) may su�er from two problems:the dominating adve
tion (and rea
tion) in the 
ase of 0 < ν ≪ ‖b‖L∞(Ω), and/or theviolation of the dis
rete inf-sup (or Babu²ka�Brezzi) stability 
ondition for the velo
ityand pressure approximations. The streamline-upwind/Petrov�Galerkin method (SUPG),introdu
ed in [3℄, and the pressure-stabilisation/Petrov�Galerkin method (PSPG), intro-du
ed in [10, 11℄, opened the possibility to treat both problems in a unique framework usingrather arbitrary FE approximations of velo
ity-pressure, in
luding equal-order pairs. Ad-ditionally to the Galerkin part, the elementwise residual LO(b; u, p)−f is tested against the(weighted) non-symmetri
 SUPG/PSPG parts (b · ∇)v + ∇q of LO(b; v, q). An additionalelementwise stabilisation of the divergen
e 
onstraint div u in (2), hen
eforth denoted asgrad-div stabilisation, is important for the robustness if 0 < ν ≪ ‖b‖L∞(Ω), see [5℄ forequal-order interpolation.For a uni�ed a-priori analysis of 
lassi
al residual-based stabilisation (RBS) te
hniques,we refer to [12℄. We emphasise that the design of the stabilisation parameters for equal-order interpolation signi�
antly di�ers from that for inf-sup stable pairs. In parti
ular,the grad-div stabilisation is mu
h more important in the adve
tion-dominated 
ase if aninf-sup stable interpolation is applied, see also [6, 15℄.One of the 
riti
al aspe
ts of these RBS te
hniques for in
ompressible �ows is the strong
oupling between velo
ity and pressure in the stabilising terms. Several attempts have beenmade to relax this problem, see [2℄ for an overview. In parti
ular, we mention the promisingidea of weakly-
onsistent, symmetri
 stabilisation te
hniques (e.g., via edge stabilisationor lo
al proje
tion). 2



Within the framework of strongly 
onsistent RBS te
hniques, one natural idea is to skipthe PSPG term in the 
ase of inf-sup stable dis
retisations of velo
ity and pressure. We
onsidered this possibility in [6℄. The analysis of the so-
alled redu
ed stabilised s
hemeis so far restri
ted to the quasi-uniform 
ase and to 
ontinuous pressure approximation.Moreover, the analysis is seemingly not optimal for the 
ase ν2 + σ2 → +0, whereasnumeri
al experiments show stable results for this 
ase too.The goal of the present paper is to re�ne the analysis in [6℄ for the redu
ed stabiliseds
heme and to relax the assumptions of quasi-uniform meshes and 
ontinuous pressuredis
retisations. We prove an inf-sup stability 
ondition of the s
heme whi
h is uniformlyvalid for 0 < ν ≪ 1 and an a-priori error estimate. A re�ned design of the grad-divand SUPG-stabilisation parameters highlights the role of the additional stabilisation of thein
ompressibility 
onstraint. Moreover, it turns out that the SUPG-stabilisation is lessessential. An important te
hni
al ingredient is the appli
ation of quasi-lo
al interpolationoperators preserving the dis
rete divergen
e [8℄. For brevity, we 
onsider only 
onformingFEM.The paper is organised as follows. In Se
tion 2, we introdu
e notation and the stabilisedGalerkin dis
retisation of the Oseen problem. Then, we analyse the method in Se
tion 3and dis
uss the results in Se
tion 4. Finally in Se
tion 5, we 
onsider some open problems.2 Notation. The dis
rete problemse
:notation Let Ω ⊂ R
d, d = 2, 3, be a bounded polygonal or polyhedral domain. For a subdomain G ⊂

Ω, the usual Sobolev spa
es W m,p(G) with norm ‖ · ‖m,p,G and semi-norm | · |m,p,G are used.In the 
ase p = 2, we have Hm(G) = W m,2(G) and the index p will be omitted. The L2inner produ
t on G is denoted by (·, ·)G. Note that the index G will be omitted for G = Ω.This notation of norms, semi-norms, and inner produ
ts is also used for the ve
tor-valuedand tensor-valued 
ase. We set X :=
(

H1
0 (Ω)

)d, M := L2
0(Ω) :=

{

q ∈ L2(Ω) : (q, 1) = 0
}and H(div, Ω) :=

{

v ∈ [L2(Ω)]d : div v ∈ L2(Ω)
}.The generalised Oseen equations with homogeneous Diri
hlet boundary 
onditions aregiven by

−ν△u + (b · ∇)u + σu + ∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω











(3) oseenwith 
onstants ν > 0, σ ≥ 0 and a given 
onve
tion �eld b ∈ H(div, Ω) ∩
(

L∞(Ω)
)d with

div b = 0. For u, v ∈ X, p, q ∈ M , the bilinear forms A, b and linear form L are given by
A

(

(u, p), (v, q)
)

:= ν(∇u,∇v) +
(

(b · ∇)u, v
)

+ σ(u, v) − b(v, p) + b(u, q),

b(v, q) := (q, div v),

L
(

(v, q)
)

:= (f, v).
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Note that the following integration by parts
(

(b · ∇)v, w
)

= −
(

(b · ∇)w, v
) (4) intpartsholds true for all v, w ∈ X due to div b = 0.A weak formulation of the generalised Oseen equations (3) reads:Find (u, p) ∈ X × M su
h that

A
(

(u, p), (v, q)
)

= L
(

(v, q)
)

∀(v, q) ∈ X × M. (5) weakLet {Th} be a family of shape-regular and exa
t triangulations of the domain Ω su
hthat
Ω =

⋃

K∈Th

Kholds true for all triangulations Th.Let Xh be a 
onforming �nite element spa
e based on Th for approximating the velo
ity.The spa
e Mh for approximating the pressure may 
onsist of 
ontinuous or generally dis-
ontinuous fun
tions. We are interested in inf-sup stable dis
retisations, i.e., the 
ondition
inf

qh∈Mh

sup
vh∈Xh

(div vh, qh)

|vh|1 ‖qh‖0
≥ β0 > 0 (6) infsupis valid for all Th with a positive 
onstant β0 whi
h is independent of the mesh parameter h.Examples for su
h pairs are the Taylor�Hood family Pk/Pk−1, k ≥ 2, on simpli
es and

Qk/Qk−1, k ≥ 2, on quadrilaterals and hexahedra, see [7℄ and the referen
es therein.Furthermore, Qk/P
dis

k−1, k ≥ 2, ful�ls the inf-sup 
ondition on quadrilaterals and hexahedra,see [7, 14℄.We assume that for all 
ells K ∈ Th the following inverse inequalities

‖△vh‖0,K ≤ µ h−1
K ‖∇vh‖0,K ∀vh ∈ Xh,

1√
d
‖ div vh‖0,K ≤ ‖∇vh‖0,K ≤ µ h−1

K ‖vh‖0,K ∀vh ∈ Xh,

‖∇qh‖0,K ≤ µ h−1
K ‖qh‖0,K ∀qh ∈ Mh,

(7) invineqare valid with a 
onstant µ whi
h depends only on the shape-regularity parameter of thefamily of triangulations.We assume that the dis
rete velo
ity spa
e Xh is based on �nite elements of order k.One 
an think of the 
ase there Xh 
onsists of all 
ontinuous fun
tion those restri
tionsto a single 
ell K of the triangulation Th belongs to Pk (for simpli
ial 
ells) or to Qk (forquadrilateral and hexahedral 
ells). The dis
rete pressure spa
e Mh is assumed to be basedon �nite elements of order ℓ ≥ 1. This means that the restri
tion of a fun
tion from Mhto a 
ell K ∈ Th belongs to Pℓ or Qℓ. Note that Pℓ 
an be used also on quadrilaterals andhexahedra if no 
ontinuity is required in Mh.4



The standard �nite element interpolation operator Jh : M → Mh ful�ls for all K ∈ Ththe estimate
|q − Jhq|m,K ≤ Chℓ+1−m

K ‖q‖ℓ+1,K ∀q ∈ Hℓ+1(Ω) ∩ M, m = 0, . . . , ℓ + 1,where the 
onstant C is independent of h, see [4℄. We 
hoose from [8℄ for the velo
ity thequasi-lo
al interpolation operator whi
h preserves the dis
rete divergen
e. Hen
e, we havefor the interpolation operator Ih : X → Xh the estimate
|v − Ihv|m,K ≤ Chk+1−m

K ‖v‖k+1,ω(K) ∀v ∈
(

Hk+1(Ω)
)d ∩ X, m = 0, . . . , k + 1,where ω(K) is a suitable neighbourhood of K and C is independent of h, see [8℄. Moreover,

(div Ihv, qh) = (div v, qh) ∀qh ∈ Mh, ∀v ∈ X, (8) dis
divholds true.Using the �nite element spa
es Xh and Mh, we 
an formulate the standard Galerkindis
retisation of (5) whi
h readsFind (uh, ph) ∈ Xh × Mh su
h that
A

(

(uh, ph), (vh, qh)
)

= L
(

(vh, qh)
)

∀(vh, qh) ∈ Xh × Mh. (9) GalerkinIn the 
ase of lo
ally dominating 
onve
tion, one may get solutions of (9) with spuriousos
illations whi
h are in general not lo
alised to regions with dominating 
onve
tion. Inorder to stabilise the dis
rete problem, we introdu
e a modi�ed bilinear form and a modi�edlinear form by
AS

(

(u, p), (v, q)
)

:=A
(

(u, p), (v, q)
)

+ γ(div u, div v)

+
∑

K∈Th

(

− ν△u + (b · ∇)u + σu + ∇p, δK(b · ∇)v
)

K
,

LS

(

(v, q)
)

:=L
(

(v, q)
)

+
∑

K∈Th

(

f, δK(b · ∇)v
)

Kwhere δK is a 
ell-dependent parameter while γ is a global user-de�ned parameter. Adetailed study of the 
hoi
e of these parameters will be given later.The stabilised dis
rete problem readsFind (uh, ph) ∈ Xh × Mh su
h that
AS

(

(uh, ph), (vh, qh)
)

= LS

(

(vh, qh)
)

∀(vh, qh) ∈ Xh × Mh. (10) dis
stabSin
e the additional terms in AS and LS vanish in sum for a smooth solution, thestabilised problem is of residual type. Hen
e, we have the Galerkin orthogonality
AS

(

(u − uh, p − ph), (vh, qh)
)

= 0 ∀(vh, qh) ∈ Xh × Mh (11) GalOrthowhere (uh, ph) ∈ Xh × Mh is the solution of (10) and the solution (u, p) ∈ X × M of (5)satis�es additionally the regularity requirement u ∈
(

H2(Ω)
)d and p ∈ H1(Ω).5



Remark 1. It is possible to 
onsider the fully stabilised dis
rete problem whi
h in
ludes aPSPG term. In this 
ase, the bilinear form AF and the linear form LF are de�ned by
AF

(

(uh, ph), (vh, qh)
)

= AS

(

(uh, ph), (vh, qh)
)

+
∑

K∈Th

(

LO

(

(uh, ph), αK∇q
)

K
,

LF

(

(vh, qh)
)

= LS

(

(vh, qh)
)

+
∑

K∈Th

(

f, αK∇q
)

K
,where αK are user-
hosen parameters. Using similar te
hniques as below, 
orrespondingerror estimates and parameter designs 
an be derived for the fully stabilised s
heme. Al-though the PSPG stabilisation is not needed for inf-sup stable dis
retisation from the pointof stability, the additional term might improve the a

ura
y of the pressure approximation.We introdu
e the norms

|[v]|2 := ν|v|21 + σ‖v‖2
0 + γ‖ div v‖2

0 +
∑

K∈Th

δK‖(b · ∇)v‖2
0,K,

∣

∣

∣

∣

∣

∣(v, q)
∣

∣

∣

∣

∣

∣

2
:= |[v]|2 + α‖q‖2

0.Note that the norms are well-de�ned on X and X × M , respe
tively.The positive 
onstant α will be 
hosen later on in the proof of Lemma 2. A lower boundis given in (20). Furthermore, we set
bK := ‖b‖0,∞,K, b∞ := ‖b‖0,∞.In this paper, the generi
 
onstant C may have di�erent values at di�erent pla
es but itwill be always independent of the mesh size h and the parameter ν.3 Analysis of the methodse
:analysis 3.1 Stability and solvability of the dis
rete problemsubse
:stability To show that our stabilised dis
rete problem (10) is uniquely solvable, we will prove forthe bilinear form AS an inf-sup 
ondition on Xh × Mh where the 
onstant is independentof the mesh size h and parameter ν.It turns out that our stability analysis requires an upper bound of the SUPG-parameters

δK whi
h is basi
ally di
tated by an upper bound of the adve
tive Galerkin term. We de�ne
ϕ :=

√

ν + σC2
F + 2b∞ min

( 1√
σ

,
CF√

ν

)

+
√

γd (12) phiwhere CF is the Friedri
hs 
onstant for Ω. We assume that the stabilisation parametersful�l
0 ≤ γ, 0 ≤ δK ≤ min

(

1

15
min

(1

σ
,
C2

F

ν

)

,
1

30

h2
Kβ2

0

µ2ϕ2

) (13) paramdesignwhere µ is the 
onstant from the inverse inequalities (7) and β0 the inf-sup 
onstant forthe pair (Xh, Mh). 6



lem:infsup Lemma 2. Let the stabilisation parameters ful�l (13). Then, there exists a positive 
on-stant βS independent of the mesh size h and parameter ν su
h that
inf

(vh,qh)
sup

(wh,rh)

AS

(

(vh, qh), (wh, rh)
)

∣

∣

∣

∣

∣

∣(vh, qh)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣

≥ βS > 0 (14) eq:infsupholds true where the in�mum and supremum are taken over Xh × Mh.Proof. Let (vh, qh) be an arbitrary element of Xh × Mh. During the proof, we will use thefollowing abbreviations:
X2 :=

∑

K∈Th

δK‖(b · ∇)vh‖2
0,K , Z2 := γ‖ div vh‖2

0,

Y 2 :=
∑

K∈Th

δK‖ − ν△vh + σvh + ∇qh‖2
0,K , B2 := ‖qh‖2

0,

A2 := ν|vh|21 + σ‖vh‖2
0,whi
h give immediately that |[vh]|2 = A2 + X2 + Z2.The outline of the proof is as follows.1. We show AS

(

(vh, qh), (vh, qh)
)

≥ C1 |[vh]|2 − δ B2 with 
onstants C1 and δ. The
riti
al 
onstant δ s
ales like δK/h2
K , see (16).2. We get from the inf-sup 
ondition (14) the existen
e of a fun
tion zh ∈ Xh su
h that

AS

(

(vh, qh), (−zh, 0)
)

≥ 2
3
β0 B2 − C2 |[vh]|2 with C2 s
aling like ϕ2, see (18).3. The fun
tion (wh, rh) := (vh, qh)+λ(−zh, 0) ∈ Xh ×Mh with a suitably 
hosen λ > 0satis�es AS

(

(vh, qh), (wh, rh)
)

≥ C3

∣

∣

∣

∣

∣

∣(vh, qh)
∣

∣

∣

∣

∣

∣

2 and ∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣ ≤ C4

∣

∣

∣

∣

∣

∣(vh, qh)
∣

∣

∣

∣

∣

∣ whi
htogether result in the assertion of this lemma.Step 1. Using the de�nition of the bilinear form AS, we obtain via the Young inequalityand integration by parts (see (4))
AS

(

(vh, qh), (vh, qh)
)

≥ |[vh]|2 − XY ≥ |[vh]|2 −
3

4
X2 − 1

3
Y 2.The terms will be estimated separately. Exploiting (7), (13) and ν2

ϕ2 ≤ 1, we get
Y 2 ≤2

∑

K∈Th

(δK‖∇qh‖2
0,K + δK‖ − ν△vh + σvh‖2

0,K)

≤
∑

K∈Th

2δKµ2

h2
K

‖qh‖2
0,K + 4

(

∑

K∈Th

δK
µ2

h2
K

ν2|vh|21,K +
∑

K∈Th

δKσ2‖vh‖2
0,K

)

≤
∑

K∈Th

2δKµ2

h2
K

‖qh‖2
0,K + 4

(

∑

K∈Th

1

30

β2
0

ϕ2
ν2|vh|21,K +

∑

K∈Th

1

15
σ‖vh‖2

0,K

)

≤2 max
K∈Th

(δKµ2

h2
K

)

B2 +
4

15
A2.

(15) eq4
7



where β0 ≤ 1 was applied, whi
h is always possible to 
hoose, see (6). Hen
e, we obtain
AS

(

(vh, qh), (vh, qh)
)

≥ 1

4
|[vh]|2 −

2

3
max
K∈Th

(δKµ2

h2
K

)

B2. (16) step1Step 2. Due to the inf-sup 
ondition (6) for (Xh, Mh), there exists zh ∈ Xh su
h that
|zh|1 = ‖qh‖0 = B, (div zh, qh) ≥ β0 |zh|1 ‖qh‖0 = β0 B2.We have

AS

(

(vh, qh), (−zh, 0)
)

≥ β0 B2 −
4

∑

i=1

Tiwhere
T1 := ν(∇vh,∇zh) + σ(vh, zh) − ((b · ∇)zh, vh), T2 := γ(div vh, div zh),

T3 :=
∑

K∈Th

δK(−ν△vh + σvh + ∇qh, (b · ∇)zh)K , T4 :=
∑

K∈Th

δK((b · ∇)vh, (b · ∇)zh)K .These four terms will be estimated individually. Applying the Cau
hy�S
hwarz inequality,we obtain
|T1| ≤

(

ν|vh|21 + σ‖vh‖2
0

)1/2(
ν|zh|21 + σC2

F |zh|21
)1/2

+
∑

K∈Th

bK‖vh‖0,K |zh|1,K

≤
√

ν + σC2
F AB +

∑

K∈Th

bK‖vh‖0,K |zh|1,K .The last term 
an be estimated in two ways
∑

K∈Th

bK‖vh‖0,K |zh|1,K ≤
∑

K∈Th

bK√
σ

(
√

σ‖vh‖0,K)|zh|1,K ≤ b∞
1√
σ

ABor
∑

K∈Th

bK‖vh‖0,K |zh|1,K ≤
∑

K∈Th

bK√
ν
(
√

ν‖vh‖0,K)|zh|1,K ≤ b∞
CF√

ν
AB.Hen
e, we get the estimate

|T1| ≤
√

ν + σC2
FAB + b∞ min

(

1√
σ

,
CF√

ν

)

ABwhi
h is governed by the bound of the adve
tive term ((b ·∇)zh, vh). Furthermore, we have
|T2| ≤

√
γ‖ div vh‖0

√
γ‖ div zh‖0 ≤ Z

√

γd
(

∑

K∈Th

|zh|21,K

)1/2

=
√

γdZB

8



and
|T3| ≤

(

∑

K∈Th

δK‖ − ν△vh + σvh + ∇qh‖2
0,K

)1/2( ∑

K∈Th

δK‖(b · ∇)zh‖2
0,K

)1/2

≤ Y
(

∑

K∈Th

δKb2
K |zh|21,K

)1/2

≤
(

max
K∈Th

(

bK

√

δK

))

Y B.Using (13) and (15), we obtain Y 2 ≤ 2
30

β2

0

ϕ2 B
2 + 4

15
A2 whi
h gives Y ≤

√

2
30

β0

ϕ
B + 2√

15
A.Furthermore, we have

|T3| ≤
2√
15

(

max
K∈Th

(

bK

√

δK

))

AB +

√

2

30

β0

ϕ

1

2

1√
15

2b∞ min
( 1√

σ
,
CF√

ν

)

B2

≤ 2√
15

(

max
K∈Th

(

bK

√

δK

))

AB +
1

30
β0B

2.It remains to bound T4. We obtain
|T4| ≤

(

∑

K∈Th

δK‖(b · ∇)vh‖2
0,K

)1/2( ∑

K∈Th

δK‖(b · ∇)zh‖2
0,K

)1/2

≤ max
K∈Th

(

bK

√

δK

)

XB.We pro
eed with estimating the max-term via the �rst argument of the min-term in (13)
max
K∈Th

(

bK

√

δK

)

≤ 1√
15

b∞ min
( 1√

σ
,
CF√

ν

) (17) maxphiNote that, due to the upper bound of |T1|, no gain is obtained if the se
ond argument ofthe min-term in (13) is used. Using (17) and the estimates for T1, . . . , T4, we end up with
4

∑

i=1

Ti ≤
4

∑

i=1

|Ti| ≤
(

√

ν + σC2
F +

17

15
b∞ min

( 1√
σ

,
CF√

ν

))

AB

+
1√
15

b∞ min
( 1√

σ
,
CF√

ν

)

XB +
√

γdZB +
1

30
β0B

2

≤(A + X + Z)ϕB +
1

30
β0B

2.To summarise, we have
AS

(

(vh, qh), (−zh, 0)
)

≥ β0B
2 − (A + X + Z)ϕB − 1

30
β0B

2

≥ 29

30
β0B

2 − 3 · 1
10

β0B
2 − 5

2

ϕ2

β0
(A2 + X2 + Z2)

=
2

3
β0B

2 − 5

2

ϕ2

β0
|[vh]|2. (18) step2

9



Step 3. We de�ne (wh, rh) := (vh, qh) + λ(−zh, 0) with λ > 0. Using the estimates (16)and (18), we obtain
AS

(

(vh, qh), (wh, rh)
)

≥
(1

4
− 5

2

λϕ2

β0

)

|[vh]|2 +
(2

3

λβ0

α
− 2

3
max
K∈Th

(δKµ2

αh2
K

))

αB2.We 
hoose λ and α su
h that
1

4
− 5

2

λϕ2

β0

=
1

30
and 2

3

λβ0

α
− 2

3
max
K∈Th

(δKµ2

αh2
K

)

=
1

30
. (19) lambdaWe obtain

λβ0 =
13

150

β2
0

ϕ2
and α =

26

15

β2
0

ϕ2
− 20 max

K∈Th

(δKµ2

αh2
K

)

.We 
an bound α from below and above via (13) as follows
16

15

β2
0

ϕ2
≤ α ≤ 26

15

β2
0

ϕ2
. (20) alphaOur 
hoi
e of λ and α results in

AS

(

(vh, qh), (wh, rh)
)

≥ 1

30

∣

∣

∣

∣

∣

∣(vh, qh)
∣

∣

∣

∣

∣

∣

2
.Finally, we will show that ∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣ ≤ C
∣

∣

∣

∣

∣

∣(vh, qh)
∣

∣

∣

∣

∣

∣. To this end, we start with
∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣ ≤
∣

∣

∣

∣

∣

∣(vh, qh)
∣

∣

∣

∣

∣

∣ + λ
∣

∣

∣

∣

∣

∣(−zh, 0)
∣

∣

∣

∣

∣

∣,and see that it su�
es to estimate ∣

∣

∣

∣

∣

∣(−zh, 0)
∣

∣

∣

∣

∣

∣. We have
∣

∣

∣

∣

∣

∣(−zh, 0)
∣

∣

∣

∣

∣

∣

2
= ν|zh|21 + σ‖zh‖2

0 + γ‖ div zh‖2
0 +

∑

K∈Th

δK‖(b · ∇)zh‖2
0,K

≤
∑

K∈Th

(ν + σC2
F + γd + b2

KδK)|zh|21,K

≤ ϕ2B2 ≤ ϕ2

α

∣

∣

∣

∣

∣

∣(vh, qh)
∣

∣

∣

∣

∣

∣

2where we have used (17) to bound b2
K δK . Using the above estimate, we obtain

∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣ ≤
(

1 +
λϕ√

α

)

∣

∣

∣

∣

∣

∣(vh, qh)
∣

∣

∣

∣

∣

∣.Exploiting the 
hoi
e of λ in (19) and the lower bound of α in (20), we have
Q := 1 +

λϕ√
α

≤ 1 +
13

150

β0

ϕ2
ϕ

√

15

16

ϕ2

β2
0

= 1 +
13

150

√

15

16whi
h results in
AS

(

(vh, qh), (wh, rh)
)

≥ 1

30Q

∣

∣

∣

∣

∣

∣(vh, qh)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣.Hen
e, the inf-sup 
onstant βS := 1/(30Q) is independent of ν and h.10



3.2 A preliminary a-priori error estimatesubse
:apriori First, we will state and prove a 
ontinuity estimate for the bilinear form AS.lem:
ont Lemma 3. Let u ∈
(

Hk+1(Ω)
)d∩X and p ∈ Hℓ+1(Ω)∩M .Moreover, Ihu is the interpolantof u whi
h preserves the dis
rete divergen
e, see (8), while Jhp is the standard �nite elementinterpolant of p. Then, for all (wh, rh) ∈ Xh × Mh, the following estimate holds true

AS

(

(u − Ihu, p − Jhp), (wh, rh)
)

∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣

≤ C
(

∑

K∈Th

[

ν + σ h2
K + γd + δKb2

K +
3 b2

K h2
K

δK b2
K + ν + σ h2

K

]

h2k
K ‖u‖2

k+1,ω(K)

+
∑

K∈Th

[

δK +
2dh2

K

ν + γd

]

h2ℓ
K‖p‖2

ℓ+1,K

)1/2

.Proof. Let w := u− Ihu and r := p−Jhp. As the following estimate of AS

(

(w, r), (wh, rh)
)is straightforward, we only emphasise some important aspe
ts. By separation of symmetri
and non-symmetri
 terms and using the de�nitions of |[w]| and ∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣, we obtain
AS

(

(w, r), (wh, rh) ≤ |[w]|
∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣ +
∣

∣

∣

∑

K∈Th

δK

(

− ν△w + σw + ∇r, (b · ∇)wh

)

K

∣

∣

∣

+
∣

∣(rh, div w)
∣

∣ +
∣

∣(r, div wh)
∣

∣ +
∣

∣

(

(b · ∇)w, wh

)
∣

∣.The estimates for the interpolation error result in
|[w]| ≤ C

∑

K∈Th

[

(

ν + σ h2
K + δK b2

K + γd
)

h2k
K ‖u‖2

k+1,ω(K)

]

.Now, the remaining terms are estimated separately. We obtain
∣

∣

∣

∣

∣

∑

K∈Th

δK

(

− ν△w + σw + ∇r, (b · ∇)wh

)

K

∣

∣

∣

∣

∣

≤ C
(

∑

K∈Th

[

(ν + σh2
K)h2k

K ‖u‖2
k+1,ω(K) + δKh2ℓ

K‖p‖2
ℓ+1,K

]

)1/2∣
∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣where we have used that νδK ≤ Ch2
K and δKσ ≤ C by (12)�(13). Sin
e the interpolationoperator Ih preserves the dis
rete divergen
e, see (8), we have (rh, div w) = 0. Note thatthis term is in general non-zero for standard interpolation operators. An estimate wouldinvolve a negative power of α 
ausing additional di�
ulties. Please note that also the Ritzproje
tion of the Stokes problem would not be su�
ient.The term |(r, div wh)| 
an be handled in two ways

∣

∣(r, div wh)
∣

∣ ≤ γ− 1

2‖r‖0
√

γ‖ div wh‖011



≤ C
(

∑

K∈Th

γ−1h2ℓ+2
K ‖p‖2

ℓ+1,K

)1/2∣
∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣or
∣

∣(r, div wh)
∣

∣ ≤
(

∑

K∈Th

dν−1‖r‖2
0,K

)1/2( ∑

K∈Th

ν|wh|21,K

)1/2

≤ C
(

∑

K∈Th

dν−1h2ℓ+2
K ‖p‖2

ℓ+1,K

)1/2
∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣.This gives
∣

∣(r, div wh)
∣

∣ ≤ C
(

∑

K∈Th

2d

ν + γd
h2ℓ+2

K ‖p‖2
ℓ+1,K

)1/2
∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣.There are several ways for estimating the remaining term
∣

∣

(

(b · ∇)w, wh

)
∣

∣ ≤
∑

K∈Th

bK |w|1,K‖wh‖0,K ≤
(

∑

K

b2
K

σ
|w|21,K

)1/2( ∑

K∈Th

σ ‖wh‖2
0,K

)1/2

≤ C
(

∑

K

b2
K

σ
h2k

K ‖u‖2
k+1,ω(K)

)1/2
∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣or using integration by parts
∣

∣

(

(b · ∇)w, wh

)
∣

∣ =
∣

∣

(

(b · ∇)wh, w
)
∣

∣ ≤
∑

K∈Th

bK |wh|1,K‖w‖0,K

≤
(

∑

K

b2
K

ν
‖w‖2

0,K

)1/2( ∑

K∈Th

ν |wh|21,K

)1/2

≤ C
(

∑

K

b2
K

ν
h2k+2

K ‖u‖2
k+1,ω(K)

)1/2∣
∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣or
∣

∣

(

(b · ∇)w, wh

)
∣

∣ =
∣

∣

(

(b · ∇)wh, w
)
∣

∣

≤
(

∑

K∈Th

δ−1
K ‖w‖2

0,K

)1/2( ∑

K∈Th

δK

∥

∥(b · ∇)wh

∥

∥

2

0,K

)1/2

≤ C
(

∑

K∈Th

δ−1
K h2k+2

K ‖u‖2
k+1,ω(K)

)1/2
∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣.These three estimates give together
∣

∣

(

(b · ∇)w, wh

)
∣

∣ ≤ C
(

∑

K∈Th

3 b2
K h2

K

δK b2
K + ν + σ h2

K

h2k
K ‖u‖2

k+1,ω(K)

)1/2
∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣.The 
ombination of all above estimates gives the assertion of the Lemma.12



We are now in a position to derive a preliminary a-priori error estimate using the previousstability and 
ontinuity estimates.lem:errorest Lemma 4. Let (u, p) ∈
(

X ∩Hk+1(Ω)d
)

×
(

(M ∩Hℓ+1(Ω)
) and (uh, ph) ∈ Xh ×Mh be thesolutions of (5) and (10), respe
tively. Moreover, we assume that the assumptions (12)�(13) are valid. Then, the following estimate holds true

∣

∣

∣

∣

∣

∣(u − uh, p − ph)
∣

∣

∣

∣

∣

∣

2 ≤ C
∑

K∈Th

(

dh2
K

ν + γd
h2ℓ

K ‖p‖2
ℓ+1,K (21) EE

+

[

ν + σ h2
K + δKb2

K + γd +
b2
K h2

K

δK b2
K + ν + σ h2

K

]

h2k
K ‖u‖2

k+1,ω(K)

)

.Proof. Using the triangle inequality, we obtain
∣

∣

∣

∣

∣

∣(u − uh, p − ph)
∣

∣

∣

∣

∣

∣ ≤
∣

∣

∣

∣

∣

∣(u − Ihu, p − Jhp)
∣

∣

∣

∣

∣

∣ +
∣

∣

∣

∣

∣

∣(Ihu − uh, Jhp − ph)
∣

∣

∣

∣

∣

∣where Jhp is the standard �nite element interpolant of p and Ihu the interpolant of u whi
hadditionally preserves the dis
rete divergen
e, see (8). The inf-sup 
ondition for AS givenby Lemma 2 ensures the existen
e of (wh, rh) ∈ Xh × Mh su
h that
βS

∣

∣

∣

∣

∣

∣(Ihu − uh, Jhp − ph)
∣

∣

∣

∣

∣

∣ ≤ AS

(

(Ihu − uh, Jhp − ph), (wh, rh)
)

∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣

=
AS

(

(Ihu − u, Jhp − p), (wh, rh)
)

∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣where we also used the Galerkin orthogonality (11). Appli
ation of Lemma 3 yields
βS

∣

∣

∣

∣

∣

∣(Ihu − uh, Jhp − ph)
∣

∣

∣

∣

∣

∣

≤ C
∑

K∈Th

(

[

ν + σ h2
K + δKb2

K + γd +
3 b2

K h2
K

δK b2
K + ν + σ h2

K

]

h2k
K ‖u‖2

k+1,ω(K)

+
[

δK +
2dh2

K

ν + γd

]

h2ℓ
K‖p‖2

ℓ+1,K

)1/2

.We use the assumptions (12)�(13) for the estimates
h2

K

δK
≥ Cϕ2 ≥ C(ν + γd), δK ≤ C

dh2
K

ϕ2
≤ C

dh2
K

ν + γd
.This allows a simpli�
ation of the [·]-fa
tors of the previous estimate.The interpolation error estimates for Ih and Jh give

∣

∣

∣

∣

∣

∣(u−Ihu, p−Jhp)
∣

∣

∣

∣

∣

∣

2 ≤ C
∑

K∈Th

[

(

ν +σ h2
K +γd+ δKb2

K

)

h2k
K ‖u‖2

k+1,ω(K) +α h2
Kh2ℓ

K‖p‖2
ℓ+1,K

]

.

13



We 
an simplify the right hand side by using (12)�(13), (20) and
δK ≤ C

dh2
K

ν + γd
, αh2

K ≤ C
dh2

K

ϕ2
≤ C

dh2
K

ν + γd
.Putting together all estimates and applying the triangle inequality from the beginning ofthis proof gives the assertion.4 A-priori error estimate. Parameter designse
:dis
ussion Here we will apply the result of Lemma 4 in order to design the stabilisation parameters

δK and γ, and to re�ne the a-priori error estimate.Our �rst goal is the design of the grad-div parameter γ. We observe from (21) that apositive, h-independent γ prevents a degeneration of the [·]-fa
tor of the p-dependent termif ν → +0. On the other hand, γ as the s
aling parameter of the grad-div stabilisationterm must not be too large due to the large kernel of the div-operator. Moreover, fordimensional reasons, γ should s
ale like other terms in ϕ2 ∼ ν +σC2
F + b2

∞ min
(C2

F

ν
; 1

σ

)

+γ.The extreme 
ases of very large or small values of σ motivate a balan
e of the σ-dependentterms in ϕ2, i.e. σC2
F ∼ b2

∞/σ. This leads to the proposal
γ = γ∗(ν + b∞CF ) = γ∗ν(1 + ReΩ), ReΩ :=

b∞CF

ν
(22) Dwith a 
onstant γ∗ > 0 and CF ∼ diam(Ω). This implies ϕ2 ∼ ν + b∞CF + σC2
F +

b2
∞ min

(

C2

F

ν
; 1

σ

) and
0 ≤ δK ≤ δ∗ h2

K

ν + b∞CF + σC2
F + b2

∞ min
(

C2

F

ν
; 1

σ

) , 0 ≤ δ∗ ≤ 1

30
. (23) GHere we used that the �rst argument in the min-term of the upper bound of δK in (13)
an be omitted for su�
iently small hK . Moreover, re
all that the upper bound of δK isbasi
ally 
aused by the adve
tive Galerkin term.Finally, we observe from (23) that δKb2

K ≤ b2
K min

(h2

K

ν
; 1

σ

). Combining Lemma 4 withthe latter estimates, we obtain the following re�ned a-priori error estimate.thm:
on
lusive Theorem 5. Let (u, p) ∈
(

X ∩ Hk+1(Ω)d
)

×
(

(M ∩ Hℓ+1(Ω)
) and (uh, ph) ∈ Xh × Mh bethe solutions of (5) and (10), respe
tively. Then, with the design 
onditions (22) and (23),the a-priori error estimate reads

∣

∣

∣

∣

∣

∣(u − uh, p − ph)
∣

∣

∣

∣

∣

∣

2 ≤ C
∑

K∈Th

(

[

ν + b∞CF + σh2
K + b2

K min
(h2

K

ν
;
1

σ

)

]

h2k
K ‖u‖2

k+1,ω(K)

+
1

ν + b∞CF

h
2(ℓ+1)
K ‖p‖2

ℓ+1,K

)

. (24) N
14



Theorem 5 
lari�es and generalises several aspe
ts of the result of Theorem 4.1 in [6℄.The new result relaxes the assumption of quasi-uniformity of the mesh to shape-regularityand the assumption of 
ontinuous pressure approximation to a (potentially) dis
ontinuousansatz. Finally, the H2-regularity result for the Stokes problem whi
h is used in [6℄ 
an beavoided (as a te
hni
al tool).Let us dis
uss various aspe
ts of the result of Theorem 5:i) We emphasise that, for inf-sup stable interpolation of velo
ity-pressure, the param-eter design a

ording to (22)�(23) di�ers from that for equal-order interpolation,see [5, 9℄. Besides the missing PSPG terms, estimate (24) remains valid even ifthe SUPG-stabilisation is swit
hed o� (of 
ourse the SUPG-part in the norm ∣

∣

∣

∣

∣

∣ ·
∣

∣

∣

∣

∣

∣will vanish). This underlines the important role of the grad-div stabilisation whi
his nothing but the 
lassi
al augmented Lagrangian approa
h to the in
ompressibil-ity 
onstraint. These fa
ts 
an be observed in the numeri
al experiments below, seealso [6℄. Moreover, note that the design (22) of the grad-div parameter γ is favourablefor the e�
ient solution of the 
orresponding algebrai
 systems, see [1, 15℄.ii) There are two 
riti
al terms on the right hand side term in (24): The �rst term is σh2
K .For an impli
it time dis
retisation of the non-stationary Navier�Stokes problem (1),there holds σ ∼ δt−1 with time step δt. The error estimate (24) suggests to imposethe (reasonable) restri
tion σh2

K ∼ h2
K/δt ≤ O(1).The other 
riti
al term is b2

K min
(h2

K

ν
; 1

σ

). We observe that
b2
K min

(h2
K

ν
;
1

σ

)

≤ b∞CF if ν ≥ max
K

b2
Kh2

K

b∞CF

or σ ≥ b∞
CF

. (25) ZUnder the assumptions of Theorem 5, of (25) and with (time step) restri
tion σh2
K ≤

O(1), the a-priori error estimate reads
∣

∣

∣

∣

∣

∣(u − uh, p − ph)
∣

∣

∣

∣

∣

∣

2 ≤ C
∑

K∈Th

( h2ℓ+2
K

ν + b∞CF
‖p‖2

ℓ+1,K +
[

ν + b∞CF

]

h2k
K ‖u‖2

k+1,ω(K)

)

.iii) The last right hand side term of estimate (21) suggests that an appropriate 
hoi
eof the SUPG-parameters δK ≥ Ch2
K would result in an a-priori estimate whi
h isuniformly valid with respe
t to ν2 + σ2 → +0. Unfortunately, this is not possibledue to the upper bound of δK ≤ δ∗h2
K/ϕ2 ≤ δ∗

h2

K

b2
∞

max
(

ν
C2

F

; σ
) in (23) where the sizeof ϕ2 is mainly di
tated by the estimate of the adve
tive Galerkin term.So it remains open whether the resulting term b2

K min
(h2

K

ν
; 1

σ

) in (24) is sharp for
ν, σ → 0. In the �stationary� 
ase σ = 0, it behaves like νRe2

K with mesh Reynoldsnumber ReK = bKhK

ν
. Although the restri
tion νRe2

K ≤ 1 might be not too restri
tivefor some �ows, the 
ase of σ = 0, ν → +0 is not of large physi
al relevan
e as the(Navier�Stokes) �ow is typi
ally unsteady for large Reynolds numbers. Therefore, animpli
it time-stepping leading to auxiliary Oseen problems is a reasonable approa
h.15



iv) Using σ ∼ 1/δt, 
ondition (23) reads:
0 ≤ δK ≤ δ∗h2

K

ν + b∞CF +
C2

F

δt
+ b2

∞ min
(

C2

F

ν
; δt

) . (26) HFor moderate time steps δt ∼ 1, we re
over the 
hoi
e δK ≤ O(h2
K) from [6℄. However,the upper bound of δK be
omes very small with either very small time steps δt orvery large time steps δt ≥ C2

F

ν
≫ 1. This supports the arguments given in i).v) Let us brie�y 
onsider the 
ase of the Stokes problem, i.e., b ≡ 0, hen
e b∞ = 0.This 
ase has been dis
ussed very 
arefully in [15℄ for the 
ases σ ∈ {0, 1}. Theanalysis shows that the grad-div stabilisation with γ = O(1) results in improvederror bounds for inf-sup stable velo
ity-pressure approximations. Nevertheless, theerror bounds are not optimal for the time-dis
retised problem with δt ∼ σ−1 → +0.Let us remark that the present error analysis is 
onsistent with the result in [15℄ byrepla
ing 
ondition (22) with γ = O(1).We 
on
lude the dis
ussion with two examples. To be as 
lose as possible to the Navier�Stokes model, the solution u is 
hosen as the 
onve
tive �eld b. The �rst example with asmooth and ν-independent solution serves to 
he
k some aspe
ts of the a-priori analysis.Then we 
onsider a problem with a ν-dependent solution.The stabilisation parameters are 
hosen a

ording to (22)�(23) with δK a

ording tothe upper bound in (26). It is not possible to dis
uss the dependen
e of the s
heme withrespe
t to all parameters and data in this paper. In parti
ular, we restri
t ourselves to thesimplest Taylor�Hood pair Q2/Q1 on unstru
tured, quasi-uniform, quadrilateral meshes.For a more detailed 
onsideration, we refer to [16℄.Example 1. We solve the Oseen problem (2) on Ω = (0, 1)2 with b = u and solution

u = (u1(x, y), u2(x, y))t = (sin(πx),−πy cos(πx))t, p(x, y) = sin(πx) cos(πy).First, we look for the optimal grad-div parameter γ∗, exemplarily for ν = 10−8, σ = 1 and
δ∗ = 10−2. In Fig. 1, we present the dependen
e of the velo
ity error |[eu]| := |[u − uh]|and of the pressure error ‖ep‖0 := ‖p − ph‖0,Ω on γ∗ for a sequen
e of grids. Althougha proper 
hoi
e of γ∗ has no visible in�uen
e on ‖ep‖0, it improves |[eu]| signi�
antly.For the 
oarsest grid, Table 1 
lari�es the remarkable in�uen
e of grad-div stabilisation.Moreover, the in�uen
e of SUPG-stabilisation is negligible for this example. Please notethat the parameter 
hoi
e for the 
ase of inf-sup stable elements di�ers 
ompletely fromthe 
ase of equal-order interpolation [5℄.Fig. 2 shows the h-
onvergen
e for the optimised value of γ∗ and for the SUPG-parameters
δK as above for ν = 10−6 and σ ∈ {0, 102}. Together with the former results, we observerobustness for σ = 0 (stationary 
ase), for σ = 1 (moderate time steps) and for σ = 102(small time steps). The error of the 'streamline derivative' (

∑

K⊂Ω δK‖(b · ∇)eu‖2
0,K)

1

2 isnot shown sin
e it is negligible in 
omparison to the other terms.16
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Figure 1: Choi
e of γ∗ for �xed ν = 10−8, σ = 1 and δ∗ = 0.01 on a sequen
e of grids. stabwahlTable 1: Absolute errors for optimal parameters and ν = 10−6, σ = 1 and h ≈ 1/16.
‖eu‖0 |eu|1 ‖∇ · uh‖0 ‖ep‖0unstabilised 0.00515282 0.73055200 0.59034800 0.00261003supg + grad-div 0.00021771 0.02457250 0.00169816 0.00045265grad-div 0.00021790 0.02460060 0.00169836 0.00045265supg(δ∗ = 0.01) 0.00507245 0.72140500 0.58406400 0.00257348supg(δ∗ = 5) 0.00273604 0.33109400 0.31021400 0.00186871absolut Finally, Fig. 3 shows that the numeri
al results with γ∗ = 0.1 are basi
ally independentof δ∗ for |[eu]| and ‖ep‖0. SUPG-stabilisation is indeed not ne
essary for this example. �Example 2. We solve the Oseen problem (2) on Ω = (0, 1)2 with b = u and solution

u1(x) =
(

1 − cos
(2π(eR1x1 − 1)

eR1 − 1

))

sin
(2π(eR2x2 − 1)

eR2 − 1

)R2

2π

eR2x2

(eR2 − 1)

u2(x) = − sin
(2π(eR1x1 − 1)

eR1 − 1

)(

1 − cos
(2π(eR2x2 − 1)

eR2 − 1

))R1

2π

eR1x1

(eR1 − 1)

p(x, y) = R1R2 sin
(2π(eR1x1 − 1)

eR1 − 1

)

sin
(2π(eR2x2 − 1)

eR2 − 1

) eR2x1eR2x2

(eR1 − 1)(eR2 − 1)
.The velo
ity �eld resembles a 
ounter-
lo
kwise vortex with the 
entre at (x01, x02) =

( 1
R1

log
(

eR1+1
2

)

, 1
R2

log
(

eR2+1
2

). The parameter are 
hosen as R2 = 0.1 leading to x02 =

0.5125 and R1 su
h that x01 = 1− ν
1

4 , i.e. the 
entre moves with de
reasing ν to the rightboundary. This leads to a ν-dependent solution with ‖∇u‖0 ∼ ν−0.35 and ‖p‖0 ∼ ν−0.12.First, we look again for the optimal grad-div parameter γ∗, exemplarily for ν = 10−3,
σ = 0 and δ∗ = 0.1. In Fig. 4, we present the dependen
e of the velo
ity error |[eu]| :=
|[u− uh]| and of the pressure error ‖ep‖0 := ‖p− ph‖0,Ω on γ∗ for a sequen
e of grids. Theresults are very similar to those of the �rst example, see Fig. 1.17
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Figure 2: Convergen
e plots for ν = 10−6, σ = 0 (left) and σ = 102 (right). konv1
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Figure 3: Dependen
e on δ∗ for γ∗ = 0.1 and ν = 10−8, σ = 1. deltaFig. 5 shows the h-
onvergen
e for |[eu]| and ‖ep‖0 (s
aled by appropriate Sobolev normsof the solution) for the optimised value of γ∗ and δ∗ as above for di�erent values of ν =
10−i, i = 2, 3, 4, 5, 6 and σ = 0. We observe that se
ond order a

ura
y is rea
hed for thelarger values of ν and for the smaller values at least on su�
iently �ne grids as full a

ura
y
an only be obtained for a mesh whi
h resolves the boundary layer e�e
ts at x1 = 1.Finally, we 
onsider the robustness of the s
heme with optimised parameters for a widerange of values of ν and σ and h ≈ 1

64
. Fig. 6 shows a rather weak dependen
e of thea

ura
y with respe
t to both parameters.

18
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Figure 4: Choi
e of γ∗ for �xed ν = 10−3, σ = 0 and δ∗ = 0.1. stabwahl_2
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Figure 5: Convergen
e plots for di�erent values of ν, σ = 0. konv35 Summary. Outlookse
:outlook In the present paper, we 
onsidered stabilised �nite element methods for the generalisedOseen problem. We proved for inf-sup stable dis
retisations of velo
ity and pressure theunique solvability based on a modi�ed stability 
ondition and an error estimate. Themain results are as follows: First of all, we emphasise the important role of an addi-tional stabilisation of the divergen
e 
onstraint via grad-div stabilisation. Se
ondly, thestreamline-di�usion (SUPG) stabilisation is obviously less important in the 
ase of inf-supvelo
ity-pressure pairs. Thirdly, our analysis extends the re
ent result in [6℄ on quasi-uniform meshes and 
ontinuous pressure approximations to general shape-regular meshesand to dis
ontinuous pressure interpolation. Moreover, we were able to re�ne the designof the stabilisation parameters given in [6℄. 19
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Figure 6: Convergen
e rates plots for h ≈ 1
64

depending on ν and σ. konv4Let us �nally mention some open problems:
• We didn't dis
uss the dependen
e on the polynomial degree of the �nite elements.This appears in the stability estimate of Lemma 2 and in the upper bound of δK .
• The upper bound of the SUPG-parameter δK in formula (23), whi
h stems from thestability analysis, might be not 
onvin
ing. Let us emphasise that su
h restri
tiondoes not exist for the symmetri
 stabilisation of lo
al proje
tion type, see e.g. [13℄.
• The grad-div stabilisation with γ ∼ 1 may lead to problems for iterative solvers ofthe mixed algebrai
 problem as the kernel of the div-operator is large. To a 
ertainextent, this is dis
ussed for the Stokes model in [15℄ and for the Oseen problem in [1℄.Referen
esBenzi [1℄ M. Benzi and M. A. Olshanskii, An augmented Lagrangian-based approa
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