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1 Introdutionse:intro Let us onsider the instationary, inompressible Navier�Stokes problem with homogeneousDirihlet boundary onditions
∂tu − ν△u + (u · ∇)u + ∇p = f̃ in Ω × (0, T ),

div u = 0 in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ],

u|t=0 = u0 in Ω,

(1) Null.1for the veloity u and the pressure p in the spae-time ylinder Ω×(0, T ) with a polyhedraldomain Ω ⊂ R
d, d = 2, 3, and a time T > 0. The given soure term is denoted by f̃ . Atypial algorithmi approah for solving (1) is to semidisretise �rst in time and to applythen a �xed-point iteration within eah time step. This leads in eah step of this iterationto an auxiliary problem of Oseen type
LO(b; u, p) := −ν△u + (b · ∇)u + σu + ∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

(2) Null.2Also the iterative solution of the steady-state Navier�Stokes equations may lead to prob-lems of type (2) with σ = 0 if a �xed-point iteration is applied.The basi Galerkin �nite element method (FEM) for (2) may su�er from two problems:the dominating advetion (and reation) in the ase of 0 < ν ≪ ‖b‖L∞(Ω), and/or theviolation of the disrete inf-sup (or Babu²ka�Brezzi) stability ondition for the veloityand pressure approximations. The streamline-upwind/Petrov�Galerkin method (SUPG),introdued in [3℄, and the pressure-stabilisation/Petrov�Galerkin method (PSPG), intro-dued in [10, 11℄, opened the possibility to treat both problems in a unique framework usingrather arbitrary FE approximations of veloity-pressure, inluding equal-order pairs. Ad-ditionally to the Galerkin part, the elementwise residual LO(b; u, p)−f is tested against the(weighted) non-symmetri SUPG/PSPG parts (b · ∇)v + ∇q of LO(b; v, q). An additionalelementwise stabilisation of the divergene onstraint div u in (2), heneforth denoted asgrad-div stabilisation, is important for the robustness if 0 < ν ≪ ‖b‖L∞(Ω), see [5℄ forequal-order interpolation.For a uni�ed a-priori analysis of lassial residual-based stabilisation (RBS) tehniques,we refer to [12℄. We emphasise that the design of the stabilisation parameters for equal-order interpolation signi�antly di�ers from that for inf-sup stable pairs. In partiular,the grad-div stabilisation is muh more important in the advetion-dominated ase if aninf-sup stable interpolation is applied, see also [6, 15℄.One of the ritial aspets of these RBS tehniques for inompressible �ows is the strongoupling between veloity and pressure in the stabilising terms. Several attempts have beenmade to relax this problem, see [2℄ for an overview. In partiular, we mention the promisingidea of weakly-onsistent, symmetri stabilisation tehniques (e.g., via edge stabilisationor loal projetion). 2



Within the framework of strongly onsistent RBS tehniques, one natural idea is to skipthe PSPG term in the ase of inf-sup stable disretisations of veloity and pressure. Weonsidered this possibility in [6℄. The analysis of the so-alled redued stabilised shemeis so far restrited to the quasi-uniform ase and to ontinuous pressure approximation.Moreover, the analysis is seemingly not optimal for the ase ν2 + σ2 → +0, whereasnumerial experiments show stable results for this ase too.The goal of the present paper is to re�ne the analysis in [6℄ for the redued stabilisedsheme and to relax the assumptions of quasi-uniform meshes and ontinuous pressuredisretisations. We prove an inf-sup stability ondition of the sheme whih is uniformlyvalid for 0 < ν ≪ 1 and an a-priori error estimate. A re�ned design of the grad-divand SUPG-stabilisation parameters highlights the role of the additional stabilisation of theinompressibility onstraint. Moreover, it turns out that the SUPG-stabilisation is lessessential. An important tehnial ingredient is the appliation of quasi-loal interpolationoperators preserving the disrete divergene [8℄. For brevity, we onsider only onformingFEM.The paper is organised as follows. In Setion 2, we introdue notation and the stabilisedGalerkin disretisation of the Oseen problem. Then, we analyse the method in Setion 3and disuss the results in Setion 4. Finally in Setion 5, we onsider some open problems.2 Notation. The disrete problemse:notation Let Ω ⊂ R
d, d = 2, 3, be a bounded polygonal or polyhedral domain. For a subdomain G ⊂

Ω, the usual Sobolev spaes W m,p(G) with norm ‖ · ‖m,p,G and semi-norm | · |m,p,G are used.In the ase p = 2, we have Hm(G) = W m,2(G) and the index p will be omitted. The L2inner produt on G is denoted by (·, ·)G. Note that the index G will be omitted for G = Ω.This notation of norms, semi-norms, and inner produts is also used for the vetor-valuedand tensor-valued ase. We set X :=
(

H1
0 (Ω)

)d, M := L2
0(Ω) :=

{

q ∈ L2(Ω) : (q, 1) = 0
}and H(div, Ω) :=

{

v ∈ [L2(Ω)]d : div v ∈ L2(Ω)
}.The generalised Oseen equations with homogeneous Dirihlet boundary onditions aregiven by

−ν△u + (b · ∇)u + σu + ∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω











(3) oseenwith onstants ν > 0, σ ≥ 0 and a given onvetion �eld b ∈ H(div, Ω) ∩
(

L∞(Ω)
)d with

div b = 0. For u, v ∈ X, p, q ∈ M , the bilinear forms A, b and linear form L are given by
A

(

(u, p), (v, q)
)

:= ν(∇u,∇v) +
(

(b · ∇)u, v
)

+ σ(u, v) − b(v, p) + b(u, q),

b(v, q) := (q, div v),

L
(

(v, q)
)

:= (f, v).
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Note that the following integration by parts
(

(b · ∇)v, w
)

= −
(

(b · ∇)w, v
) (4) intpartsholds true for all v, w ∈ X due to div b = 0.A weak formulation of the generalised Oseen equations (3) reads:Find (u, p) ∈ X × M suh that

A
(

(u, p), (v, q)
)

= L
(

(v, q)
)

∀(v, q) ∈ X × M. (5) weakLet {Th} be a family of shape-regular and exat triangulations of the domain Ω suhthat
Ω =

⋃

K∈Th

Kholds true for all triangulations Th.Let Xh be a onforming �nite element spae based on Th for approximating the veloity.The spae Mh for approximating the pressure may onsist of ontinuous or generally dis-ontinuous funtions. We are interested in inf-sup stable disretisations, i.e., the ondition
inf

qh∈Mh

sup
vh∈Xh

(div vh, qh)

|vh|1 ‖qh‖0
≥ β0 > 0 (6) infsupis valid for all Th with a positive onstant β0 whih is independent of the mesh parameter h.Examples for suh pairs are the Taylor�Hood family Pk/Pk−1, k ≥ 2, on simplies and

Qk/Qk−1, k ≥ 2, on quadrilaterals and hexahedra, see [7℄ and the referenes therein.Furthermore, Qk/P
dis
k−1, k ≥ 2, ful�ls the inf-sup ondition on quadrilaterals and hexahedra,see [7, 14℄.We assume that for all ells K ∈ Th the following inverse inequalities

‖△vh‖0,K ≤ µ h−1
K ‖∇vh‖0,K ∀vh ∈ Xh,

1√
d
‖ div vh‖0,K ≤ ‖∇vh‖0,K ≤ µ h−1

K ‖vh‖0,K ∀vh ∈ Xh,

‖∇qh‖0,K ≤ µ h−1
K ‖qh‖0,K ∀qh ∈ Mh,

(7) invineqare valid with a onstant µ whih depends only on the shape-regularity parameter of thefamily of triangulations.We assume that the disrete veloity spae Xh is based on �nite elements of order k.One an think of the ase there Xh onsists of all ontinuous funtion those restritionsto a single ell K of the triangulation Th belongs to Pk (for simpliial ells) or to Qk (forquadrilateral and hexahedral ells). The disrete pressure spae Mh is assumed to be basedon �nite elements of order ℓ ≥ 1. This means that the restrition of a funtion from Mhto a ell K ∈ Th belongs to Pℓ or Qℓ. Note that Pℓ an be used also on quadrilaterals andhexahedra if no ontinuity is required in Mh.4



The standard �nite element interpolation operator Jh : M → Mh ful�ls for all K ∈ Ththe estimate
|q − Jhq|m,K ≤ Chℓ+1−m

K ‖q‖ℓ+1,K ∀q ∈ Hℓ+1(Ω) ∩ M, m = 0, . . . , ℓ + 1,where the onstant C is independent of h, see [4℄. We hoose from [8℄ for the veloity thequasi-loal interpolation operator whih preserves the disrete divergene. Hene, we havefor the interpolation operator Ih : X → Xh the estimate
|v − Ihv|m,K ≤ Chk+1−m

K ‖v‖k+1,ω(K) ∀v ∈
(

Hk+1(Ω)
)d ∩ X, m = 0, . . . , k + 1,where ω(K) is a suitable neighbourhood of K and C is independent of h, see [8℄. Moreover,

(div Ihv, qh) = (div v, qh) ∀qh ∈ Mh, ∀v ∈ X, (8) disdivholds true.Using the �nite element spaes Xh and Mh, we an formulate the standard Galerkindisretisation of (5) whih readsFind (uh, ph) ∈ Xh × Mh suh that
A

(

(uh, ph), (vh, qh)
)

= L
(

(vh, qh)
)

∀(vh, qh) ∈ Xh × Mh. (9) GalerkinIn the ase of loally dominating onvetion, one may get solutions of (9) with spuriousosillations whih are in general not loalised to regions with dominating onvetion. Inorder to stabilise the disrete problem, we introdue a modi�ed bilinear form and a modi�edlinear form by
AS

(

(u, p), (v, q)
)

:=A
(

(u, p), (v, q)
)

+ γ(div u, div v)

+
∑

K∈Th

(

− ν△u + (b · ∇)u + σu + ∇p, δK(b · ∇)v
)

K
,

LS

(

(v, q)
)

:=L
(

(v, q)
)

+
∑

K∈Th

(

f, δK(b · ∇)v
)

Kwhere δK is a ell-dependent parameter while γ is a global user-de�ned parameter. Adetailed study of the hoie of these parameters will be given later.The stabilised disrete problem readsFind (uh, ph) ∈ Xh × Mh suh that
AS

(

(uh, ph), (vh, qh)
)

= LS

(

(vh, qh)
)

∀(vh, qh) ∈ Xh × Mh. (10) disstabSine the additional terms in AS and LS vanish in sum for a smooth solution, thestabilised problem is of residual type. Hene, we have the Galerkin orthogonality
AS

(

(u − uh, p − ph), (vh, qh)
)

= 0 ∀(vh, qh) ∈ Xh × Mh (11) GalOrthowhere (uh, ph) ∈ Xh × Mh is the solution of (10) and the solution (u, p) ∈ X × M of (5)satis�es additionally the regularity requirement u ∈
(

H2(Ω)
)d and p ∈ H1(Ω).5



Remark 1. It is possible to onsider the fully stabilised disrete problem whih inludes aPSPG term. In this ase, the bilinear form AF and the linear form LF are de�ned by
AF

(

(uh, ph), (vh, qh)
)

= AS

(

(uh, ph), (vh, qh)
)

+
∑

K∈Th

(

LO

(

(uh, ph), αK∇q
)

K
,

LF

(

(vh, qh)
)

= LS

(

(vh, qh)
)

+
∑

K∈Th

(

f, αK∇q
)

K
,where αK are user-hosen parameters. Using similar tehniques as below, orrespondingerror estimates and parameter designs an be derived for the fully stabilised sheme. Al-though the PSPG stabilisation is not needed for inf-sup stable disretisation from the pointof stability, the additional term might improve the auray of the pressure approximation.We introdue the norms

|[v]|2 := ν|v|21 + σ‖v‖2
0 + γ‖ div v‖2

0 +
∑

K∈Th

δK‖(b · ∇)v‖2
0,K,

∣

∣

∣

∣

∣

∣(v, q)
∣

∣

∣

∣

∣

∣

2
:= |[v]|2 + α‖q‖2

0.Note that the norms are well-de�ned on X and X × M , respetively.The positive onstant α will be hosen later on in the proof of Lemma 2. A lower boundis given in (20). Furthermore, we set
bK := ‖b‖0,∞,K, b∞ := ‖b‖0,∞.In this paper, the generi onstant C may have di�erent values at di�erent plaes but itwill be always independent of the mesh size h and the parameter ν.3 Analysis of the methodse:analysis 3.1 Stability and solvability of the disrete problemsubse:stability To show that our stabilised disrete problem (10) is uniquely solvable, we will prove forthe bilinear form AS an inf-sup ondition on Xh × Mh where the onstant is independentof the mesh size h and parameter ν.It turns out that our stability analysis requires an upper bound of the SUPG-parameters

δK whih is basially ditated by an upper bound of the advetive Galerkin term. We de�ne
ϕ :=

√

ν + σC2
F + 2b∞ min

( 1√
σ

,
CF√

ν

)

+
√

γd (12) phiwhere CF is the Friedrihs onstant for Ω. We assume that the stabilisation parametersful�l
0 ≤ γ, 0 ≤ δK ≤ min

(

1

15
min

(1

σ
,
C2

F

ν

)

,
1

30

h2
Kβ2

0

µ2ϕ2

) (13) paramdesignwhere µ is the onstant from the inverse inequalities (7) and β0 the inf-sup onstant forthe pair (Xh, Mh). 6



lem:infsup Lemma 2. Let the stabilisation parameters ful�l (13). Then, there exists a positive on-stant βS independent of the mesh size h and parameter ν suh that
inf

(vh,qh)
sup

(wh,rh)

AS

(

(vh, qh), (wh, rh)
)

∣

∣

∣

∣

∣

∣(vh, qh)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣

≥ βS > 0 (14) eq:infsupholds true where the in�mum and supremum are taken over Xh × Mh.Proof. Let (vh, qh) be an arbitrary element of Xh × Mh. During the proof, we will use thefollowing abbreviations:
X2 :=

∑

K∈Th

δK‖(b · ∇)vh‖2
0,K , Z2 := γ‖ div vh‖2

0,

Y 2 :=
∑

K∈Th

δK‖ − ν△vh + σvh + ∇qh‖2
0,K , B2 := ‖qh‖2

0,

A2 := ν|vh|21 + σ‖vh‖2
0,whih give immediately that |[vh]|2 = A2 + X2 + Z2.The outline of the proof is as follows.1. We show AS

(

(vh, qh), (vh, qh)
)

≥ C1 |[vh]|2 − δ B2 with onstants C1 and δ. Theritial onstant δ sales like δK/h2
K , see (16).2. We get from the inf-sup ondition (14) the existene of a funtion zh ∈ Xh suh that

AS

(

(vh, qh), (−zh, 0)
)

≥ 2
3
β0 B2 − C2 |[vh]|2 with C2 saling like ϕ2, see (18).3. The funtion (wh, rh) := (vh, qh)+λ(−zh, 0) ∈ Xh ×Mh with a suitably hosen λ > 0satis�es AS

(

(vh, qh), (wh, rh)
)

≥ C3

∣

∣

∣

∣

∣

∣(vh, qh)
∣

∣

∣

∣

∣

∣

2 and ∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣ ≤ C4

∣

∣

∣

∣

∣

∣(vh, qh)
∣

∣

∣

∣

∣

∣ whihtogether result in the assertion of this lemma.Step 1. Using the de�nition of the bilinear form AS, we obtain via the Young inequalityand integration by parts (see (4))
AS

(

(vh, qh), (vh, qh)
)

≥ |[vh]|2 − XY ≥ |[vh]|2 −
3

4
X2 − 1

3
Y 2.The terms will be estimated separately. Exploiting (7), (13) and ν2

ϕ2 ≤ 1, we get
Y 2 ≤2

∑

K∈Th

(δK‖∇qh‖2
0,K + δK‖ − ν△vh + σvh‖2

0,K)

≤
∑

K∈Th

2δKµ2

h2
K

‖qh‖2
0,K + 4

(

∑

K∈Th

δK
µ2

h2
K

ν2|vh|21,K +
∑

K∈Th

δKσ2‖vh‖2
0,K

)

≤
∑

K∈Th

2δKµ2

h2
K

‖qh‖2
0,K + 4

(

∑

K∈Th

1

30

β2
0

ϕ2
ν2|vh|21,K +

∑

K∈Th

1

15
σ‖vh‖2

0,K

)

≤2 max
K∈Th

(δKµ2

h2
K

)

B2 +
4

15
A2.

(15) eq4
7



where β0 ≤ 1 was applied, whih is always possible to hoose, see (6). Hene, we obtain
AS

(

(vh, qh), (vh, qh)
)

≥ 1

4
|[vh]|2 −

2

3
max
K∈Th

(δKµ2

h2
K

)

B2. (16) step1Step 2. Due to the inf-sup ondition (6) for (Xh, Mh), there exists zh ∈ Xh suh that
|zh|1 = ‖qh‖0 = B, (div zh, qh) ≥ β0 |zh|1 ‖qh‖0 = β0 B2.We have

AS

(

(vh, qh), (−zh, 0)
)

≥ β0 B2 −
4

∑

i=1

Tiwhere
T1 := ν(∇vh,∇zh) + σ(vh, zh) − ((b · ∇)zh, vh), T2 := γ(div vh, div zh),

T3 :=
∑

K∈Th

δK(−ν△vh + σvh + ∇qh, (b · ∇)zh)K , T4 :=
∑

K∈Th

δK((b · ∇)vh, (b · ∇)zh)K .These four terms will be estimated individually. Applying the Cauhy�Shwarz inequality,we obtain
|T1| ≤

(

ν|vh|21 + σ‖vh‖2
0

)1/2(
ν|zh|21 + σC2

F |zh|21
)1/2

+
∑

K∈Th

bK‖vh‖0,K |zh|1,K

≤
√

ν + σC2
F AB +

∑

K∈Th

bK‖vh‖0,K |zh|1,K .The last term an be estimated in two ways
∑

K∈Th

bK‖vh‖0,K |zh|1,K ≤
∑

K∈Th

bK√
σ

(
√

σ‖vh‖0,K)|zh|1,K ≤ b∞
1√
σ

ABor
∑

K∈Th

bK‖vh‖0,K |zh|1,K ≤
∑

K∈Th

bK√
ν
(
√

ν‖vh‖0,K)|zh|1,K ≤ b∞
CF√

ν
AB.Hene, we get the estimate

|T1| ≤
√

ν + σC2
FAB + b∞ min

(

1√
σ

,
CF√

ν

)

ABwhih is governed by the bound of the advetive term ((b ·∇)zh, vh). Furthermore, we have
|T2| ≤

√
γ‖ div vh‖0

√
γ‖ div zh‖0 ≤ Z

√

γd
(

∑

K∈Th

|zh|21,K

)1/2

=
√

γdZB

8



and
|T3| ≤

(

∑

K∈Th

δK‖ − ν△vh + σvh + ∇qh‖2
0,K

)1/2( ∑

K∈Th

δK‖(b · ∇)zh‖2
0,K

)1/2

≤ Y
(

∑

K∈Th

δKb2
K |zh|21,K

)1/2

≤
(

max
K∈Th

(

bK

√

δK

))

Y B.Using (13) and (15), we obtain Y 2 ≤ 2
30

β2

0

ϕ2 B
2 + 4

15
A2 whih gives Y ≤

√

2
30

β0

ϕ
B + 2√

15
A.Furthermore, we have

|T3| ≤
2√
15

(

max
K∈Th

(

bK

√

δK

))

AB +

√

2

30

β0

ϕ

1

2

1√
15

2b∞ min
( 1√

σ
,
CF√

ν

)

B2

≤ 2√
15

(

max
K∈Th

(

bK

√

δK

))

AB +
1

30
β0B

2.It remains to bound T4. We obtain
|T4| ≤

(

∑

K∈Th

δK‖(b · ∇)vh‖2
0,K

)1/2( ∑

K∈Th

δK‖(b · ∇)zh‖2
0,K

)1/2

≤ max
K∈Th

(

bK

√

δK

)

XB.We proeed with estimating the max-term via the �rst argument of the min-term in (13)
max
K∈Th

(

bK

√

δK

)

≤ 1√
15

b∞ min
( 1√

σ
,
CF√

ν

) (17) maxphiNote that, due to the upper bound of |T1|, no gain is obtained if the seond argument ofthe min-term in (13) is used. Using (17) and the estimates for T1, . . . , T4, we end up with
4

∑

i=1

Ti ≤
4

∑

i=1

|Ti| ≤
(

√

ν + σC2
F +

17

15
b∞ min

( 1√
σ

,
CF√

ν

))

AB

+
1√
15

b∞ min
( 1√

σ
,
CF√

ν

)

XB +
√

γdZB +
1

30
β0B

2

≤(A + X + Z)ϕB +
1

30
β0B

2.To summarise, we have
AS

(

(vh, qh), (−zh, 0)
)

≥ β0B
2 − (A + X + Z)ϕB − 1

30
β0B

2

≥ 29

30
β0B

2 − 3 · 1
10

β0B
2 − 5

2

ϕ2

β0
(A2 + X2 + Z2)

=
2

3
β0B

2 − 5

2

ϕ2

β0
|[vh]|2. (18) step2

9



Step 3. We de�ne (wh, rh) := (vh, qh) + λ(−zh, 0) with λ > 0. Using the estimates (16)and (18), we obtain
AS

(

(vh, qh), (wh, rh)
)

≥
(1

4
− 5

2

λϕ2

β0

)

|[vh]|2 +
(2

3

λβ0

α
− 2

3
max
K∈Th

(δKµ2

αh2
K

))

αB2.We hoose λ and α suh that
1

4
− 5

2

λϕ2

β0

=
1

30
and 2

3

λβ0

α
− 2

3
max
K∈Th

(δKµ2

αh2
K

)

=
1

30
. (19) lambdaWe obtain

λβ0 =
13

150

β2
0

ϕ2
and α =

26

15

β2
0

ϕ2
− 20 max

K∈Th

(δKµ2

αh2
K

)

.We an bound α from below and above via (13) as follows
16

15

β2
0

ϕ2
≤ α ≤ 26

15

β2
0

ϕ2
. (20) alphaOur hoie of λ and α results in

AS

(

(vh, qh), (wh, rh)
)

≥ 1

30

∣

∣

∣

∣

∣

∣(vh, qh)
∣

∣

∣

∣

∣

∣

2
.Finally, we will show that ∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣ ≤ C
∣

∣

∣

∣

∣

∣(vh, qh)
∣

∣

∣

∣

∣

∣. To this end, we start with
∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣ ≤
∣

∣

∣

∣

∣

∣(vh, qh)
∣

∣

∣

∣

∣

∣ + λ
∣

∣

∣

∣

∣

∣(−zh, 0)
∣

∣

∣

∣

∣

∣,and see that it su�es to estimate ∣

∣

∣

∣

∣

∣(−zh, 0)
∣

∣

∣

∣

∣

∣. We have
∣

∣

∣

∣

∣

∣(−zh, 0)
∣

∣

∣

∣

∣

∣

2
= ν|zh|21 + σ‖zh‖2

0 + γ‖ div zh‖2
0 +

∑

K∈Th

δK‖(b · ∇)zh‖2
0,K

≤
∑

K∈Th

(ν + σC2
F + γd + b2

KδK)|zh|21,K

≤ ϕ2B2 ≤ ϕ2

α

∣

∣

∣

∣

∣

∣(vh, qh)
∣

∣

∣

∣

∣

∣

2where we have used (17) to bound b2
K δK . Using the above estimate, we obtain

∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣ ≤
(

1 +
λϕ√

α

)

∣

∣

∣

∣

∣

∣(vh, qh)
∣

∣

∣

∣

∣

∣.Exploiting the hoie of λ in (19) and the lower bound of α in (20), we have
Q := 1 +

λϕ√
α

≤ 1 +
13

150

β0

ϕ2
ϕ

√

15

16

ϕ2

β2
0

= 1 +
13

150

√

15

16whih results in
AS

(

(vh, qh), (wh, rh)
)

≥ 1

30Q

∣

∣

∣

∣

∣

∣(vh, qh)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣.Hene, the inf-sup onstant βS := 1/(30Q) is independent of ν and h.10



3.2 A preliminary a-priori error estimatesubse:apriori First, we will state and prove a ontinuity estimate for the bilinear form AS.lem:ont Lemma 3. Let u ∈
(

Hk+1(Ω)
)d∩X and p ∈ Hℓ+1(Ω)∩M .Moreover, Ihu is the interpolantof u whih preserves the disrete divergene, see (8), while Jhp is the standard �nite elementinterpolant of p. Then, for all (wh, rh) ∈ Xh × Mh, the following estimate holds true

AS

(

(u − Ihu, p − Jhp), (wh, rh)
)

∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣

≤ C
(

∑

K∈Th

[

ν + σ h2
K + γd + δKb2

K +
3 b2

K h2
K

δK b2
K + ν + σ h2

K

]

h2k
K ‖u‖2

k+1,ω(K)

+
∑

K∈Th

[

δK +
2dh2

K

ν + γd

]

h2ℓ
K‖p‖2

ℓ+1,K

)1/2

.Proof. Let w := u− Ihu and r := p−Jhp. As the following estimate of AS

(

(w, r), (wh, rh)
)is straightforward, we only emphasise some important aspets. By separation of symmetriand non-symmetri terms and using the de�nitions of |[w]| and ∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣, we obtain
AS

(

(w, r), (wh, rh) ≤ |[w]|
∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣ +
∣

∣

∣

∑

K∈Th

δK

(

− ν△w + σw + ∇r, (b · ∇)wh

)

K

∣

∣

∣

+
∣

∣(rh, div w)
∣

∣ +
∣

∣(r, div wh)
∣

∣ +
∣

∣

(

(b · ∇)w, wh

)
∣

∣.The estimates for the interpolation error result in
|[w]| ≤ C

∑

K∈Th

[

(

ν + σ h2
K + δK b2

K + γd
)

h2k
K ‖u‖2

k+1,ω(K)

]

.Now, the remaining terms are estimated separately. We obtain
∣

∣

∣

∣

∣

∑

K∈Th

δK

(

− ν△w + σw + ∇r, (b · ∇)wh

)

K

∣

∣

∣

∣

∣

≤ C
(

∑

K∈Th

[

(ν + σh2
K)h2k

K ‖u‖2
k+1,ω(K) + δKh2ℓ

K‖p‖2
ℓ+1,K

]

)1/2∣
∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣where we have used that νδK ≤ Ch2
K and δKσ ≤ C by (12)�(13). Sine the interpolationoperator Ih preserves the disrete divergene, see (8), we have (rh, div w) = 0. Note thatthis term is in general non-zero for standard interpolation operators. An estimate wouldinvolve a negative power of α ausing additional di�ulties. Please note that also the Ritzprojetion of the Stokes problem would not be su�ient.The term |(r, div wh)| an be handled in two ways

∣

∣(r, div wh)
∣

∣ ≤ γ− 1

2‖r‖0
√

γ‖ div wh‖011



≤ C
(

∑

K∈Th

γ−1h2ℓ+2
K ‖p‖2

ℓ+1,K

)1/2∣
∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣or
∣

∣(r, div wh)
∣

∣ ≤
(

∑

K∈Th

dν−1‖r‖2
0,K

)1/2( ∑

K∈Th

ν|wh|21,K

)1/2

≤ C
(

∑

K∈Th

dν−1h2ℓ+2
K ‖p‖2

ℓ+1,K

)1/2
∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣.This gives
∣

∣(r, div wh)
∣

∣ ≤ C
(

∑

K∈Th

2d

ν + γd
h2ℓ+2

K ‖p‖2
ℓ+1,K

)1/2
∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣.There are several ways for estimating the remaining term
∣

∣

(

(b · ∇)w, wh

)
∣

∣ ≤
∑

K∈Th

bK |w|1,K‖wh‖0,K ≤
(

∑

K

b2
K

σ
|w|21,K

)1/2( ∑

K∈Th

σ ‖wh‖2
0,K

)1/2

≤ C
(

∑

K

b2
K

σ
h2k

K ‖u‖2
k+1,ω(K)

)1/2
∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣or using integration by parts
∣

∣

(

(b · ∇)w, wh

)
∣

∣ =
∣

∣

(

(b · ∇)wh, w
)
∣

∣ ≤
∑

K∈Th

bK |wh|1,K‖w‖0,K

≤
(

∑

K

b2
K

ν
‖w‖2

0,K

)1/2( ∑

K∈Th

ν |wh|21,K

)1/2

≤ C
(

∑

K

b2
K

ν
h2k+2

K ‖u‖2
k+1,ω(K)

)1/2∣
∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣or
∣

∣

(

(b · ∇)w, wh

)
∣

∣ =
∣

∣

(

(b · ∇)wh, w
)
∣

∣

≤
(

∑

K∈Th

δ−1
K ‖w‖2

0,K

)1/2( ∑

K∈Th

δK

∥

∥(b · ∇)wh

∥

∥

2

0,K

)1/2

≤ C
(

∑

K∈Th

δ−1
K h2k+2

K ‖u‖2
k+1,ω(K)

)1/2
∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣.These three estimates give together
∣

∣

(

(b · ∇)w, wh

)
∣

∣ ≤ C
(

∑

K∈Th

3 b2
K h2

K

δK b2
K + ν + σ h2

K

h2k
K ‖u‖2

k+1,ω(K)

)1/2
∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣.The ombination of all above estimates gives the assertion of the Lemma.12



We are now in a position to derive a preliminary a-priori error estimate using the previousstability and ontinuity estimates.lem:errorest Lemma 4. Let (u, p) ∈
(

X ∩Hk+1(Ω)d
)

×
(

(M ∩Hℓ+1(Ω)
) and (uh, ph) ∈ Xh ×Mh be thesolutions of (5) and (10), respetively. Moreover, we assume that the assumptions (12)�(13) are valid. Then, the following estimate holds true

∣

∣

∣

∣

∣

∣(u − uh, p − ph)
∣

∣

∣

∣

∣

∣

2 ≤ C
∑

K∈Th

(

dh2
K

ν + γd
h2ℓ

K ‖p‖2
ℓ+1,K (21) EE

+

[

ν + σ h2
K + δKb2

K + γd +
b2
K h2

K

δK b2
K + ν + σ h2

K

]

h2k
K ‖u‖2

k+1,ω(K)

)

.Proof. Using the triangle inequality, we obtain
∣

∣

∣

∣

∣

∣(u − uh, p − ph)
∣

∣

∣

∣

∣

∣ ≤
∣

∣

∣

∣

∣

∣(u − Ihu, p − Jhp)
∣

∣

∣

∣

∣

∣ +
∣

∣

∣

∣

∣

∣(Ihu − uh, Jhp − ph)
∣

∣

∣

∣

∣

∣where Jhp is the standard �nite element interpolant of p and Ihu the interpolant of u whihadditionally preserves the disrete divergene, see (8). The inf-sup ondition for AS givenby Lemma 2 ensures the existene of (wh, rh) ∈ Xh × Mh suh that
βS

∣

∣

∣

∣

∣

∣(Ihu − uh, Jhp − ph)
∣

∣

∣

∣

∣

∣ ≤ AS

(

(Ihu − uh, Jhp − ph), (wh, rh)
)

∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣

=
AS

(

(Ihu − u, Jhp − p), (wh, rh)
)

∣

∣

∣

∣

∣

∣(wh, rh)
∣

∣

∣

∣

∣

∣where we also used the Galerkin orthogonality (11). Appliation of Lemma 3 yields
βS

∣

∣

∣

∣

∣

∣(Ihu − uh, Jhp − ph)
∣

∣

∣

∣

∣

∣

≤ C
∑

K∈Th

(

[

ν + σ h2
K + δKb2

K + γd +
3 b2

K h2
K

δK b2
K + ν + σ h2

K

]

h2k
K ‖u‖2

k+1,ω(K)

+
[

δK +
2dh2

K

ν + γd

]

h2ℓ
K‖p‖2

ℓ+1,K

)1/2

.We use the assumptions (12)�(13) for the estimates
h2

K

δK
≥ Cϕ2 ≥ C(ν + γd), δK ≤ C

dh2
K

ϕ2
≤ C

dh2
K

ν + γd
.This allows a simpli�ation of the [·]-fators of the previous estimate.The interpolation error estimates for Ih and Jh give

∣

∣

∣

∣

∣

∣(u−Ihu, p−Jhp)
∣

∣

∣

∣

∣

∣

2 ≤ C
∑

K∈Th

[

(

ν +σ h2
K +γd+ δKb2

K

)

h2k
K ‖u‖2

k+1,ω(K) +α h2
Kh2ℓ

K‖p‖2
ℓ+1,K

]

.
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We an simplify the right hand side by using (12)�(13), (20) and
δK ≤ C

dh2
K

ν + γd
, αh2

K ≤ C
dh2

K

ϕ2
≤ C

dh2
K

ν + γd
.Putting together all estimates and applying the triangle inequality from the beginning ofthis proof gives the assertion.4 A-priori error estimate. Parameter designse:disussion Here we will apply the result of Lemma 4 in order to design the stabilisation parameters

δK and γ, and to re�ne the a-priori error estimate.Our �rst goal is the design of the grad-div parameter γ. We observe from (21) that apositive, h-independent γ prevents a degeneration of the [·]-fator of the p-dependent termif ν → +0. On the other hand, γ as the saling parameter of the grad-div stabilisationterm must not be too large due to the large kernel of the div-operator. Moreover, fordimensional reasons, γ should sale like other terms in ϕ2 ∼ ν +σC2
F + b2

∞ min
(C2

F

ν
; 1

σ

)

+γ.The extreme ases of very large or small values of σ motivate a balane of the σ-dependentterms in ϕ2, i.e. σC2
F ∼ b2

∞/σ. This leads to the proposal
γ = γ∗(ν + b∞CF ) = γ∗ν(1 + ReΩ), ReΩ :=

b∞CF

ν
(22) Dwith a onstant γ∗ > 0 and CF ∼ diam(Ω). This implies ϕ2 ∼ ν + b∞CF + σC2
F +

b2
∞ min

(

C2

F

ν
; 1

σ

) and
0 ≤ δK ≤ δ∗ h2

K

ν + b∞CF + σC2
F + b2

∞ min
(

C2

F

ν
; 1

σ

) , 0 ≤ δ∗ ≤ 1

30
. (23) GHere we used that the �rst argument in the min-term of the upper bound of δK in (13)an be omitted for su�iently small hK . Moreover, reall that the upper bound of δK isbasially aused by the advetive Galerkin term.Finally, we observe from (23) that δKb2

K ≤ b2
K min

(h2

K

ν
; 1

σ

). Combining Lemma 4 withthe latter estimates, we obtain the following re�ned a-priori error estimate.thm:onlusive Theorem 5. Let (u, p) ∈
(

X ∩ Hk+1(Ω)d
)

×
(

(M ∩ Hℓ+1(Ω)
) and (uh, ph) ∈ Xh × Mh bethe solutions of (5) and (10), respetively. Then, with the design onditions (22) and (23),the a-priori error estimate reads

∣

∣

∣

∣

∣

∣(u − uh, p − ph)
∣

∣

∣

∣

∣

∣

2 ≤ C
∑

K∈Th

(

[

ν + b∞CF + σh2
K + b2

K min
(h2

K

ν
;
1

σ

)

]

h2k
K ‖u‖2

k+1,ω(K)

+
1

ν + b∞CF

h
2(ℓ+1)
K ‖p‖2

ℓ+1,K

)

. (24) N
14



Theorem 5 lari�es and generalises several aspets of the result of Theorem 4.1 in [6℄.The new result relaxes the assumption of quasi-uniformity of the mesh to shape-regularityand the assumption of ontinuous pressure approximation to a (potentially) disontinuousansatz. Finally, the H2-regularity result for the Stokes problem whih is used in [6℄ an beavoided (as a tehnial tool).Let us disuss various aspets of the result of Theorem 5:i) We emphasise that, for inf-sup stable interpolation of veloity-pressure, the param-eter design aording to (22)�(23) di�ers from that for equal-order interpolation,see [5, 9℄. Besides the missing PSPG terms, estimate (24) remains valid even ifthe SUPG-stabilisation is swithed o� (of ourse the SUPG-part in the norm ∣

∣

∣

∣

∣

∣ ·
∣

∣

∣

∣

∣

∣will vanish). This underlines the important role of the grad-div stabilisation whihis nothing but the lassial augmented Lagrangian approah to the inompressibil-ity onstraint. These fats an be observed in the numerial experiments below, seealso [6℄. Moreover, note that the design (22) of the grad-div parameter γ is favourablefor the e�ient solution of the orresponding algebrai systems, see [1, 15℄.ii) There are two ritial terms on the right hand side term in (24): The �rst term is σh2
K .For an impliit time disretisation of the non-stationary Navier�Stokes problem (1),there holds σ ∼ δt−1 with time step δt. The error estimate (24) suggests to imposethe (reasonable) restrition σh2

K ∼ h2
K/δt ≤ O(1).The other ritial term is b2

K min
(h2

K

ν
; 1

σ

). We observe that
b2
K min

(h2
K

ν
;
1

σ

)

≤ b∞CF if ν ≥ max
K

b2
Kh2

K

b∞CF

or σ ≥ b∞
CF

. (25) ZUnder the assumptions of Theorem 5, of (25) and with (time step) restrition σh2
K ≤

O(1), the a-priori error estimate reads
∣

∣

∣

∣

∣

∣(u − uh, p − ph)
∣

∣

∣

∣

∣

∣

2 ≤ C
∑

K∈Th

( h2ℓ+2
K

ν + b∞CF
‖p‖2

ℓ+1,K +
[

ν + b∞CF

]

h2k
K ‖u‖2

k+1,ω(K)

)

.iii) The last right hand side term of estimate (21) suggests that an appropriate hoieof the SUPG-parameters δK ≥ Ch2
K would result in an a-priori estimate whih isuniformly valid with respet to ν2 + σ2 → +0. Unfortunately, this is not possibledue to the upper bound of δK ≤ δ∗h2
K/ϕ2 ≤ δ∗

h2

K

b2
∞

max
(

ν
C2

F

; σ
) in (23) where the sizeof ϕ2 is mainly ditated by the estimate of the advetive Galerkin term.So it remains open whether the resulting term b2

K min
(h2

K

ν
; 1

σ

) in (24) is sharp for
ν, σ → 0. In the �stationary� ase σ = 0, it behaves like νRe2

K with mesh Reynoldsnumber ReK = bKhK

ν
. Although the restrition νRe2

K ≤ 1 might be not too restritivefor some �ows, the ase of σ = 0, ν → +0 is not of large physial relevane as the(Navier�Stokes) �ow is typially unsteady for large Reynolds numbers. Therefore, animpliit time-stepping leading to auxiliary Oseen problems is a reasonable approah.15



iv) Using σ ∼ 1/δt, ondition (23) reads:
0 ≤ δK ≤ δ∗h2

K

ν + b∞CF +
C2

F

δt
+ b2

∞ min
(

C2

F

ν
; δt

) . (26) HFor moderate time steps δt ∼ 1, we reover the hoie δK ≤ O(h2
K) from [6℄. However,the upper bound of δK beomes very small with either very small time steps δt orvery large time steps δt ≥ C2

F

ν
≫ 1. This supports the arguments given in i).v) Let us brie�y onsider the ase of the Stokes problem, i.e., b ≡ 0, hene b∞ = 0.This ase has been disussed very arefully in [15℄ for the ases σ ∈ {0, 1}. Theanalysis shows that the grad-div stabilisation with γ = O(1) results in improvederror bounds for inf-sup stable veloity-pressure approximations. Nevertheless, theerror bounds are not optimal for the time-disretised problem with δt ∼ σ−1 → +0.Let us remark that the present error analysis is onsistent with the result in [15℄ byreplaing ondition (22) with γ = O(1).We onlude the disussion with two examples. To be as lose as possible to the Navier�Stokes model, the solution u is hosen as the onvetive �eld b. The �rst example with asmooth and ν-independent solution serves to hek some aspets of the a-priori analysis.Then we onsider a problem with a ν-dependent solution.The stabilisation parameters are hosen aording to (22)�(23) with δK aording tothe upper bound in (26). It is not possible to disuss the dependene of the sheme withrespet to all parameters and data in this paper. In partiular, we restrit ourselves to thesimplest Taylor�Hood pair Q2/Q1 on unstrutured, quasi-uniform, quadrilateral meshes.For a more detailed onsideration, we refer to [16℄.Example 1. We solve the Oseen problem (2) on Ω = (0, 1)2 with b = u and solution

u = (u1(x, y), u2(x, y))t = (sin(πx),−πy cos(πx))t, p(x, y) = sin(πx) cos(πy).First, we look for the optimal grad-div parameter γ∗, exemplarily for ν = 10−8, σ = 1 and
δ∗ = 10−2. In Fig. 1, we present the dependene of the veloity error |[eu]| := |[u − uh]|and of the pressure error ‖ep‖0 := ‖p − ph‖0,Ω on γ∗ for a sequene of grids. Althougha proper hoie of γ∗ has no visible in�uene on ‖ep‖0, it improves |[eu]| signi�antly.For the oarsest grid, Table 1 lari�es the remarkable in�uene of grad-div stabilisation.Moreover, the in�uene of SUPG-stabilisation is negligible for this example. Please notethat the parameter hoie for the ase of inf-sup stable elements di�ers ompletely fromthe ase of equal-order interpolation [5℄.Fig. 2 shows the h-onvergene for the optimised value of γ∗ and for the SUPG-parameters
δK as above for ν = 10−6 and σ ∈ {0, 102}. Together with the former results, we observerobustness for σ = 0 (stationary ase), for σ = 1 (moderate time steps) and for σ = 102(small time steps). The error of the 'streamline derivative' (

∑

K⊂Ω δK‖(b · ∇)eu‖2
0,K)

1

2 isnot shown sine it is negligible in omparison to the other terms.16
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Figure 1: Choie of γ∗ for �xed ν = 10−8, σ = 1 and δ∗ = 0.01 on a sequene of grids. stabwahlTable 1: Absolute errors for optimal parameters and ν = 10−6, σ = 1 and h ≈ 1/16.
‖eu‖0 |eu|1 ‖∇ · uh‖0 ‖ep‖0unstabilised 0.00515282 0.73055200 0.59034800 0.00261003supg + grad-div 0.00021771 0.02457250 0.00169816 0.00045265grad-div 0.00021790 0.02460060 0.00169836 0.00045265supg(δ∗ = 0.01) 0.00507245 0.72140500 0.58406400 0.00257348supg(δ∗ = 5) 0.00273604 0.33109400 0.31021400 0.00186871absolut Finally, Fig. 3 shows that the numerial results with γ∗ = 0.1 are basially independentof δ∗ for |[eu]| and ‖ep‖0. SUPG-stabilisation is indeed not neessary for this example. �Example 2. We solve the Oseen problem (2) on Ω = (0, 1)2 with b = u and solution

u1(x) =
(

1 − cos
(2π(eR1x1 − 1)

eR1 − 1

))

sin
(2π(eR2x2 − 1)

eR2 − 1

)R2

2π

eR2x2

(eR2 − 1)

u2(x) = − sin
(2π(eR1x1 − 1)

eR1 − 1

)(

1 − cos
(2π(eR2x2 − 1)

eR2 − 1

))R1

2π

eR1x1

(eR1 − 1)

p(x, y) = R1R2 sin
(2π(eR1x1 − 1)

eR1 − 1

)

sin
(2π(eR2x2 − 1)

eR2 − 1

) eR2x1eR2x2

(eR1 − 1)(eR2 − 1)
.The veloity �eld resembles a ounter-lokwise vortex with the entre at (x01, x02) =

( 1
R1

log
(

eR1+1
2

)

, 1
R2

log
(

eR2+1
2

). The parameter are hosen as R2 = 0.1 leading to x02 =

0.5125 and R1 suh that x01 = 1− ν
1

4 , i.e. the entre moves with dereasing ν to the rightboundary. This leads to a ν-dependent solution with ‖∇u‖0 ∼ ν−0.35 and ‖p‖0 ∼ ν−0.12.First, we look again for the optimal grad-div parameter γ∗, exemplarily for ν = 10−3,
σ = 0 and δ∗ = 0.1. In Fig. 4, we present the dependene of the veloity error |[eu]| :=
|[u− uh]| and of the pressure error ‖ep‖0 := ‖p− ph‖0,Ω on γ∗ for a sequene of grids. Theresults are very similar to those of the �rst example, see Fig. 1.17
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Figure 2: Convergene plots for ν = 10−6, σ = 0 (left) and σ = 102 (right). konv1
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Figure 3: Dependene on δ∗ for γ∗ = 0.1 and ν = 10−8, σ = 1. deltaFig. 5 shows the h-onvergene for |[eu]| and ‖ep‖0 (saled by appropriate Sobolev normsof the solution) for the optimised value of γ∗ and δ∗ as above for di�erent values of ν =
10−i, i = 2, 3, 4, 5, 6 and σ = 0. We observe that seond order auray is reahed for thelarger values of ν and for the smaller values at least on su�iently �ne grids as full aurayan only be obtained for a mesh whih resolves the boundary layer e�ets at x1 = 1.Finally, we onsider the robustness of the sheme with optimised parameters for a widerange of values of ν and σ and h ≈ 1

64
. Fig. 6 shows a rather weak dependene of theauray with respet to both parameters.
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Figure 4: Choie of γ∗ for �xed ν = 10−3, σ = 0 and δ∗ = 0.1. stabwahl_2
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64

depending on ν and σ. konv4Let us �nally mention some open problems:
• We didn't disuss the dependene on the polynomial degree of the �nite elements.This appears in the stability estimate of Lemma 2 and in the upper bound of δK .
• The upper bound of the SUPG-parameter δK in formula (23), whih stems from thestability analysis, might be not onvining. Let us emphasise that suh restritiondoes not exist for the symmetri stabilisation of loal projetion type, see e.g. [13℄.
• The grad-div stabilisation with γ ∼ 1 may lead to problems for iterative solvers ofthe mixed algebrai problem as the kernel of the div-operator is large. To a ertainextent, this is disussed for the Stokes model in [15℄ and for the Oseen problem in [1℄.ReferenesBenzi [1℄ M. Benzi and M. A. Olshanskii, An augmented Lagrangian-based approah to theOseen problem, SIAM J. Si. Comp., 28 (2006), pp. 2059�2113.B2JL [2℄ M. Braak, E. Burman, V. John, and G. Lube, Stabilized �nite element methodsfor the generalized Oseen problem, Comput. Methods Appl. Meh. Engrg., 196 (2007),pp. 853�866.Brooks [3℄ A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formu-lations for onvetion dominated �ows with partiular emphasis on the inompressibleNavier�Stokes equations, Comput. Methods Appl. Meh. Engrg., 32 (1982), pp. 199�259.Cia78 [4℄ P. G. Ciarlet, The �nite element method for ellipti problems, North-Holland Pub-lishing Co., Amsterdam, 1978. Studies in Mathematis and its Appliations, Vol. 4.
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