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L ocal Projection Stabilization of Finite Element
Methods for Incompressible Flows

G. Lube, G. Rapin, and J. Lowe

Abstract A unified analysis for finite element discretizations of hneed incom-
pressible flows using the local projection method with eeprder or inf-sup stable
velocity-pressure pairs together with a critical compatis given.

1 Introduction

A standard numerical approach to the incompressible N&tiekes model
du—vAuU+(u-Du+Op=f, D.u=0 InQx(O,T) (1)

for velocity u and pressurg is to semi-discretize in time first with aA-stable
implicit scheme and to apply a fixed-point or Newton-typedt®sn in each time
step. This leads to auxiliary Oseen problems (vaittr O from time discretization)

—vAu+ (b-O)u+ou+0Op=f, O-u=0 in Q. 2

Residual based stabilization (RBS) methods are the toaditiwvay to cope with
spurious solutions of the Galerkin finite element (FE) agpnation of (2) caused
by violation of the discrete inf-sup stability conditionddor dominating advection.
RBS methods are robust and easy to implement, but have sinaavbacks mainly
stemming from the strong velocity-pressure coupling indtadilisation terms.

The key idea of the variational multiscale (VMS) methods$1d separation into
large, small and unresolved scales. The influence of thesalwed scales has to be
modeled. Almost all stabilization methods can be integatets VMS methods. In
local projection stabilization (LPS) methods [1, 5] the ufhice of the unresolved
scales is modeled by an artificial fine-scale diffusion term.
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Mostly, an equal-order interpolation of velocity-pressis applied. Other au-
thors prefer discrete inf-sup stable pairs as the natui@telfrom regularity point
of view for fixedv > 0. Here, a unified theory of LPS methods for equal-order and
inf-sup stable pairs for problem (2) is presented. For futigfs, see [4]. Finally, a
comparison of both variants is given.

2 Variational Formulation and L PS-Discretization

Standard notations for Lebesgue and Sobolev spaces are Tuset?(G) inner
productinG C Q is denoted by, ) with (+,-) = (-,-)o. The notatiora < bis used
if there exists a constafit > 0 independent of all relevant quantities a.t Ch.
The weak formulation for the Oseen problem (2) with homogeseDirichlet
data reads: Find = (u,p) €V x Q:= [H}(Q)]9 x L(Q), s. t W = (v,q) €V x Q:

A(U,V) = (vOu,0v) + ((b- D)u+ ou,v) — (p,0-v) +(q,0-u) = (f,v). (3)

Let @ c RY.d € {2,3} be a bounded, polyhedral domain and L®(Q) with
v>0,fel?2(Q)4 be[L°(Q)NHY(Q)]Y with 0-b=0ando € R*. Usually,b
is a FE solution of (2) witHO - b, g,) = 0 for someg, and - b does not vanish. A
remedy is to write the advective term in skew-symmetric fofime analysis can be
extended to problems resulting from Newton iteration idatg the term(u- O)b.
Sulfficiently small time steps ensure coercivityAgf, -).

Let 7}, be a shape-regular, admissible decompositio2dhto d-dimensional
simplices or quadrilaterals far = 2 or hexahedra fod = 3. hy is the diameter of
acellT € 7, andh = maxhr. Let T be a reference element 6§, andFr : T — T
the standard (affine or bi-/trilinear) reference mapping.

SetP 7 = {Vh € L2(Q) | vn|t o Fr € P(T), T € Jh} with the setPy(T) of
complete polynomials of degrdeon T andQx 7 = {vh € L?(Q) | wp|r oFr €
Q«(T),T € 9} with the setQy(T) of all polynomials orif with maximal degree
k in each coordinate direction. The FE space of the velocityiven by Vpy, =
[Qk,. 79NV 0of Vi, = [P ]9 NV with scalar components,, of Vi,. For
simplicity, the analysis is restricted to continuous déserpressure space x, =

Q.7 NC(Q) resp.Qnk, = P, NC(Q). An extension to discontinuous spaces
Qhk, is givenin [6].
The analysis below takes advantage of the inverse inetpsalit
Idiny | |V|1,T < I-linvkah'FlHVHO,Ta VT € Jh, YWh € Vi, (4)
The Scott-Zhang quasi-interpolant obeys the interpatgtimperties

IC> 0| V=1 VImT < CR ™k ™ |Vi[rer, 0<m<T=min(ky+1,r) (5)
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for ve HY(Q)NHY(Q), t > % with V| € H"(wr), r > t, on the patchesor :=
U?mT#)T/- This property can be extended to the vector-valued casd M V-
V. A similar interpolation operatdﬁkp satisfying (5) is defined for the pressure.

In LPS-methods the discrete function spaces are split mtlsand large scales.
Stabilization terms of diffusion-type acting only on theadhscales are added.

A first variant is to find the large scales on a coarse non-apeihg, shape-
regular mesh#;, = {M }ic1. .4, is constructed by coarsening, s. t. eactM € .7},
with diameterhy, consists of one or more neighboring cellse Z;,. Moreover,
suppose that there exisfs> 1 s. t.hy <Chr forall T € Z;, with T C M € ..

Following [5] we define the discrete velocity spag as a discontinuous FE
space on#h. The restriction taVl € ., is denoted by (M) = {vn|m | vh € D}
The local projectionrg : L2(M) — DY(M) defines the global projectiom! :
L2(Q) — DY by (1v)|m := 1 (v|m) for all M € .. Denoting the identity on
L2(Q) by id, the associated fluctuation operatgf: L?(Q) — L?(Q) is defined
by ki :=id — iy. These operators are applied to vector-valued functiona in
component-wise manner.

A discrete spac@ﬁ and a fluctuation operataxrrf are defined similarly.

The second choice consists in choosing lower order distootis FE discretiza-
tions D} x Dﬁ on % or by enrichingVy, x Chkp- The same framework as in the
first approach can be used by settiag, = 5.

The LPS scheme reads: fitll = (Un, pn) € Vhk, X Qnk, S:t.

A(Un, Vi) +S(Un, Vi) = (f,Vh),  YWh = (Vh,0h) € Vhi, X Qnk,s  (6)
where the additional stabilization term is given by

SUn Vo) == 5 [m(kp ((b-O)un), k(b C)vh))m
Me.7,

+ pm (kP (O un), kP (3 Vh))m + am (Kp(Opn), Kn(Oah) )y |- (7)

An alternative is to replace the first two termsSafby the projection oflup,.

The constantgy, uym and ay will be determined in Section 3 based on an a
priori estimate. Please note that the stabilizaBgacts solely on the fine scales.

In order to control the consistency error of thi¢dependent stabilization terms,
the spacé®j, has to be large enough for the approximation property:

Assumption 1 The fluctuation operatok) admits for0 < | < k;, the property:
3Cc > 0| [lkfallom < Cehivk;'ahm,  VaeH'(M), YM € 4. (8)

Assumption 1 is valid for thé&?-projection 1. Due to the consistency of thqﬁ’—
dependent term i, thus involvingD?, such condition is not needed fbﬁ.

The following property of the symmetric and non-negativet&,(-,-) is valid
forallU eV x Q, see [4], Lemma 2.1:

SU.U) < CS|U|% +C,%(mMaxaM) | p@v Cs= C}% mMaX[TM Hb||(2|_rn(|v|))d + “M] C))
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Following [5], a special interpolang : H(Q) — Yy for the velocity is con-
structed s.t. the error— jlv is L2-orthogonal toD}! for all v € H3(Q). A corre-
sponding result can be proved for the pressure too. In oodmriserve the standard
approximation properties, we additionally assume

Assumption 2 Let Yo(M) := {Vh|m | Vh € Yh,Vh|o\m = O}. There exist$,,Bp s. t.

€Dy, vy (M) [IVhlloml|Anllom
inf_ sup _VhGnw >Bp>0 (11)

heDP VheQn, [IVhlloml[Bhllom
Remark 1The spac®} must not be too rich w.r.t. (10) but rich enough w.r.t. (8).

Lemmal. ([4], Lemmata 2, 3) Set := Urm wr for M € .. Under Assump-
tion 2 there are interpolantstj: V — Vy, s.t. for allve [H'(Q)19NV:

(V=jpV,Gh) =0 Vo € Dy, (12)
. hwm . 1 h:w
V= ifvloa -+ 3 V= iivlam < (14 2-) P IV (13)

and an interpolant ] : Q — Qn, s.t. for allve QnH'(Q):

(V_ jﬁV, qh) = 07 VQh € Dp7 (14)

. hwm . 1\ hl
lv—ifvllom + g v=ifvizm S (145 ) 2 IM - (15)
p p

Bo

Remark 2(13), (15) are optimal w.r.tyy but sub-optimal w.r.tk,,Kp in |- [1m -

3 A priori Analysis

The stability of the LPS scheme is given for the mesh-depauzm
VI = [VVEV§+ IVOVIE+ S(V.V),  V=(v,q)eVxQ.

Then, a "post-processing” argument for the pressure iseqghpl

Lemma 2. ([4], Lemmata 4 and 5) The following a-priori estimate isidal
IVVOUR§ + IVOun|1§ < [[Un][* = (A+Sh) (Un,Un) < (f,un). (16)

There exists a h-independent constant 0 (depending on the continuous inf-sup
constant and on degreeR s. t. (with Gs as in (9) and Poincare constantl
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||ph||o§V(\/K+ Cpa—i—mln(\/_ \/_) CS"'mMaX;%—M)HUhH*"fgl

With Ve, 1= [|V|[L= (), Vo := €SS iNhV(X), be 1= ||b]|(L=(q))e- This implies unique-
ness and existence @y, pn) € Vi, X Qhk, in (6).

In LPS methods the Galerkin orthogonality is not fulfilleddancareful analysis
of the consistency error has to be done. Subtracting (6) (8)mields

Lemma 3. ([4], Lemma 6) Let Uc V x Q and U, € Vi, X Qnk, be the solutions
of (3) and of (6), respectively. Then, there holds

(A+S)U —UnWVh) =S$(U,Wh),  ¥Wh € Vhi, X Qnk,- (17)

The consistency error can be estimated using the propeft&®s-, -).

Lemma4. ([4], Lemma 7) Let Assumption 1 be fulfilled af p) € V x Q with
(b-Dyue (Huy(M))4, 0-u=0, pe H'»*1(M) for all M € .. Then, we obtain for
0 S anlp S kU

K2 20

u h :’2L
SUWIS( Y m -GSV ALIAP RV
p

Me.7

A combination of the stability and consistency resultsgsedn a-priori estimate.

Theorem 1. ([4], Thm. 1) LetU= (u,p) €V x Q and U, = (un, pn) € Vi, X Qnk,
be the solutions of (3) and of (6). Assume thatUu, p) € V x Q is sufficiently
regular, i.e. pc H'»™1(Q) and ue [H"v*1(Q)]4, (b- O)u € [H'*(Q)]9. Furthermore
let the Assumptions 1 and 2 for the coarse velocity spgteesatisfied. For the
space [ﬁ we assume that (11) is satisfied. Then, there holds

hM 2ly 2

U—UpJ)* v () 7"|[(b- D)ullf,. (19)
Mezflh( ku o
hw | 21, hw 21
(1 ) D I 10+ (L4 5 RGP, 1.0

for 1 <Ily <kgandl <Ip < min{kp,k,} with
h2 1 1 1 h?
C&i:HVHLW(MHku(UJr +too )+HM+||b||2m ™, C&r:awu—Mk—%-

Under the notation of Lemma 2 we obtain

o=l < v{v¥e+ v/Coo-+min (<2 — )

Now we calibrate the stabilization parametexs, v andpv w.r.t. hy, ky, kp and
problem data by balancing the terms of the right hand siderof @stimate (19).
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First, equilibrating they-dependent terms i@y, yields iy ~ hM/(||bH(Loo(M>>dk5).
Similarly, equilibration of the terms iy, andCBl involving uyv and ay yields
U ~ h:\ﬁfl"H/k'P*'U*Z, ayp ~ h'h‘)fl"Jrl/k'u*'PJr2 where we used ~ ky ~ Kp.

Corollary 1. ([4], Corollary 2) Let the assumptions of Theorem 1 be vakdr

equal-order interpolation k= ky =k, > 1, let | =1, =1, < k and setuy =
Hohwm /K2, am = aohwm /K2, v = Tohwm /(||b| (L (u))ak?)- Then we obtain

N A (T i PR ML e
NMe/// Bp K2 EERAVIN K2+2 ||bH (M) l,com

1., 2 hwv h2
+ (1+E) {HVHLw(M)+0W+HbH(L°° 472 i@- 2||UH|+1‘*M)

For inf-sup stable interpolation withyk= kp + 1, we assumeyl=1p+ 1 =k, and
setam = aohiy /K3, v = Ho/ku, Tm = Tohm/(|[b]] (L=(w))ekd)- Then we obtain

h2|u h2|u+1 b

=S 5 (e g)° ka.uﬂllplhu o+ gtz (o Dl
1 17 hd
—|—(1+E)2[”VHL°"( kﬁ —|—Hb” L= (M kﬁ + :| 2|u 2” |||+1OW|)

e For equal-order pairg, \ x Qnx and Taylor-Hood pair$h k1 x Qnk, we obtain
the optimal convergence ratésl— and k+1, respectlvely, w.r.thy.
e The estimates are not optimal w. k@. see Remark 2. Assume thatin Lemma 1

there holdgv— jivjim < (1+ o ( ) ||v|\| wy and a similar result for the
pressure too. A careful check of the proofs leads to:

— Equal-order pairs with = ky = kp: v ~ am ~ hy /K, v ~ HthiMku

— Inf-sup stable pairs witky = kp+1: am ~ E’ U ~ 1, Ty ~

Then the estimate (19) would be optimal wktandkp too with possible excep-
tion of the factors depending ¢y, SBp.

et i

Different variants for the choice of the discrete spadeg x Qnk, and Dp x Dﬁ
using simplicial and hexahedral elements are presentef] ifof two variants: a
two-level variant with.#}, = .7, and a one-level variant withz, = %, thushy =
hk, with a proper enrichment ¢4, , by using bubble functions.

Assumption 1 is valid if the local2-projectionm) : L2(M) — D(M) for the
velocity and similarly for the pressure is applied, see [B]the two-level variant,
the constantg,, in Assumption 2 scale Iikﬁ(l/M) for simplicial elements
and like'(1) for quadrilateral elements in the affine linear case, see [6]

Please note that the present analysis covers only the casatirfiuous pressure
approximation. An extension to discontinuous discretesguee approximation, in
particular to the case of the caseQ@f/P__1)-elements, can be found in [6].
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4 Some Numerical Results

A calibration of the LPS parameters requires careful nucatexperiments. Some
papers validate the design and the convergence rates fadshen problem (2)
in Q = (0,1)? with the smooth solution(xy,xz) = (sin(71x1), — X CO 71X1)),
p(x1,X2) = sin(11x1) cog 11Xz ) and datd = u, o = 1. A study of the one-level variant
for equal-order pairs with enrichment of the discontinueekcity space is given
in [7]. The two-level variant is considered in [3] for equalder and inf-sup stable
pairs, see also [6]. Summarizing, all these experimentiroothe calibration of the
stabilization parameters w.rtty and the theoretical a-priori convergence rates.
Here we present some typical results using ei@©iQ, andQ,/Q; pairs for ve-
locity/pressure on unstructured, quasi-uniform meshethfoadvection-dominated

casev = 10°°. The coarse spaces of the two-level variant are defin@ﬁéf’s::
{v e [LAQ) | vim € Pa(M)} and D/P := {v € [L2(Q)) | vim € Pyjo(M)}.
Table 1 shows comparable results for the best variants dhffeip stableQ,/Q1

Table1 Comparison of different variants of stabilization for pletn (2) withv =106, h=1/64

Pair | o po 0o |[u—Un[1 [[u—Unllo [[O-unllo [[P— Pnllo
Q2/Qs {|0.0000 0.0000 0.000@.56E-1 5.42E-4 2.02E-1 2.31E-
Q2/Q1 ||0.0562 0.5623 0.000.91E-3 6.20E-6 1.66E-4 8.06E-
Q2/Q1 {|0.0000 0.5623 0.000®.61E-3 7.42E-6 1.72E-4 8.05E-
Q2/Q1 ||3.1623 0.0000 0.000.87E-2 7.50E-5 1.56E-2 1.08E-
Q2/Q2 {|0.0000 0.0000 0.0178..65E-2 3.48E-5 9.37E-3 6.96E-
Q2/Q2||0.0562 1.0000 0.011®.30E-4 2.85E-6 2.14E-4 4.31E-
Q2/Q2 (|0.0562 0.0000 0.01718..77E-3 4.18E-6 1.46E-3 3.25E-
Q2/Q2||0.0000 5.6234 0.0118.26E-3 7.20E-6 2.00E-4 7.56E-

oo ~0onN

and the equal-orde®,/Q, pairs with the exception of the pressure error. Never-
theless, the importance of the stabilization terms is dfieé The fine-scale SUPG-
and PSPG-type terms are necessary for the equal-ordergasetlor the inf-sup
stable pair. On the other hand, the divergence-stabitinafives clear improvement
for the inf-sup stable case and some improvement for the otiee. Moreover, the
PSPG-type term can be omitted for the inf-sup stable case.

Finally, we apply the LPS stabilization to the lid-drivervitg Navier-Stokes
flow (1) with f = 0. No-slip data are prescribed with the exception of the uppé
of the cavity wheres = (1,0)" is given. A quasi-uniform mesh is used together with
the Q2/Q1 andQ2/Q; pairs using the two-level LPS variant with scaling paramete
Tp and g according to the Oseen case ang= 0.

Fig. 1 shows typical velocity profiles fdke= 5,000. The results folh = 6—14 for
both variants are in excellent agreement with [2] with wedlalved boundary layers.
Moreover, the solution for a coarse grid with= 1—16 is in good agreement with
[2] away from the boundary layers. Similar results are ot@diup toRe= 7.500
[3]. The results for this nonlinear problem confirm the poes remarks for the
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~ — Q2Q1 h=1/16
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u component of velocity
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xfco‘grdlnale‘ « % 5)
Fig. 1 Lid driven-cavity problem withRe= 5,000: Cross-sections of the discrete solutions for
Q2/Q1 pair with o = ag = 0 andpp = 1 andQ2/Q, pair withto = ap = g =1

linear Oseen problem. For tl@g,/Q, element, only the divergence stabilization is
necessary whereas for te/Q, pair all stabilization terms are relevant.

5 Summary

A unified a-priori analysis of local projection stabilizati (LPS) methods is given
for equal-order and inf-sup stable velocity-pressurespair isotropic meshes. Nu-
merical results confirm the numerical analysis. Compare@gsalual-based meth-
ods, the error estimates are comparable, but the parameggndis much sim-

pler. A major difference between equal-order and inf-saplst pairs is that LPS-
stabilization is always necessary for equal-order paios.ifif-sup stable pairs, the
necessity of stabilization is much less pronounced. Iriqdar, the grad-div stabi-

lization is much more important than the fine-scale SUPG &@fl®stabilization.
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