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Local Projection Stabilization of Finite Element
Methods for Incompressible Flows

G. Lube, G. Rapin, and J. Löwe

Abstract A unified analysis for finite element discretizations of linearized incom-
pressible flows using the local projection method with equal-order or inf-sup stable
velocity-pressure pairs together with a critical comparison is given.

1 Introduction

A standard numerical approach to the incompressible Navier-Stokes model

∂tu−ν△u+(u·∇)u+ ∇p = f̃ , ∇ ·u = 0 in Ω × (0,T) (1)

for velocity u and pressurep is to semi-discretize in time first with anA-stable
implicit scheme and to apply a fixed-point or Newton-type iteration in each time
step. This leads to auxiliary Oseen problems (withσ ≥ 0 from time discretization)

−ν△u+(b·∇)u+ σu+ ∇p = f , ∇ ·u = 0 in Ω . (2)

Residual based stabilization (RBS) methods are the traditional way to cope with
spurious solutions of the Galerkin finite element (FE) approximation of (2) caused
by violation of the discrete inf-sup stability condition and/or dominating advection.
RBS methods are robust and easy to implement, but have severedrawbacks mainly
stemming from the strong velocity-pressure coupling in thestabilisation terms.

The key idea of the variational multiscale (VMS) methods [1]is a separation into
large, small and unresolved scales. The influence of the unresolved scales has to be
modeled. Almost all stabilization methods can be interpreted as VMS methods. In
local projection stabilization (LPS) methods [1, 5] the influence of the unresolved
scales is modeled by an artificial fine-scale diffusion term.
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Mostly, an equal-order interpolation of velocity-pressure is applied. Other au-
thors prefer discrete inf-sup stable pairs as the natural choice from regularity point
of view for fixedν > 0. Here, a unified theory of LPS methods for equal-order and
inf-sup stable pairs for problem (2) is presented. For full proofs, see [4]. Finally, a
comparison of both variants is given.

2 Variational Formulation and LPS-Discretization

Standard notations for Lebesgue and Sobolev spaces are used. The L2(G) inner
product inG⊂Ω is denoted by(·, ·)G with (·, ·) = (·, ·)Ω . The notationa. b is used
if there exists a constantC > 0 independent of all relevant quantities s.t.a≤Cb.

The weak formulation for the Oseen problem (2) with homogeneous Dirichlet
data reads: FindU = (u, p)∈V×Q := [H1

0(Ω)]d×L2
0(Ω), s. t.∀V = (v,q)∈V×Q:

A(U,V) = (ν∇u,∇v)+ ((b·∇)u+ σu,v)− (p,∇ ·v)+ (q,∇ ·u) = ( f ,v). (3)

Let Ω ⊂ Rd,d ∈ {2,3} be a bounded, polyhedral domain andν ∈ L∞(Ω) with
ν > 0, f ∈ [L2(Ω)]d, b∈ [L∞(Ω)∩H1(Ω)]d with ∇ ·b = 0 andσ ∈ R+. Usually,b
is a FE solution of (2) with(∇ ·b,qh) = 0 for someqh and∇ ·b does not vanish. A
remedy is to write the advective term in skew-symmetric form. The analysis can be
extended to problems resulting from Newton iteration including the term(u ·∇)b.
Sufficiently small time steps ensure coercivity ofA(·, ·).

Let Th be a shape-regular, admissible decomposition ofΩ into d-dimensional
simplices or quadrilaterals ford = 2 or hexahedra ford = 3. hT is the diameter of
a cellT ∈ Th andh = maxhT . Let T̂ be a reference element ofTh andFT : T̂ → T
the standard (affine or bi-/trilinear) reference mapping.

SetPk,Th := {vh ∈ L2(Ω) | vh|T ◦ FT ∈ Pk(T̂),T ∈ Th} with the setPk(T̂) of
complete polynomials of degreek on T̂ andQk,Th := {vh ∈ L2(Ω) | vh|T ◦FT ∈
Qk(T̂),T ∈ Th} with the setQk(T̂) of all polynomials onT̂ with maximal degree
k in each coordinate direction. The FE space of the velocity isgiven byVh,ku =
[Qku,Th]

d ∩V or Vh,ku = [Pku,Th]
d ∩V with scalar componentsYh,ku of Vh,ku. For

simplicity, the analysis is restricted to continuous discrete pressure spacesQh,kp =

Qkp,Th ∩C(Ω) resp.Qh,kp = Pkp,Th ∩C(Ω). An extension to discontinuous spaces
Qh,kp is given in [6].

The analysis below takes advantage of the inverse inequalities

∃µinv | |v|1,T ≤ µinvk
2
uh−1

T ‖v‖0,T , ∀T ∈ Th, ∀vh ∈Vh,ku. (4)

The Scott-Zhang quasi-interpolant obeys the interpolation properties

∃C > 0 | ‖v− Iu
h,ku

v‖m,T ≤Chl−m
T k−(r−m)

u ‖v‖r,ωT , 0≤ m≤ l = min(ku +1, r) (5)
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for v ∈ H1
0(Ω)∩Ht(Ω), t > 1

2 with v|ωT ∈ Hr(ωT), r ≥ t, on the patchesωT :=
⋃

T ′∩T 6= /0T ′. This property can be extended to the vector-valued case with Iu
h,ku

:V →
Vh. A similar interpolation operatorI p

h,kp
satisfying (5) is defined for the pressure.

In LPS-methods the discrete function spaces are split into small and large scales.
Stabilization terms of diffusion-type acting only on the small scales are added.

A first variant is to find the large scales on a coarse non-overlapping, shape-
regular meshMh = {Mi}i∈I . Mh is constructed by coarseningTh s. t. eachM ∈Mh

with diameterhM consists of one or more neighboring cellsT ∈ Th. Moreover,
suppose that there existsC≥ 1 s. t.hM ≤ChT for all T ∈ Th with T ⊆ M ∈ Mh.

Following [5] we define the discrete velocity spaceDu
h as a discontinuous FE

space onMh. The restriction toM ∈ Mh is denoted byDu
h(M) = {vh|M | vh ∈ Du

h}
The local projectionπu

M : L2(M) → Du
h(M) defines the global projectionπu

h :
L2(Ω) → Du

h by (πu
hv)|M := πu

M(v|M) for all M ∈ Mh. Denoting the identity on
L2(Ω) by id, the associated fluctuation operatorκu

h : L2(Ω) → L2(Ω) is defined
by κu

h := id − πu
h . These operators are applied to vector-valued functions ina

component-wise manner.
A discrete spaceDp

h and a fluctuation operatorκ p
h are defined similarly.

The second choice consists in choosing lower order discontinuous FE discretiza-
tionsDu

h×Dp
h on Th or by enrichingVh,ku ×Qh,kp. The same framework as in the

first approach can be used by settingMh = Th.
The LPS scheme reads: findUh = (uh, ph) ∈Vh,ku ×Qh,kp s.t.

A(Uh,Vh)+Sh(Uh,Vh) = ( f ,vh), ∀Vh = (vh,qh) ∈Vh,ku ×Qh,kp, (6)

where the additional stabilization term is given by

Sh(Uh,Vh) := ∑
M∈Mh

[

τM(κu
h ((b·∇)uh) ,κu

h ((b·∇)vh))M

+ µM(κ p
h (∇ ·uh) ,κ

p
h (∇ ·vh))M + αM (κu

h(∇ph),κu
h(∇qh))M

]

. (7)

An alternative is to replace the first two terms ofSh by the projection of∇uh.
The constantsτM, µM andαM will be determined in Section 3 based on an a

priori estimate. Please note that the stabilizationSh acts solely on the fine scales.
In order to control the consistency error of theκu

h-dependent stabilization terms,
the spaceDu

h has to be large enough for the approximation property:

Assumption 1 The fluctuation operatorκu
h admits for0≤ l ≤ ku, the property:

∃Cκ > 0 | ‖κu
hq‖0,M ≤Cκhl

Mk−l
u |q|l ,M, ∀q∈ H l (M), ∀M ∈ Mh. (8)

Assumption 1 is valid for theL2-projectionπu
h. Due to the consistency of theκ p

h -
dependent term inSh, thus involvingDp

h, such condition is not needed forDp
h.

The following property of the symmetric and non-negative term Sh(·, ·) is valid
for all U ∈V ×Q, see [4], Lemma 2.1:

Sh(U,U) ≤CS|u|21 +C2
κ
(

max
M

αM
)

|p|21, CS = C2
κ max

M

[

τM‖b‖2
(L∞(M))d + µM

]

. (9)
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Following [5], a special interpolantjuh : H1(Ω) → Yh for the velocity is con-
structed s.t. the errorv− juhv is L2-orthogonal toDu

h for all v ∈ H1
0(Ω). A corre-

sponding result can be proved for the pressure too. In order to conserve the standard
approximation properties, we additionally assume

Assumption 2 Let Yh(M) := {vh|M | vh ∈Yh,vh|Ω\M = 0}. There existsβu,βp s. t.

inf
qh∈Du

h

sup
vh∈Yh(M)

(vh,qh)M

‖vh‖0,M‖qh‖0,M
≥ βu > 0. (10)

inf
qh∈Dp

h

sup
vh∈Qh,kp

(vh,qh)M

‖vh‖0,M‖qh‖0,M
≥ βp > 0 (11)

Remark 1.The spaceDu
h must not be too rich w.r.t. (10) but rich enough w.r.t. (8).

Lemma 1. ([4], Lemmata 2, 3) SetωM :=
⋃

T⊂M ωT for M ∈ Mh. Under Assump-
tion 2 there are interpolants ju

h : V →Vh,ku s.t. for all v∈ [H l (Ω)]d ∩V:

(v− juhv,qh) = 0 ∀qh ∈ Du
h, (12)

‖v− juhv‖0,M +
hM

k2
u
|v− juhv|1,M .

(

1+
1
βu

)hl
M

kl ‖v‖l ,ωM (13)

and an interpolant jph : Q→ Qh,kp s.t. for all v∈ Q∩H l (Ω):

(v− j p
hv,qh) = 0, ∀qh ∈ Dp

h, (14)

‖v− j p
hv‖0,M +

hM

k2
p
|v− j p

hv|1,M .
(

1+
1

βp

)hl
M

kl
p
‖v‖l ,ωM . (15)

Remark 2.(13), (15) are optimal w.r.t.hM but sub-optimal w.r.t.ku,kp in | · |1,M .

3 A priori Analysis

The stability of the LPS scheme is given for the mesh-dependent norm

|[V]|2 := ‖
√

ν∇v‖2
0 +‖

√
σv‖2

0 +Sh(V,V), V = (v,q) ∈V ×Q.

Then, a ”post-processing” argument for the pressure is applied.

Lemma 2. ([4], Lemmata 4 and 5) The following a-priori estimate is valid

‖
√

ν∇uh‖2
0 +‖

√
σuh‖2

0 ≤ |[Uh]|2 = (A+Sh)(Uh,Uh) ≤ ( f ,uh). (16)

There exists a h-independent constantγ > 0 (depending on the continuous inf-sup
constantβ and on degree ku) s. t. (with CS as in (9) and Poincare constant CP)
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‖ph‖0≤ γ
(√

ν∞ +
√

CPσ +min
( CP√

ν0
;

1√
σ

)

b∞ +
√

CS+max
M

hM√
αM

)

|[Uh]| +
‖ f‖−1

β

with ν∞ := ‖ν‖L∞(Ω), ν0 := ess infΩ ν(x), b∞ := ‖b‖(L∞(Ω))d . This implies unique-
ness and existence of(uh, ph) ∈Vh,ku ×Qh,kp in (6).

In LPS methods the Galerkin orthogonality is not fulfilled and a careful analysis
of the consistency error has to be done. Subtracting (6) from(3) yields

Lemma 3. ([4], Lemma 6) Let U∈ V ×Q and Uh ∈ Vh,ku ×Qh,kp be the solutions
of (3) and of (6), respectively. Then, there holds

(A+Sh)(U −Uh,Vh) = Sh(U,Vh), ∀Vh ∈Vh,ku ×Qh,kp. (17)

The consistency error can be estimated using the propertiesof Sh(·, ·).
Lemma 4. ([4], Lemma 7) Let Assumption 1 be fulfilled and(u, p) ∈ V ×Q with
(b·∇)u∈ (H lu(M))d, ∇ ·u = 0, p∈ H lp+1(M) for all M ∈ Mh. Then, we obtain for
0≤ lu, lp ≤ ku

|Sh(U,Vh)| .
(

∑
M∈Mh

τM
h2lu

M

k2lu
u

|(b·∇)u|2lu,M + αM
h

2lp
M

k
2lp
p

|p|2lp+1,M

)
1
2 |[Vh]|. (18)

A combination of the stability and consistency results yields an a-priori estimate.

Theorem 1. ([4], Thm. 1) Let U= (u, p) ∈V ×Q and Uh = (uh, ph) ∈Vh,ku ×Qh,kp

be the solutions of (3) and of (6). Assume that U= (u, p) ∈ V ×Q is sufficiently
regular, i.e. p∈ H lp+1(Ω) and u∈ [H lu+1(Ω)]d,(b·∇)u∈ [H lu(Ω)]d. Furthermore
let the Assumptions 1 and 2 for the coarse velocity space Du

h be satisfied. For the
space Dp

h we assume that (11) is satisfied. Then, there holds

|[U −Uh]|2 . ∑
M∈Mh

(

τM
(hM

ku

)2lu‖(b·∇)u‖2
lu,ωM

(19)

+
(

1+
1
βu

)2
k2

u

(hM

ku

)2luCu
M‖u‖2

lu+1,ωM
+

(

1+
1

βp

)2
k2

p

(hM

kp

)2lpCp
M‖p‖2

lp+1,ωM

)

for 1≤ lu ≤ ku and1≤ lp ≤ min{kp,ku} with

Cu
M := ‖ν‖L∞(M) +

h2
M

k4
u

(σ +
1

τM
+

1
αM

)+µM +‖b‖2
[L∞(M)]d

τM, Cp
M := αM +

1
µM

h2
M

k4
p

.

Under the notation of Lemma 2 we obtain

‖p−ph‖0 . γ
(√

ν∞ +
√

CPσ +min
( CP√

ν0
;

1√
σ

)

b∞ +

√
CS

β
+max

M

hM√
αM

)

|[U−Uh]|.

Now we calibrate the stabilization parametersαM,τM andµM w.r.t.hM, ku,kp and
problem data by balancing the terms of the right hand side of error estimate (19).
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First, equilibrating theτM-dependent terms inCu
M yieldsτM ∼ hM/(‖b‖(L∞(M))dk2

u).

Similarly, equilibration of the terms inCu
M andCp

M involving µM and αM yields

µM ∼ h
lp−lu+1
M /klp−lu+2, αM ∼ h

lu−lp+1
M /klu−lp+2 where we usedk∼ ku ∼ kp.

Corollary 1. ([4], Corollary 2) Let the assumptions of Theorem 1 be valid.For
equal-order interpolation k= ku = kp ≥ 1, let l = lu = lp ≤ k and setµM =
µ0hM/k2, αM = α0hM/k2, τM = τ0hM/(‖b‖(L∞(M))dk2). Then we obtain

|[U −Uh]|2 . ∑
M∈M

(

(

1+
1

βp

)2 h2l+1
M

k2l
‖p‖2

l+1,ωM
+

h2l+1
M

k2l+2‖(
b

‖b‖(L∞(M))d
·∇)u‖2

l ,ωM

+
(

1+
1
βu

)2
[

‖ν‖L∞(M) + σ
h2

M

k4 +‖b‖(L∞(M))d
hM

k2

] h2l
M

k2l−2‖u‖2
l+1,ωM

)

.

For inf-sup stable interpolation with ku = kp + 1, we assume lu = lp + 1 = ku and
setαM = α0h2

M/k3
u, µM = µ0/ku, τM = τ0hM/(‖b‖(L∞(M))dk2

u). Then we obtain

|[U −Uh]|2 . ∑
M∈M

(

(

1+
1

βp

)2 h2lu
M

k2lu+1
u

‖p‖2
lu,ωM

+
h2lu+1

M

k2lu+2
u

‖( b
‖b‖L∞(M)

·∇)u‖2
l ,ωM

+
(

1+
1
βu

)2
[

‖ν‖L∞(M) + σ
h2

M

k4
u

+‖b‖[L∞(M)]d
hM

k2
u

+
1
ku

] h2lu
M

k2lu−2
u

‖u‖2
l+1,ωM

)

.

• For equal-order pairsVh,k×Qh,k and Taylor-Hood pairsVh,k+1×Qh,k, we obtain
the optimal convergence ratesk+ 1

2 and k+1, respectively, w.r.t.hM.
• The estimates are not optimal w.r.t.ku, see Remark 2. Assume that in Lemma 1

there holds|v− juhv|1,M .
(

1+ 1
βu

)

(hM
k

)l−1‖v‖l ,ωM and a similar result for the

pressure too. A careful check of the proofs leads to:

– Equal-order pairs withk = ku = kp: µM ∼ αM ∼ hM/k, τM ∼ hM
‖b‖

[L∞(M)]d
ku

– Inf-sup stable pairs withku = kp +1: αM ∼ h2
M

k2
u
, µM ∼ 1, τM ∼ hM

‖b‖
(L∞(M))d

ku
.

Then the estimate (19) would be optimal w.r.t.ku andkp too with possible excep-
tion of the factors depending onβu,βp.

Different variants for the choice of the discrete spacesVh,ku ×Qh,kp andDu
h ×Dp

h
using simplicial and hexahedral elements are presented in [5] for two variants: a
two-level variant withMh = T2h and a one-level variant withMh = Th, thushM =
hK , with a proper enrichment ofPku,Th by using bubble functions.

Assumption 1 is valid if the localL2-projectionπu
M : L2(M) → Du

h(M) for the
velocity and similarly for the pressure is applied, see [5].In the two-level variant,
the constantsβu/p in Assumption 2 scale likeO(1/

√

ku/p) for simplicial elements
and likeO(1) for quadrilateral elements in the affine linear case, see [6].

Please note that the present analysis covers only the case ofcontinuous pressure
approximation. An extension to discontinuous discrete pressure approximation, in
particular to the case of the case ofQk/P−(k−1)-elements, can be found in [6].
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4 Some Numerical Results

A calibration of the LPS parameters requires careful numerical experiments. Some
papers validate the design and the convergence rates for theOseen problem (2)
in Ω = (0,1)2 with the smooth solutionu(x1,x2) =

(

sin(πx1),−πx2cos(πx1)
)

,
p(x1,x2)= sin(πx1)cos(πx2) and datab= u, σ = 1. A study of the one-level variant
for equal-order pairs with enrichment of the discontinuousvelocity space is given
in [7]. The two-level variant is considered in [3] for equal-order and inf-sup stable
pairs, see also [6]. Summarizing, all these experiments confirm the calibration of the
stabilization parameters w.r.t.hM and the theoretical a-priori convergence rates.

Here we present some typical results using eitherQ2/Q2 andQ2/Q1 pairs for ve-
locity/pressure on unstructured, quasi-uniform meshes for the advection-dominated

caseν = 10−6. The coarse spaces of the two-level variant are defined asDu/p
h :=

{v ∈ [L2(Ω)]d | v|M ∈ P1/1(M)} and Du/p
h := {v ∈ [L2(Ω)]d | v|M ∈ P1/0(M)}.

Table 1 shows comparable results for the best variants of theinf-sup stableQ2/Q1

Table 1 Comparison of different variants of stabilization for problem (2) withν = 10−6,h= 1/64

Pair τ0 µ0 α0 |u−uh|1 ‖u−uh‖0 ‖∇ ·uh‖0 ‖p− ph‖0

Q2/Q1 0.0000 0.0000 0.00002.56E-1 5.42E-4 2.02E-1 2.31E-4
Q2/Q1 0.0562 0.5623 0.00001.91E-3 6.20E-6 1.66E-4 8.06E-5
Q2/Q1 0.0000 0.5623 0.00002.61E-3 7.42E-6 1.72E-4 8.05E-5
Q2/Q1 3.1623 0.0000 0.00001.87E-2 7.50E-5 1.56E-2 1.08E-4
Q2/Q2 0.0000 0.0000 0.01781.65E-2 3.48E-5 9.37E-3 6.96E-6
Q2/Q2 0.0562 1.0000 0.01789.30E-4 2.85E-6 2.14E-4 4.31E-6
Q2/Q2 0.0562 0.0000 0.01781.77E-3 4.18E-6 1.46E-3 3.25E-6
Q2/Q2 0.0000 5.6234 0.01783.26E-3 7.20E-6 2.00E-4 7.56E-6

and the equal-orderQ2/Q2 pairs with the exception of the pressure error. Never-
theless, the importance of the stabilization terms is different. The fine-scale SUPG-
and PSPG-type terms are necessary for the equal-order case but not for the inf-sup
stable pair. On the other hand, the divergence-stabilization gives clear improvement
for the inf-sup stable case and some improvement for the other case. Moreover, the
PSPG-type term can be omitted for the inf-sup stable case.

Finally, we apply the LPS stabilization to the lid-driven cavity Navier-Stokes
flow (1) with f = 0. No-slip data are prescribed with the exception of the upper part
of the cavity whereu= (1,0)T is given. A quasi-uniform mesh is used together with
theQ2/Q1 andQ2/Q2 pairs using the two-level LPS variant with scaling parameter
τ0 andµ0 according to the Oseen case andα0 = 0.

Fig. 1 shows typical velocity profiles forRe= 5,000. The results forh = 1
64 for

both variants are in excellent agreement with [2] with well resolved boundary layers.
Moreover, the solution for a coarse grid withh = 1

16 is in good agreement with
[2] away from the boundary layers. Similar results are obtained up toRe= 7.500
[3]. The results for this nonlinear problem confirm the previous remarks for the
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Fig. 1 Lid driven-cavity problem withRe= 5,000: Cross-sections of the discrete solutions for
Q2/Q1 pair withτ0 = α0 = 0 andµ0 = 1 andQ2/Q2 pair withτ0 = α0 = µ0 = 1

linear Oseen problem. For theQ2/Q1 element, only the divergence stabilization is
necessary whereas for theQ2/Q2 pair all stabilization terms are relevant.

5 Summary

A unified a-priori analysis of local projection stabilization (LPS) methods is given
for equal-order and inf-sup stable velocity-pressure pairs on isotropic meshes. Nu-
merical results confirm the numerical analysis. Compared toresidual-based meth-
ods, the error estimates are comparable, but the parameter design is much sim-
pler. A major difference between equal-order and inf-sup stable pairs is that LPS-
stabilization is always necessary for equal-order pairs. For inf-sup stable pairs, the
necessity of stabilization is much less pronounced. In particular, the grad-div stabi-
lization is much more important than the fine-scale SUPG and PSPG stabilization.
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