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Calibration of Model and Discretization
Parameters for Turbulent Channel Flow

X.Q. Zhang, T. Knopp, and G. Lube

Abstract The simulation of turbulent incompressible flow in a planaruiel is ad-
dressed. FoRe; = 395, discretization and model parameters of LES and DES mod-
els are calibrated using a DNS data basis. For higkgra non-zonal hybrid method
combines the calibrated LES model with wall functions asar+veall model.

1 Basic mathematical model and discretization

Consider the non-stationary, incompressible Navier-&takodel

ou—0-(2vS(u))+0-(ueu)+Op=f in Q x (0,T] 1)
O-u=0 inQx(0,T] (2)

for velocityu and pressurp in a bounded, polyhedral domaih c R® together with
boundary and initial condition§(u) = %(Du +Ou') is the rate of strain tensor.
For the numerical simulation of (1)-(2), the DLR Theta cosleised. The spa-
tial discretization is based on a finite volume scheme onruastred collocated
grids. Different upwind schemes (linear upwind scheme (IS)@uadratic upwind
scheme (QUDS)) and the central differencing scheme (CDSjnaplemented for
the approximation of the convective fluxes. Diffusive fluses discretized with the
CDS. The interpolation scheme by Rhie and Chow [8] is appheatder to avoid
spurious pressure oscillations. The time discretizatioparformed using thé-
stable BDF(2) scheme. The incremental variant of the ptiojeenethod is used to
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split the calculation of velocity and pressure within edafetstep. For a review of
semidiscrete error estimates for the time-dependent Stolablem see [3].

Of special interest here is the wall treatment. In the cduewall node is shifted
to the center of the control volume adjacent to the wall. RefApthe wall and’s an
artificial inner boundary containing the shifted nodes dt diatanceys. Then, as a
boundary condition ofiy, the wall-shear stress, is prescribed instead of no-slip

u-n=0, (I-n®n)2vS(u)n=—Tywlis on [ly. (3)

with I —n® n being the projection operator onto the tangential spadg,pfinit
velocity vector in wall-parallel direction; 5 = Vv, 5/|v; 5| and

Ty =VvOus-n, where us = |vi5|, Vig=(I—-n@n)ulr. 4)

2 Turbulence modeling using LES type models

In LES, a scale separation operator subdivides the scalediliered scales and
unresolved scales. Only the filtered scales are solved andritesolved scales are
modeled by a sub-grid stress term of the so-called eddyesitov;.

Smagorinsky model: In this classical LES model, the eddy-viscosity is given by
vt = (CsA)?[S| with |S| = (2S : S)¥/2. The model constant to be calibratedds
The filter width isA = nh, n=1,2,..., with he = (AxAyAz)Y/3, whereAx, Ay, Az
denote the grid spacing i, y-, andz-direction respectively.

Near solid walls, the turbulent viscosity is multiplied with the van Driest
damping functiorD(y"). Forx € Q, denotexy, = xw(X) € Iy the corresponding
nearest wall point with distan@kfrom x. ThenD(y") = (1 —exp(—y*/A*))? with
AT =26 wherey™ = yu; /v is the wall-distance of from x,y in viscous units with
y = dist(x, xw(X)) = d andu; = Ur|x, = v/Tw-

Due to its non-local character the van Driest damping is oy suitable for
unstructured methods or if parallelization is used A modifiefinition ofA by [11]
usesA = min(maxCyd, CyAmax, Awn), Amax) WhereAmax = max{Ax, Ay, Az} with
Awn denoting the spacing in wall-normal directi@gyy is a calibration parameter.

Detached-eddy simulation model: Detached-eddy simulation (DES) is a single
non-zonal hybrid RANS-LES method [10] based on the one-ggu&ANS model
by Spalart & Allmaras [9] which computes the eddy viscosity= f,1 U from the
auxiliary viscosityy using a near-wall damping functidiy = x3/(x3 + 031) with

X = V/v which involves only local variables. Heiesolves the transport equation
vt “ov) - %Z(Dr/)z = o —Cufu(5)?

0I\7+U-D\7—D-(

with S= Q|+ ¥/ (k?d?) fi2, | Q2| = (2Q(u) : Q(u))¥?, andQ (u) = (Ou—(Ou)T) /2.
The functionsf,, and f,, and constants, cpp, Cp1, Cy1 are givenin [9].
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In the SA-DES modeld is replaced withd = min( d , CpesAmax). The model
constant to be calibrated Ggs.

Near-wall treatment for LES: Wall-functions are used to bridge the near-wall
region at high Reynolds numbers. The wall shear strgssan be computed from
(4) only if yg < 3. For Iargeryg, Ty = U2 is computed from friction velocity;: The
universal velocity profile of RANS-type by Reichardt is nfad at the shifted node
ys with the instantaneous LES solutiog

Us _ o (Yslr i :In(1+0.4y+) B 7£_£ oyt
uT_F( : ) Fiy' )= ———"—— +7.8(1 et — e a.o). (5)

Equation (5) is solved fau; with Newton’s method.

We remark that (5) is an approximative solution of the boundayer equation
in wall-normal direction neglecting convective term andgsure gradient: For each
xw € Iy and giverus seek the wall-parallel velocity®*NS(y) such that

3((v+vPMN)GURNS) —0 in xw-ynly € (05} (6)

URANS(0) = 0 URANS(y5) = U ™)

3

3 Calibration for decaying isotropic turbulence

Framework: Itis desirable to treat the calibration problem of basibtence mod-
els within the framework of optimization problems. Consitlee abstract equation

Alqu =f in Q. (8)

(here: quasi-stationary turbulent Navier-Stokes moagljtfe state variable (here:
velocity/pressure) in a Hilbert spase C [H1(Q)]3 x L?(Q) with the parameter
vectorq (here: model and grid parameter) in the control sp@ce- R™. LetC:
V — Z be a linear observation operator mappinigto the space of measurements
Z :=R™ with nn > np. Thenq is calculated from the constrained optimization
problem

Minimize  J(q,u) := ||C(u) —C||2/2 9)

with the cost functional : Q x V — R under constraint (8) and using measurements
C € Z. Assume the existence of a unique solution to (8)-(9) andnoben set
Qo C Q containing the optimal solution. Using the solution oper&: Qy — V, one
defines viau= S(q) the reduced cost functional Qo — R by j(q) = J(g,S(q)). The
reduced observation operatgg) := C(S(q)) leads to an unconstrained problem

Minimize j(q) = [c(@)~C[Z/2. g€ Qo. (10)

An efficient framework to the solution of the necessary optity condition
j’(g) = 0 of (10) provides the adjoint approach, see [4] for a reviEhe approach
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can be generalized to time-dependent problems. This mhkesptimization prob-
lem and solution techniques much more expensive, althooghisticated tools
such as a-posteriori based optimization can reduce the,@gt [1].

Seemingly, this approach has not been applied to paranusatification for
turbulent flows yet. Main problems occur from the nonlingesf turbulence models
and the simulation over long time intervals to reach a diedilly steady solution.
Hence, a simpler approach to (10) is applied. As a basic atsgeries of numerical
simulations for a given flow provide look-up tables for thestfoinctional depending
on relevant parameters as a basis for further systematsidenng. In some cases,
a Newton type method is feasible to determine optimizedrpaters.

Application to DIT: The problem of decaying isotropic turbulence (DIT) mimics
the experiment by [2] at Taylor microscale Reynolds nunitegr~ 150. We choose

a cubic box domai2 = (0, 2r1)3 and an equidistant mesh wit? nodes. As initial
condition, we use a divergence-free velocity field with gyespectrumE (k)|i—o
(k=1k|, 1< k<M, M =N/2-1)given by data in [2] which can be computed as

_ oy oy (EMoy 2, Keky g odkexrok). (11
U)o klz_%,kgz_M( s ) 2= )k cosk x+o(). (11
k| <Kmax

The components of(k) are real random numbers with Gaussian distribution in
[0,1], & is the number of wave-vectokswith k —1/2 < |k| < k+1/2 andO (k) is
a random phase with uniform distribution inc0@ < 2rr.

The second-order statistics of interest is the energy sjpact

Ek) = Y 30@y-a@y  k=12..M  (12)
k—1/2<|q[<k+1/2

where(™ is the complex conjugated @t G is the discrete Fourier transform of

1 N-1 N—1
a(k) = W( S ucog—k-x)+i Y u(x)sin(—k-x)). (13)
X1.%2.X3=0 X1,X2,X3=0

Then we consider the error functional

M
5[ (B0~ Eeqlk)) g7 + (E6.C)~Eausk) o] )

JC) = (

The results in [12] for the spatial discretizations showt tBBS is suitable to re-
solve the large wave-number part of the spectrum, whereasigivind schemes
produce excessive damping at high wave-numbers. Comb@WiS with a skew-
symmetric formulation (QUDSK) for the convective fluxes gives some improve-
ment. Fig. 1 (left) shows the dependence of the cost funation the constarts

for the Smagorinsky model (SMG) ard = 64. A Newton-type method (based
on numerical differentiation) delivers a minimum wi@s = 0.094 for CDS and
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Fig. 1 Left: Calibration of Smagorinsky consta@t for DIT. Right: Energy spectrum with opti-
mized model constants of Smagorinsky model and of SA-DESeifod CDS scheme.

Cs=0.123 for QUDSsk. For the SA-DES model, a similar Newton-type approach
yields a minimum ofJ(C) for Cpgs = 0.67. In Fig. 1 (right), the corresponding
energy spectra for CDS with optimized constants for SMG alvdES are shown.

4 Parameter calibration for channel flow

Consider now the benchmark problem of fully developed tigniuchannel flow in

the domainQ = (0,2m) x (0,2) x (0, m). Periodic boundary conditions in stream-
wise x-direction, a no-slip condition for the walls ig-direction and symmetry
planes in the spanwisedirection are imposed. We consider a moderate Reynolds
numberRe; = u;H /v = 395 with channel half widttd = 1, for which DNS data
are available [6]. In order to achieve a constant mass flexstreamwise forcing
term is adjusted dynamically by taking into account the tstep sizedt, and the
bulk velocity from the DNS data and the bulk velocity at thegent time,

H
f = twex + (tn) *(Upukons — Ubuik(th))ex,  Upuk = Hfl/o u(y)dy (14)

whereeg, denotes the unit-vector ix-direction. As initial condition we use a ran-
domly perturbed velocity field|—o = urF (yur /v)ex + 0.1Upy ik whereF is given
by (5) and each component gf is a random number if—1,1). The spatial dis-
cretization usedl x Ny x N; = 64 x 64 x 64 nodes. The equidistant spacingxin
andz direction corresponds tAx™ = Axu;/v = 38.8 andAz" = Azu; /v = 19.4
respectively. The grid in wall-normal direction is strezchusing a hyperbolic tan-
gent functiony(j)/H = tanHy(2j/Ny—1)]/tanh(y)+ 1.0, j =0,1,...,Ny—1
wherey(j) is the coordinate of th¢th grid point iny direction providing thus an
anisotropic, layer-adapted mesh, see [5]. The parametbows to move the posi-
tiony™ (1) of the shifted wall node. The time step is choseds= 5tu?/v = 0.4.
After reaching a statistically steady solution, first-ardad second order statis-
tics are computed. Denote) the averaging operator over the two homogeneous
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SMG ——
SMG-MOD -

Fig. 2 Cost functionals for channel floRe; = 395, Left: mean velocity. Right: kinetic energy.

directions and in time. The quantities of interest are thameslocityU = (u), the
turbulent kinetic energy = %((u— (u))?) and its normalized variants* = u% and

kt = u—kz TheL2-error functional of the LES results compared to the DNS @ata
+ el + 250 \ Y2

By (2):0) = (3 (U (2):C)~Uions)Ay ) (15)

i=

for the mean velocity (and similarly for kinetic enerdy with @ = @(y(i)) and the
spacingAy; in y-direction of celli.

In Fig. 2, the dependence of the cost functionlsnd J on Cs andy* (1) is
shown for the Smagorinsky model. The result is robustness @ € [0,0.12] and
y" (1) € [0.5,1.5]. This means that a Newton-type approach to parameter atéibr
will not find local minima. In particular, the DIT-optimizedalue of Cs but also
Cs =0 (i.e., no turbulence model) are reasonable. The lattaulation can be seen
as underresolved DNS on a layer-adapted mesh.

Reasonable results for the first and second order statistcgresented in Fig. 3
for the calibrated modified Smagorinsky model and the SA-Dilel. The SA-
DES model gives even better results and allows to avoid a ofenob v; .

Channel flow at higher Re;: Now, the goal is to simulate turbulent channel flow
at higher Reynolds numbéd®e; = 4800 using the calibrated model constants. A
resolution of the wall layer regions (as fBe; = 395) with a standard LES model
is not feasible (on a single processor) due to the much fineshnre all spatial
directions and in time.

As DES-type approaches are still relatively expensive ntloelified Smagorin-
sky LES model (WSMAG) and the SA-DES model (WSADES) are usitd wall
functions. This reduces the computing time by an order ofmitage due to the
saving in grid points in wall-normal direction and due to thech larger time steps.

The results for the WSADES approach are given in Fig. 4. Thgiral DES
concept for coupling the RANS and LES regions gives two litlgaric layers, see
[7]. The lower layer is the modeled log layer of the RANS moadiile the upper
layer is the resolved log-layer of the LES model. This caassignificant error in
u;. This is subject to present and future research and will begited elsewhere.
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Fig. 3 Channel flonRe; = 395 for modified Smagorinsky and SA-DES model: Upper leftalle
velocityU ™. Upper right: Fluctuations. Bottom left: Kinetic enery. Bottom right:uy .
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Fig. 4 SA-DES model with near-wall modeling (WSADES) for channeWiRe; = 4800.

5 Summary. Conclusions

A strategy for calibration of model and discretization paegers of LES and DES
within the framework of optimization techniques was presdnWe use the DLR
Theta code, which is an industrial RANS solver. Precurseties on the benchmark
problems of decaying isotropic turbulence and of turbutdgvannel flow aRe; =
395 show that the central difference scheme (CDS) for theexdive term is clearly
superior to upwind schemes. Moreover it can be seen thandemaler accurate
time discretization is necessary for proper calculatiorexfond order statistics for
turbulent channel flow.
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A calibration of model and grid parameters was performeddbas least-squares
cost functionals for first and second order flow statistiosstBesults for channel
flow atRe; = 395 are found for the calibrated SA-DES model which alsodswan
Driest damping. Finally the optimized parameters are used Simulation of tur-
bulent channel flow a@Re; = 4800. A proper near-wall resolution is very expensive
at such Reynolds numbers. Therefore LES and DES in combimatith near-wall
modeling based on wall functions are used and reasonahiksrase obtained.

Future work will be on turbulent channel flow at high Reynotdsnbers with
focus on more sophisticated methods for coupling hybrid-fuactions with LES.
Another task will be on continuation of the wall-resolved% Eor the flow over a
backward facing step.
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