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Calibration of Model and Discretization
Parameters for Turbulent Channel Flow

X.Q. Zhang, T. Knopp, and G. Lube

Abstract The simulation of turbulent incompressible flow in a plane channel is ad-
dressed. ForReτ = 395, discretization and model parameters of LES and DES mod-
els are calibrated using a DNS data basis. For higherReτ , a non-zonal hybrid method
combines the calibrated LES model with wall functions as a near-wall model.

1 Basic mathematical model and discretization

Consider the non-stationary, incompressible Navier-Stokes model

∂tu−∇ · (2νS(u))+ ∇ · (u⊗u)+ ∇p = f in Ω × (0,T ] (1)

∇ ·u = 0 in Ω × (0,T ] (2)

for velocityu and pressurep in a bounded, polyhedral domainΩ ⊂R
3 together with

boundary and initial conditions.S(u) = 1
2(∇u+ ∇uT ) is the rate of strain tensor.

For the numerical simulation of (1)-(2), the DLR Theta code is used. The spa-
tial discretization is based on a finite volume scheme on unstructured collocated
grids. Different upwind schemes (linear upwind scheme (LUDS), quadratic upwind
scheme (QUDS)) and the central differencing scheme (CDS) are implemented for
the approximation of the convective fluxes. Diffusive fluxesare discretized with the
CDS. The interpolation scheme by Rhie and Chow [8] is appliedin order to avoid
spurious pressure oscillations. The time discretization is performed using theA-
stable BDF(2) scheme. The incremental variant of the projection method is used to
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split the calculation of velocity and pressure within each time step. For a review of
semidiscrete error estimates for the time-dependent Stokes problem see [3].

Of special interest here is the wall treatment. In the code, the wall node is shifted
to the center of the control volume adjacent to the wall. DenoteΓw the wall andΓδ an
artificial inner boundary containing the shifted nodes at wall distanceyδ . Then, as a
boundary condition onΓw, the wall-shear stressτw is prescribed instead of no-slip

u ·n = 0, (I−n⊗n)2νS(u)n = −τwut,δ on Γw . (3)

with I−n⊗ n being the projection operator onto the tangential space ofΓw, unit
velocity vector in wall-parallel directionut,δ = vt,δ /|vt,δ | and

τw = ν∇uδ ·n , where uδ = |vt,δ | , vt,δ = (I−n⊗n)u|Γδ . (4)

2 Turbulence modeling using LES type models

In LES, a scale separation operator subdivides the scales into filtered scales and
unresolved scales. Only the filtered scales are solved and the unresolved scales are
modeled by a sub-grid stress term of the so-called eddy-viscosityνt.

Smagorinsky model: In this classical LES model, the eddy-viscosity is given by
νt = (CS∆)2|S| with |S| = (2S : S)1/2. The model constant to be calibrated isCS.
The filter width is∆ = nhc, n = 1,2, . . ., with hc = (∆x∆y∆z)1/3, where∆x,∆y,∆z
denote the grid spacing inx-, y-, andz-direction respectively.

Near solid walls, the turbulent viscosityνt is multiplied with the van Driest
damping functionD(y+). For x ∈ Ω , denotexw = xw(x) ∈ Γw the corresponding
nearest wall point with distanced from x. ThenD(y+) = (1−exp(−y+/A+))2 with
A+ = 26 wherey+ = yuτ/ν is the wall-distance ofx from xw in viscous units with
y = dist(x,xw(x)) ≡ d anduτ = uτ |xw =

√
τw.

Due to its non-local character the van Driest damping is not very suitable for
unstructured methods or if parallelization is used A modified definition of∆ by [11]
uses∆ = min(max(Cwd,Cw∆max,∆wn), ∆max) where∆max= max{∆x,∆y,∆z} with
∆wn denoting the spacing in wall-normal direction.Cw is a calibration parameter.

Detached-eddy simulation model: Detached-eddy simulation (DES) is a single
non-zonal hybrid RANS-LES method [10] based on the one-equation RANS model
by Spalart & Allmaras [9] which computes the eddy viscosityνt = fv1ν̃ from the
auxiliary viscosityν̃ using a near-wall damping functionfv1 = χ3/(χ3 + c3

v1) with
χ = ν̃/ν which involves only local variables. Herẽν solves the transport equation

∂t ν̃ +u ·∇ν̃ −∇ ·
(ν + ν̃

σ
∇ν̃

)

− cb2

σ
(∇ν̃)2 = cb1S̃ν̃ − cw1 fw(

ν̃
d

)2

with S̃ = |Ω |+ ν̃/(κ2d2) fv2, |Ω |= (2Ω(u) : Ω(u))1/2, andΩ(u)= (∇u−(∇u)T )/2.
The functionsfw and fv2 and constantsσ , cb2, cb1, cw1 are given in [9].
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In the SA-DES model,d is replaced withd̃ = min( d , CDES∆max). The model
constant to be calibrated isCDES.

Near-wall treatment for LES: Wall-functions are used to bridge the near-wall
region at high Reynolds numbers. The wall shear stressτw can be computed from
(4) only if y+

δ < 3. For largery+
δ , τw = u2

τ is computed from friction velocityuτ : The
universal velocity profile of RANS-type by Reichardt is matched at the shifted node
yδ with the instantaneous LES solutionuδ

uδ
uτ

= F
(yδ uτ

ν

)

, F(y+) ≡ ln(1+0.4y+)

κ
+7.8

(

1− e−
y+

11.0 − y+

11.0
e−

y+

3.0

)

. (5)

Equation (5) is solved foruτ with Newton’s method.
We remark that (5) is an approximative solution of the boundary layer equation

in wall-normal direction neglecting convective term and pressure gradient: For each
xw ∈ Γw and givenuδ seek the wall-parallel velocityuRANS(y) such that

∂y

(

(ν + νRANS
t )∂yuRANS

)

= 0 in { xw − yn | y ∈ (0,yδ )} (6)

uRANS(0) = 0 , uRANS(yδ ) = uδ . (7)

3 Calibration for decaying isotropic turbulence

Framework: It is desirable to treat the calibration problem of basic turbulence mod-
els within the framework of optimization problems. Consider the abstract equation

A(q,u) = f in Ω . (8)

(here: quasi-stationary turbulent Navier-Stokes model) for the state variableu (here:
velocity/pressure) in a Hilbert spaceV ⊆ [H1(Ω)]3 × L2(Ω) with the parameter
vectorq (here: model and grid parameter) in the control spaceQ := R

np . Let C :
V → Z be a linear observation operator mappingu into the space of measurements
Z := R

nm with nm ≥ np. Thenq is calculated from the constrained optimization
problem

Minimize J(q,u) := ‖C(u)− Ĉ‖2
Z/2 (9)

with the cost functionalJ : Q×V →R under constraint (8) and using measurements
Ĉ ∈ Z. Assume the existence of a unique solution to (8)-(9) and of an open set
Q0 ⊂Q containing the optimal solution. Using the solution operatorS : Q0 →V , one
defines viau = S(q) the reduced cost functionalj : Q0 →R by j(q)= J(q,S(q)). The
reduced observation operatorc(q) := C(S(q)) leads to an unconstrained problem

Minimize j(q) = ‖c(q)− Ĉ‖2
Z/2, q ∈ Q0. (10)

An efficient framework to the solution of the necessary optimality condition
j′(q) = 0 of (10) provides the adjoint approach, see [4] for a review.The approach
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can be generalized to time-dependent problems. This makes the optimization prob-
lem and solution techniques much more expensive, although sophisticated tools
such as a-posteriori based optimization can reduce the costs, e.g. [1].

Seemingly, this approach has not been applied to parameter identification for
turbulent flows yet. Main problems occur from the nonlinearity of turbulence models
and the simulation over long time intervals to reach a statistically steady solution.
Hence, a simpler approach to (10) is applied. As a basic step,a series of numerical
simulations for a given flow provide look-up tables for the cost functional depending
on relevant parameters as a basis for further systematic considering. In some cases,
a Newton type method is feasible to determine optimized parameters.

Application to DIT: The problem of decaying isotropic turbulence (DIT) mimics
the experiment by [2] at Taylor microscale Reynolds numberReλ ∼ 150. We choose
a cubic box domainΩ = (0,2π)3 and an equidistant mesh withN3 nodes. As initial
condition, we use a divergence-free velocity field with energy spectrumE(k)|t=0

(k = |k|, 1≤ k ≤ M, M = N/2−1) given by data in [2] which can be computed as

u(x)|t=0 =
M

∑
k1=0

M

∑
k2,k3=−M

|k|≤kmax

(E(k)|t=0

Sk

)1/2
2
(

I− k ⊗k
|k|2

)

γ(k)cos(k ·x+Θ(k)). (11)

The components ofγ(k) are real random numbers with Gaussian distribution in
[0,1], Sk is the number of wave-vectorsk with k−1/2≤ |k| ≤ k +1/2 andΘ(k) is
a random phase with uniform distribution in 0≤Θ ≤ 2π .

The second-order statistics of interest is the energy spectrum

E(k,t) = ∑
k−1/2<|q|≤k+1/2

1
2

û(q,t) · û∗(q,t), k = 1,2, . . . ,M, (12)

whereû∗ is the complex conjugated ofû. û is the discrete Fourier transform ofu

û(k) =
1

N3

( N−1

∑
x1,x2,x3=0

u(x)cos(−k ·x)+ i
N−1

∑
x1,x2,x3=0

u(x)sin(−k ·x)
)

. (13)

Then we consider the error functional

J(C) =
( M

∑
i=1

[

(

E(ki,C)−Eexp(ki)
)2

t=0.87 +
(

E(ki,C)−Eexp(ki)
)2

t=2.0

] )1/2
.

The results in [12] for the spatial discretizations show that CDS is suitable to re-
solve the large wave-number part of the spectrum, whereas the upwind schemes
produce excessive damping at high wave-numbers. CombiningQUDS with a skew-
symmetric formulation (QUDSsk) for the convective fluxes gives some improve-
ment. Fig. 1 (left) shows the dependence of the cost functional on the constantCS

for the Smagorinsky model (SMG) andN = 64. A Newton-type method (based
on numerical differentiation) delivers a minimum withCS = 0.094 for CDS and
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Fig. 1 Left: Calibration of Smagorinsky constantCS for DIT. Right: Energy spectrum with opti-
mized model constants of Smagorinsky model and of SA-DES model for CDS scheme.

CS = 0.123 for QUDSsk. For the SA-DES model, a similar Newton-type approach
yields a minimum ofJ(C) for CDES = 0.67. In Fig. 1 (right), the corresponding
energy spectra for CDS with optimized constants for SMG and SA-DES are shown.

4 Parameter calibration for channel flow

Consider now the benchmark problem of fully developed turbulent channel flow in
the domainΩ = (0,2π)× (0,2)× (0,π). Periodic boundary conditions in stream-
wise x-direction, a no-slip condition for the walls iny-direction and symmetry
planes in the spanwisez-direction are imposed. We consider a moderate Reynolds
numberReτ = uτ H/ν = 395 with channel half widthH = 1, for which DNS data
are available [6]. In order to achieve a constant mass flux, the streamwise forcing
term is adjusted dynamically by taking into account the timestep sizeδ tn and the
bulk velocity from the DNS data and the bulk velocity at the present timetn

f = τwex + (δ tn)
−1(Ubulk,DNS−Ubulk(tn))ex , Ubulk = H−1

∫ H

0
u(y)dy (14)

whereex denotes the unit-vector inx-direction. As initial condition we use a ran-
domly perturbed velocity fieldu|t=0 = uτ F(yuτ/ν)ex +0.1Ubulkψ whereF is given
by (5) and each component ofψ is a random number in(−1,1). The spatial dis-
cretization usesNx ×Ny ×Nz = 64×64×64 nodes. The equidistant spacing inx-
andz direction corresponds to∆x+ = ∆xuτ/ν = 38.8 and∆z+ = ∆zuτ/ν = 19.4
respectively. The grid in wall-normal direction is stretched using a hyperbolic tan-
gent functiony( j)/H = tanh[γ(2 j/Ny − 1)]/ tanh(γ) + 1.0, j = 0,1, . . . ,Ny − 1
wherey( j) is the coordinate of thejth grid point iny direction providing thus an
anisotropic, layer-adapted mesh, see [5]. The parameterγ allows to move the posi-
tion y+(1) of the shifted wall node. The time step is chosen asδ t+ ≡ δ tu2

τ/ν = 0.4.
After reaching a statistically steady solution, first-order and second order statis-

tics are computed. Denote〈·〉 the averaging operator over the two homogeneous
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Fig. 2 Cost functionals for channel flowReτ = 395, Left: mean velocity. Right: kinetic energy.

directions and in time. The quantities of interest are the mean velocityU = 〈u〉, the
turbulent kinetic energyk = 1

2〈(u−〈u〉)2〉 and its normalized variantsU+ = U
uτ

and

k+ = k
u2

τ
. TheL2-error functional of the LES results compared to the DNS datais

Ju(y
+(1),C) =

(
Ny

∑
i=0

(Ui(y
+(1),C)−Ui,DNS)

2∆yi

)1/2
(15)

for the mean velocity (and similarly for kinetic energyJk) with φi = φ(y(i)) and the
spacing∆yi in y-direction of celli.

In Fig. 2, the dependence of the cost functionalsJu andJk on CS andy+(1) is
shown for the Smagorinsky model. The result is robustness w.r.t. CS ∈ [0,0.12] and
y+(1)∈ [0.5,1.5]. This means that a Newton-type approach to parameter calibration
will not find local minima. In particular, the DIT-optimizedvalue ofCS but also
CS = 0 (i.e., no turbulence model) are reasonable. The latter simulation can be seen
as underresolved DNS on a layer-adapted mesh.

Reasonable results for the first and second order statisticsare presented in Fig. 3
for the calibrated modified Smagorinsky model and the SA-DESmodel. The SA-
DES model gives even better results and allows to avoid a damping of νt .

Channel flow at higher Reτ : Now, the goal is to simulate turbulent channel flow
at higher Reynolds numberReτ = 4800 using the calibrated model constants. A
resolution of the wall layer regions (as forReτ = 395) with a standard LES model
is not feasible (on a single processor) due to the much finer mesh in all spatial
directions and in time.

As DES-type approaches are still relatively expensive, themodified Smagorin-
sky LES model (WSMAG) and the SA-DES model (WSADES) are used with wall
functions. This reduces the computing time by an order of magnitude due to the
saving in grid points in wall-normal direction and due to themuch larger time steps.

The results for the WSADES approach are given in Fig. 4. The original DES
concept for coupling the RANS and LES regions gives two logarithmic layers, see
[7]. The lower layer is the modeled log layer of the RANS model, while the upper
layer is the resolved log-layer of the LES model. This causesa significant error in
uτ . This is subject to present and future research and will be presented elsewhere.
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Fig. 4 SA-DES model with near-wall modeling (WSADES) for channel flow Reτ = 4800.

5 Summary. Conclusions

A strategy for calibration of model and discretization parameters of LES and DES
within the framework of optimization techniques was presented. We use the DLR
Theta code, which is an industrial RANS solver. Precurser studies on the benchmark
problems of decaying isotropic turbulence and of turbulentchannel flow atReτ =
395 show that the central difference scheme (CDS) for the convective term is clearly
superior to upwind schemes. Moreover it can be seen that second order accurate
time discretization is necessary for proper calculation ofsecond order statistics for
turbulent channel flow.



8 X.Q. Zhang, T. Knopp, and G. Lube

A calibration of model and grid parameters was performed based on least-squares
cost functionals for first and second order flow statistics. Best results for channel
flow atReτ = 395 are found for the calibrated SA-DES model which also avoids van
Driest damping. Finally the optimized parameters are used for a simulation of tur-
bulent channel flow atReτ = 4800. A proper near-wall resolution is very expensive
at such Reynolds numbers. Therefore LES and DES in combination with near-wall
modeling based on wall functions are used and reasonable results are obtained.

Future work will be on turbulent channel flow at high Reynoldsnumbers with
focus on more sophisticated methods for coupling hybrid wall-functions with LES.
Another task will be on continuation of the wall-resolved LES for the flow over a
backward facing step.
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