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Abstract

This paper introduces a new technique for the analysis ofdkdrased re-
gression problems. The basic tools are sampling inegemlhitinich apply
to all machine learning problems involving penalty termguced by ker-
nels related to Sobolev spaces. They lead to explicit détéstic results
concerning the worst case behavioureofand v-SVRs. Using these, we
show how to adjust regularization parameters to get bestlgesapproxi-
mation orders for regression. The results are illustrateddmne numerical
examples.

Keywords. Sampling inequality, radial basis functions, approximatiheory,
reproducing kernel Hilbert space, Sobolev space

1 Introduction

Support Vector (SV) machines and related kernel-basedidigts are modern
learning systems motivated by results of statistical liegrtheory [9]. The con-
cept of SV machines is to provide a prediction function whghccurate on the
given training data and which is sparse in the sense thamnibeavritten in terms
of a typically small subset [6] of all examples, called thesort vectors. There-
fore, SV regression and classification algorithms are tfaséated to regularized
problems from classical approximation theory [3], and teghes from functional
analysis were applied to derive probabilistic error bouiod$SV regression [2].
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The purpose of this paper is to provide a theoretical frammkv® derive deter-

ministic error bounds for some popular SV machines. We show & sampling

inequality by [11] can be used to bound the worst-case génatian error for the

v- and thee-regression without making any statistical assumptiongherinaccu-

racy of the training data. In contrast to the literature, ewor bounds explicitly
depend on the pointwise noise in the data. Thus they can likfasany subse-
gquent probabilistic analysis modelling certain assurmgion the noise distribu-
tion.

The paper is organized as follows. In section 2 we review sfawwts about reg-
ularized approximation problems in Hilbert spaces witlroepicing kernels and
outline the connection to classical SV regression (SVRplams. We provide
a deterministic error analysis for the and thee-SVR for both exact and inex-
act training data. Our analytical results showing optim@ivergence order in
Sobolev spaces are confirmed by numerical experiments.

2 Regularized Problems

We supposeX to be a positive definite kernel on some dom&nc R? and
denote the native space, which is the unique associateotheging kernel Hilbert
space, with\V := N (©2) [10]. In the following we always think of native
Hilbert spaces as Sobolev spaces with the usual inner protive consider the
following learning or recovery problem. We assume that wegiven (possibly
only approximate) function valuag, ..., yy € R of an unknown functiory €
Nk on some scattered points, ..., zy € Q,i.e., f (z;) ~y;forj=1,...,N.
To control accuracy and complexity of the reconstructionudianeously, we use
the optimization problem

1

N
. 1
min N;Ve(f(xj) — i) + 5 1% @

(cci?)

whereC > 0 is a positive parameter and ahiddenotes a positive function which
is parametrized by a positive real numkerWe point out that’, need not be a
classical loss function. Therefore we shall give some mradfresults which are
well-known [7] in the case of, being a loss function. By) we denote that there
might be a primal variableincluded in (1) or not.

Theorem 2.1 (Representer theorem) If (f*, (¢*)) is a solution of the optimiza-
tion problem (1), then there exists a vectore RY such that

fe)= ijK(l‘w )
e, f*espan{K (x1,-),..., K (xn,-)}.
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Proof: Every f € N can be decomposed into two parts

f=hn+r,

wheref is contained in the linear span &f (x4, -),..., K (zx,-) andf, is con-
tained in the orthogonal complement, i.f;, fJ_>NK = 0. By the reproducing
property of the kernek’ in the native space we have

Flag) = (it fo K (@5,0) 0, = i K (25,)) 5,

Using this identity (1) can be rewritten as

N 1 ) 1 )
pamin 5> Ve ([ K @) = 9l) + 55 Iillage + 5 1l
(ecrt) 77

Therefore a solutioff*, (¢*)) of the optimization problem (1) satisfigs = 0,
i.e. f* espan{K (z1,"),.... K (zn,")}. =

We shall use the representer theorem to reformulate infthiteensional opti-
mization problems of the form (1) in a finite-dimensionatiseL

3 Support Vector Regression

As a first optimization problem of the form (1) we will considiae »-SVR in
Hilbert space formulation. The function

Viw) = |z, +ev
is related to Vapnik’s-intensive loss function

0 if x| <e
ol = { W

|z| —e if|x] > €

Y

but has an additional term with a positive parametefhe associated optimiza-
tion problem takes the form

N
1 1 2
frgjl\}}{NZ’f<xj)_yj‘e+ey+%HfHNK : &)
eeRT J=1

Theorem 3.1 The optimization problem (2) possesses a solutfone*).



Proof: The problem (2) is equivalent to the optimization problem

2
e N;\f 2) = il + 80+ 55 151 ©)
S

If we setH := N x R we can define an inner product dhby

(h, ha)yy <f1;f2> +2Cv (r1,7m2)p

for h; = (f;,7;), 7 = 1,2. SinceR can be identified canonically with the space
of all constant function® — R, the Hilbert spacé{ has the reproducing kernel
K = (K, Ten ) wherel denotes the constant function which maps everything
to1,i.e. K((z,r),(y,s)) = K(z,y) + 1/(2Cv). With this notation (3) can be
rewritten as

min, Q(Ix(£,6) + 55 (1) @
where

Ix(f,0) := (f(z1),..., f(zn),0)" e RVF
and

N

QR SR, Q((,9) Z = Yilge -

SinceY is continuous oR¥*! for all y € RY, the problem (4) possesses a so-
lution [4, Lemma 1]. O

If we introduce the slack variablgs¢*, the representer theorem gives us an equiv-
alent well known [8] finite-dimensional problem.

N
: 1 T 1 *
min o w Kw+ C- <V6+ N jg_l (fj —i—§j)>

weR
£ EeRN
ecRt
subjectto (Kw), —y; < e+¢;,
(—KW)J+Z/] S €+£; ’
5]*7€j20a EZO? (5)

where
K= (K(fhxj))j:l_.w

denotes the Gram matrix of the kerrfél We will use this equivalent problem for
implementation and our numerical tests.



A particularly interesting problem arises if we skip thegaeterr and lete be
fixed. Then (5) takes the form

N

N 1 «
iy v KW O gD (648
% EeRN Jj=1
subjectto (Kw), —y; < e+¢§;,
(~Kw),+y; < et g,
.6 =0. (6)

This problem is well known as SVR [8]. Similarily to ther-SVR this problem
can be formulated as a regularized minimization problem lfilbert space [2],
namely

1

N
. 1 2
el v 217 ) il g Wl ()

Like the-SVR, this optimization problem possesses a solution [fma 1].

4 A Sampling inequality

We shall employ a special case ofampling inequalityrom [11]. It requires the
following assumptions which we need from now on. ket R¢ be a bounded
domain with Lipschitz boundary that satisfies an interiarecondition. Suppose
further thatK is a radial basis function such that the native Hilbert spzfc&

is a Sobolev space, i.eNx = W5 (). Here we assume that — 1] > d/2.
Furthermore, leX = {z1,...,2x} C 2 be a discrete set with sufficiently small
fill distance

hxq:=s 1 — Zj|l2 -
X.0 Zlégglgllz zj|l2

We shall use the following result from [11].

Theorem 4.1 Let be a positive real number withr — 1| > 4 and1 < ¢ < cc.
Then there exists a positive constaht> 0 such that for all discrete set¥ C (2
with sufficiently small fill distancgy q, the inequality

||uHLq(Q) <C- <hT_d(1/2_1/q)+ ||UHW;(Q) + HU|XH£OC(X)>
holds for allu € W3 (Q).

We shall apply this theorem to the differente- f* of the functionf € W7 (Q)

to be recovered and a solutighi € W7 () of the regression problem. In our
applications we shall focus on the two main cages oo andq = 2. It will
turn out that we get optimal convergence rates in the n@salase. In presence
of noise the resulting error will explicitly be bounded imrtes of the noise in the
data.



5 v-SVR with exact data
In this section we assume that our given data is exact, i.e.,

f(CC]):yJ forjzl,,N, (8)
wheref € W7 ().

Lemmab5.1 Under the assumptions (8) we get

[ e < v

* N *
17 1% =yl < 5EI MR +€ - (1= Nw).

Proof: We denote the objective function of (2) by
1 & 1
He,(f €)= N;!f(xﬂ = yile +ve+ 55l fllRe ©)

and the interpolant t¢ with respect taX and K with Iy, that is/;|x = y. With
this notation we have
1 N . s 1 1
since||I¢||n < ||flla [10] which implies the first claim. Furthermore we have
fori =1,,N
N
£ @) —wl < D1 () — us

Jj=1

e+ SNHY (f,€) +e(1— Nv)

N
< NHE,(I5,0)+€ (1= Nv)y < ol g, +€ (1= Nv)
N 2 *
< el + e -
which finishes the proof. O

With Theorem 4.1 we find immediately the following result.

Theorem 5.2 We supposg¢ € W7 (Q2) with f(z;) = ;. Let(f*, ¢*) be a solution
of (2) . Then there is a constaat > 0 such that the approximation error can be
bounded by

* ~ T— — N *
1 f=f e, <C <2h WD fllwg @) + %Hf”%vg(m +(1—Nv)-e >



Proof: Combining Lemma 5.1 and Theorem 4.1 leads to

If = iy < C (R0 f — e + 1y — flxllew)
C (W2 (| fllwgo+ I f lwy@) + vy = Flxllew)

G (202 | g + 2 g + (1 = e

g

IN

| /\

At first glance the term containing seems to be odd because it could be uncon-
trollable. But according to [1] we can at least assuimi® be bounded by

1
* < - L . . .
e < 5 ((ma v — min y;)

If this inequality is not satisfied, the problem (5) possessdy the trivial solution

s = 0 which is notinteresting. Furthermore, the fagtor Nv) controls this term.

If we choose’ > % the additional term vanishes or is negative. In case of a non
trivial solution this condition is no restriction at all si@w is a lower bound on the
fraction of support vectors [7] and = 1/N means to have at least one support
vector. But we can use the results from Lemma 5.1 to derivera ealicit upper
bound ore* = €*(C, v, f).

* N *
0 <1 Ix = ¥llewi) < 55l R + € (Cow )1 = Nv)

If we assumes > 1/N, this leads to

* N 2
€ (Cv v, f) < m“f“]\fk
Note that these bounds can not be used for a better paranhetieecsince we
would need to rearrange this inequality and solvefarr v. This is only possible
if there were lower bounds ati as well.

Moreover, the parametérf appears in our error bound as afac%wvhich implies
that we expect convergence only in the case> co. In this case™ will be small,
as can be deduced from (5).

Corollary 5.3 In case of quasi-uniform exact data we can choose the poblem
parameters as

NHf”W;(Q) 1
= 27 ~~ 7(7—"”””) - >
C ohT h ||fHW2 Q) andv 2N
to get
f = f*ll o) <C R fllwg (10)
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or as
~ Nifllwze

1
C= Qhde/Q

~ }—(7+d/2
~ h ( / )HfHWQT(Q) andv > N ,

to get i
If = Nl < CH2|| fllwg (o) . (11)

Therefore the solution of the-SVR leads to the optimal approximation order
in the Sobolev space [5] with respect to the fill distahceThese optimal rates
are also attained by classical interpolation in the natiibetftt Space [10]. But
the »-SVR allows for much more flexibility and less complicatedusons. Our
numerical results will confirm these convergence rates.

6 v-SVR with inexact data

In this section we allow the given data to be corrupted by sadtitive error
r=(ry,...,ry), 1€,

f(.ZCJ):y]—FT'J for]:I,,N, (12)
where isf € W] (Q). There are no assumptions concerning the error distributio

Lemma 6.1 Under the assumption (12) we have foratt 0

. 20
17 <[ 7 Do sl +2Cwe + |1 £];, and

J=1

N
. . N
117 = yllewcry < Do lrile+vNe+ (1= Nv)e' + o=l fllzg,-
Jj=1

Proof: Again, we denote the interpolant fowith respect taX and K by /; and
useHgyy as defined in (9). Then we have

N
1 * 7 * % 1 1
%Hf R < HE (5 €) < HE (I €) < NZ rjle +ve+ %Hf”?\fx

=1

which implies

. 20
17w < 4| 7 D Irile +2Cwe + £, -

Jj=1



Moreover we have forall =1, ;N

6*

() =yl < Z!f ) =y

< NHL(F.) + (- Ny

N
< DIl vNet (1= No)e + 22|l

=1

|

Again we can use the results from Lemma 6.1 to derive a mor&céxyppper
bound ore* = €*(C, v, f, €). Note that* depends now also on the free parameter
€.

N
0 < 1f"lx = yllewix) HfHNK +€(Cov, f,€) (1= Nv) + ) |rsle + vNe

=1

_20

If we assume’ > 1/N, this leads to

N
) 1 (N
e(Cyv, f,e) < Ny — 1 (%Hf’/z\/l( +;‘rj’5+VN€>

Using the sampling inequality as in the case of exact datésleathe following
result onL,-norms.

Theorem 6.2 Under the assumption (12) we have foralt 0

N
2C
~ARDA| Fllwg )+ N Z rjlet2Cve+ |1 iz @)

=1

1f = L@ (

N

+ Z |7ile + ¥Ne + € (1 — Nv) + QCHfH%,VZT(Q)> .
j=1
O
We now want to assume that the data errors do not exceed théskf. For this
we suppose
Irllecex) <6 < I fllwg ) - (13)

forad > 0.



Corollary 6.3 If we choose

NI flI% - —d
¢ = % ~ hTHf”IQ/V{(Q)
1
€ = 60, v= N
we get i
1f = F o) < C (W7 (| fllwg o) +9) - (14)
or
1 = Nl < C (2] fllwg ) + ) (15)

for any non-trivial solution.

7 e-SVR with exact data

Since our arguments for theSVR apply similarily to thee-SVR, we skip over
details and just state the results. Note that in this casedhenegative parameter
e is fixed in contrast to the free variable in théSVR.

Lemma 7.1 Under the assumption (8) we get
1 e < 1 v
x N 2
1 x = Yllewx) < %HfHNK te.
Again this leads to the following result on continuaysnorms.

Theorem 7.2 Under the assumption (8) we get

* o~ T— _ N
1f = [y < C (Qh 2D fllwg ) + %Hfﬂgvg(n) + €> . (16)

Applying the same arguments as in th&VR case we obtain the following corol-
lary.

Corollary 7.3 If we choose

NHfHW{(Q) . NHf”W{(Q)
C = —onr respectivelyC' = oz
the inequality (16) turns into
I1f = oo < C BRI fllwz @) +€) (17)
or
1f = F o) < C B2 fllwg @) + ) - (18)
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The role of the parametér is similar to the one in case of theSVR. Unlike the
v-SVR we are free to choose the parametéie see that exact data implies that
we should choose= 0. The cas&' — oo ande — 0 leads to exact interpolation,
and the well known error bounds from [10] are attained.

8 €e-SVR with inexact data

For inaccurate data we can proceed as above.

Lemma 8.1 Under the assumption (12) we have

N

200 &
1f e < ||f”/2vK+WZ’7’i|e
i=1

N
. N
1% = yllewy < %HfHJZvK*'ZWH'E-
i=1

These bounds shall now be plugged into the sampling ingguali

Theorem 8.2 Under the assumption (12) we have

N
" ~ _ _ 2C
1f = oy < C | 207927V | Fllwg o) + | 113 ;(Q)erzm\e
=1

N N
+ %”fHI%Vg(Q) + Z Irile + 6) :

=1
Finally, we get these convergence orders, for our speciticcetof the parameters.

Corollary 8.3 Again we assume that the error satisfies (12). If we then @oos
e =0 andC = h~"~%/2 we find for quasi-uniform data

1 = Pl < (W W g +9) (19)
If = Fllwe < COlflwge +9) - (20)

9 Numerical results

In this section we present some numerical examples to comfinmanalytic re-

sults. To be able to determine convergence rates with gomdacy, we consider
only univariate examples. Our first example deals with th@@amation orders
for thev- and thes-SVR, respectively. To test the approximation order we igplpl
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the v-machine to a specidlZ ([0, 1]) function, namelyf(z) = (z — 0.5)}>"*
whereeps denotes the relative machine precision in the sense of MAL\We
used the radial kernel functiok (z) = (1 — [jz]|)3 (3||=|| + 1) (a Wendland
function) which hasivV}([0,1]) as its associated native space [10]. In case of
the e-SVR we employed another radial kernel function (also a Wl func-
tion) K (z) = (1 — ||x||)i (8]|z]|? + 5||z|| + 1) which leads to the Hilbert space
WZ([0,1]). As a test function we usefl(z) = (z — 0.5)>5T%P. We chose the
parameters according to corollaries 5.3 and 7.3, resmdgtiMhe double loga-
rithmic plots show the expected approximation orders irfithdistanceh.

107 107 10° 107 10" 10°
fil istance fil distance

(a) W# function withv-SVR show order 2.3 (b) W3 function withe-SVR show order 3.3

107 10°

10
fill distance

(c) W3 function withe-SVR show order 3.3

Figure 1: The double logarithmic plots confirm the analytckbound approxima-
tion orders.

In Figure 9 we present some numerical experiments for eouwsmeata. The ex-
amples show that the approximation error converges to tioe lewel in the limit

h — 0 which confirms our analytic results.

The right hand side in figure 9 shows the approximation ertoere the data was
randomly corrupted by-0.01. For the left hand side plot we used data that was
corrupted by a positive-0.1 error. In both cases we employed th&VR where
the free parameters were chosen according to corollaryf®&last figure shows
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the behaviour of the-SVR in the case of an normal distributed error with mean
zero and variance = 0.0001. In this case the standard deviation is the error level.
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