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Abstract

Sampling inequalities give a precise formulation of the faat a differentiable func-
tion cannot attain large values, if its derivatives are l®ehand if it is small on a
sufficiently dense discrete set. Sampling inequalitieshmapplied to the difference
of a function and its reconstruction in order to obtain (stmes optimal) convergence
orders for very general possibly regularized recovery ggees. So far, there are only
sampling inequalities for finitely smooth functions, whigad to algebraic conver-
gence orders. In this paper the case of infinitely smoothtfons is investigated, in
order to derive error estimates which lead to exponentiafemyence orders. In partic-
ular this approach improves the known error estimates fmsital interpolation with
inverse Multiquadrics.

Keywords: Gaussians, inverse Multiquadrics, smoothing, appro)xonaterror bounds,
radial basis functions, convergence orders

Classification: 41A05, 41A25, 41A63, 65D10, 68T05

1 Introduction

Sampling inequalities give a precise formulation of the that a differentiable function
cannot attain large values, if its derivatives are boundetlifit is small on a sufficiently
dense discrete set. Inequalities of this kind can be usedrieeda priori error estimates for
various regularized approximation problems as they ocsuinstance in many machine
learning algorithms or PDE solvers [8],[7]. Recently se¥suchsampling inequalitiegor
functionsu € Wf(Q) from certain Sobolev spaces with< p < co andk > d/porp =1
andk > d on a domair2 C R were obtained. They usually take the form [10]

D%, <C (hk_‘a‘_d(l/p_l/qﬂ|U|W]§(Q) + h_lal||U|X||éoo(X)) ;
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wherel < ¢ < oo, or [4]
[D%ullz, @) < C (hk*la‘\u\wg(m + hd/p*‘al||“\XH€p(X)) ;
for all u € W} (), where

h:=hxgq:= 21618921611)1( |z — xj|2
denotes the fill distance of the discrete &etC 2. These bounds were for instance used
[10] to derive optimal algebraic convergence orders fonkEbased smoothed interpolation
methods in a finitely smooth setting.
In this paper we derive sampling inequalities for infinitesiynooth functions where the
convergence orders turn out to depend exponentially onltlukstanceh.
We are handling infinitely smooth functions by normed linkarction spaceg{({2) on a
domain) ¢ R¢ which can for a fixed < p < oo be uniformly continuously embedded
into every classical Sobolev spaﬁé,f“(Q). More precisely, for a fixeg € [1, 00) and all

k € N we assume that there are embedding operdfﬁ}and a constank' independent of
k such that

1P H(Q) — WhQ)  with
||I;5p)||{uewg(g)} <E forallkeNy.

There are various examples for spaces with this propey, 8obolev spaces of infinite
order as they occur for instance in the study of partial dfftial equations of infinite
order [1], or reproducing kernel Hilbert spaces of Gaussamd inverse multiquadrics (see
section 4).

In the case of infinitely smooth functions the shape of the aarf crucially influences
our sampling inequalities. For general Lipschitz domd&nwhich satisfy an interior cone
condition we use a polynomial reproduction [9] which aceeghight oversampling to bound
the Lebesgue-constants. This results in a good behavidhe oérm with the discrete norm.
In this case we get that for sufficiently small fill distaricthere are generic constants- 0
such that withj € {q, oo} the inequality

1D ull, 0y < e YAy + ch 71l x|y )

holds for allu € H(2). The best approximation orders for the first term can be obthon
compact cubes since we can use then a polynomial reproductm [3]. Unfortunately
this approach is limited to cubes and cannot cope with dérason the left hand side of
our sampling inequalities. Nevertheless we obtain thaetlaee generic constants> 0,
such that the inequality

ullp, @) < eclos(ch)/h [l + et/ lulxlle,x)

holds for allu € H(Q2) with § € {q, oo} if the fill distanceh is sufficiently small.
Our main examples, however, deal with reconstruction jgrollin Hilbert spaces. There-
fore in the second part we will focus on the native Hilbertcgsaof Gaussian and inverse
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Multiquadric kernels. In this case we suppest® be an error functiom = f — Rf, where
f denotes the function we would like to reconstruct d@tiflis the reconstruction. In order
to obtain optimal order error bounds one needs two propesfiehe reconstruction, namely

[Rflln < Cllfllx and [[(Rf = f)lxlle,x) < 9(f:h),

whereg determines the expected approximation order. This can &e tasshow that the
theory presented here improves the well-known error estisnfor the standard interpola-
tion problem in the native Hilbert space of the inverse Mul&drics and reproduces them
for Gaussian kernels.

2 Estimates on general Lipschitz domains

Following [5] we first obtain estimates on local domaids- R¢ and use a covering argu-
ment to get global results. We assume a donfaithat is is star shaped with respect to a
ball B,.(x.) and that is contained in a ballz(z.). In this case we know [5] th& satisfies
an interior cone condition as well. We denote the associcttedkiness parameter with
op
Y= ;
pmax

wherepmax = sup{p : D is star shaped wtih respect to a ball of radisandép denotes
the diameter oD.
Let {ago‘) cj=1,... ,N} be a polynomial reproduction of degréewith respect to a

discrete seX = {z1,...,zny} C D, i.e.,

N
D%(x) = > a{ (x)q(z))
j=1

holds for everya € N¢ with |a| < k, all z € D and allg € P¢(D) whereP¢ denotes the
space of alli-variate polynomials of degree not exceedingrhen we have

[D%u(z)] < |D%(x) = Dp(z)| + [Dp(z)|

N
< D% =Dl ) + Y | @) Ip(a)
j=1

N
< D% =Dl ) + Y | @) Il e
j=1
< D% =Dl (py
N
+ >0l @)| (e = pll oy + Il ) &)

Jj=1

for arbitraryu € Wlf(D) and any polynomiap € P¢(D). As a polynomial approximation
we use averaged Taylor polynomials. They are defined as

Quia)i= 30 = [ Dul)a— )0l

la| <k



where B is a ball relative to whictD is star shaped and having radits 1/2p,,,x and
¢ € C* is a bump function supported d8 satisfying both[,, ¢(y)dy = 1 andmax ¢ <
Cy diam(B)~%. For the remainder

RF:=u— Q"
there is the following bound from [2], where the explicit stemts can be found in [5].

Lemma 2.1 For u € WF(D) with1 < p < co andk > |a|+d/p orin the casep = 1 and
k > |a] 4+ d we get

o gk A oy
D% — D*Q"ul| oo (p) < Cd,em% lulwr D)

where the constant; y depends only on the space dimensicend the angle).
Proof: We use the identity [2]
DﬂQku — Qk—\ﬁlDﬁu 7
for all |3] < k.This leads to
ID%u — D*Q*ul . (p)

1D — QI D%| . (p)

a B seta-ap

< B aul .

< Ca(1+7) T —Jani’P |D “lwf ol ()
d*=lel e

< C’d,em% H /p\u\wﬁ(p)-

Here we used the fact [5] that the chunkiness parametsn be bounded by < v <

csc (g)

We shall use the following local polynomial reproductioarfr [9].

]

Theorem 2.2 LetQ C R¢ satisfy an interior cone condition with anglec (0, 7/2) and

radiusr, ¢ € Nganda € Ng with |a| < ¢. Then there are constantg,cga),cQ > 0,
such that for allX = {z1,...,2y} C Qwith hx o < hy == ¢p/¢* and allz € Q there

exist numbers ™ (z), ..., a\?’ (x) with
1. 2N plz))al™ () = D@p(z) for z € Q andp € PY ()
2., |&§“) (z)] < c§“>h;([§g‘ forall z € Q,

3.3\ (@) = 0,if |z — z;]2 > $Vhx .0 andz € Q.

. S . o]
The conditiond € (0,7/2) impliessinf € (0,1), i.e., (m) < 2(1+1T9) for

all « € N&. Therefore we can choose all the constants independent icé., there exist
constants:;y depending only o such that [9]

Cga) <cp27l <, egi=cpl?. 2

Inserting the bounds of Lemma 2.1 and Theorem 2.2 into (Dsléa the following local
estimate.



Theorem 2.3 SupposéD satisfies an interior cone condition with anglend radiusr, let
a € N& such thatk > |a| +d/pfor1 < p < oo, ork > dif p=1. Then

o Capd® kg o o
D%,y < Wé & (5 ol I) lulyr(py +

+ Caoh™ M ulxlo, x)
holds for allu € W} (D).
Corollary 2.4 Under the assumptions from Theorem 2.3 we get farq < oo

(07 (e} d (e}
ID%ully, iy < VOID)7||IDul|, ) < 587 [ D]l

v k- d("’) —lol | plel

d, —|a
+ Cd,eap/% | ‘||u|x||zm<x> .

Now we consider a ‘global’ domaift ¢ R? that is bounded, has a Lipschitz boundary
and satisfies an interior cone condition with maximum radiuand anglep € (0,7/2).

To coverQ) with smaller star shaped domaifi®;} we use a construction described in [5].
There is a constan®y, r such that forh < Q,f ;2 there is a covering with the following

properties.
e Each se®D, is star shaped with respect to a hBll C Br(t) N 2.

e Each setD; satisfies an interior cone condition with radiuand anglé wherer and
6 can be expressed explicitely Byand¢.

e There are constant®,, D, such thatD,, - hk? < dp, < D - hk>.
e There is a constant/; = M;(6,d) > O suchthad ;. xp, < M.

e There is a constant/y (6, d) > 0 such thattT;, < My (hk?)~¢

Theorem 2.5 Leta € Nd andk € N be fixed witha| < k, k > d/pfor 1 < p < oo or
k > dforp = 1 and setC,,;, := min {%0, QQ,R} with the constant, from Theorem 3.1.
Suppose a discrete s&t c Q with fill distanceh < Cpin/k?. Then for allu € W;“(Q) the
inequality

- \a\(th)k o= d( )

HDauHLq(Q) < ( | |) +|u|Wk(Q)

+ el )Y x [lg, x) X

holds for1 < ¢ < oo with generic positive constants which may depend only on
d,R,¢,p,qando.



Proof: Foru € Wzﬂf(ﬂ) we can use the decomposition described above, Corollargiriti4
the estimateé, ! < C,, ,h~1° which gives

1/q 1/q
1D%ull )= (/QlDQU(z)qufr> < (ZDQU||%Q(Dt)>
Dy

1/q
Cd,edk k—d(i-1 _la
< m (chth) (:D Q) C¢7ah | (Z u|Wﬁ(D1)> +

Dy

1/q
d/q4 ;3 —|a
+ (Dohk?) [ (ZWXﬂDtHeOO(Xth))

Dy

C(I;@a, « —3)-dlz—> e
< (k_oj)qh \ |(h/€2) ( ) (q p)+ <§|UW§(Dt)> +

1/‘1
a d
+ Ch7!l I(th) /e (ZulXﬂDt|éoo(XﬂDt)>

Dy
ol (pge2) P4 G—)
< (k ‘ ! T (hk) v ||u||WI§(Q) +
+ ChTIN R x|y, ) -
Od

Corollary 2.6 Under the assumptions from Theorem 2.5 we get with an anatogalcu-
lation

- \a\(th)k ol = d( )

1D%ull L, (0 *lulwr )

(II)

+ e ulxle x) 4)

We shall now relaté: andk to derive exponential estimates.

Theorem 2.7 There are constants hy > 0 depending onl, p, ¢, R, ®, « such that for all
data setsX C Q with fill distanceh < hg, the inequality

D%l 1,0y < 5D ullyyay + ch ™1 flulx |, x)
holds for allu € H(2) and all1 < ¢ < .
Proof: We use Stirling’s formula to estimate

1 - Kl - klolek
(k—la)l = K = kb



SinceHu||Wg(Q) < |Jullyq) holds for allk € N we can bound the first term of (3) for
arbitraryk € N by

@k (2819 (k) ) gy

We setB = min {cmin, 1/} and choosé € N such that?; < i < & holds. Then the
first term can be bounded by

ek E 2 ) < eV fuflyy

where the constants> 0 may depend oW, p, ¢, R, ¢, cv.
With this choice the second term of (3) can be bounded by

ch™ 1N (R4 ul x|, xy < b flulx o xy -

Corollary 2.8 If we use Corollary 2.6 instead of Theorem 2.5 we get

D%z, ) < BCIOg(Ch)/ﬂ||U||H(Q) +ch™lo lulx o (x)

3 Estimates on cubes
To derive estimates for function values on a compact cubeameuse the following local
polynomial reproduction from [3].

Theorem 3.1 LetQ be a cube ifR?. There exist constants, c; > 0 depending only on
(2 such that for every € N and everyX = {z;,...,znx} C Qwithhx o < ¢p/¢ we can
find functionsz; : © — R satisfying

. Zjvzl a;j(z)p(z;) = p(z) forall z € Q and allp € m,(R9),

o Zjvzl |la;(z)| < 2D for all z € Q,

(] CLj(J?) =0if HT - 33j||2 > nghxﬂ .
The numbers, are defined recursively by, = 2 and~y; = 2d(1 + v4-1).
Lemma 2.1 gives in the special case= 0 the bound

HU - QkUH < Caod" 5%7d/p|“|W§(D) :

Loo(D) k!
If we insert this estimate and the bound from Theorem 3.1(ibtave find
cké%—d/p .
vl (D) < T|U|WIE(D) +c lulx |l (x) -
and
k—d(i-1
Ck(SD (P Q) & <d/q
ullz, 0y < T|U|W1§(D) +cp " lulxllen ) -
To derive global estimates we use the obvious covering obthecube2 with axially
parallel small cube®, with the following properties. A similar approach can berfdun

[4].



e There are constanf®, D > 0 such thatDhk < §p, < Dhk.
e There is a constant/; = M;(6,d) > 0 such thatZteT xp, < M.

e There is a constant/y (6, d) > 0 such that#T;, < My (hk)~?
As in the previous section we find the following global estiea

Theorem 3.2 Under the assumptions from above there exists a positivetaotr which
depends only op, g, the side lengtiR of the cub&? and the space dimensiahsuch that

& i) k(g \d/a
lullz,@ < E(hk) * by + ¢ (AR flulx g, x)

holds for all data sets{' C €2 and for allu € Wzﬂ‘?(Q) with k > d/p for 1 < p < oo or for
k>dforp=1landalll <g < oc.
As in the case of domains obeying a cone condition we get fl@viog corollary.

Corollary 3.3 Under the assumptions from Theorem 3.2 we obtain

ko k—d(i-1
lullz,0) = 77 (7k) G-3). lulw ) + ¢ Jlulxllp )

Now we can derive the following exponential orders.

Theorem 3.4 There exist constants hy > 0 such that for all data setX with fill distance
h < hg
lull ) < €M ullyyqy + M llulx g, x)

holds for allu € H with (1) and all1 < ¢ < oc.

Proof: Sinc«a\HuHWIE(Q < |lull3q) for all u € H(S2) Theorem 3.2 gives
k !

Kl

C —d(1-1
ey < S 058l + CH AR

Using Stirling’s formula we can bound the first term by
k k
c (hk) (). < %hkkkh’d(é’%ﬁ < (Oh)’“h’d(ﬁh .

If we setB := min {%0, %} with the constant, from the local polynomial reproduction
3.1 and choosé € N such that? < h < £ we can further estimate

k
(Iz' ( )k—d(;—q)+ <k kp~ (p_%)+ < eclog(ch)/h (5)
By the choice of: there exists a constantsuch that the second term is bounded by
Ci (k)™ lJulx1le,x) < M lulxllg,x) - (6)
Adding (5) and (6) establishes the claim. |

Corollary 3.5 Under the assumptions from Theorem 3.4 we obtain

< eclog (ch)/h

h
el 0 el + €* llulx Nl o)



4 Kernels and Native Spaces

In this section we will provide two famous examples of funntspaces of infinitely smooth
functions. In the case of the Gaussian radial basis function

K(z) = el @)
the native Hilbert space is definded via
Nic(®Y) = { f € CRY N La(RY) + | fllag < o0}

where the norm is given by

=113

e = [ 1F@)Pes do

The Sobolev spaces @f are defined via
WER? = {f € La®?) : Q)1+ 1|- |3 € L@ } .
This shows for alk > 0
Nk (R c WE(RY).

Using [9, Theorem 10.46], ever§ € Nk (Q) has an extensiof € Nx(R?) with
IEflae ey < I1fllae)- Thus we have forf = Eflo € Nk(Q) ¢ W§(Q) for all
non-negatives;

I llwe) < 1Efllwe@ay < 1Efl @) < 1 v - 8
Similar considerations apply to the Inverse Multiquadrics
-8
K(z) = (¢ +|lz]3)
with Fourier transform [9, Theorem 6.1]
. 2170 (w2 ) 7
£ = 2o () ey s el

wherelC, denotes the modified Bessel function of the third kind (sammeg called Mcdon-
ald’s function). They are defined as

Ko(z) := /0 e* O cosh(ot)dt

for z € C with |arg(z)| < w/2. Foro € R they are bounded from below by [9, Corollary
5.12]

Te *

> R
- 2’
Jmll12 e

Ko > —, > 1and 1/2.
() > T ([o| +1/2) V7 x and|o| < 1/

x> 0andlo| > 1/2
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The essentially same argument as above leads to
Nk (RY) € Wi (RY)
and

I fllwz @) < I fllvie) - )

5 Applications to Smoothed Interpolation

Now we shall apply our general results in the case of -pogs#gularized- kernel based
interpolation. To start with, we briefly summarize the psyhl One is given centets =
{z1,...2x} C R?and dataf1, ... fx)T € RY generated by an unknown functianc
N¥k. One has to solve the system

(K+Aa)b=flx, (10)
with K = (K (z; — ;)),; ;_;  to build an approximant
s xi(H0) = Y biE( ).
CE]'GX

We point out that the classical interpolant is a special caamely for choosing\ = 0. It
is known [10] that

sxx.x(Flve < 20l
Isxx,x(Flx = flxllewy < VAIF v
holds.

Theorem 5.1 If 2 is a cube then there exists a constagt > 0 and a generic constant
¢ > 0 such that for all data setX’ C Q with fill distanceh < hy we get

1 = sa ke (D)l < 3 (€15 VA || flLag

forall f € Nx(Q) and1 < g < 0.

Remark 5.2 In the case\ = 0, i.e., the standard interpolation we have approximation
order eclos(¢h)/h - That is exactly the well known order for interpolation wiBaussian
kernels and improves the known results for IMQs [9].

Proof of Theorem 5.1:

ez:log(&h)/h, Hf

IN

1f = sax.x(F)llz, @ — s x5 ()l v
+e M |5y x5 (F)x = Flx e )
3e 18 £ ne + VA Fllav

3 (c1B I VA [ F

IN

IN
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Corollary 5.3 For the choice

h

A<e
we get
1f = sax.x(F)llz @ < S T

Theorem 5.4 If the domain satisfies an interior cone condition, there exist constants
A, B, C, ¢y, hg such that for all data set& c Q with fill distanceh < hg and1 < ¢ < oo

ID*(f = sxx.x (D, @) < (AeBlog(Ch)/x/ﬁ+ \/Xc(;h_‘a‘> £l () -
Here the constantd, B, C, ¢y depend only o, «, d, g.

Corollary 5.5 For the choice

A< Ae2B log(Ch)/vVhp2lal

we get

1f = sax,x ()l < 3AB1BEWNVR) £\

This shows that we can improve the condition number of théegyg10) at least to the
value of \ = Ae~2Blos(Ch)/Vhp2lal instead ofe=1/¢° for the Gaussian o¢~1/7 for the

Inverse Multiquadric and still get good approximation gsdéNe point out that we get rid
of the seperation distanegg; := %minlgmg\f |z; — xil|2, which can spoil the condition

number in case of badly distributed points.

6 Applications to Support Vector Machines

We shall consider the following optimization problerSVR in Hilbert space formulation.
The function
Ve(z) = |z|, + ev

is related to Vapnik's-intensive loss function

0 if ] <e
|x|e={ 1

|z| —€ if|z| >€

but has an additional term with a positive parameteFhe associated optimization problem
takes the form

N

o1 1 2
}%{%{NZU(%‘)—Z/j|f+€V+%||fHNK . (11)
ecRt J=1
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The solution of this problem can be computed by solving adiditnensional optimization
problem. In the case of exact data, whé¢re N, i.e.

f(.’l?]):yj fOf]ZL,N, (12)

the solution(f*, ¢*) satisfies the following estimates

1 v < Il

. N )
1 x =yl < %IIfIIJQ\/K—e (Nv—1).

Theorem 6.1 Let(2 be a cube and Igtf*, ¢*) be a solution of (11) . Then the generalization
error can be bounded by

* ~ clog(¢h)/h N *
1 = Il < € ( SN F e+ 5l IR + (L= Nv)e ) :

Corollary 6.2 In case of quasi-uniform exact data we can choose the propkrameters

. N 7] 1
_ Nk _ -
- eclog(éh)/h and v = N’
to get i
1f = f* 1|z, ) < CelBE/A fllan (13)

Now we shall consider general domains satifying an intez@re condition. Similarily to
the case above we get

Theorem 6.3 Let (f*, ¢*) be a solution of (11) . Then the approximation error can be
bounded by

* o) N *
I = £ Nrgey < B (APl ST, = (8= 1))

Here the constantsgl, B, D, E depend orf, «, d, q. In case of quasi-uniform data we can
choose the parameters as

N”fHNK 1
= > e
T e
to get the estimate
1f = £l ) < CAB1BCEMVE £l (14)

We now shall consider the case of inexact given data, i.e.

f(zj)=yj+r; forj=1,...,N, andfeNg (15)

12



where we have some additive erioe= (rq, ..., ry). There are no assumptions concerning
the error distribution. Again we have to bound both the masipace norm and the discrete
norm. Following [6] we have

N
. 2C
1 v < \IWZ|TJ|E+2CV6+H]CJQ\/’K
j=1

N
* * N
1F = llewry < D Irjle+vNe—e ~(NV*1)+f||fovK~
j=1

Theorem 6.4 Under the assumption (15) we have foralt 0

N
* ~ clog(é 2C
1 = Fllzy@ < € (e tostem/n QlfINK %W > Irj|e+20ve+||f||3vK)

j=1

N
. N
+ Z|7‘j|e+VN€—6 (NV_l)J'_%HfH.%\fK) )

j=1
O
Corollary 6.5 If we choose
NIIF 113 1
= W and €= 5, Vv = N
we get in case of quasi-uniform data for any non-trivial $ioio
||f o f*”LQ(Q) <C (eclog(éh)/hanNK + 5) ] (16)

Note that bounds like (16) allow excellent bounds on the remdb training samples re-
quired in the worst possible case to get required predicfigaiity.

Now we shall also here consider a general Lipschitz dorflairAnalogously to the case
above we get

Theorem 6.6 Under the assumption (15) we have foralt 0

N
* ~ o 2C
If = Fllz,@ <€ (AeB1 SO @leK +JW > |Tj|e+20ve+f||%,()
Jj=1

. N
+ Z|T]|E+VN6_€(NV_1)+%f||/2vK) .

J=1

Here the constantd, B, C' depend ord, «, d, q. Again we get for the choice

o Nl
25 AeB log(Ch)/Vh

1

-5 y=_

€ , V=g

13



in case of quasi-uniform data for any non-trivial solutiofi*, €*)

Hf _ f*HL2(Q) <C (AeBlog(Ch)/\/E”f”NK + 5) . (17)
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