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August 5, 2007

Delay management is an important issue in the daily operations of any railway
company. The task is to decide which connections should be maintained in case
of delays and to update the planned timetable to a disposition timetable in such a
way that the inconvenience for the passengers is as small as possible.

In a railway setting, a crucial constraint is the limited capacity of the track system.
It has not been treated in optimization approaches so far. In the current paper,
we add the capacity constraints to the delay management formulation. Different
solution algorithms are suggested and evaluated both from a theoretical and a
numerical point of view. In our case study, we use the railway network in the
region of Harz, Germany.

1 Introduction

The delay management problem deals with (small) source delays of a railway system as they
occur in the daily operational business of any public transportation company. In case of such
delays, the planned timetable is not feasible any more. The main question which is considered
in the (pure) delay management problem is to decide which trains should wait for delayed
feeder trains and which trains better depart on time (wait-depart decisions). If these decisions
have been made, one furthermore needs to update the original timetable to obtain a so-called
disposition timetable. A first integer programming formulation for the (pure) delay manage-
ment problem has been given in [Sch01] and has been further developed in [GHL06, Sch07],
see also [Sch06b] for an overview about various models. The complexity of the problem has
been investigated in [GJPS05, GGJ+04], where it turns out that the problem is NP hard even
in very special cases. Other publications about delay management include an online-approach
([GJPW07]), a model in the context of max-plus-algebra ([RdVM98, Gov98]), a formulation
as discrete time-cost tradeoff problem ([GS07]) and simulation approaches ([SM99, SMBG01])

Most of these studies neglect the limited capacity of the track system while dealing with delay
management. Adding these constraints, the problem becomes significantly harder to solve.

∗This work was partially supported by the Future and Emerging Technologies Unit of EC (IST priority - 6th
FP), under contract no. FP6-021235-2 (project ARRIVAL).
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Some first ideas on how to model these constraints in the context of delay management have
been presented in [Sch06a]. Capacity constraints are also taken into account in a real-world
application studied within the project DisKon supported by Deutsche Bahn (see [BGJ+05]).
Here the delay management problem is solved at two different levels of detail: A macroscopic
approach deals with the wait-depart decisions while a microscopic model schedules the trains
on the tracks and hence changes the macroscopic solution until it is feasible.

Another line of research is to design delay-resistant timetables, i.e. timetables in which
source delays will usually not spread out too badly, see [LSS+07] and references therein.
In this paper, different timetables have been evaluated and discussed under optimal delay
management policies.

In the following we will present a model and four approaches dealing with the capacitated
delay management problem, i.e. our goal is to find wait-depart decisions and a disposition
timetable, respecting the limited capacity of the track system. We tested our approaches
numerically within a case study and report on their behavior.

The remainder of the paper is structured as follows. In Section 2 we present a model for the
capacitated delay management problem. Our four approaches are described in Section 3. A
theoretical analysis of the approaches is developed in Section 4, while the numerical results
are presented in Section 5. We conclude the paper mentioning ideas for further research.

2 Models

The (pure) delay management problem is defined as follows: Given the public transportation
network PTN = (V,E) (consisting of the set V of stations and the set E of direct links
between stations), the set F of trains, the set C ⊂ F × F × V of connections and some
source delays, decide which connections should be maintained and which connections should
be dropped such that the average delay of a passenger at his final destination is minimal.
This problem was first introduced in [Sch01]. If we take into account the limited capacity of
the tracks, we get the delay management problem with capacity constraints, see [Sch06a]. In
this section, we show how this problem can be modeled as a directed graph and as an integer
program.

At first, we show how to model the delay management problem with capacity constraints as
an event-activity network. The event-activity network is a directed graph N = (E ,A) whose
vertices are events and whose edges are activities. Events are

• (g, u, arr): the arrival of a train g ∈ F at a station u ∈ V and

• (h, v, dep): the departure of a train h ∈ F from a station v ∈ V .

By Earr and Edep, we denote the set of all arrival and all departure events, respectively. Then,
E = Earr ∪ Edep. The set of all activities A = Adrive ∪Await ∪Achange ∪Ahead consists of four
different types of activities:

• driving activities Adrive ⊂ Edep × Earr model the driving of a train between two con-
secutive stations (including turn-around edges when the vehicle has ended a line and is
about to start a new one),
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• waiting activities Await ⊂ Earr × Edep represent the waiting of a train in a station to let
passengers board and de-board,

• changing activities Achange ⊂ Earr × Edep allow passengers to transfer from one train to
another one.

Up to now, these are the constraints of the pure delay management problem. If two events
i, j ∈ E are connected by an activity (i, j) ∈ A, then event i has to be performed before event
j can take place. To get the delay management problem with capacity constraints, we add

• headway activities Ahead ⊂ Edep × Edep which model the limited capacity of the track
system (security distances for trains driving into the same direction or for oncoming
trains on single-way tracks).

Headway activities model disjunctive constraints: if (i, j) ∈ Ahead, then (j, i) ∈ Ahead, too,
and for each such pair of headway activities, exactly one of them has to be respected.

Now we show how to model the delay management problem with capacity constraints as an
integer program. By La, we denote the minimal time needed to perform activity a ∈ A, and
hij is the minimal buffer time we have to respect if event i is performed before event j and if
(i, j) ∈ Ahead. We define wi as the number of passengers getting on or off at event i ∈ E and
wa as the number of passengers who want to use a connection a ∈ Achange. The (original)
timetable is a mapping Π : E → N, i 7→ Πi, assigning a time to each event. However, if
some event i ∈ E (or some activity a ∈ A) has a source delay di (or da, respectively), we
have to change the original timetable to determine a disposition timetable x : E → N, i 7→ xi.
Furthermore, we assume that all lines have a common period T and that all trains are on
time in the next period.

To model the wait-depart decisions, we introduce binary variables

za :=

{
0 if changing activity a is maintained
1 otherwise

for all changing activities a ∈ Achange. To take into account the capacity constraints, we
introduce binary variables

gij :=

{
0 if event i is performed before event j

1 otherwise

for all headway activities (i, j) ∈ Ahead. Then, the integer programming formulation reads as
follows:

(Cap-DM) min f(x, z) =
∑

i∈Earr

wi(xi −Πi) +
∑

a∈Achange

zawaT (1)
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such that

xi ≥ Πi + di ∀i ∈ E (2)
xj − xi ≥ La + da ∀a = (i, j) ∈ Anice (3)

Mza + xj − xi ≥ La ∀a = (i, j) ∈ Achange (4)
Mgij + xj − xi ≥ hij ∀(i, j) ∈ Ahead (5)

xi ∈ N ∀i ∈ E (6)
za ∈ {0, 1} ∀a ∈ Achange (7)
gij ∈ {0, 1} ∀(i, j) ∈ Ahead (8)

gij + gji = 1 ∀(i, j) ∈ Ahead (9)

with Anice := Await ∪ Adrive and M large enough.
The objective we minimize is the sum of all delays passengers have when starting their trips or
at their final destinations plus the sum of all missed connections. It approximates the sum of
all delays over all customers, and in some cases coincides with it (see [Sch07]). Furthermore,
any optimal solution of this program is a Pareto solution with respect to the two objective
functions minimize the delay over all vehicles and minimize the number of missed connections.
Constraint (3) makes sure that the delay is passed on correctly along driving and waiting
activities, and (4) and (5) do the same for changing and headway activities. Constraint (9)
ensures that exactly one of each pair of headway constraints is respected in a feasible solution.
Note that we allow two types of source delays: The first is a delay di at an event (e.g. a driver
coming too late to his duty), which refers to a fixed point of time, such that xi ≥ Πi + di is
required. The second is a delay da of an activity, e.g. an increase of traveling time between
two stations due to construction work. It has to be added to the original planned duration
La of activity a as done in (3).

If we neglect all constraints modeling the limited capacity of the tracks (i.e. constraints (5),
(8) and (9)), we have the pure delay management problem:

(DM) min f(x, z) =
∑

i∈Earr

wi(xi −Πi) +
∑

a∈Achange

zawaT

such that (2), (3), (4), (6), (7) are satisfied.

If we furthermore ignore all constraints modeling the connections (i.e. constraints (4) and (7)),
set Anice := Await ∪ Adrive ∪ {a ∈ Achange : a should be maintained} and delete the constant
term in the objective, (Cap-DM) reduces to a re-scheduling problem:

(Re-Sched) min f(z) =
∑

i∈Earr

wi(xi −Πi)

such that (2), (3), (6) are satisfied.

If we set Anice := Await ∪ Adrive ∪ {a ∈ Achange : a should be maintained} and ignore all
constraints modeling the connections, but take into account the limited capacity of the track
system, we have a re-scheduling problem with capacity constraints:

(Cap-Re-Sched) min f(z) =
∑

i∈Earr

wi(xi −Πi)

such that (2), (3), (5), (6), (8) and (9) are satisfied.
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(Cap-Re-Sched) has been shown to be NP complete in [CS07]. Since (Cap-Re-Sched) is a
special case of (Cap-DM), namely with Achange = ∅, also (Cap-DM) is NP complete.

Note that the pure delay management problem in its original path-based formulation has been
shown to be NP hard in [GJPS05], but the complexity status of (DM) is not clear yet.

If all wait-depart decisions are already made and if the order of trains is fixed, we define
Anice := Await∪Adrive∪{a ∈ Achange : za = 0}∪{(i, j) ∈ Ahead : gij = 0} and have an instance
of (Re-Sched) – this problem can be solved in polynomial time, e.g. by applying the forward
phase of the critical path method (see [Sch06b]).

3 Heuristics

The idea of the first heuristic, “first scheduled, first served” (FSFS), is to fix the order of trains
according to the original timetable Π. Doing so, the number of variables and the number of
constraints in the integer programming formulation is reduced dramatically.

“First scheduled, first served” (FSFS):

1. Fix the order of trains according to the original timetable Π:

For each a = (i, j) ∈ Ahead:

If Πi ≤ Πj set gij = 0, gji = 1.

2. Set Anice := Adrive ∪ Await ∪ {(i, j) ∈ Ahead : gij = 0}.

3. Compute the exact solution of the corresponding instance of (DM).

The next heuristic, “first rescheduled, first served” (FRFS), only differs from FSFS in the
way how the order of trains is fixed. Instead of using the original timetable, we solve the
problem without capacity constraints (the pure problem) in a first step and use the resulting
disposition timetable x to fix the order of trains.

“First rescheduled, first served” (FRFS):

1. Compute the exact solution of the problem (DM), ignoring constraints (5), (8) and
(9) from the (Cap-DM) formulation ⇒ disposition timetable x.

2. Fix the order of trains according to the disposition timetable x:

For each a = (i, j) ∈ Ahead:

If xi ≤ xj set gij = 0, gji = 1.

3. Set Anice := Adrive ∪ Await ∪ {(i, j) ∈ Ahead : gij = 0}.

4. Compute the exact solution of the corresponding instance of (DM).

FRFS has one advantage and one disadvantage compared to FSFS. The advantage is that a
relaxation is solved in the first step, so we get a lower bound on the objective value of the
optimal solution. The drawback is its running time, resulting from solving (DM) in the first
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and in the last step. This observation leads to the third heuristic, “first rescheduled, first
served with early connection fixing” (EARLYFIX). As we already did in FRFS, we fix the
order of trains according to the disposition timetable that we get from the relaxed problem.
Instead of computing an exact solution of the remaining problem then, we also keep the
wait-depart decisions from the solution of the relaxation and compute the new disposition
timetable by applying the critical path method to the remaining problem:

“First rescheduled, first served with early connection fixing” (EARLYFIX):

1. Compute the exact solution of the problem (DM), ignoring constraints (5), (8) and
(9) from the (Cap-DM) formulation ⇒ disposition timetable xi, decision variables
za.

2. Fix the order of trains according to the disposition timetable x:

For each a = (i, j) ∈ Ahead:

If xi ≤ xj set gij = 0, gji = 1.

3. Set Anice := Adrive ∪ Await ∪ {a ∈ Achange : za = 0} ∪ {(i, j) ∈ Ahead : gij = 0}.

4. Compute the exact solution of the corresponding instance of (Re-Sched).

In contrast to FRFS, Step 4 can now be solved very efficiently. The last heuristic we present is
one that has polynomial runtime and does not need to solve any NP hard problem. It is called
“first scheduled, first served with priority-based fixing” (FSFS-PBF) and is a modification of
the FSFS heuristic we presented first. As we do in FSFS, we fix the order of trains according
to the original timetable Π, but instead of solving the remaining problem exactly, we use a
heuristic approach to make the wait-depart decisions. The idea is to maintain only the “most
important” connections and do not care about the less important ones.

“First scheduled, first served with priority-based fixing” (FSFS-PBF):

1. Fix the order of trains according to the original timetable Π:

For each a = (i, j) ∈ Ahead:

If Πi ≤ Πj set gij = 0, gji = 1.

2. Maintain the “most important” connections:

• Sort the changing edges in descending order according to their weights wa.

• Set za = 0 for the first k% of the connections.

3. Set Anice := Adrive ∪ Await ∪ {a ∈ Achange : za = 0} ∪ {(i, j) ∈ Ahead : gij = 0}.

4. Compute the exact solution of the corresponding instance of (Re-Sched).
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4 Theoretical Results

At first, we will compare the objective values of the four heuristics.

Lemma 1. If we denote by FDM the objective value of the optimal solution of an instance
of (DM) corresponding to an instance of (Cap-DM) with objective value FOPT, the following
holds:

FDM ≤ FOPT.

Proof. (DM) is a relaxation of (Cap-DM).

Since the first step in both FRFS and in EARLYFIX is to solve (DM), we obtain from these
heuristics not only an approximation of the optimal solution, but also a lower bound on its
objective value, and hence their absolute errors can be bounded a posteriori by

FFRFS − FDM and FEARLYFIX − FDM,

respectively, where FFRFS and FEARLYFIX are the objective values of FRFS and EARLYFIX.

Lemma 2. Let FHEURISTIC denote the objective value of the solution of a fixed instance of
(Cap-DM) computed by heuristic HEURISTIC ∈ {FSFS, FSFS-PBF, FRFS, EARLYFIX},
and FOPT the objective value of the optimal solution of this instance. Then,

FOPT ≤ FFSFS ≤ FFSFS−PBF

and
FOPT ≤ FFRFS ≤ FEARLYFIX.

Proof. FSFS and FSFS-PBF fix the order of trains in exactly the same way. However, after
fixing the order of trains, FSFS computes an exact solution of the remaining problem (thus
making optimal wait-depart decisions for the remaining problem), while the wait-depart de-
cisions in FSFS-PBF are gained by a heuristic approach.

FRFS and EARLYFIX also fix the order of trains in exactly the same way. Like FSFS, FRFS
computes optimal wait-depart decisions for the remaining problem, while EARLYFIX keeps
the wait-depart decisions from the solution of the relaxed problem.

Now, we will give some results on the relative error of the heuristics. Unfortunately, we can
prove that the results of all heuristics might get arbitrarily bad compared to the optimal
solution:

Theorem 3. For each heuristic that solves (Cap-DM), fixing the gij variables as they are
set in the original timetable (i.e. according to step 1 in FSFS), the following holds: For each
k ∈ N, there exists an instance of (Cap-DM) such that

FHEURISTIC − FOPT

FOPT
> k

where FHEURISTIC is the objective values of the heuristic.
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(h(0),A,dep) h(1),A,dep) (h(2),A,dep)
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...

...

L_a=1 L_a=1 L_a=1 L_a=1

h_ji=1Π=0 Π=1 Π=2

Π=1 Π=2 Π=3

Π=k+1

Π=k+2

(h(k+1),A,dep)

h_ji=1

h_ij=1 h_ij=1delay d

Figure 1: Event-activity network for the proof of theorem 3.

Proof. Let k ∈ N. Assume that we have two stations A and B and k+2 trains h0, h1, . . . , hk+1.
All trains drive from station A to station B. In the original timetable, the trains leave station
A in the order h0, h1, . . . , hk+1 at the times Π(hi, A, dep) = i and arrive at station B at the
times Π(hi, B, arr) = i + 1, i ∈ {0, . . . , k + 1}. For each i ∈ {0, . . . , k}, the departure of
train hi and the departure of train hi+1 are connected by a pair of headway edges. All weights
and all lower bounds are set to 1. The resulting event-activity network is shown in Figure 1.

Now, assume that (h0, A, dep) is delayed by d ≥ k + 2. In the optimal solution, the trains
h1, . . . , hk+1 leave and arrive on time, while train h0 has a delay of d, so FOPT = d. If we solve
the problem by a heuristic that sets the gij variables as they are set in the original timetable
without delays, all trains get a delay of at least d, so FHEURISTIC ≥ (k + 2) · d, hence

FHEURISTIC − FOPT

FOPT
≥ (k + 2) · d− d

d
= k + 1 > k.

Theorem 4. For each heuristic that solves (Cap-DM), fixing the gij variables as they are set
in the optimal solution of the relaxed problem without capacity constraints (i.e. according to
step 2 in FRFS), the following holds: For each k ∈ N, there exists an instance of (Cap-DM)
such that

FHEURISTIC − FOPT

FOPT
> k.

Proof. Let k ∈ N. Assume that we have two stations A and B and two trains g and h. Both
trains drive from station A to station B. In the original timetable, the trains leave station A
in the order g, h at the times Π(g,A, dep) = 0 and Π(h, A, dep) = 1 and arrive at station B at
the times Π(g,B, arr) = 1 and Π(h, B, arr) = 2. The departures of both trains are connected
by a pair of disjunctive headway edges with weights 1 (headway edge from (g,A, dep) to
(h, A, dep)) and 4 · (k + 1), respectively. All weights and all other lower bounds are set to 1.
The resulting event-activity network is shown in Figure 2.

Now, assume that (g,A, dep) is delayed by 2. In the optimal solution, both trains get a delay
of 2, so FOPT = 4. In the optimal solution of the relaxation without capacity constraints,
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delay d=2

Π=1Π=0

Π=1 Π=2

(g,A,dep)

(g,B,arr)

(h,A,dep)

(h,B,arr)

L_a=1 L_a=1

h_ij=1

h_ji=4(k+1)

Figure 2: Event-activity network for the proof of theorem 4.

train h departs and arrives on time, and train g has a delay of 2. If the heuristic fixes the gij

variables in this way, it has to respect the headway edge with hij = 4 · (k + 1) in the next
step, so train h is on time, while train g has a delay of at least 1 + 4 · (k + 1), hence

FHEURISTIC − FOPT

FOPT
≥ 1 + 4 · (k + 1)− 4

4
=

1 + 4k

4
> k.

However – as we will show in Section 5 – the heuristics do not behave as bad as one might
think regarding the results above.
In the following, we will give an upper bound on the relative error of EARLYFIX.
Given a graph G = (V,E) and a node v ∈ V , we denote by P(v) the set of all predecessors of
v, that is

P(v) := {u ∈ V : ∃ w1, . . . , wk ∈ V : (u, w1), (w1, w2), . . . , (wk−1, wk), (wk, v) ∈ E} \ {v}.

Obviously, we have
u ∈ P(v) ⇒ P(u) ⊂ P(v). (10)

Lemma 5. Let xrelax be an optimal solution of (Re-Sched) with events E and activities Anice =
Await∪Adrive∪Afix

change and xcap an optimal solution of (Re-Sched) with events E and activities

Anice = Await ∪ Adrive ∪ Afix
change ∪ A

fix
head. Let

A1 =
{

a = (i, j) ∈ Afix
head : Πi ≤ Πj

}
A2 =

{
a = (i, j) ∈ Afix

head : Πi > Πj

}
.

Then, we have

xcap
i ≤ xrelax

i +
∑

(k,l)∈A1:
k∈P(i)

(xrelax
k −Πk) +

∑
(k,l)∈A2

k∈P(i)

(xrelax
k + hkl) ∀i ∈ E . (11)
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Proof. An optimal solution of (Re-Sched) can be computed by applying the critical path
method. We assume that E = {1, . . . , n} is sorted such that for i < j, there is no directed
path from j to i, and set E1 = {1}, xcap

1 = Π1 + d1 = xrelax
1 . For k = 2, . . . , n, we set

Ek = Ek−1 ∪ {k} and

xcap
k = max

Πk + dk, max
a=(j,k)∈Anice:

j∈Ek

xcap
j + La

 .

For k = 1 and for xcap
k = Πk +dk, (11) obviously is true. In the rest of the proof, we therefore

assume xcap
k > Πk + dk and that (11) is true for all j < k. Let

ã = (j, k) := argmax
a=(j,k)∈Anice:

j∈Ek

xcap
j + La.

Case 1: Assume that ã ∈ Await ∪AdriveAfix
change. Then, xcap

k = xcap
j + Lã, and using xrelax

k −
xrelax

j ≥ Lã, (11) to estimate xcap
j and (10) which yields P(j) ⊂ P(k), we see that (11) is

satisfied.

Case 2: Assume that ã ∈ A1. Then, xcap
k = xcap

j + hjk. Using (11), we get

xcap
k ≤ xrelax

k +
∑

(l,m)∈A1:
l∈P(j)

(xrelax
l −Πl) +

∑
(l,m)∈A2:

l∈P(j)

(xrelax
l + hlm) + xrelax

j − xrelax
k + hjk. (12)

Using Πk −Πj ≥ hjk, xrelax
k ≥ Πk and P(j) ⊂ P(k), we see that (11) holds.

Case 3: Assume that ã ∈ A2. Then, xcap
k = xcap

j + hjk. As in the second case, we get
inequality (12). We use xrelax

k ≥ 0, move xrelax
j + hjk to the second sum and use P(j) ⊂ P(k)

to prove the lemma for the third case.

We can use Lemma 5 to get an upper bound on the relative error of EARLYFIX: We replace
xrelax by xDM and xcap by xEARLY FIX , and define Afix

head =
{

(i, j) ∈ Ahead : xDM
i ≤ xDM

j

}
.

Using the delay yi = xi −Πi of event i instead of its time xi in the disposition timetable, we
have

yEARLY FIX
i −yDM

i ≤
∑

(k,l)∈A1:
k∈P(i)

yDM
k +

∑
(k,l)∈A2:

k∈P(i)

(yDM
k +Πk +hkl) ≤ FDM+

∑
(k,l)∈Afix

head

(hkl +Πk),

where the second inequality holds if we assume wi ≥ 1∀ i ∈ E . With this assumption, we
hence obtain

FEARLYFIX − FOPT ≤

FDM +
∑

(k,l)∈Afix
head

(hkl + Πk)

 ∑
i∈E

wi.

If, in addition, A2 = ∅, we have

FEARLYFIX − FOPT ≤ FDM
∑
i∈E

wi.

This yields the following.
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Corollary 6. If all events i ∈ E have weights wi ≥ 1 and if the solution xDM of (DM)
satisfies

Πi ≤ Πj ⇒ xDM
i ≤ xDM

j ∀ (i, j) ∈ Ahead

(i.e. we do not change the order of trains compared to the original timetable Π), the following
holds:

FEARLYFIX − FOPT

FOPT
≤

∑
i∈E

wi.

If all events i ∈ E have weights wi ≥ 1 and if FOPT ≥ 1, we have

FEARLYFIX − FOPT

FOPT
≤

1 +
∑

(k,l)∈A1

(hkl + Πk)

 ∑
i∈E

wi.

The corollary gives rise to the assumption that the quality of the solution depends on the size
of

∑
(k,l)∈A1 hkl. This is studied in Figure 5.

5 Numerical Results

The numerical results are based on data from the Harz region in the center of Germany. The
dataset contains 598 stations, 92 trains (vehicles) and 30 lines, each line with two directions.
The sizes of the event-activity network for different observation periods are stated in Table 2.
The ILP formulation was solved using Xpress-MP 2006 on a Pentium IV 3 GHz processor
with 2 GB RAM. We generated about 600 different delay scenarios; in each of them, we
assigned 25 randomly generated source delays of 1-20 minutes to 25 randomly chosen driving
and waiting activities.

In Figure 3, we present four histograms of the relative errors for the heuristics FSFS, EAR-
LYFIX and FRFS and for the approach running both FSFS and FRFS and taking the better
solution. We took into account all events and all activities that take place during a fixed
observation period of 3 hours. On the x-axis we see intervals of 0.1 length describing the
relative error. The first interval hence corresponds to a relative error between 0 and 0.1, the
second interval to a relative error between 0.1 and 0.2, and so on. We show in how many of
the about 600 different delay scenarios the relative error of the respective heuristic takes a
value in an interval of length 0.1 – for example, in about 55 scenarios out of 600, the relative
error of FSFS is in the interval [0, 0.1].

EARLYFIX and FRFS are almost equal concerning the quality of their solutions, although
FRFS is slightly better. For both of them, the number of scenarios with a small relative error
is significantly higher than for FSFS. On the other hand, there are some scenarios in which
EARLYFIX and FRFS have a very high relative error – FSFS does not have these outliers.
If we combine FSFS and FRFS – this means that for each scenario, we take the solution
with the smaller objective value – we benefit from the large number of scenarios with a small
relative error in FRFS and from the fact that FSFS does not have those outliers as FRFS
does have.

Table 1 gives an overview of how good FSFS, EARLYFIX and FRFS are compared to each
other. We specify for each heuristic in how many cases it computes a solution at least as good
as the solutions gained from the other heuristics. We take into account different observation
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Figure 3: The relative error of FSFS, EARLYFIX, FRFS and the approach of running both
FSFS and FRFS and taking the better solution for an observation period of 3 hours
(7 104 events, 9 570 activities).

periods. For larger event-activity networks, EARLYFIX performs quite bad, while the number
of scenarios in which FSFS computes the best solution grows significantly.

In Figure 4, we show how the relative errors of FSFS, EARLYFIX and FRFS grow with the
length of the observation period, i.e. with the size of the event-activity network. The larger
the event-activity network, the larger the relative error of all heuristics.

Figure 5 shows the relative error of EARLYFIX. We graphed the relative error (on the y-axis)
against the sum of weights of headway activities in A2. The figure justifies our result that
the maximum relative error becomes larger when the sum of headways of activities in A2 (i.e.
headway activities fixed to another direction as in the original timetable) increases.

In Table 2, we finally specify the runtime of the exact solution and of the heuristics FSFS,
FRFS and EARLYFIX for different observation periods and therewith for different sizes of
the event-activity network. An observation period of k hours means that we considered a part
of the event-activity-network containing all events and all activities during a fixed k-hours
time slot.
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observation period of
heuristic 3 hours 6 hours 10 hours
FSFS 141 (23.58%) 239 (39.97%) 263 (43.98%)

EARLYFIX 219 (36.62%) 83 (13.88%) 75 (12.54%)
FRFS 457 (76.42%) 361 (60.37%) 336 (56.19%)

Table 1: How often (out of 598 different scenarios) is FSFS, EARLYFIX and FRFS at least
as good as the two other heuristics, w.r.t different observation periods?
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Figure 4: Average relative error of FSFS, EARLYFIX and FRFS for different observation
periods between two and five hours.
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Figure 5: Relative error of EARLYFIX versus
∑

(i,j)∈A2
hij for an observation period of 4

hours (9 446 events, 14 079 activities).

All heuristics are significantly faster than the optimal solution (calculated via the ILP formu-
lation by Xpress). EARLYFIX clearly outperforms FSFS and FRFS by a factor of 3. FSFS
and FRFS are nearly equal considering the computation time.
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size of the event-activity network runtime (in seconds) of algorithm
hours |E| |A| |Ahead| |Achange| exact FSFS EARLYFIX FRFS

2 4 726 5 865 1 110 125 19.45 0.24 0.11 0.26
3 7 104 9 570 2 378 187 185.33 0.46 0.17 0.49
4 9 446 14 079 4 428 307 584.66 0.69 0.25 0.74
5 11 824 18 605 6 514 369 1 075.52 0.91 0.31 1.00
6 14 166 23 396 8 846 489 - 1.16 0.39 1.26
8 18 888 32 673 13 260 632 - 1.65 0.53 1.83
10 23 596 41 992 17 656 852 - 2.04 0.68 2.34
15 33 718 61 944 27 138 1 209 - 3.01 1.01 3.63

Table 2: Average runtime for different sizes of the event-activity network.

6 Conclusion and Further Research

In this paper, we suggested and evaluated four different heuristics to deal with the capacitated
delay management problem. It turns out that in most cases, the relative errors of FRFS are
better than those of FSFS, but the latter has shown to be more resistant against outliers.
We conclude that running both of these approaches and taking the better solution seems to
be an efficient approach for real-world applications. Other heuristics as a Branch & Bound
approach using the features of pure delay management, dynamic programming and a kernel-
based learning approach are under research.

While analyzing the heuristics in more detail, we tackled the question on how bad a solution
of the pure delay management problem can become when adding capacity constraints. The
difference to the solution of the corresponding capacitated problem reflects the robustness of
a solution of the pure delay management problem. This difference increases when the order of
many trains – compared to their order in the original timetable – is changed in the solution of
the pure problem. It is ongoing research to increase the robustness of a solution of (DM) by
adding just a few crucial headway constraints. An approach how such constraints (or other
dependencies) can be identified is described in [CS07].

Another generalization of delay management is to allow to change the vehicle routes if this
seems appropriate to reduce delays, and to include the microscopic routes of the trains, in
particular at large stations.

Acknowledgment. We want to thank Jens Dupont of Deutsche Bahn and Christian Liebchen
of TU Berlin for providing the data for the case study.
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management problem in public transportation. European Journal of Operational
Research, 2006. to appear.

[GJPS05] M. Gatto, R. Jacob, L. Peeters, and A. Schöbel. The computational complexity of
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2007-05 C. Conte, A. Schöbel Identifying dependencies among delays

2007-06 D.S. Gilliam, T. Hohage, X. Ji,
F. Ruymgaart

The Frechet-derivative of an analytic function of
a bounded operator with some applications

2007-07 T. Hohage, M. Pricop Nonlinear Tikhonov regularization in Hilbert
scales for inverse boundary value problems with
random noise

2007-08 C.J.S. Alves, R. Kress, A.L. Sil-
vestre

Integral equations for an inverse boundary va-
lue problem for the two-dimensional Stokes
equations
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