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Abstract
Nowadays, railway transportation needs to become more and more competitive, so new
features are required to improve the planning process. Since delay propagation is often con-
sidered as one of the main reasons for the poor attractiveness of railway transport the goal
in daily operation is to compensate perturbations to the scheduled timetable, in particular
to meet the passengers’ needs concerning transfers and changes in a better way. This leads
to the delay management problem in which dispositioners have to decide about the new
timetable. Detailed knowledge about the critical points of the system (in particular about
where the source delays are and how they spread out into the system) may make a better re-
scheduling possible. To identify such dependencies, we apply a stochastic approach called
Tri-graph. This is a graphical modeling approach in which full conditional modeling is car-
ried out in small subgraphs with only three vertices that will then be combined into the full
model. The idea of our approach is to describe the delay propagation by using a small set
of abstract constraints instead of the inventory or headway constraints that are usually used
in re-scheduling problems.
Our approach has been applied and tested on real-world data of German railway, provided
by Deutsche Bahn within the context of a larger project named DisKon.
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1 Introduction

Nowadays, railway transportation needs to become more and more competitive, so new
features are required to improve the planning process. In daily operations the goal is to
compensate perturbations to the scheduled timetable, in particular to meet in a better way
the passengers’ needs concerning transfers and changes. This leads to the delay manage-
ment problem. Delay propagation is often considered as one of the main reasons for the
poor attractiveness of railway transport. In fact, a better re-scheduling of the timetable in
order to minimize the disadvantages for the passengers will be possible if the critical points
of the system are known. This includes knowledge about dependencies among delays in
order to be able to point out where the source delays are and how they spread out into the
system. Delays and their behavior in railway systems have recently been investigated by
[19] and [6]. As usual in the literature (Ref: [9]) we distinguish between two types of de-
lay: source delays, i.e. delays that are caused from the outside and not from other trains
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(see “Urverspätungen” in [15]), which usually spread out into the system inducing a second
kind of delay, called ”forced delay” (see “Folgeverspätungen” in [15]).
We further distinguish between the following three types of delay propagation:

1. propagation along the same train. Delay is carried over along the path of each delayed
train, i.e. if a train starts with a delay it is likely to reach its next station with a forced
delay (propagation along a driving activity), and if it arrives at a station with a delay
it will probably depart with a delay (propagation along a waiting activity);

2. propagation from one train to another due to connections. If a connecting train waits
for a delayed feeder train, the delay of the feeder train may spread out to the connect-
ing train (propagation along a transfer activity);

3. propagation from one train to another due to the limited capacity of infrastructure. If
two trains share the same infrastructure (a part of a track or a platform) one of them
has to wait until the other has left. This is a third possibility to obtain forced delays
for the trains that have to wait (propagation along a ”virtual activity”).

The first two types of delay propagation are easy to handle from an analytical point of view,
since the minimal duration of every activity is known and is hence explicit and given param-
eters. However, the third kind of delay propagation is more complicated to deal with. This
is due to the fact that it requires a detailed knowledge of the track system on a microscop-
ical level. An overview about approaches dealing with the third type of delay propagation
is given by [14]. Note that also classical inventory constraints (Ref: [13]) or job-shop-
scheduling (Ref: [2] and [3]) may be used. In contrast to these approaches, the goal of this
paper is to propose a procedure which enables us to detect dependencies of delays of the
third type without explicit knowledge of all details of the infrastructure.

2 Analytical Method

The scheduling of a timetable can be considered as a project in which a set of interacting
tasks (journeys of the trains) require time (e.g. driving time, waiting time . . . ) and resources
(e.g. tracks, platforms . . . ) to be completed.
Given two sets, T for the trains andV for the stations, that have to be studied, we represent
the railway system by a network, the so called Public Transportation Network PT N =
(V,B) in which every node represents a station and every edge is a set of (blocks of) tracks
connecting two different stations.
The PTN is intuitive but the information it contains is not enough to study the problem from
an analytical point of view. That’s why we will instead consider the so called Activity-on-
arc Project Network N = (E,A) (Ref: [8] and [9]).
We define a set of events E corresponding to the arrivals and departures of all trains in all
stations of their journeys, and a set of activities A (driving along an edge, waiting in a
station or connection between two trains) so that

E = Edep ∪ Earr (1)

where
Edep = {(t, v, dep) : t ∈ T v ∈ V : t departs from v}
Earr = {(t, v, arr) : t ∈ B v ∈ V : t arrives in v} ;
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and
A = Adrive ∪Await ∪Achange (2)

where
Adrive = {((t, v, dep), (t, u, arr)) ∈ Edep × Earr : v, u ∈ V}
Await = {((t, v, arr), (t, v, dep)) ∈ Earr × Edep}

Achange ⊆ {((t, v, arr), (t′, v, dep)) ∈ Earr × Edep : t, t′ ∈ T }

where the set of guaranteed connections contained in Achange should be defined according
to the passengers’ needs.

The graph in Figure 1 is a small example of how an Activity-on-arc Project Network
looks like when two connections between two trains are possible:

Figure 1: Example of Activity-on-arc Project Timetable Network

We define now the parameters

πi scheduled time of event i ∈ E
di source delay associated to event i ∈ E, di ≥ 0
La minimal duration of activity a ∈ A

and the new variables

xi re-scheduled timetable of event i ∈ E.

Consequently the delay of event i is given by xi − πi. If we consider just delays of the first
type (propagation along the same train) and of the second type (propagation from one train
to another due to connections), we can write our Timetable Model [TM-1] as:

min
∑
i∈E

xi (3)

s.t. x j − xi ≥ La ∀a = (i, j) ∈ A (4)
xi ≥ πi + di ∀i ∈ E (5)
xi − πi ≤ T ∀i ∈ E (6)

xi ∈ Z
+ ∀i ∈ E (7)
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The objective function
∑
i∈E

xi is equivalent to the delay function
∑
i∈E

(xi − πi) since the

scheduled timetable πi is a constant parameter of our model.
The constraints represent the time limits of our problem:

• the real duration of an activity must respect the (technically) minimal one, i.e. the
real duration must be larger than the given lower bound;

• the real timetable must respect the scheduled one and the delays;

• the delay of an event must be smaller than the period T of the model;

• the variables xi are in Z since minutes or seconds are the minimal time units of the
system.

Constraint (6) is an (“implicit”) condition in a periodic timetable. If the delay of a train at
one station yi is greater than the period T (yi > T ), it is preferable (in order to avoid delay
propagation) to cancel the train and ask the passengers to get on the next scheduled train.
This condition gives an upper bound for delays, that can be interpreted as a deadline for
every activity of the system. Thus the Timetable Model can be read as a problem in which
every activity has to be executed inside a time window (i.e. a time interval) defined by the
scheduled timetable and the (“pre-defined”) deadline:

xi ≥ πi + di and xi − πi ≤ T

that is xi ∈ [πi + di, πi + T ].

This is a broad interpretation of these “implicit” constraints since inside a periodic
timetable, every set of trains traveling on the same route has a specific period, which is
usually smaller than the general period T . For example Hannover and Göttingen are con-
nected by a train every hour, but the trains between the main station in Hannover and the
Hannover airport have a higher frequency. Therefore it makes sense to consider, instead of
the constant period T a specific period Ti that depends on the route of train t corresponding
to event i. Hence we can rewrite the Timetable Model as [TM-2]

min
∑
i∈E

xi

s.t. x j − xi ≥ La ∀a = (i, j) ∈ A
xi ≥ πi + di ∀i ∈ E

xi − πi ≤ Ti ∀i ∈ E (8)
xi ∈ Z

+ ∀i ∈ E

In case of its feasibility, [TM-2] can be solved by the critical path method (CPM) which
looks for a longest path in the events-activity-network. In a connected network it always ex-
ists a longest path between two nodes of it, if and only if it does not contain any direct cycle
with positive length. We can assume the absence of direct cycles with positive length since
the event-activity-network is a time-expanded network such that a cycle would represent a
sequence of meaningless precedences.
Now we want to introduce in the [TM-2] the third type of delay (propagation from one train
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to another due to limited capacity of infrastructure), that is the one we mainly want to in-
vestigate. A possible way to proceed is to avoid any overlapping between two consecutive
events. This can be interpreted as a capacity constraint since formally we forbid that two
trains can use the same track/platform simultaneously.
To mathematically define these capacity constraints we could use the following Capacitated
Timetable Model [CTM-1]

min
∑
i∈E

xi

s.t. x j − xi ≥ La ∀a = (i, j) ∈ A
xi ≥ πi + di ∀i ∈ E

xi − πi ≤ Ti ∀i ∈ E (9)
gi je(x j − xi − La) ≥ 0 ∀i, j ∈ S e where a = (i, k) ∈ A \ Achange (10)

(1 − gi je)(xi − x j − La′ ) ≥ 0 ∀i, j ∈ S e where a′ = ( j, k′) ∈ A \ Achange (11)
xi ∈ Z

+ ∀i ∈ E

gi j ∈ {0, 1} ∀m ∈ M ∀i, j ∈ E

Here S e refers to the set of (departure) events that use the same edge e of the underlying
physical network in their next (driving) activity and gi je is a binary variable equal to 1 if
event i ∈ S e happens before event j ∈ S e on the edge e, 0 otherwise. The constraints
(10) and (11) are the capacity constraints on every edge (before a new action starts on the
edge, the previous scheduled one must have been completed). These constraints are more
restrictive than what we need. In practice, two trains can simultaneously use the same edge.
To guarantee the safety while doing so, each edge is separated into blocks as shown in
Figure 2. We hence rewrite [CTM-1] in a more detailed formulation. Firstly we define the
setM as the blocks (part of tracks or platforms) of the system. For every block m ∈ M we
also define a set S m of events in Edep that have to take place on it. Besides we introduce
a new binary variable gi jm equal to 1 if event i ∈ S m happens before event j ∈ S m, zero
otherwise, and a new parameter hi jm, called headway, corresponding to the security distance
that the events i and j have to respect on block m.
Hence the Capacitated Timetable Model can be written as [CTM-2]

min
∑
i∈E

xi

s.t. x j − xi ≥ La ∀a = (i, j) ∈ A
xi ≥ πi + di ∀i ∈ E

xi − πi ≤ Ti ∀i ∈ E

gi jm(x j − xi − hi jm) ≥ 0 ∀m ∈ M ∀i, j ∈ S m (12)
(1 − gi jm)(xi − x j − h jim) ≥ 0 ∀m ∈ M ∀i, j ∈ S m (13)

xi ∈ Z
+ ∀i ∈ E

gi jm ∈ {0, 1} ∀m ∈ M ∀i, j ∈ E

Note that (12) and (13) can be replaced by

gi jm(x j − xi − hi jm) ≥ 0 ∀m ∈ M ∀i, j ∈ S m (14)

(1 − gi jm)(xi − x j − h jim) ≥ 0 ∀m ∈ M ∀i, j ∈ S m (15)
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Figure 2: Blocks sections

where hi jm = max
m∈M

i, j∈S m

hi jm. The model can be linearized or treated using disjunctive constraints,

see the investigation in in [12].
Next we want to show that [CTM-2] is NP-complete. To this end we introduce a well-

known NP-complete problem Sequencing within Intervals Problem [SIP] (Ref: [5]) . The
[SIP] determines whether the tasks c of a finite set C, with a given duration lc, can be
sequenced in order to obey temporal restrictions (the execution has to happen inside a pre-
defined time interval), with at most one task ever being executed at a time. A formal descrip-
tion is the following: we define the temporal restriction of the [SIP] as a minimal starting
time pc and a deadline tc, and we are looking for a function σ : C → Z+ such that for each
c ∈ C , σc ≥ pc, σc+ lc ≤ tc and, if c′ ∈ C\{c}, then either σc′ + lc′ ≤ σc or σc′ ≥ σc+ lc. The
objective is to minimize the total tardiness of the problem, i.e. the sum of the completion
times of the tasks in the set C. Accordingly to that we can write the [SIP] as

min
∑
c∈C

σc

s.t. σc ≥ pc ∀c, c′ ∈ C

σc + lc ≤ tc ∀c, c′ ∈ C

gcc′ (σc − σc′ + lc) ≤ 0 ∀c, c′ ∈ C

(1 − gcc′ )(σc′ − σc + lc′ ) ≤ 0 ∀c, c′ ∈ C

σc ∈ Z
+ ∀c ∈ C

gcc′ ∈ {0, 1} ∀c, c′ ∈ C

where a variable gcc′ = 1 if task c is executed before c′, 0 else. Consequently if task c is
started at time σc, it is completed at time σc + lc, it cannot be started before time pc, it must
be completed by time tc, and its execution cannot overlap the execution of any other task c′.
We are now going to show that [CTM-2] can be rewritten as [SIP] and hence we will have
that

Proposition 2.1. Capacitated Timetable Model [CTM-2] is a NP-complete problem.

Proof. Given an instance of [SIP] we interpret the tasks c ∈ C as events i ∈ E of the
[CTM-2] and obtain an instance of [CTM-2] by the following correspondences. We define
E = Edep = C and also S m = C since we consider just one block,M = {m}. Then we are
able to define the parameters of [CTM-2] as follows.

di = 0 ∀i ∈ E
πi = pi ∀i ∈ E
Ti = ti − (pi + li) ∀i ∈ E

hi jm = li ∀i, j ∈ E
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where Ti ≥ 0 otherwise the problem would be infeasible, since it would be required to
complete a task in less than its minimal execution time. We also define La = −∞ so that
constraint (4) can be neglect from the model.
The result of [CTM-2] then is a timetable x, from which we obtain σ : C → Z+ by the
identity σi = xi. It holds that x is a feasible timetable if and only if σ feasible for [SIP].
Furthermore, the objective values of x andσ are equal. Hence [CTM-2] is NP-complete. �

Discovering that our problem is NP-complete, we look for other ways to find a practi-
cable model. We suggest a new approach based on the concept of “virtual activities”, that
will be described in Section 3.

3 Identifying dependencies through a stochastic approach

Instead of using all headway constraints for each block as in [CTM-2] we want to apply a
stochastic procedure which points out the critical points of the system, in particular where
the source delays are and how they spread out into the system. Thus we can reduce the
[CTM-2] formulation by restricting the set of capacity constraints to a smaller set of ab-
stract constraints which contains just these critical points.
Using the delays of each event in this model as random variables we use a stochastic ap-
proach to analyze the dependencies among these variables. This reveals the dependencies
among the events of the system, i.e. among the arrival and departure events of the trains in
the stations. These dependencies represent information about all three types of delay prop-
agation. While delay propagation of type 1 and 2 belongs to driving, waiting and changing
activities, delay propagation of type 3 does not correspond to any a ∈ A. Hence we intro-
duce a set of “virtual activities” Avirtual describing the dependencies of type 3 which have
to be identified by the stochastic approach. These activities ensure that an event can not
happen before another event has taken place: that means, for example, that a train can not
enter a station before the platform assigned to it, is free. Hence a “virtual activity” does not
belong to the set of activities defined in A but it can be considered as a precedence con-
straint in the railway problem, that has to be satisfied to avoid infrastructure conflicts (using
the same track or the same platform) due to the limited capacity of the track system and to
operational rules of the security system. The resulting model is similar to [CTM-2]:

min
∑
i∈E

xi

s.t. x j − xi ≥ La ∀a = (i, j) ∈ A
xi ≥ πi + di ∀i ∈ E

xi − πi ≤ Ti ∀i ∈ E

x j ≥ v1
i jxi + v2

i j ∀i, j ∈ E such that a = (i, j) ∈ Avirtual (16)
xi ∈ Z

+ ∀i ∈ E

where we replace constraints (10) and (11) with linear dependency constraints (16) between
pairs of events connected with “virtual” edges in the set Avirtual. We call these constraints
virtual constraints. The parameters v1

i j and v2
i j will be estimated by the stochastic approach

(see Section 7). Consequently we restrict the huge set of capacity constraints of [CTM-2]
just to the crucial ones corresponding to critical points of the system.
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4 Graphical Methods

Graphical methods have their origin in several scientific areas and they can be considered
as a marriage between probability theory and graph theory. They provide a natural tool for
dealing with uncertainty and complexity. The basic idea is the notion of modularity, so that
a complex system can be built by combining simpler parts. Probability theory provides the
glue whereby the parts are combined, ensuring that the system as a whole is consistent and
providing ways to interface models and data. Graph theory provides both an intuitively ap-
pealing interface by which humans can model highly-interacting sets of variables as well as
data structures that lend themselves naturally to design general-purpose algorithms. There-
fore we can define them as a sort of multivariate analysis that uses graphs to represents
models.
Probabilistic graphical models are graphs in which the nodes represent random variables
and the (lack of) arcs represents conditional independence. Hence they are a compact rep-
resentation of a multi-variate probability distributions.
We first review some methods based on the multivariate normal distribution. Two of them
(Full Conditional Independent Graph and Covariance Graph) are classical methods, the
third one (Tri-graph) has been suggested in 2004 by Wille and Bühlmann and it is the
method that will be mainly applied in this work.

Gaussian Assumption:
We suppose we have a p-dimensional random variable X = {X1 . . . Xp} with a multivariate
normal distribution:

• mean µ = (µ1 . . . µp)

• covariance matrix Σ = (σi j) where i, j ∈ {1 . . . p} and σi j = cov(Xi X j)

• precision matrix Ω = Σ−1 = (ωi j) where i, j ∈ {1 . . . p}

• density fX =
1

(2π)
p
2

1

|Σ|
1
2

exp(− 1
2 (x − µ)TΣ−1(x − µ))

Full Conditional Independence Graph
In the Full Conditional Independence Graph (FCIG), an edge between two variables Xi and
X j is drawn if and only if the two variables are conditionally dependent given all the other
variables Xk ∀k ∈ {1 . . . p}�{i, j} of the system. Due to the Gaussian assumption, we can
rewrite that condition as:

we draw an edge Xi → X j ⇐⇒ ωi j =
ωi j
√
ωiiω j j

, 0 (17)

where ωi j is the element in the ith row and jth column of the precision matrix Ω and ωi j is
the partial correlation coefficient.
The method has the advantage of including all the variables in the evaluation of the depen-
dencies. Its weak point is the numerical implementation. To calculate the inverse of the
covariance matrix it is necessary to have a large sample of data for an accurate estimation.
Moreover, to determine which elements of the precision matrix are equal to zero, it is nec-
essary to do a super exponentially number of tests (likelihood tests), and for a large number
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of variables this is hardly tractable.

Covariance Graph
A natural choice to avoid the problem arising form the FCIG would be to work just with
the covariance matrix, and not with the precision matrix. Then it would be possible to work
with a small number of data and a large set of variables. Based on this idea the Covariance
Graph (CG) draws an edge between two variables Xi and X j if and only if the correlation
coefficient of the two variables is different from zero:

we draw an edge Xi → X j ⇐⇒ ρi j =
σi j
√
σiiσ j j

, 0 (18)

where σi j is the element in the ith row and jth column of the covariance matrix Σ and ρi j is
the correlation coefficient.
The disadvantage of this method is the neglect-ion of possible interactions of all other vari-
ables in the explanation of the dependency of a particular pair, i.e. this method is not able
to capture complex patterns.

Tri-graph
The Tri-graph (TG) arises from the combination of the two previous methods (Ref: [16] and
[17]). This is a simplified graphical modeling in which full conditional modeling is carried
out in small subgraphs with only three vertices that will be then combined into the full
model. The vertices considered in the re-scheduling problem are the events of the Activity-
on-arc Project Network defined in the Timetable Model.
To evaluate the conditional dependency of a pair of variables Xi and X j proceed as follows.
Instead of considering all the other variables simultaneously as in the FCIG, each other
variable Xk, k ∈ {1 . . . p}�{i, j}, is considered separately. The pairwise partial correlation
coefficients are defined as

ωi j|k =
ρi j − ρikρk j√

(1 − ρ2
ik)(1 − ρ2

k j)
(19)

The definition of the TG can be formalized as:

Definition 4.1. (see [16]) We draw an edge Xi → X j if and only if ρi j , 0 and ωi j|k , 0 for
all k ∈ {1 . . . p}�{i, j} .

The name Tri-graph refers to the fact that triples of variables are considered to calculate
the pairwise partial coefficients. Its definition can be re-read as: an edge between two
variable, Xi and X j, is drawn if and only if it does not exist any other variable Xk that can
explain their dependency.
Through the definition of the set Ti j = {ρi j, ωi j|k ∀k ∈ {1 . . . p}�{i, j}} we can rewrite
Definition 4.1 as

Definition 4.2. (see [16]) We draw an edge Xi → X j if and only if τ = arg min
τ∈Ti j
|τ| > 0 .

The method is based on the covariance matrix like the Covariance Graph, so it can be
used even if the sample of data is small compared to the number of variables. Moreover it
has the advantage to look for more complex structures than the correlation, so it can capture
the Full Conditional Independence Graph, but just in some cases it coincides with it.
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4.1 Examples

To see how the three methods work, two small examples will be presented.

Example 4.1. A railroad yard is located along a single track route between the stations v
and u. Two trains t and s travel in different directions along this track. Figure 3 shows
the Activity-on-arc Project Network of the problem. We suppose that the train t leaves the

Figure 3: construction area on a single track line

station v on time but at the yard it will get a source delay. Train s has to wait at station
u until the arrival of train t to receive the green light to proceed. Therefore it will have a
forced delay, that might spread out along its journey.
We consider four variables:

• X1 the departure of train t from station v;

• X2 the arrival of train t at station u;

• X3 the departure of train s from station u;

• X4 the arrival of train s at station v.

We generated some normal distributed data corresponding to the following covariance ma-
trix:

Σ =


0.8 0.6 0.4 0.2
0.6 1.2 0.8 0.4
0.4 0.8 1.2 0.6
0.2 0.4 0.6 0.8


Thus the precision matrix is:

Ω =


2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2


To see how the Tri-graph works, we recall the definitions (19) and (4.1) and we compute the
value of the partial correlation coefficients:
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(Xi,X j) Xk ωi j|k Edge
(1,2) ∀k , 0 Yes
(1,3) 2 = 0 NO
(1,4) 3 = 0 NO

(Xi,X j) Xk ωi j|k Edge
(2,3) ∀k , 0 Yes
(2,4) 3 = 0 NO
(3,4) ∀k , 0 Yes

The results of the three methods are shown in Figure 4. In our example the Tri-graph

Figure 4: Tri-graph coincides with FCIG

method coincides with the FCIG and furthermore it’s able to identify the “virtual connec-
tion” between trains t and s. This is a really good result, but it is not always true.

Example 4.2. We consider three stations v, u, w among which three trains r, s and t are
traveling such that the corresponding Activity-on-arc Network is the one shown in Figure 5.

Figure 5: triangular connection

The three trains are pairwise connected in the three stations:

• r and s at station v;

• s and t at station u;

• t and r at station w.

11



Therefore the passengers have two possibilities to travel from station v to w: directly with
train r, or using the connection between s and t at station u. In reality such a situation often
occurs: for example among Göttingen, Hannover und Wolfsburg.
Six variables are considered:

• X1 the departure of train r from station v;

• X2 the departure of train s from station v;

• X3 the arrival of train s at station u;

• X4 the departure of train t from station u;

• X5 the arrival of train t at station w;

• X6 the arrival of train r at station w.

We suppose that the precision matrix Ω obtained from the delay data of the three trains is

Ω =



1 0.5 0 0 0 1
0.5 4 1 0 0 0
0 1 3 0.5 0 0
0 0 0.5 2 1 0
0 0 0 1 1 0.3
1 0 0 0 0.3 2


The corresponding covariance matrix is dense, thus the CG will give the complete set of
possibles edges among the six variables as result, while the FCIG contains just the edges of
a cycle, as shown in Figure 6.

Figure 6: Tri-graph coincides with CG

Evaluating the partial correlation coefficients for the Tri-graph we get:
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(Xi,X j) Xk ωi j|k Edge
(1,2) ∀k , 0 Yes
(1,3) ∀k , 0 Yes
(1,4) ∀k , 0 Yes
(1,5) ∀k , 0 Yes
(1,6) ∀k , 0 Yes
(2,3) ∀k , 0 Yes
(2,4) ∀k , 0 Yes
(2,5) ∀k , 0 Yes

(Xi,X j) Xk ωi j|k Edge
(2,6) ∀k , 0 Yes
(3,4) ∀k , 0 Yes
(3,5) ∀k , 0 Yes
(3,6) ∀k , 0 Yes
(4,5) ∀k , 0 Yes
(4,6) ∀k , 0 Yes
(5,6) ∀k , 0 Yes

Hence the Tri-graph method coincides with the CG and is not able to identify only the
dependencies pointed out by the FCIG.

In general, the following theorem holds.

Theorem 4.1. (see [16]) If the Full Conditional Independence Graph does not contain any
cycle, then the Tri-graph coincides with the Full Conditional Independence Graph.

The proof of the theorem (that can be found in [16]) is based on the global Markov
property.

5 Implementation

The implementation of the three graphical methods has been done in R (Ref: [10]). The
input are the delay data and a quantile (in our case of 5%) for the likelihood test to control
if the covariance and the partial correlation coefficients are different from zero.
In our application we want to reduce the possibility to neglect existing edges, i.e. to make
an error of the second kind.
Special features for the Tri-graph have been already implemented and included in public
libraries (Ref: [10]).

6 Numerical Experiments

The Tri-graph approach has been applied and tested on real-world data of German railway,
corresponding to the Harz region. The data has been provided by Deutsche Bahn within the
context of a larger project called DisKon (Ref: [1]).

The data files consist of delay of regional trains over a period of nine months (be-
tween January and September 2005) at eight stations in the Harz area: Bad Harzburg,
Goslar, Herzberg, Oker, Salz-Ringelheim, Seesen, Vieneburg and Wolfenbüttel (see Fig-
ure 7). Apart from the delay we also have data about the timetable and the infrastructure in
this region such that we are able to analyze the stochastic results.
We considered 928 events corresponding to 177 regional trains traveling inside the Harz
area in 30 working days. The choice of the (number of) days has been done in order to
maximize the size of the set of events E that could be defined from the list of events in the
data file. We decided not to generate any missing data, therefore we do not always have
complete chains of events for the train journeys.
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Figure 7: The Harz area

The Full Conditional Independence Graph could not be applied since the delays correspond-
ing to some pairs of events were identical. This is due to the fact that the measurement pre-
cision in the data is up to the minute, so if an activity has a small slack time there will be no
significant change in the measured delay. As a consequence there are linear dependencies
between some columns of the covariance matrix, and hence the inverse does not exist.
The Covariance Graph pointed out around 18.000 edges. Most of them were due to the
transitivity property of the covariance: if the correlation coefficient between the couples of
events (i, j) and ( j,k) are different from zero, ρi j , 0 and ρ jk , 0, then it follows automati-
cally that ρik , 0. Hence if the CG point out the edges (i, j) and ( j,k), it will automatically
point out also the edge (i,k).
The Tri-graph identified 182 edges, that can be subdivided into four classes:

• 132 (72.5%) edges correspond to waiting activities;

• 28 (15.4%) edges correspond to driving activities;

• 11 (6.06%) edges correspond to “ virtual activities” and describe dependencies due
to capacity constraints;

• 11 (6.06%) are “not clear”;
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The method identified more waiting activities than driving activities since the waiting ac-
tivities usually have a smaller slack time, hence with a high probability delays will spread
out more often along them than along driving activities. We have classified events as “not
clear” if the corresponding edge connects events occurring in stations too far away from
each other or events with a too large time distance to each other.

7 Including “virtual connections” in the analytical model

) In order to replace the classical inventory constraints (10) and (11) in the [CTM-2] we
want to include the “virtual connections” pointed out with the Tri-graph, gathered in the set
Avirtual as described in Section (3). Furthermore we want to use the information about the
mean and variance of the delays arising form the stochastic analysis. Our idea is to suppose
linear dependence among the delays, thus if events i and j are connected by an edge, the
corresponding normal distributed delay variables can be correlated as

y j = αi jyi + βi j (20)

To estimate the parameters αi j and βi j we use some basic properties of the variance and the
mean of a random variable Y:

• adding a constant β to Y does not affect the variance, i.e. Var(Y + β) = Var(Y), and
increases the expected value by that constant, i.e E(Y + β) = E(Y) + β;

• multiplying Y by a constant α increases the variance by the square of the constant,
i.e. Var(αY) = α2Var(Y), and multiplies the expected value by that constant, i.e.
E(αY) = αE(Y).

Consequently in our case we have

Var(y j) = α2
i jVar(yi) (21)

E(y j) = αi jE(yi) + βi j (22)

From (21) we obtain

αi j = ±

√
Var(y j)
Var(yi)

We consider Var(y j) , 0 since we neglect the case of a constant delay (otherwise we should
speak about ill-posedness of the timetable). Moreover we restrict the parameter αi j to be
positive in order to represent positive dependencies between delays, therefore

αi j =

√
Var(y j)
Var(yi)

Inserting the value of αi j in (22) we get:

βi j = E(y j) − αi jE(yi) = E(y j) −

√
Var(y j)
Var(yi)

E(yi) .

15



Recalling the definition of delay as xi − πi, we can rewrite (20) using the re-scheduled
timetable variable of [TM-2]

x j − π j ≤ αi j(xi − πi) + βi j (23)

where we prefer to introduce an inequality to better represent the stochastic nature of the
delays. As a result we can write the following Virtual Capacity Timetable Model [VCTM]:

min
∑
i∈E

xi

s.t. x j − xi ≥ La ∀a = (i, j) ∈ A
xi ≥ πi + di ∀i ∈ E

xi − πi ≤ Ti ∀i ∈ E

x j ≥ π j + αi j(xi − πi) + βi j ∀i, j ∈ E : a = (i, j) ∈ Avirtual

xi ∈ Z
+ ∀i ∈ E

In the next future we will implement like to solve this model with some appropriate classical
optimization techniques (as the CPM method) and compare the results.

8 Conclusion and future research

We presented the application of a graphical method to identify dependencies among train
delays. The algorithm completes its task in a relatively short time (e.g. for the numerical ex-
periment presented in Section 6 it needs less than 15 minutes) and it does not require detailed
knowledge about the tracks and platforms of the system. Comparisons of its performance
have been carried out against the Covariance Graph and the Full Conditional Independence
Graph. FGIC can be used only for small sets of data, because of the high probability to have
linear dependencies between columns of the covariance matrix. In all larger numerical ex-
periments the number of edges computed by the Tri-graph is significantly smaller than the
one obtained with the Covariance Graph. The ability to generate a manageable set of new
constraints by the Tri-graph method partially justifies the larger amount of calculations to
be performed compared to direct covariance evaluation. The outcome of several numerical
experiments shows that Tri-graph results can be expected to lie somewhere in between the
results of the other two classical graphic methods. However Tri-graph has the advantages
of being based on the covariance matrix (and not on its inverse precision matrix as FCIG)
and of being able to detect more complex relations than CG.
We currently work on implementing a solution algorithm for [VCTM] by classic optimiza-
tion techniques and on comparing the results with those of a plain analytical model.
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[6] Güttler S., Statistical Modeling of Railway Data, Diplom thesis at Georg-August-
Universität, Göttingen, 2006.
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