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Abstract

In the past, much research has been dedicated to compute optimum
railway timetables. A typical objective has been the minimization of
passenger waiting times. But only the planned nominal waiting times
have been addressed, whereas delays as they occur in daily operations
have been neglected. Delays have been rather treated mainly in an
online context and solved as a separate optimization problem, called
delay management.

We provide the first computational study which aims at computing
delay resistant periodic timetables. In particular we assess the delay
resistance of a timetable by evaluating it subject to several delay sce-
narios to which optimum delay management will be applied.

We arrive at computing delay resistant timetables by selecting a
new objective function which we design to be somehow in the middle

of the traditional simple timetabling objective and the sophisticated
delay management objective. This is a slight extension of the concept
of “Light Robustness” (LR) as it has been proposed by Fischetti and
Monaci (2006). Moreover, in our application we are able to provide
accurate interpretations for the ingredients of LR. We apply this new
technique to real-world data of a part of the German railway network
of Deutsche Bahn AG. Our computational results suggest that a sig-
nificant decrease of passenger delays can be obtained at a relatively
small price of robustness, i.e. by increasing the nominal travel times
of the passengers.

∗This work was partially supported by the Future and Emerging Technologies Unit of
EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL) and by
the DFG Research Center Matheon in Berlin.
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1 Introduction

1.1 Background

Timetabling is among the most important tasks for optimization in public
transport. Not surprisingly the construction of timetables is a well stud-
ied problem in the literature and has been treated under various objective
functions. Besides technical restrictions and optimization of costs, the main
focus lies on finding timetables which are optimal from the passengers’ point
of view. However, in most papers only the nominal travel times are con-
sidered while the possibility of delays and stochastic changes is neglected.
In reality delay is a considerable phenomenon in almost all public transport
systems. It plays a particular role for customers’ satisfaction.
There is of course a trivial way to come up with delay resistant timetables:
Simply add huge time supplements on each trip. However, it is obvious that
such a solution is unacceptable for passengers. The art of delay resistant
timetabling hence is to achieve a certain level of robustness by a minimum
increase in nominal travel times.
Recently, theoretical studies have been directed towards the problem of de-
signing delay resistant timetables ([14, 21]). Kroon et al. consider single
trains and non-periodic corridors in a sampling approach. In both papers
the construction of delay resistant timetables is considered as a matter of
most effectively placing a limited amount of slack time in the timetable. The
authors present optimization techniques aimed at minimizing the expected
delay for various topologies and network sizes. Although a variety of differ-
ent methods and settings is considered, all of this is done under the following
assumption: When the timetable is operated, the reaction towards delay will
follow a simple pattern, i.e. either always to wait for delayed trains or al-
ways not to wait for delayed trains. Obviously, more sophisticated schemes
are possible.
There exists some literature on how to deal with delays when they occur
and find a disposition timetable which is as convenient as possible for the
passengers under the given circumstances. This problem is called the de-
lay management problem and includes to decide which connections between
trains should be maintained and which not, see [30] and references therein.

1.2 Research objective

It would be desirable to optimize delay resistant timetables with respect to
an optimal delay management. But as the latter is already a hard problem
for a fixed plan and a fixed scenario of delays, a full integration of the two is
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out of computational reach. However, we can clarify the following question:
Given a real-world data set for which optimal delay management is possible
within practical computation time. How does a delay resistant timetable that
has been optimized while assuming a simplified delay management behave?
The question is whether such timetables keep their promise, namely that
disturbances do not affect the quality of service to the passengers too much
if good delay management strategies are finally applied.
Although this is a straightforward question, to the best of our knowledge, it
has not been treated in the literature before. In this paper we bridge this gap
between delay resistant timetabling and delay management. We consider a
real-world railway network. In a first step, we apply a new technique to op-
timize periodic timetables for different degrees of robustness. This is a slight
extension of the paradigm of “Light Robustness” as it has been proposed
by Fischetti and Monaci [6]. The resulting timetables are in a second step
confronted with different sets of disturbances. By solving the delay manage-
ment problem for each of these delay scenarios, we obtain optimal disposition
timetables from which we evaluate how much the passengers are affected by
the disturbances. We hence obtain a new empirical measure for the quality
of the original timetable.
This case study also allows to evaluate the power of optimal delay manage-
ment. We will also calculate the delay experienced by the passengers if the
same timetables and the same set of source-delays1 are managed by very
simple delay management policies.
In some sense we combine the expertise of state-of-the-art delay management
and topical delay resistant timetabling techniques in order to overcome the
shortcomings of both. On the one hand, the optimization of timetables
cannot take into account a complicated delay management, but it optimizes
with respect to all scenarios of delay. On the other hand, delay management
can only be repeated for a small set of scenarios—in fact a very small set in
relation to the set of all scenarios. It is, however, optimal for each of these.
It turns out that the effects of delays are less profound in the delay resistant
timetables that we construct in our study than in a conventional timetable.
In addition, it becomes clear that a good delay management provides even
better disposition timetables than obtained by the simplest delay manage-
ment policies. Finally, the delay resistant timetabling proves particularly
effective against short delays.

1Other authors refer to what we call here source-delay as primary delay.
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1.3 Related Work

The only comparable work we are aware of is due to Engelhardt-Funke and
Kolonko, see [5]. Unlike ours their approach is able to integrate the delay
management into the construction of the timetables by evolutionary algo-
rithms. However, their evaluation is not based on an optimal delay man-
agement and solely relies on a limited number of scenarios. Our approach
is not able to integrate timetabling and delay management, but solves both
steps exactly: We construct optimal timetables with respect to the expecta-
tion over all scenarios and evaluate them with an optimal delay management
policy for a limited number of scenarios.
Note that the objective function we use to optimize is similar to the one
introduced by PTV AG, Germany, in its planning software VISUM in order
to enrich their evaluation by some penalty for tight—and thus vulnerable—
transfers.

1.4 Outline

The remainder of the paper is structured as follows. In Section 2 we de-
fine our models for periodic timetabling, stochastic disturbances, and delay
management. We also describe in detail how event-activity networks can be
used to model the periodic event scheduling problem as well as the delay
management problem. Our integer programming approach to designing de-
lay resistant timetables, using these as input for defining delay management
problems, and solving these problems are developed in Section 3. In Sec-
tion 4 we describe the real-world data we used for our case study. Finally, we
present the results of the case study in Section 5 and give some suggestions
for further research.

2 Models

We consider two mathematical optimization problems: In our first step we
compute optimal periodic timetables with a (light) robustness against delays
incorporated to the objective function; in the second step we solve the delay
management problem, i.e. we determine a disposition timetable to react on
a given set of (small) disturbances. Since both problems are timetabling
problems, we start by recalling the concept of event-activity networks which
can be used to model both of our problems.
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2.1 Event-activity networks in timetabling

The basic graph model that we use is the Feasible Differential Problem (FDP),
see [26]. In an instance I = (D, ℓ, u) of FDP where D = (V,A) is a directed
graph and ℓ, u ∈ QA, a vector π ∈ QV is sought such that

ℓa ≤ πj − πi ≤ ua ∀a = (i, j) ∈ A. (1)

By shortest path (SP) techniques, feasibility of FDP can be easily checked:
model lower and upper bounds as anti-parallel arcs and assign to π SP dis-
tance labels.
The model can be illustrated in an event-activity network D = (V,A) in
which the nodes V are called events and correspond to arrivals Varr or depar-
tures Vdep of trains at stations. The vector π is called a timetable, the value
πi is the time instant at which the event i is scheduled.
The precedence constraints (1) are used to define the arcs (also called activi-
ties) of the network. Observe that the quantities πj − πi are time durations.
An activity a = (i, j) makes sure that event j is scheduled after event i, in
particular

πj ∈ [πi + ℓa, πi + ua].

We distinguish the following five different types of activities:

A = Adrive ∪ Astop ∪ Atransfer ∪ Aturn ∪ Ahead.

Adrive models the driving of a train between two consecutive stations and
Astop models the waiting of a train within a station to let passengers get on
or off. An arc a = (i, j) ∈ Atransfer makes sure that passengers can transfer
from a train arrival i to a train departure j. Similarly, the arcs in Aturn

connect different trips of the same train and hence ensure that the vehicle
schedules are respected.

A different concept is used for the arcs in Ahead. The arcs in Ahead model
the limited capacity of the track system. They come in pairs a = (i, j) and
a−1 = (j, i) usually linking two departure events i and j. It is required that
for each pair, exactly one of the two corresponding precedence constraints,
which only consist of a lower bound each, is respected. In more detail,
either πi ≥ πj + ℓa−1 , meaning that event j is scheduled before event i, or
πj ≥ πi + ℓa, where event j is scheduled after event i. The lower bounds ℓa−1

and ℓa model the headway that has to be respected between two consecutive
(departure) events.
Here, one could be tempted to assume that simply reorienting one of these
two antiparallel arcs, say a−1, enables us to turn such a pair of disjunctive

5



constraints into a standard FDP constraint, because formally this is nothing
but

ℓa ≤ πj − πi ≤ −ℓa−1 .

Rather, the problem is that under realistic assumptions such as ℓa > 0
and ℓa−1 > 0, this does obviously constitute some infeasible FDP constraint.
Hence, we have to relax exactly one constraint of the two arcs a and a−1 in
each pair of disjunctive headway constraints, hereby explaining the special
role of Ahead.
As an example, Figure 2 shows the (small) event-activity network corre-
sponding to the public transportation network of Figure 1.

A

BD

CE

g h

Figure 1: A part of a public transportation network with five stations and two

trains. After their departure in A both trains have to use the same track.

In a periodic timetable, trains are grouped into lines which are required to
be operated with some periodicity T . In the case of T = 120 minutes, this
means that if one train of some fixed line starts its trip at 10:05, then there
will be a train five minutes past every even hour. Throughout this paper, we
assume that all lines have the same period T .
We obtain subsets of non-periodic events ik that take place at time πik =
πi+kT for k ∈ Z. Such a set represents the departure (or arrival) of all trains
of the same line at a specific station and will in the following be represented
by one periodic event i. We can hence reduce the event-activity network
above to a periodic one,

D = (V ,A),

in which V consists of equivalence classes of events in V . For i ∈ V let us
denote by V (i) the set of non-periodic events belonging to a given periodic
event i.
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driving
driving

drivingdriving

of train g

of train g of train h

waiting of train h

of train h

waiting
of train g

from train h to g

from train g to h

headway constraints
disjunctive

g,D,arr

g,A,dep

g,A,arr h,A,dep

h,A,arr

g,E,dep

h,C,dep

h,B,arr

transfer

transfer

Figure 2: The event-activity network corresponding to Figure 1.

It is convenient to think of the equivalence classes i = {ik}k as periodic
events with πi as the periodic time assigned to i. As in such a periodic
system every action repeats after the period time T , one can assume w.l.o.g.
that πi ∈ [0, T ).
The decision problem that is widely used for periodic timetabling is the
Periodic Event Scheduling Problem (PESP), see [33]. In addition to the input
to an instance of FDP, a fixed constant period time T is specified. Notice
that in other models for periodic timetabling, such as the ones in [3, 13], the
number of variables contains this number T as a factor. In contrast, in any
of our computations we will use T only in its standard logarithmic encoding.
In T -PESP—or PESP for short—one looks for a vector π ∈ [0, T )V such that

∀a = (i, j) ∈ A ∃ka ∈ Z : ℓa ≤ πj − πi + T · ka ≤ ua. (2)

The decision problem whether a given network admits a feasible solution π
is NP-complete because it generalizes Vertex Colorability ([24]). As in the
non-periodic case, we also partition the set A of periodic constraints into five
subsets

A = A drive ∪ A stop ∪ A transfer ∪ A turn ∪ A head.

Observe that in the periodic case, the headway constraints A head do not play
any special role because we may simply define ua := T − ℓa, where ℓa is the
minimum headway time.
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The PESP is the building block of many studies on periodic railway time-
tabling ([28, 23, 22, 15, 16]). In particular, the first mathematically optimized
timetable that has been used in daily operation has been computed based on
the PESP ([17]).

Since most public transportation companies in Europe operate their networks
subject to periodic timetables, we compute periodic timetables as the regular
service timetables in our case study. In contrast, the goal of any disposition
timetable is to react on the specific disturbances that occur during each indi-
vidual day of operation by tailored decisions. Hence, disposition timetables
always have to be non-periodic.
If the time duration that a timetable π defines for an activity a exceeds its
lower bound ℓa, we speak of slack. Its amount is given by

(πj − πi) − ℓa ≥ 0 or (πj − πi + T · ka) − ℓa ≥ 0

in the non-periodic or in the periodic case, respectively. In the pure feasibility
problems FDP and PESP, the quality of a timetable can be ensured by
defining relatively strict upper bounds ua − ℓa ≪ T on the slack, e.g. for the
most important transfer activities.
The most important goal for deterministic timetable optimization is to mini-
mize the total passengers’ transfer times in the network. To this end, we must
be given the number of passengers wa for each transfer activity a ∈ Atransfer

or a ∈ A transfer, respectively. Given this weight we have to minimize the
linear objective function of the weighted sum of slack. A linear objective
function can also be used to minimize other types of cost in a timetable, see
([18]) for details. If a linear objective function is added to an instance of
PESP, we speak of an optimization instance of PESP.

2.2 The Source of Delay

We assume the driving time of each train to vary according to a known
probability distribution. The lower bounds for arcs a belonging to A drive or
Adrive, corresponding to a single (periodic) train ride, are random variables
ℓa : R → Q+ where R is the set of all scenarios.
In case this random variable ℓa exceeds a certain, ‘usual’ travel time for arc
a, we speak of a source delay. We distinguish between source delays, i.e. the
seminal prolongation of a trains’ driving time, and delays2 which result from
source delays. A source delay may cause several delays at different stations,
even for trains that have not themselves been subject to a source delay,

2Sometimes, such delays are referred to alternatively as secondary delays, or even knock-

on delays.
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e.g. through headway requirements. In a different situation, for example a
schedule including a large amount of slack time, a source delay may result in
no delayed event at all.
In periodic timetabling one has to consider both periodic source delays, e.g.
a construction site slowing down all train trips affecting a certain driving
activity in every period, and aperiodic source delays, e.g. a jammed door
delaying a single train trip realizing this driving activity only in a single
period.
In our model, periodic and aperiodic source delays can be incorporated by
the same method, by redistributing the probability mass of an aperiodic
source delay over all periods. Moreover, it suffices for our model to specify
the boundary distributions for the (periodic and aperiodic) source delays
on each driving arc instead of the joint distribution for all driving arcs, cf.
Section 3.2.

2.3 The Delay Management problem

Delay management deals with (small) source delays of a railway system as
they occur in the daily operational business of any public transportation
company. The question is to decide if trains should wait for delayed feeder
trains or if they better should depart on time (wait-depart decisions). From
these decisions one obtains a disposition timetable which has to respect op-
erational constraints, in particular the limited capacity of the track system.
The difficulty of delay management comes with the following evident goal:
make the disposition timetable as convenient as possible for the passengers.

If the transfer activities and the headway activities are neglected, the problem
is easy and can be solved efficiently by the critical path method (CPM). If
either the transfer activities or the headway activities are taken into account,
the problem becomes NP-hard even in very simple networks and basic delay
scenarios, see [8, 7, 2]. Neglecting only the headway activities, we obtain the
(pure) delay management problem. An integer programming model is given
in [29, 30]. These publications include an investigation of the special structure
of the underlying event-activity networks. The model will be described in
Section 3.4. The general integer programming model has been further refined
in [11].
A first online-approach is provided in [9]. A bicriteria model for delay man-
agement in the context of max-plus-algebra has been presented in [25], a for-
mulation as discrete time-cost tradeoff problem is given in [10]. How to react
in case of delays has also been tackled by simulation and expert systems. We
refer to [35, 36, 34, 37] for providing knowledge-based expert systems includ-
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ing a simulation of wait-depart decisions with a what-if analysis. Real-world
applications have been studied e.g. within the project DisKon supported by
Deutsche Bahn (see [1]).

3 Integer programs

In this section we first explain the integer programming approach to the
deterministic PESP. After that we give a detailed description how we incor-
porate stochasticity and a simplified delay management into this approach.
This incorporation process has to find a balance between accurate modeling
and the necessary feature not to increase the size of the PESP-IP in order to
be able to construct plans on the real-world level.
The last two parts of this section deal with the techniques used when the
periodic timetable is fixed. First we explain how the periodic timetable is
rolled-out into a non-periodic plan based on which an instance of the de-
lay management problem is created. Each such instance entails a concrete
scenario of source delays. Finally we introduce one additional integer pro-
gramming approach. This time it solves the delay management problem.

3.1 Computing Optimum Periodic Timetables

The most straightforward way to compute an optimum solution for an op-
timization instance of PESP is to solve the following mixed-integer linear
program

(PESP-IP-π) min f(π, p) =
∑

a=(i,j)∈A

w̃a · (πj − πi + T · ka − ℓa)

such that

πj − πi + T · ka ≤ ua for all a = (i, j) ∈ A (3)

πj − πi + T · ka ≥ ℓa for all a = (i, j) ∈ A (4)

πi ≥ 0 for all i ∈ V (5)

πi < T for all i ∈ V (6)

ka ∈ Z for all a ∈ A. (7)

The constraints (3), (4), and (7) constitute a rephrasing of (2), and the
constraints (5) and (6) scale the time vector π to the basic interval [0, T ).
Observe that (π, k) = (0, 1

T
· ℓ) is a trivial optimum solution of the LP re-

laxation of PESP-IP-π. Thus the linear relaxation of the PESP is of little
use.
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Although not pushing the LP optimum value beyond zero, an IP formulation
which is equivalent to PESP-IP-π turns out to be much better suited for
practical computations ([20]), e.g. using CPLEX. Instead of encoding the
time information in a vector π which we define over the events, Nachtigall
proposed to switch to time variables for the activities ([23]), xa = πj − πi +
T · ka, for a = (i, j) ∈ A. In the context of electrical engineering, these new
variables x are called the (periodic) tension induced by some node potential π.
We refer to the resulting IP formulation as PESP-IP-x-z [16, 19].
One can improve PESP-IP-x-z by adding further valid inequalities. Such
have been proposed by Odijk ([24]) and Nachtigall ([23]), and we use them
throughout any of our PESP optimization runs.

3.2 Adding Delay-Resistance

The goal is to construct a periodic timetable minimizing a two-fold objective
function. The first part is the nominal objective, i.e. the sum of weighted
transfer times. The second part is the expected delay. The expected delay
depends on the delay management and is an expected value with respect to
the given joint distribution of the source delays. As this is too ambitious, we
replace the second part by a simplified objective. A posteriori we compare the
behavior of this simplified objective with the delay under a non-simplified,
optimal delay management on a set of sampled scenarios. The simplifying
assumptions for our periodic planning of the regular service are the following:

1. We assume a strict no-wait policy for delay management.

2. The published driving times are fixed parameters (not optimization
variables).

3. We count the delay of passengers that miss a connection, but not the
delay of the last train of a passenger’s trip.

4. We approximate the resulting objective function by a convex, piecewise-
linear function.

Strict No-Wait. We assume a strict no-wait policy: For the assumed
disposition timetable every constraint can be broken in order to ensure that
every departure event takes place as scheduled. Thus, under a strict no-
wait policy source delays can only affect those train rides on which they
occur. This approach is motivated by the (non-strict) no-wait policy for
delay management, i.e. a delay management in which every train departs
as early as possible (although not ahead of schedule). This feasible no-wait
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policy only breaks constraints Atransfer. Breaking a transfer is possible at a
certain cost: The passengers can transfer to a later train, or receive a certain
compensation. In contrast, the strict no-wait policy cannot be implemented
in practice, because it also breaks the following practically indispensable
constraints:

• The headway activities Ahead model infrastructure requirements, e.g.
that two trains using the same track must use it with a certain time
difference.

• A train’s trip consists of several driving and waiting arcs Adrive and Astop,
respectively. Precedence constraints among those activities are of course
indispensable.

• One physical train usually covers more than one trip. However, it
cannot start the second trip before it has finished the first one. This
is modeled by the turnaround activities Aturn, together with a linear
objective function.

Clearly, constraints expressing such conditions cannot be dropped in real-
ity. At some arcs an all-wait policy and therefore a propagation of occa-
sional delay is a matter of fact. Hence, adopting the strict no-wait policy,
we underestimate the effects of source delays as we exclude delay propaga-
tion. More precisely, compare the strict no-wait policy SN to the (non-strict
and thus practical) no-wait policy PN . The expected passengers’ delays
(E[D(·)]) of these policies fulfill E[D(SN )] ≤ E[D(PN )]. On the other
hand, for an optimal delay management OM as used in the evaluation, we
have E[D(OM)] ≤ E[D(PN )] because it is of course an option for the op-
timal policy OM to emulate the policy PN . Whether the strict no-wait
policy performs better than the optimal delay management because it unre-
alistically neglects necessary delay propagation or whether these effects are
weaker than what an optimal delay management can win against a no-wait
policy is not clear a priori.
Note that in some railway networks, the feasible no-wait policy is the only
response that practitioners seem to have to the ‘repair game’ [4]:

The management of the region south-west (of Deutsche Bahn AG)
decided to apply a (non-strict) no-wait policy from March 24 on.
Die Regionalleitung (Südwest) hat beschlossen, dass wir bereits ab 24. März

die Wartezeitvorschrift auf ,Keine Wartezeit’ abändern.

(Udo Wagner, Vorsitzender der Regionalleitung DB Regio Südwest,

in BahnZeit Mai 2004, employee newsletter of Deutsche Bahn AG)
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Fixed Driving Times. In principle, our approach allows for the departure
times and the arrival times to be at the disposal of the optimizer as it has
also been done in [14]. However, in this study we refrain from using this
optimization potential in setting the arrival of a train ride independent from
its departure. We assume fixed driving times for the regular service timetable.
Thus the published arrival time of a trip will be determined by its published
departure time.
For performance reasons, when constructing the delay resistant timetables,
we fix the nominal driving time of each train (in accordance with Leaflet 451-1
of UIC (Union Internationale de Chemins de Fer)) to 107% of the technically
minimal driving time. When we construct a disposition timetable with opti-
mal delay management in the testing, we allow trains to use 76.4% of these
driving time supplements in order to catch up with delay. For example, if
under ideal conditions the technically minimum driving time is 100 min, in
the regular service schedule we plan a driving time of 107 min. In the dispo-
sition timetable, a driving time of 0.95 · 107 = 101.65 min can be planned to
catch up at most 5 min 21 sec of delay, i.e. 76.4% of the added supplement
which was 7 min.

Explanatory Graph Expansion. Assuming a discrete scenario set, the
delay resistant timetabling problem with strict no-wait policy can be ex-
pressed as a PESP graph with size only by a constant factor larger than
the deterministic problems’ PESP graph. This graph is attained by a local
scenario expansion as shown in Figure 3.
In the deterministic model, a pair of departure events of train rides between
which passengers transfer is linked by a path of length 2. The middle node
represents the arrival of the first train at the station from which the second
train departs. In the local scenario expansion, this pair of departure events
is linked by a set of parallel paths of length 2. Each of the paths represents
a scenario.
In each scenario the first arc has a different but fixed length, namely the
scenario’s driving time on that track. The optimization process determines
the time difference between the departure events of the two trains. Thereby,
the lengths of the second arcs, i.e. the transfer times in the different scenarios,
are set simultaneously for all scenarios.
In the new objective function the total weight of the deterministic transfer
arc in the deterministic objective function is distributed to the transfer arcs
of the scenarios relative to probabilities of the scenarios.
The optimization will seek to keep the transfer times short. In an aperiodic
model, feasibility would imply that the schedule is dictated by the longest
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Figure 3: Expansion of a driving and waiting activity to k different scenarios.

driving time. In the PESP model, this is not the case. A path representing a
scenario with low probability but long driving time might be quasi neglected
in order to obtain a schedule that gives short connections for the likely sce-
narios. This negligence does not make the plan infeasible. The inequalities of
transfer arcs of long but unlikely scenarios are nevertheless fulfilled modulo
the period time T . In practice this means that those passengers connect to
the train of the next period. The waiting time for this is expressed correctly
by the PESP on the expanded network graph. The path of a neglected sce-
nario incurs a high cost which is weighted with probability of the scenario in
the objective function.
In periodic timetabling, surprisingly a strict no-wait policy turns out to be
adequate for transfer arcs. Here, the connections are not broken but only
established with a later period for which the expected waiting time can be
expressed correctly by a PESP graph only a constant bigger in size than the
deterministic problems’ PESP graph. This technique which we exemplified
for the transfer arcs can also be applied to other arcs expressing breakable
constraints that enter the objective function.

Stochastic Dependency. Because of the strict no-wait policy, the effects
of uncertainty remain local. Therefore it suffices to know the boundary dis-
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tributions for each arc’s driving time. Knowing the joint distribution of the
driving times is not necessary. By the same argument, it is immaterial in
this setting whether a source delay is periodic or aperiodic.
This holds for fixed passenger weights on transfer arcs which is the model
we use here and for which test data is available to us. Alternatively, one
can replace the fixed passenger weights by passenger paths. In the latter
case, a passenger travels along the (aperiodic) realizations of a fixed path
of (periodic) arcs. The passengers start their itinerary distributed equally
over all periods. They transfer to the earliest realization of the connecting
driving arc which is reachable. Thereby, a periodic driving arc does not have
a passenger weight fixed for all periods but only a fixed average passenger
weight over all periods. The realization of a driving arc in a period in which
additional passengers from a delayed transfer use that driving activity can
have more passengers than that driving arc has on average. This model is
also covered by our cost model as long as the probability of missing any
connection a is independent of that for missing any other connection b. This
assumption seems quite natural in practice.

Punishing Delay. The weighted sum of transfer times in the expanded
PESP graph is an exact measure for the expected travel time of all passengers.
A more detailed description of this objective function, the graph expansion
and its non-discretized version can be found in [21].
However, the expected travel time does not reflect how much a passenger’s
travel time deviates from what passengers planned. In general a minute of
expected delay weighs heavier than a minute prolongation of nominal travel
time. Therefore, we use a refined objective function which punishes delays,
i.e. the deviation of the actual travel time from the travel time published in
the timetable.
To this end we define a delay-weighting factor s and introduce a reference
to the nominal schedule in the objective function. The contribution cb of a
transfer arc b = (j, h) in the deterministic PESP graph to the objective for
a timetable π is then defined as

cb(π) := wb

(

[πh − ℓb − (πi + ta)] mod T

−s T
∑

r

pa(r)

⌊

[πh − ℓb − (πi + ta)] mod T − (ℓr
a − ta)

T

⌋)

.

Here, we use ta for the nominal driving time on arc a = (i, j) leading to the
transfer b = (j, h). The minimum transfer time for b is given by the lower
bound ℓb. Finally, in scenario r which occurs with (marginal) probability
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pa(r), the minimum driving time is ℓr
a, i.e. the difference (ℓr

a − ta) gives
the prolongation of the driving time in scenario r. The rounded down term
becomes negative when the prolongation in the scenario exceeds the planned
buffer. A delay punishment of wb ·pa(r) ·s ·T is then incurred in the objective
function. Note that operating a periodic timetable, the total delay for a
passenger who missed a connection always equals a full period time T , no
matter how much of this extra time is spent in the delayed feeder train or
waiting for the connection.
If the prolongation is less than the planned buffer, it causes no punishment.
In practice the passengers experience a prolongated driving time and a re-
duced transfer time, but eventually reach their planned connection. Note
that the above definition gives a correct model only for disturbances that are
small with respect to T .

ℓb + Tℓb ℓb + 15 ℓb + 40
πh − πj in min

T
cost

Figure 4: The nominal cost (dotted), the delay punishment (dashed), and
the total cost function (solid) of a transfer arc b.

The function cb need not be convex in the planned transfer time πh − πj

on arc b. However, according to practitioners, real-world distributions give
almost convex functions. Given that cb is convex, we perform a further ap-
proximation by piecewise-linearizing the function. Such objective functions
can easily be integrated in the mixed integer program with a small increase
in size compared to the original, deterministic PESP problem. In particular,
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this can be done without introducing new integer variables. The technique
is described in detail for a similar setting in [21].
Hence, we split our function cb into two intervals with negative slope and
one interval with slope equal to wb. The latter is the time interval when in
all scenarios all trains that instantiate the driving arc a = (i, j) of the feeder
train have reached the transfer station.
In the study we consider three different distributions for the driving times,
see Figure 7 in Section 4. For the delay-weighting factor s we use three
different values, 1.5, 2, and 5. Optimizing with a delay weighting factor
2 means that one minute of expected delay causes the same cost as two
minutes of prolongation in the planned travel time. Figure 4 shows the costs
depending on the planned transfer time for an arc with unit passenger weight
and minimum transfer time, distribution C (cf. Figure 7) and delay weighting
factor 2.

Light Robustness. By the objective function we have chosen, our ap-
proach is an exact stochastic programming model for the delay due to missed
connections under a strict no-wait policy—granted the convex, piecewise-
linear approximation.
The strict no-wait policy provides for the crucial simplification. We will em-
pirically show that this simplification still allows us to capture the behavior
of an optimal delay management with sufficient accuracy.
The approach can also be understood as an extension to the concept of Light
Robustness [6]. Light Robustness searches among all almost nominally op-
timal solutions for those which leave the most local slack in the constraints.
The key problem of Light Robustness is to find a function of the slack vari-
ables of the constraint system that favors solutions with well distributed slack
instead of those with high slack in a few constraints. Our objective defines
such a function in a natural way, namely by counting the expected number
of missed connections.

3.3 Creating an Instance of the Delay Management
Problem

Using the methods of Sections 3.1 and 3.2, we obtain a periodic timetable π
that assigns a periodic time πi to each event i ∈ V . For the delay management
problem, we need a representation of the network with a granulation such
that we can distinguish between two physical trains which operate on the
same line. This means we have to roll out the periodic event-activity network.
To this end, we additionally need
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• the (aperiodic) times πfirst(i) and πlast(i) of the first and last occurrence
of each periodic event i ∈ V , and

• lower and upper bounds ℓa ≤ ua for all a ∈ A.

Note that for each activity a = (i, j) ∈ A drive ∪ A stop ∪ A turn ∪ A transfer, we
know that

ua − ℓa < T. (8)

For the computation of πfirst(i) and πlast(i), we need to fix a time inter-
val [tmin, tmax] with length H that describes our observation period. Then,
for each i ∈ V , we set

πfirst(i) = min {πi + kT : πi + kT ≥ tmin, k ∈ Z}

πlast(i) = max {πi + kT : πi + kT ≤ tmax, k ∈ Z}.

Our goal is to expand the periodic network D = (V ,A) into a non-periodic
network D = (V,A), cf. Section 2.1. As input for the delay management
problem, we need the scheduled time π(ik) for all ik ∈ V and the lower
bounds ℓa for all non-periodic activities a ∈ A. Since in the case of delays,
all drive and turnaround activities a are performed faster (or at the same
speed) than in the original timetable π, the upper bounds ua used in the
planning phase in the constraints πj −πi ≤ ua are of no importance for these
activities. For stop activities, however, we may voluntarily override certain
upper bounds in order to ensure particularly sensitive transfers.

To obtain V,A, π(i) for all i ∈ V and ℓa for all a ∈ A, we proceed as follows:

• for each periodic event i ∈ V and for each k with 1 ≤ k ≤ 1 +
⌊

πlast(i)−πfirst(i)
T

⌋

, we create a new non-periodic event ik with time π(ik) =

πfirst(i) + kT

• for each periodic activity a = (i, j) ∈ A

– if a = (i, j) ∈ A stop ∪ A drive ∪ A transfer ∪ A turn then do:

for each non-periodic event is ∈ V (i) look for a non-periodic event
jt ∈ V (j) satisfying π(jt) ∈ [π(is)+ℓa, π(is)+ua]. If such an event
jt exists, it is unique due to (8) and we create a unique new non-
periodic activity ast = (is, jt) with ℓast

= ℓa (if a ∈ A drive, we set
ℓast

= 0.95 · ℓa to allow to catch up delays, see page 13).

– if a = (i, j) ∈ A head then do:

for each non-periodic event is ∈ V (i) and for each non-periodic
event it ∈ V (j) create two new non-periodic disjunctive activities
ast = (is, it) and ats = (it, is), define ℓast

= ℓa and ℓats
= T − ua.
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The formulas for the lower bounds on the headway activities in the rolled-out
network are based on the following: Consider a periodic headway activity
a = (i, j) ∈ A head, linking two periodic events i, j ∈ V . Let w.l.o.g. the
periodic time πi of event i be smaller than πj. Rolling out these two events
means that we first obtain an element of V (i), then an element of V (j), both
in the first period. The latter is followed by the next element of V (i) in the
second period and so on, i.e. we obtain a sequence

πi ≤ πj ≤ πi + T ≤ πj + T ≤ πi + 2T ≤ . . .

of occurrences of events i and j. Let is ∈ V (i) and it ∈ V (j). If both events
take place within the same period, we obtain π(it) − π(is) = πj − πi ≥ ℓa

to ensure the headway distance. If, however, π(is) = πi + T > πj = π(it),
we have π(it) − π(is) = πj − πi − T . Adding T to both sides yields π(it) −
π(is) + T = πj − πi ≤ ua, i.e. π(is) − π(it) ≥ T − ua.

3.4 Solving the Delay Management Problem

In case of disturbances, the disposition timetable π as constructed in Sec-
tion 3.3 has to be updated to a disposition timetable π̃. To evaluate the
performance of the planned timetable under delays, we construct a set of
delay scenarios as follows. Each scenario is defined by a set of source de-
lays. These are modeled as a set of activities with a positive delay da > 0
indicating the additional length of the activity which can be periodic or non-
periodic, see Section 2.2. For non-delayed activities, we set da = 0. The
model also allows source delays on events which model for example a train
driver appearing too late to his shift or a track that is occupied until a fixed
point of time. However, we do not use such source delays on events in this
case study.

Apart from the source delays da, we need the data generated in Section 3.3 as
input for the delay management problem, i.e. the expanded network together
with the lower bounds ℓa, the common period T of all events and the number
of passengers wa planning to use connection a ∈ Atransfer. Additionally, we
include parameters wi that represent the number of the passengers for which
event i ∈ V is their final destination.

Integer programming formulation. To model the delay management
problem, we need the following three types of variables: First, for all events
i ∈ V , we need

π̃i = actual time of aperiodic event i in the disposition schedule.
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Note that the delay of event i is hence given by π̃i − πi and that we have
to require that π̃i ≥ πi holds: Otherwise, for departure events, a passenger
who arrives on time may miss his train, and for arrival events, we cannot
guarantee that the station already has sufficient platform capacity for the
arriving train. For each transfer activity a ∈ Atransfer, we introduce

za =

{

0 if transfer activity a is maintained
1 otherwise,

and for a = (i, j) ∈ Ahead, we use

ga =

{

0 if i starts before j
1 otherwise.

The following is an integer programming formulation of the delay manage-
ment problem (see [31, 27]).

(DM) min f(π̃, z) =
∑

i∈V

wi(π̃i − πi) +
∑

a∈Atransfer

waTza

such that

π̃i ≥ πi for all i ∈ V (9)

π̃j − π̃i ≥ ℓa + da for all a = (i, j) ∈ Astop ∪ Adrive ∪ Aturn(10)

Mza + π̃j − π̃i ≥ ℓa for all a = (i, j) ∈ Atransfer (11)

Mga + π̃j − π̃i ≥ ℓa for all a = (i, j) ∈ Ahead (12)

ga + ga−1 = 1 for all a, a−1 ∈ Ahead (13)

π̃i ∈ N for all i ∈ V

za ∈ {0, 1} for all a ∈ Atransfer

ga ∈ {0, 1} for all a ∈ Ahead.

Note that wi are positive weights that represent the importance of event i.
The first constraint (9) makes sure that no train departs earlier than sched-
uled, while (10) ensures that the delay is carried over correctly from one event
to the next. Constraints (10) additionally take the source delays da into ac-
count. In particular, if event i takes place at some time point π̃i, event j must
be later than π̃i + ℓa where a = (i, j) is the activity linking i and j. If za = 0,
constraint (11) ensures that the delay is carried over for this connection, i.e.
this connection is maintained. For za = 1, however, constraint (11) becomes
redundant whenever M is large enough (for the size of M , see [27]). For our
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Figure 5: Graphical interpretation of the capacity constraints

computations, we used M = H + 2T which was large enough. Constraints
(9) to (11) describe the pure delay management problem. However, to get
realistic results we need to consider also restrictions of the type Ahead as done
in (12) and (13). These constraints can be equivalently reformulated to

(12) and (13) ⇐⇒ either π̃j − π̃i ≥ ℓa or π̃i − π̃j ≥ ℓa−1 .

Hence, (12) and (13) require for all (i, j) ∈ Ahead that either π̃i ≥ ℓa−1 + π̃j

or π̃j ≥ ℓa + π̃i. Figure 5 shows the graphical interpretation of the headway
constraints: While the solid activities are already fixed, the goal is to choose
exactly one of each pair of dashed edges. This fixes the order of the events
and at the same time ensures the safety distances, given as lower bounds ℓa

on the edges a = (i, j). Recall that a feasible disposition timetable exists if
and only if the activities representing the precedence constraints are cycle-
free. Hence, one has to choose one edge from each pair of dotted edges in
such a way that the resulting network does not contain any directed cycle.

Objective function. The above formulation minimizes a combination of
weighted dropped connections and weighted train delays. The weight of a
dropped connection a ∈ Atransfer is set to the time period T since this is the
delay a passenger will suffer when missing a train. Although the formulation
does not minimize the sum of additional delays over all passengers in general,
it does so in a large class of delay management problems, namely whenever
the never-meet property is satisfied. The never-meet property is fulfilled if
in no feasible time-minimal solution of the delay management problem, the
paths of two delayed customers will meet and if source delays only occur after
non-delayed events (for a formal definition and its satisfaction in practice,
see [32, 27]).
In our case, the objective used in (DM) is an approximation of the sum of all
passengers’ delays. It can also be seen as a weighted scalarization of the two
objectives minimize (weighted) number of dropped connections and minimize
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number of (weighted) train delays in minutes which are defined in bicriteria
delay management problems [10, 12].

Solution approach. In our case study, we were fortunately able to solve
the problem optimally by Xpress-Mosel 1.6.3 (2006b) within less than one
hour of computation time. We are aware of the fact that these good results
are achieved because we limited our calculations to an observation period of
some hours and since within the region that we investigate, there are only
few conflicts with the never-meet property in most of our delay scenarios.
Otherwise, heuristics may be used, see [27].

4 The Data of the Case Study

We apply our approach to the Harz Region of the Lower Saxony (Nieder-
sachsen) part of the German Railway network, see Figure 6.
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Lehrte Gifhorn

Wolfsburg

Helm-
stedt

Braunschweig
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Wolfen-
büttel

Bad HarzburgGoslar
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Elze
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Göttingen
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fixed long-distance line

regional lineBad Sachsa
omitted line

Figure 6: The railway lines in the Harz region of the Lower Saxony part of the
German railway network.
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In our case study, we consider the entire set of passenger railway lines that
are operated within this region. Only this way we may expect to obtain
significant results. Otherwise delay propagation which is caused by limited
capacity of the infrastructure would not be an issue. The only relaxation that
we introduce is that we assume all the lines to be operated with a period
time of T = 120 minutes. In reality, there are a few lines which are operated
hourly.
In the step of computing the periodic regular service timetable, we assume
the timetables of the long-distance lines to be fixed to a case that was kindly
provided to us by Deutsche Bahn AG. Thereby we ensure that the optimized
timetables that we are about to compute for the regional service lines can be
embedded into a realistic case for Germany as a whole.

In total, our case features 30 pairs of directed railway lines, including 9 pairs
of long-distance lines with fixed timetables. For most of the tracks, the min-
imum headway that any timetable has to respect is 3 minutes. Furthermore,
for more than 30 single track segments, we will ensure safe operations. Inter-
estingly, the long-distance ICE line Berlin–Wolfsburg–Göttingen–Frankfurt–
Basel/München has three of these single tracks along its route, and there
are further regional service lines that operate on the very same single tracks.
Among the timetables that respect all these infrastructural requirements, we
mainly head for short transfer times—both nominal and during operations—
along the 182 most important transfers within the region. More precisely,
we have assigned weights w̃ to the corresponding transfer activities A transfer.
The weights represent the number of passengers who use the transfers and
were estimated by Deutsche Bahn AG using their traffic assignment model.

In addition, note that when computing the periodic regular service timetable
we keep the driving times of the trains unchanged for performance reasons.
In particular, these include the time supplements as they are suggested by
the UIC, cf. Section 3.2. Yet, for 26 stop activities a ∈ A stop, we allow
their minimum dwell time ℓa to be extended by a few minutes. This enables
better synchronization at single tracks and at transfers. Moreover, we have
to pursue two further important goals. First, where two lines with T =
120 minutes share the same tracks over a long distance, we require a balanced
hourly service, e.g. between Braunschweig and Seesen. Second, in order to
compute realistic timetables, we must not neglect operating costs, i.e. the
number of trains that are required to operate the timetable, see [18, 16] for
any details.

Graph data. In Table 1 we report the size of the resulting periodic net-
work D = (V ,A). Note that for the purpose of periodic timetabling, many
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Table 1: The sizes of the networks D = (V ,A), its contracted version, and
the non-periodic network D = (V,A)

quantity D contracted version of D D
|V | or V 4721 65 ≈ 15000
|A| or A 5469 517 ≈ 26500
|A transfer| or Atransfer 182 – ≈ 500
|A head| or Ahead 454 – ≈ 11000

redundancies can be removed from this network. Hence, we also provide the
corresponding values for the network that we obtain after having contracted
many of the arcs, see [16] for details. Unfortunately, in the contracted net-
work the information becomes highly aggregated and thus is no more suited
to immediately derive the non-periodic network for the delay management
problem. Therefore we roll out the non-periodic network D = (V,A) as
three copies of the uncontracted periodic network D = (V ,A) (as described
in Section 3.3) and give its size in Table 1.
In the integer programming formulation (DM) of the delay management prob-
lem, we need to assign weights to all events i ∈ V and to all activities
a ∈ Atransfer. As the only information we have on the number of passengers
are the weights w̃a of the transfer activities a ∈ Atransfer derived from the
periodic timetable, we set wi = 1 for all i ∈ V . In order not to overestimate
the importance of missed connections (compared to delayed arrival events),
we set wa = w̃a

w
for all a ∈ Atransfer where w denotes the arithmetic mean of

the weights w̃a of all transfer activities.

Delay Distributions. For delay resistant timetabling we consider three
distributions of source delays, described in Table 2 and shown in Figure 7.
Here, Pontime denotes the probability that a train for a certain driving arc
needs at most 107% of the corresponding minimal driving time. According
to the UIC rule, 107% can be understood as the uniform supplement used
so far. The time tmax is the maximum time in minutes a train exceeds this
107% driving time. Finally, z is some smaller time such that with probability
P (≤ z) the trains take at most z minutes longer than 107% of their minimal
driving time. The table gives the values for type A, B, and C distributions.
Together with the delay-weighting factors s this specifies the settings under
which the ten timetables are optimized. DEF is the ID of the nominal or
default plan that takes no delay into account.
In the figure the dashed line represents the type C distributions, the straight
line type A. Type C is stochastically greater than A, and B is incomparable
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to both. It represents settings with many but small source delays. In type
A and C we assume 80% of the trains to run on time (in the sense that their
trip takes at most 107% of the minimal technical driving time). For type B
this probability is lowered to 75%.

ℓb + 40

0.5

type A

type B

type C

P

xb in min.

0.2

ℓb + 20ℓb + 15ℓb + 5

Figure 7: The three boundary distributions for the probability to miss a connec-
tion scheduled with tension xb on transfer arc b.

To be able to solve the delay management problem optimally, we need to
limit our calculations to an observation period H of some hours. Thus we
consider all trains which arrive at or depart from one of five central stations
within an interval of six hours. These five stations are chosen in such a way
that all lines contain at least one of these stations – we cover the line paths
with vertices. We then reduce the non-periodic network (V,A) that has been
obtained by applying the method described in Section 3.3 as follows: First,
we delete all events which do not belong to a trip arriving at or departing
from one of the five central stations within the observation period. Then we
delete all “dangling” activities, i.e. all activities which start or end with a
deleted event.
The delays we use to compare different timetables are generated as follows:
For each rolled-out period, we choose 24 different driving or stopping activ-
ities at random. Among these, 12 are delayed by a randomly chosen time
between 60 and 300 seconds, while the other 12 activities are delayed by
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Table 2: Distributions and delay weighting factors.
Id Pontime z P (≤ z) tmax s

DEF 1 – – – 0
A1.5 0.8 5 0.9 20 1.5
B1.5 0.75 5 0.9 15 1.5
C1.5 0.8 15 0.95 40 1.5

A2 0.8 5 0.9 20 2
B2 0.75 5 0.9 15 2
C2 0.8 15 0.95 40 2
A5 0.8 5 0.9 20 5
B5 0.75 5 0.9 15 5
C5 0.8 15 0.95 40 5

between 360 and 1200 seconds (also randomly chosen). Hence we have a
total of 72 source delayed activities during our 6-hours time slot, the sum
of all delays lies between 15120 and 54000 seconds. This choice corresponds
to an average scenario for a distribution fulfilling the boundary distributions
specified as distribution type A.

5 Results

We constructed delay resistant periodic timetables for three different distri-
butions and three different delay-weighting factors s for the Harz subnetwork
of Deutsche Bahn AG. We also computed a nominally optimal timetable.
Then for each of these ten plans we computed optimal disposition timetables
under 68 random delay scenarios. The methods we applied in both steps
proved to be capable of solving both the delay resistant timetabling and the
delay management problem on the real-world level. The optimization of the
timetables has been obtained by solving PESP-IP-x-z, with refined objective
function, by CPLEX 10.1 on a 3 GHz PC.
Each timetable has been optimized with respect to a different objective func-
tion, resulting from their underlying distribution and the weighting factor.
For a better comparison we also calculated the value that each timetable at-
tains under the nine objective functions of the other plans. For a timetable
ID let CID denote the function with respect to which ID has been optimized.
Thus CDEF is the nominal cost, and any other cost function CID can be writ-
ten as CID = CDEF + C ′

ID where C ′

ID is the expected delay cost incurred by
the distribution and the weighting factor of ID—in other words, the delay
penalty.
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For each plan ID we calculate the Price of Robustness

PoR(ID) := CDEF(ID)/CDEF(DEF)

which is the nominal cost of the plan ID in relation to the minimal nominal
cost of any plan. This serves as a measure for how much nominal passenger
traveling time is spent to achieve delay resistance in the sense of ID’s delay
penalty.
Like the PoR is a measure of how much is sacrificed, the Ratio of Delay
measures the gain. It is defined by

RoD(ID) = C ′

ID(DEF)/C ′

ID(ID) .

It measures for a given setting how much delay penalty the nominal plan
incurs in comparison to a plan optimized to that setting of distribution and
weighting factor.

Table 3: Results and performance of the optimization for our regular timeta-
bles.

ID PoR RoD Delay Penalty CPU Time miss miss
*100 *100 C ′

1.5C in sec. opt no-w pol

DEF 100 100 100 4802 100 100 (218)
15A 101 132 85 4843 84 80 (174)
15B 102 162 80 9094 79 79 (171)
15C 101 121 83 7960 81 81 (176)
2A 102 137 82 9011 80 80 (174)
2B 103 195 73 6908 67 71 (156)
2C 102 124 81 18327 79 79 (171)
5A 107 220 60 44275 53 53 (115)
5B 106 253 62 83356 55 55 (121)
5C 111 205 49 53743 49 48 (105)

In Table 3 we show these results. To compare the different delay resistant
plans, we also show which delay penalties each plan incurs in the objec-
tive function of 1.5C, i.e. we give C ′

1.5C(ID) which is up to a constant factor
equal to C ′

2C(ID) and C ′

5C(ID). Observe that the plans 1.5C and 5C achieve
minimum respectively maximum PoR among all delay resistant timetables.
Furthermore, the table gives the CPU time in seconds until optimality was
established. The last two columns give the number of passengers who missed
their connection in the simulation, i.e. of those who experience a delay of
two hours. These numbers are averaged over the 683 random scenarios. The

3The choice of the number of scenarios is completely arbitrary.
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last column gives the equivalent value for the feasible no-wait policy, whereas
the previous column refers to the optimal delay management. Except for the
CPU time all columns are normalized such that the nominally optimal plan
gets a value equal to 100. To compare no-wait policy and optimal delay
management directly we give in brackets the number of missed connections
under no-wait policy in percent of the number of missed connections of DEF
under optimal delay management. For example, the plan optimized for dis-
tribution C and delay-weighting factor 5 causes 5% more missed connections
under no-wait policy than the nominally optimal plan under optimal delay
management.

Reducing Delays. For the quantitative results one should look at the av-
erage of missed connections in the simulation. In this value—at the price
of a relatively small increase in the nominal objective value of the timeta-
bles (PoR)—a substantial reduction of the probability to miss a train can be
achieved. For instance, consider timetable 5A. Compared to the optimum
nominal timetable, it increases the nominal objective by only 7%. But this
almost halves (53%) the number of passengers who miss a connection. Thus,
our first goal, namely to substantially reduce delays without substantially
increasing nominal traveling time, is achieved for real-world instances.

Quality of Simplified Objective. We use a simplified objective function
in the optimization. From a priori arguments we expect it to estimate well
the costs of optimal delay management. The tests support that the simplified
objective function gives a good estimate of the optimal delay management.

850000 875000 900000 925000 950000 975000

1/RoD
C'
Opt DM

Figure 8: Simplified objective matches optimal delay management.
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In fact, the delay penalty used in our simplified objective function provides
a surprisingly adequate estimate of the actual delay penalty. This becomes
apparent in Figure 8 which for the ten plans compares the simplified delay
penalty C ′

1.5C (multiplied with a constant) on the one hand and the number
of missed connections under optimal delay management on the other hand.
The ten plans are ordered in the figure according to their nominal objective
value. It is apparent how C ′ mimics the cost in optimal delay management.
For comparison we display the inverse of the RoD, too. This result encour-
agingly justifies to use our simplified objective function for delay resistant
timetabling.

Long Source Delays. Finally, a closer look at the results yields a general
claim on delay resistant timetabling: Delay resistant timetabling is an appro-
priate measure to hedge against small source delays. To this end observe the
following: Distribution C, which is the one with many long source delays, for
small weighting factors (1.5 and 2) has a non-greater PoR than the other two
distributions. This is surprising in two respects. First, the distribution A is
stochastically smaller than C. Therefore contrary to the results one would
expect the optimizer to invest less in delay resistance for a timetable tailored
for A than for C. Second, the unexpected behavior vanishes when the weight-
ing factor is lifted to 5. Then the optimizer takes into account the higher
total expected source delay and invests a higher price for the robustness of
plan 5C than for 5A or 5B.
This behavior gives rise to the following interpretation: Protecting the sched-
ule against long source delays requires to intervene so strongly that it only
pays if delay is weighted very high. This interpretation is supported by an-
other detail. Plan 15C does not even have the lowest delay penalty in its own
setting. Yet, it has the lowest nominal value among all delay resistant plans.
Therefore, in sum it is the best plan for its setting. In contrast consider the
plan 5C which is also the best plan for its setting, but for different reasons.
It has the worst nominal value of all but the lowest delay penalty in its own
(and, in fact, in every other) setting. To conclude, for a small weighting
factor hedging against long source delays would be inappropriate. Only for
high weighting factors it pays to give up nominal optimality to curtail the
effect of long source delays.

6 Conclusion

In our study we successfully added delay resistance to the computation of pe-
riodic railway timetables. We estimated the delay resistance of a timetable by
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simulating delays and solving the corresponding delay management problem.
The computational study that we effected on a part of the German railway
network of Deutsche Bahn AG suggests that a significant decrease of passen-
ger delays could be obtained at a relatively small price of robustness. This
does not only apply to the nominal increase of passenger waiting times, but
also to the computation times. Our concept can be interpreted as a slight
extension of the “Light Robustness” approach but without adding integer
variables to the well-established integer programs for periodic timetabling.
Further research should aim at bringing the computation times of the refined
model even closer to the standard model.

Going a step further, we aim at roughly approximating the complicated delay
management objective function by adding a term that approximates the de-
lay resistance to the standard periodic timetabling objective function. Two
major properties of the resulting objective function are required: (i) being
easy to evaluate; (ii) provide a cost value for each nominal timetable that is
similar to the actual costs of the timetable under small disturbances. From
the experience of this study we recommend the following workflow for achiev-
ing this goal:

First, compute several distinct timetables which balance differently the in-
terests of nominal transfer time and the risk of missed connections. Second,
evaluate our simple delay penalty functions on any of these timetables for
different distributions of the delays and delay-weighting factors. Third, sim-
ulate their behavior by confronting any of these timetables with a sample set
of scenarios and compute optimal disposition timetables. Fourth, calibrate
the simplified objective function via the distribution and the delay-weighting
factor s to best fit the cost observed in the simulation. Select the distri-
bution and delay-weighting factor that fits best. Now, compute with these
parameters in the simplified objective function the delay resistant periodic
timetable.

Last but not least, let us mention that we are still seeking for a detailed
feedback from practitioners, but due to the huge variety of data, this remains
a challenge in its own right.
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[31] A. Schöbel. Capacity constraints in delay management. Technical re-
port, ARRIVAL Report, 2007. TR-0017.
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