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Abstract

The delay management problem deals with reactions in case of delays in
public transportation. More specifically, the aim is to decide if connecting
vehicles should wait for delayed feeder vehicles or if it is better to depart
on time. As objective we consider the convenience over all customers,
expressed as the average delay of a customer when arriving at his or her
destination.

We present path-based and activity-based integer programming mod-
els for the delay management problem and show the equivalence of these
formulations. Based on these, we present a simplification of the (cubic)
activity-based model which results in an integer linear program. We iden-
tify cases in which this linearization is correct, namely if the so-called
never-meet property holds. Fortunately, this property is often almost sat-
isfied in our real-world data. Finally, we show how to find an optimal
solution in linear time if the never-meet property holds.

1 Introduction

A major reason for complaints about public transportation is the missing punctu-
ality, which — unfortunately — is a fact in many transportation systems. Since
it seems to be impossible to avoid delays completely, it is a necessary issue in the
operative work of a public transportation company to deal with delayed vehicles.
In this paper we focus on the convenience of the customers and present a model
for minimizing the average delay over all passengers.

Let us consider some vehicle (e.g., a train g) that arrives at a station with a delay.
At the station, there are other vehicles (e.g., buses h and h') ready to depart,
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see Figure 1. What should each of these connecting vehicles do? There are two
alternatives:

e A connecting vehicle h can wait to allow passengers to change from the
delayed vehicle g to h.

e The connecting vehicle h can depart on time.

Unfortunately, both decisions have negative effects: In the first case, vehicle h
causes a delay for passengers already within A, but also for customers who wish
to board vehicle h later on, and possibly for subsequent other vehicles which will
have to wait for its delay. In the second case, however, all customers who planned
to change from the delayed vehicle g into h will miss their connection.

hl

Figure 1: The wait-depart decision at one single station.

In the first case the connecting vehicle A does not depart at its scheduled time,
but with a delay. The new departure time of h is called its perturbed timetable.
In the second case, the perturbed departure time of A at v equals the scheduled
one.

In case of some known delays, the delay management problem is to find wait-
depart decisions and a perturbed timetable for all vehicles in the network, such
that the sum of all delays over all customers is minimized. The delay of a customer
is defined as the delay he has when he reaches his destination. Recently the NP-
completeness of this problem has been shown (see [GIJPS04]).

Since in the delay management problem new departure times for each vehicle at
each station have to be determined, it is related to finding timetables in public
transportation. In this field, a lot of research has been done for periodic and
non-periodic timetables. An excellent overview on periodic timetabling is given
by [Pee02]. We also refer to [Nac98, Car99, Gov98, vEO1] and references therein.
However, note the main difference between timetabling and delay management:
In the timetabling problem the connections are given in advance, while in the
delay management problem we have not only to find a (perturbed) timetable,
but also to decide which connections should be maintained and which can be
dropped.



How to react in case of delays has — due to the size and complexity of the
problem — been mainly tackled by simulation and expert systems. We refer to
[SBK01, SMBGO1] for providing a knowledge-based expert system including a
simulation of wait-depart decisions with a what-if analysis. Simulation has also
been used in [Ack99, SMO1].

In [GS02] the delay management problem has been formulated as a bicriterial
problem, minimizing the number of missed connections and the delay of the ve-
hicles simultaneously, and solved by methods of project planning. The weighted
sum of these functions has been minimized in [RAVM98] by an enumeration
procedure and a greedy heuristic within a max-plus algebraic model, see also
[SvdB01]. Dynamic programming has been used in [GGJT04] to identify polyno-
mially solvable cases.

Integer programming formulations so far only exist as first attempts for the simple
case without slack times, assuming that the customers on each edge are fixed (see
the diploma theses of [K1i00] and [Sch01b]). In Section 4 we are able to identify
cases in which such models are correct. A first ezxact linear integer model for the
delay management problem is presented in [Sch0la], and will be reviewed in this
paper in a more convenient notation at the beginning of Section 3.

Related work includes how to reduce delays by investing into new tracks ([EFKO1,
EF02]), how to minimize the sum of waiting times of customers at their start-

ing stations in a stochastic context ([APWO02]), and a first on-line model of the
problem along a line ([GJPWO04]).

The aim of this paper is to present a new and more general integer programming
formulation of the delay management problem, for which we are able to develop
solution approaches. Although our model can be applied to many different ob-
jective functions we specialize here on minimizing the sum of all delays over all
customers. After introducing definitions and basic properties in Section 2 we
present two different, but equivalent integer programming formulations for the
delay management problem. In Section 4 we show that our new model can be
linearized if a special condition, called the never-meet property holds. In Section 5
we show how to solve the delay management problem in linear time in this case.
The paper is concluded by some remarks on future research.

2 Notation, concepts, and basic properties

We first introduce a new notation for the delay management problem, based on
its representation as an activity-on-arc project network (see e.g. [Nac98| for using
this concept in timetabling). As an example, a small event-activity network is
depicted in Figure 2.
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Figure 2: An event-activity network.

Notation 1 An arrival of a vehicle g at a station v is called an arrival event
(g9,v,arr), while a departure event (g,v,dep) describes the departure of some
vehicle g at some station v. The event activity network is a graph N = (€, A)
where

o & = Eurr U&ep 15 the set of all arrival and all departure events

o A = Aysit U Agrive U Achange s a set of directed arcs, called activities,
defined by

-Await = {((gava arr), (g, v, dep)) S garr X gdep}
Agrive = {((g,v,dep), (g,u,arr)) € Egep X Earr = vehicle g goes
directly from station v to u},
Achange = {((g9,v,arr), (h,v,dep)) € Eurr X Eaep © @ changing
possibility from vehicle g into h at station v is required}.

The driving and waiting activities are performed by vehicles, while the changing
activities are used by the customers. Note that A is a special case of a time-
expanded network and hence is acyclic. This means that a precedence relation
< between events (or activities) is canonically given. ¢ < j hence indicates that
there exists a path from ¢ to j. We remark that for a given set of events (or of
activities) a minimal element w.r.t. < always exists, but it needs not be unique.
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Using the notation of event-activity networks, a timetable 11 € Z¢ is given
by assigning a time II; (usually in minutes) to each event i € £ (see [Nac98]).
Timetables are usually given in minutes and hence consist of integer values. The
planned duration of activity a = (¢, ) is given by II; — II;. Furthermore, let
L, € IN be the minimal duration needed for performing activity a. We assume
that the timetable is feasible, i.e.,

II; —II; > L, for all @ = (i, ) € A.

We further assume that source delays are known at some of the events, where
they might have occurred at the preceding activity or at the event itself. Let
Eiqer C Eurr denote the set of source-delayed events, and d; > 0 indicate the delay
they have. (For i ¢ &4 the source delay d; = 0.)

If source delays occur, some of the subsequent arrival and departure times II; can
also not take place punctually, since the minimal durations L, for subsequent
activities have to be taken into account. The outcome Il + y is called a perturbed
timetable,and y; is called the delay of event 7. Such a perturbed timetable is
feasible, if

e the source delays are taken into account, i.e., II; +y; > II; + d;, and

e the delay is carried over correctly from one event to the next, i.e.,
II; +y; — (Il; + y;) > L, holds for all driving and waiting activities a =
(3, 9)-
Defining the slack time s, of an activity a € A as the time which can be saved
when performing activity a as fast as possible, i.e.,

Sa:Hi—Hj—La

we can equivalently restate the two above conditions in terms of the delay vector
y as follows.

Definition 1 A set of delays y; for all i € £ is feasible, if

yi > d; foralli €& and (1)
Yi —Yj S Sa fO’f‘ all a = (Z,]) € Await U Adrive- (2)

Condition (2) makes sure that the delay at the start of activity a is transferred
to its end, where it can be reduced by the slack time of a.

In the following we only use the slack times s and the delays y instead of the
minimal durations L and the timetable II.

Definition 1 only takes the driving and waiting activities into account. However,
in the delay management problem the goal is to identify which changing activities
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should be maintained and which ones can be dropped. For a changing activity
we analogously require that

Yi —y; < 5, ifa= (1, 7) is maintained (3)

We are now in the position to specify feasible solutions of the delay management,
problem.

Definition 2 A set of connections A C Achange together with a feasible set
of delays y; for all v € £ is a feasible solution of the delay management
problem, if

Vi —y; < Sq foralla=(i,j) € Al

i.e., for all connections a € A" which are maintained.

Note that a timetable would also be feasible if some vehicles depart or arrive late
without any reason. Such solutions are clearly not optimal, and hence we define
a set of “most punctual” solutions.

Notation 2 Let (A/%, y) be a feasible solution of the delay management problem.
y is called time-minimal with respect to A/® if all feasible solutions (A/%,y")
satisfy y < y' (where as usual < is meant componentwise).

It can be shown that there exists a unique time-minimal solution with respect
to each set A’ C A pange, which can be found efficiently by one of the follow-
ing approaches. The proof of existence and uniqueness follows from the second
approach.

Linear programming approach :

The following is an integer programming formulation whose solutions are
exactly the time-minimal feasible solutions:

min Z Yi

such that 1y; > d; forallie &y (4)
vi—vy; < s, foralla=(i,7) € Ayt U Adrive U Al (5)

y; € IN forallief.
Since the resulting integer program has a totally unimodular coefficient

matrix, the integrality condition y € INl is not needed and the problem
can be solved by linear programming.



Critical path method (CPM) :

The event-activity network can be transformed into a project network (as
defined, e.g., in [Elm77]) by introducing one super-source s and taking

A(Afm) = Await U Ad’rive U Afiw

and additional timetable activities {(s,i) : i € £} as set of activities in
the corresponding project network. The duration of an activity is set to
L, for a € A and to the scheduled timetable II; if a« = (s,4). Then the
earliest possible starting time of each activity is a time-minimal solution of
the delay management problem. The following procedure uses the critical
path method to determine the earliest starting times but is applied directly
in the notation of slack times s and delays y according to Definition 1.

Algorithm 1: Calculating a time-minimal solution for a set A/*

Input: N, d;, s., Af®.

Output: Optimal (time-minimal) solution w.r.t. Af®.

Step 1. Sort & = {i1,...,%/g} according to <.

Step 2. For k=1,...,|¢|: y;, = max{d;,, max,_(;;,)cA(Afiz) Yi — Sa}

Step 3. Output: vy;, 1 €&

Longest path technique for the feasible differential problem :

It is also possible to transform the delay management problem with fixed
connections to a feasible differential problem (defined, e.g., in [Roc84]).
Note that the potential in this case is given by the delay for each node and
the tension is the additional delay of each of the activities, see [Sch03] for
details.

Using these observations, we can show the following basic result.

Lemma 1 For some set A’ C A let y(A'"®) denote a time-minimal solution
w.r.t. A Then

1. A' C A? C Achange = y(A") < y(A?).

2. y = y(A'®) satisfies y; < D = max{d; : i € £} for all i € £.



The first part of the lemma states, that the delays get smaller if connections are
dropped, while the second part bounds the maximal delay of a single event in
a time-minimal solution by the largest given source delay. Both results will be
needed later.

Proof: The result can be shown by induction, using Algorithm 1 to calculate a
time-minimal solution. To start, choose a minimal event ¢ and note that y; =
d; < D and this is independent of the set of fixed connections chosen. Now take
any event 7 € E. From the induction assumption we may assume that y; < D
and y;(A') < y;(A?) holds for any predecessors i (w.r.t. <) of j. From (2) we
obtain y; < D and

viA) = max{d;, | max | 5(A) = s

< max{dy, | max oy WA = s} = 1504,

QED

As mentioned before, our objective is to minimize the sum of all delays over all
customers. To this end, we have to specify the customers data.
A customer’s paths is given as a sequence of events, i.e.,

P = (il,ig,...,ipL)

where i, € £ are events, and (i, ix+1) € A are activities. We will write a =
(i, %x41) € p in this case. Note that 7; is a departure event, i an arrival event,
i3 € E4ep and so on. Furthermore, i(p) denotes the last event on path p and w,
the number of passengers who want to use path p. We denote P as the set of all
customers’ paths.

To calculate the delay of a passenger on path p we need the following two basic
assumptions:

1. There is one (common) time period 7" for all vehicles.
2. In the next time period all vehicles are on time.

In praxis, both assumptions are usually not satisfied. The first of them can be
relaxed a bit, allowing different periods for each of the activities. Taking the
largest of the periods of all lines overestimates the delay, but seems to be a
reasonable approach. The second assumption is accepted by practitioners since
the planning period in on-line disposition is usually less than the time period
T (often one hour). It is an open problem to deal with future delays by using
stochastic optimization.

To calculate the delay of a customer using some path p € P, we have to distinguish
the following two cases.



Case 1: If all connections of path p are maintained (i.e., the path is maintained),
the delay of a passenger on path p is the arrival delay y;(,) of his last event

i(p)-

Case 2: If at least one connection of path p is missed, the delay of a passenger
on path p is given by 7T

We are finally in the position to define the (total) delay management prob-

lem.

(TDM): Given N = (€, A), slack times s, for all a € A, source delays d;,i € €
and a set of weighted paths P, find a feasible pair A7 C Apange with delays y;,
1 € € such that the sum of all delays over all customers is minimal.

3 Two models for delay management

In this section we first review the formulation of [Sch(0la] in the new notation
introduced above. In contrast to this path-based model we then present a new
activity-based formulation and show that both models are equivalent.

3.1 Path-based formulation

As first model we present a path-oriented description of (TDM) (based on the
formulation in [Sch01la]) which uses the following variables

. 0 if all connections on path p are maintained
P71 1 otherwise

(TDM-A)
min from-a = Z wp(yi(p)(l — zp) +T'zp)
pEP
such that
Y > d; for all 7 € £y (6)
yi—y; < s, forall a= (i,7) € Await U Adrive (7)
—Mz,+vyi—y; < s, forallpe P,a=(4,7) € pN Achange (8)
yi € IN forallieé 9)
z, € {0,1} forallpeP (10)

The first two constraints (6) and (7) are the same as (1) and (2). Constraint (8)
makes sure that all connections on a maintained path (i.e. a path with z, = 0)
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satisfy (3). Finally, the objective function sums up the delay according to the
two cases mentioned on page 8.
In the following, we always assume M > D = max{d; : i € £}.

The given formulation of model (TDM-A) can be linearized by substituting the
quadratic terms ;) (1 — 2,) by additional variables g,, leading to the following
model (TDM-B).

(TDM-B)

min frpy-B = Z wy(gp +T'2p)

such that (6) — (10) hold, and such that

forallpe P (11)
forallpe P (12)

Lemma 2 The linearization is correct.

Proof:

(TDM-A) = (TDM-B): Let (y, 2) be a feasible solution of (TDM-A). Due
to Lemma 1 we may assume that y; < D for all 7+ € £. For all p € P define
@ = Yip)(1 — 2,). Since yip) < D < M we get for all p € P that

—Mz, + i) < —Yip) 2 + Yilp) = G-

Hence, (y, 2, q) is feasible for (TDM-B), and both solutions have the same
objective value.

(TDM-B) = (TDM-A): Let (y, z, q) be a feasible solution of (TDM-B). Then
(y, z) is also feasible for (TDM-A). From (11) and (12) we conclude that

&% > Yip) iz =0
g > 0 ifz, =1

Consequently, g, > yip) (1 — 2), i-e., from-a < from-—s.
QED

Note that the linear formulation is significantly weaker as the quadratic for-
mulation (TDM-A). This is due to the fact, that the feasible set of the linear
programming relaxation increased. More intuitively, one would like to use vari-
ables 2z, determining if a connection a € Agpange should be maintained or not.
This yields a stronger activity-based formulation for (TDM) which is derived in
the next section.
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3.2 Activity-based formulation

In this model we use variables for each changing activity z, describing if con-
nection a € Agpange is missed (z, = 1) or maintained (z, = 0). The idea of
the activity-based formulation is to calculate the total delay by summing up the
additional delays over all activities a € A.

To this end, let us first consider some activity a € A\ Achange. We want to
calculate the additional delay customers will get while using this activity. The
delay customers already have at the start of a = (4, j) is y;, and at the end of a
their delay is y;. This means, the tension y; —y; is the additional delay gained by
the customers while performing activity a. Note that this additional delay can
be negative, meaning that slack times are used to compensate an already existing
delay.

For changing activities we have to be more careful. Let a = (7,7) € Achange and
suppose first that a is maintained. Then the additional delay on « is again the
tension y; — y;. On the other hand, if a is missed, the additional delay for the
customers who planned to use activity a is given by T'—y; = y; —y; +T —y;, since
they now have to wait the remaining time period until the next (non-delayed)
vehicle arrives for carrying on their journey.

We further need to extend the event-activity network by defining

& = EU{s}
A* = AU{(s,7):7 € Egep} and
P = {(s,8},...,&) :p e P}

The additional event s represents the arrival of the customers at their first station
(by foot or by a means of transport which is not considered in the delay manage-
ment problem). The extension makes sure that the delay of a customer waiting
at some station for his first (delayed) vehicle to come, is taken into account. We
always assume that customers reach their first station without any delay, i.e.,

ys = 0.

Now we can present the new model. As before, we assume that T, M > D.
The following additional variables are necessary for (TDM-C).

1 if activity a is reached on path p without any missed
Zr = connection before
0 otherwise

w, = number of customers who really use activity a

We stress that the number of customers w, (really) using activity a € A is a
variable, since it depends on the wait-depart decisions whether customers using
a path p € P? will reach all activities a € p or not.
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(TDM-C)
min fTDM—C = Z wa(yj - yz) + Z WqZq (T - yj)

a=(i,j)€A* a=(1,j)€EAchange
such that
y; > d; forall i€ Eyy (13)
vi—y; < s, foralla=(i,7)€ Apait U Adrive (14)
—MZ,+yi—vy; < s, foralla=(4,j) € Achange (15)
2P+ Z Zz; > 1 forallpeP®andacp (16)
a€pNAchange:
a<a

Z2+2z; < 1 forallpe P’ andforalla,a€p
with @ € Achange and @ < a (17)
we = Y wpi forallae A° (18)

pEPS:a€p

y;, € IN forallieé& (19)
z, € 40,1} forallae A° (20)
22 e {0,1} forallpe P’ ac A° (21)
w, € IN forallae A° (22)

In the objective function the additional amount of delay on each activity is mul-
tiplied by the number of customers really using it. Restrictions (13) and (14)
again correspond to (1) and (2), while (15) models that (3) has to be satisfied
exactly for maintained connections, i.e. connections a with z, = 0. Restriction
(16) defines the values of Z? such that they are forced to be 1, if no connection on
path p before a has been missed, and (17) makes sure that 22 = 0 for all activities
a after a missed connection @ on path p. Finally, (18) determines the number of
customers really using activity a.

Note that for technical reasons we need to be able to extend any feasible solution
i, 1 € & to a feasible solution (y, C(y)) := (v, z(y), 2(z), w(Z)) of (TDM-C), where
(y,C(y)) yields the same or a better objective function value for (TDM-C). This
is done as follows.

_ _ 0 1fyz—y3§sa e
Z(y) = { 1 otherwise for all a = (4, 7) € Achange (23)
Z2(Z) = maxq1l— Z Zz, 0 » forall p € P%,a € p, (24)
aEPOAchange:
a<a
we(2) = Z wyz?  for alla € A°. (25)

pEPS:aEP
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3.3 Relation between the models

Theorem 1 (TDM-A) and (TDM-C) are equivalent. In particular, both models
lead to the same set of optimal solutions y € IR

Proof: see Appendix.

On a first glance, (TDM-C) does not seem to be useful for solving the delay
management problem better than (TDM-A), since (TDM-A) can be linearized
(see Lemma 2) while (TDM-C) is cubic. Moreover, (TDM-C) is much larger
in terms of variables, constraints, and non-zero entries of the coefficient matrix.
However, it has some advantages. First, it is more general since it allows to
replace the common time period 7" by time periods 7, for each changing activity
a € Achange, Which is a step to more realistic models and to relaxing our first
assumption on page 8. Secondly, as the proof in the appendix shows, (TDM-B)
is a stronger formulation than (TDM-A), since the decision variables z, allow less
freedom than the decision variables z,. Hence, e.g., a classical branch-and-bound
procedure using the variables Z, for branching can be easily implemented for
(TDM-C) while for (TDM-A) other methods, e.g., constraint branching have to
be investigated. Last, we will be able to utilize (TDM-C) to present a linear-time
algorithm which solves the delay management problem exactly for a special class
of problems.

4 Constant weights and the never-meet prop-
erty

In order to solve (TDM-C) we fix the weights w, as parameters instead of calcu-
lating them during the optimization. Doing so, we obtain the total delay man-
agement problem with constant weights. Its formulation is given by deleting con-
straints (16), (17), and (18) in (TDM-C), and fixing

Wy = Z w, forall a € A° (26)
pEPS:a€p

as parameters, i.e., setting w, as the planned “traffic load” on activity a. We
obtain:

min fTDM—const’ - Z Wq (yj - yz) + Z WeZq (T - yj)

a:(i,j)EAs a:(iaj)EAchange
such that (13),(14),(15),(19), and (20) hold.

We can further rewrite frpum—_consty @s follows. For ¢ € £ let

w; = Z wp (27)

pEP:i(p)=i
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be the number of customers with final destination 7. Since

D walyi—w) = D wy Y, yi—

a=(1,j)€AS peEPS a=(i,5)€p

= pr(yi(p) - ys)

peEP

= Z Z WpYi = sz‘yz‘ (28)

icE peP: icE
i(p)=1

we rewrite

fTDM—const’ = Z w;Y; + Z WqZq (T - yj)‘

€€ a:(iaj)e-Achange

We show that in general, we make a mistake by fixing the weights as above, which
has not been realized in many attempts or simulation approaches for the delay
management problem.

OO

vehicle 1 vehicle3
vehicle2

(o) ()

vehicle 2

Figure 3: An example in which fixing the weights is not correct.

We assume there are three vehicles 1,2, and 3, where vehicle 1 and vehicle 3 reach
the stations vo and vz with a delay, see Figure 3. We consider a customers’ path
p = (v1,v9,v3,v4) using vehicle 1 until station v, changing to vehicle 2 and passing via
vy to its destination vy. Suppose that vehicle 2 is not waiting for vehicle 1 at station
v9, such that the path p is not maintained. Assume further that vehicle 2 waits for
the delayed vehicle 3 at station vs. If we have not adapted the weights, the customers
on path p are counted twice in the objective function: First, since they missed their
connection at station ve, and secondly, since they reach their final destination v4 with
a delay. This double counting can in general lead to wrong decisions.

Fortunately, there are problem instances for which the model with constant
weights is correct, apart from the trivial case in which no customer changes at all.
For example, it can be shown that the model with constant weights is correct,
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if we only allow paths of the form p = (1,49, ...,i 92,91 1,7) where p contains
at most one changing activity (i 2,47 1) followed by not more than one driving
activity, see [Sch03]. A more interesting case, in which we make no mistake by
using the constant weights will be described next.

Since frpm—_const’ Still is no linear function we further simplify the model. In
the following we simply forget about subtracting y; in the second part of the
objective, to obtain the linear program (TDM-const).

min fTDMfconst = § w;yY; + § waTZa

€€ aEAchange
such that
Yi > d; forallie &y (29)
yi—y; < s, foralla=(i,7) € Apair U Adrive (30)
—Mz, + Yi — Yj < s, foralla= (’L,]) € -Achange (31)
Y € IN Viel
20‘ S {0, ].} fOI" all a € Achange

Each feasible solution of (TDM-const) yields an upper bound on (TDM). But the
main advantage of (TDM-const) is due to the surprising fact that (TDM-const)
is equivalent to (TDM) in a large class of practical instances. To this end, we
need some further technical details.

Notation 3 H(i) = {j € £ : there exists a (directed) path from i to j}.
Furthermore, let N (i) be the subgraph consisting of the events in H(i) and their
induced activities.

Note that for all j € H(i) we have i < j.

Definition 3 The delay management problem has the never-meet property if
1. N(i) is a tree for all i € Egey, and
2. H@)NH(G) =0 for all i,j € Ege with i # 7,

i.e., Uiee,,, N (@) is a vertez-disjoint out-forest.

The interpretation of the never-meet property is the following: By calculating
the time-minimal solution with respect to some given set A%, but without using
slack-times, we can find out how far the source delays can spread out in this
solution in the worst case. The never-meet property requires that in no feasi-
ble solution of (TDM) two delayed vehicles or paths will meet. Note that the
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formulation includes that source delays can only occur after non-delayed events.

If the never-meet property holds, we will show the following: In every time-
minimal solution all events following a non-maintained connection are punctual,
and all changing activities following a non-maintained connection are maintained.
This property will be important for proving Theorem 2.

Lemma 3 Let (TDM) have the never-meet property and let (y, C(y)) be a feasible
(time-minimal) solution of (TDM-C). Let & = (1,7) € Achange- If Za =1 (i.e. @
is not maintained) we have the following.

1. y; =0 for all i € H(j), i.e. all events following j are on time, and

2. 2, =0 for all a = (i, ) with i € H(j), i.e., all connections following j are
maintained.

Proof: From z; = 1 we know from (23) that y; > 0. Hence there exists a source-
delayed event i; € g such that 1 € H(iy).
Now suppose there exists i € H(j) C H(i1) with y; > 0. Since Z; = 1 the delay
of 4 is not caused by d;,, but by another source-delayed event i, € £. But this
means that H(i1) U H(i2) # 0, a contradiction to the never-meet property.
Finally, consider a = (4, j) with i, j € H(j). From part 1 we know that y; = y; =
0, hence (23) yields z, = 0.

QED

Theorem 2 Model (TDM-const) is correct if the never-meet property holds.

Proof: We show that (TDM-C) and (TDM-const) are equivalent in this case.
Clearly, a feasible solution (y, z) of (TDM-const) can be extended to a feasible
solution (y, C(y)) of (TDM-C) with equal or better objective value, see (23), (24),
and (25).

The other direction is the interesting one: We show that each feasible solution
of (TDM-C) corresponds to a feasible solution of (TDM-const) with the same
or better objective value. More precisely, given some feasible solution of (TDM-
C) with delay vy, let (y,C(y)) = (y,2,Z,w™") denote a (maybe better) feasible
solution of (TDM-C). We show that (y, Z) is a feasible solution of (TDM-const)
with the same objective value as (y, C(y)).

Feasibility of y, z for (TDM-const) is trivially satisfied. It remains to show that

from—c(¥, 2, 2, w) = from—const (Y, Z)-

To this end, suppose that for some a = (,j) € A we made a mistake by fixing the
weights, i.e., the number of customers w; who planned to use a does not equal the
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number of customers w®!, really using a. To compare the objective functions

of (TDM-const) and (TDM-C) we replacing the first term of (TDM-const) by
equation (28) and see that in this case it suffices to show that

y;i —vi =0,

and tha,t, if ae€ Achange
zg = 0,

This means that the error we make by using the wrong weights does not influence
the value of the objective function.
From w, # wi® we get (by comparing (25) and (26)), that

real _ P
E Wy = Wg F Wy E WpZg-

pEPs:acp pEPS:aEP

Hence there exists some path p € P containing a such that £ = 0. Due to (24)
there exists @ € p with @ < @ and z; = 1. Without loss of generality let us take
@ = (i,7) minimal with this property, i.e., we choose the first changing activity
on path p that is marked as missed. For an illustration, see Figure 4.

0 ey o

Figure 4: The path p in the proof of Theorem 2. The grey events belong to 7£(7).

Since i, € H(j) we derive from Lemma 3 that
e y; =y; =0, and
o if a € Acpange then zZ, = 0.

Hence, y; —y; = 0, and if @ € Achange We have that z; = 0, which completes the
proof.

QED

We tested the never-meet property in practice, which can be done efficiently
by the forward phase of the critical path method (with zero slack times and
Afir = Achange). As data we used a part of the public transportation network
of Rheinland-Pfalz, Germany. The data consists of 823 stations, linked by 2118
edges. Since the never-meet property does not depend on the set of paths P,
we used four different sets Us, Uiy, Usg, and Ugy of connections, where set U,
contains reasonable connections with a scheduled waiting time of less than x
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minutes. By “reasonable” we mean that we do not consider connections where a
transfer results in going directly back to the previous station. The sizes of the sets
U, range from 6531 (for Us) up to 80716 (for Usy). The resulting event-activity
network has a size of 46720 events. The number of activities depends on the set
U, used and varies between 51937 and and 126122.

160

140

120 -

100

Conflicts
@
3

Figure 5: Conflicts with the never-meet property as function of the source delay, if 10
vehicles are delayed.

In our analysis we counted the number of activities which have to be deleted
such that the never-meet property holds. The results are shown in Figures 5
and 6. In both figures the depicted functions correspond to the different sets
of relevant connections. The lowest function uses U5 as set of connections, the
next function corresponds to U, then U3y, and the top function refers to Uy,
confirming that the number of conflicts with the never-meet property increases
if the set of connections is enlarged. Figure 5 shows the number of conflicts with
the never-meet property as a function of the source delay, if we assume that 10
vehicles are delayed. It turns out that we can expect less than 50 conflicts if the
source delays are smaller than 15 minutes.

In Figure 6 the number of conflicts with the never-meet property is depicted as
a function of the number of delayed vehicles. This figure is calculated with a
source delay of 15 minutes. Again, it turns out that not more than 50 conflicts
are likely if the number of delayed vehicles is smaller than 10.

The reason for the relatively low number of conflicts in practice is in particular
due to the fact that we only consider events that can gain a delay. We observed
that most conflicts with the never-meet property arise at events within the city
traffic, while the never-meet property is more likely to hold for transportation
systems in a rural environment.

But all this is only helpful if we can draw advantage of the simplified model with
constant weights in terms of efficiently solving it. As a first justification, our
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Figure 6: Conflicts with the never-meet property as function of the number of delayed
vehicles, assuming a source delay of 15 minutes for each vehicle.

numerical results with Xpress indicate that the integer problem can be solved
nearly in the same time as its relaxation when the problem instance is close to
the never-meet property. In the next section this behavior will become clear when
we discuss how to solve (TDM-const) if the never-meet property holds.

5 Solving (TDM) in the case of the never-meet
property

The main result of this section is a linear-time algorithm for solving the delay
management problem exactly if the never-meet property holds. We first remark
that preprocessing should be done before using any of the approaches below. In
such a preprocessing step we can delete all parts of the event-activity network
where the delay can never spread (e.g. due to large slack times before). These
events can be identified by using Algorithm 1 with A/ = Achange- In the follow-
ing we hence always assume that & = & equcea = {7 € € : Yi(Achange) > 0}. Note
that in real-world instances, this type of reduction often leads to significantly
smaller networks.

5.1 The special case with zero slack times
First, let us consider the special case (TDM-const-zero), in which
e all source delays have the same amount, i.e., d; € {0, D} for all 7 € £, and

e all slack times are equal to zero, i.e., s, = 0 for all a € A.

Let y be a time-minimal solution of this problem. Then y; € {0, D} for all 7 € £.
This means that we can use binary variables y; instead of integer ones, with
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~_J 1 ifevent :is delayed by D
71 0 ifevent s is not delayed.

Consequently, M = 1 is large enough and (TDM-const) — even with the first
objective frpm_const introduced on page 13 — simplifies to the following linear
program. Recall that £4; = {i € € : d; > 0}.

(TDM-const-zero)

min Z weD(y; — yi) + Z WaZa(T — D)

a=(1,j)€.AS a:(ivj)e-Achange
such that
—y; < —1 foralli e &y (32)
Yi — Yj < 0 for all a = (17]) € Awaz’t U Adrive (33)
Zo+yi—y; < 0 foralla= (7)€ Achange (34)
Yi € {0, 1} Viel&
Ze € {0, 1} Va € Achangea
where w, = Zp ePsacp W for all a € A° are given parameters as before (see, e.g.,
(26)).

Theorem 3 (TDM-const-zero) can be solved in polynomial time.

Proof: Let C = |Achangel; C = [Adrive U Await| and D = |E4¢|. Moreover, let Iy
denote the unit matrix of size K x K and Ok, the zero matrix of size K x L.
Then the coefficient matrix of (TDM-const-zero) is

—Ip | 0pc
@ - T Oc_v’c y
C) I

where the |A| x |€|-matrix ©7 is the transposed of the node-arc-incidence matrix
O of NV, and hence totally unimodular. Consequently, ® also is totally unimod-
ular. Hence the LP-relaxation of (TDM-const-zero) can be used to solve the
problem in polynomial time by linear programming methods, (see e.g., [NW88]).

QED

Note that (TDM-const-zero) is equivalent to the models developed independently
in diploma theses by Kliewer [K1i00] and Scholl [Sch01b], where the latter author
also recognized the total unimodularity of the model.

In the case of non-zero slack times, the objective value of (TDM-const-zero) is
still an upper bound on the objective value of (TDM-const).
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5.2 Allowing arbitrary slack times

Since we assume that the never-meet property holds, we deal with the formulation
(TDM-const) and show that this problem can be solved efficiently in O(|.A4]) time.
The reason for this consists of the two facts listed below.

e First, if we fix z, = 1 for some a = (i, j), we can set yy = 0 for all ' € H(4)
and know that all subsequent connections are maintained (Lemma 3).

e Secondly, the problem can be decomposed into at most |Acpange| indepen-
dent subproblems due to the following lemma, which follows directly from
the never-meet property.

Lemma 4 Leti,j € £, i+ j, and let (y, Z) be a feasible solution of (TDM-const)
with y; > 0,y; > 0. If the never-meet property holds, exactly one of the following
three cases occurs.

H(i) CH() or H(j) CH() or H(i)NH(j) =0

The idea of the algorithm is to decompose the problem iteratively into subprob-
lems, and solve them bottom-up. A subproblem P, is identified by a changing
activity @ = (i,7) and represents the delay management problem on the sub-
graph N (i) (recall Notation 3 on page 15) with a single source delay at event i.
P, might be decomposable into subproblems itself. Formally, we define

SP(a) = {a' € Achange : there exists a directed path from a to o’ not containing

any other changing activity}

The subproblems of the problem itself are collected in SP(ag), and can be derived
by taking all changing activities reachable directly from one of the source-delayed
events.

We remark that all subproblems within the same set SP(a) are independent of
each other due to the never-meet property.

In Algorithm 2, subproblems that might further be decomposed are stored in
“Decompose”, and if a subproblem cannot be decomposed any more it is col-
lected in “Compose”. Moreover, at the end of Step 2 of the algorithm, for each
subproblem identified by some changing activity a,

e maintain(a) contains the value of the objective function of the subproblem
if a is maintained, and

e miss(a) contains the objective value if @ is missed.

e f(a) contains the minimum of maintain(a) and miss(a).
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To compute maintain(a) we need to calculate the minimum delay which occurs if
a is maintained. in contrast to 7 (z) which is the set of events that can be reached
from i, if all a € Acpange can be used we now define

G(i) = {j €& : there exists a path from i to j with activities in Ay U Agrive }

as the set of events that can be reached from 7 without passing any changing
activity. Furthermore, assume that 7 € £ has a delay d; > 0, and let y be a time-
minimal solution. The minimum delay that will be caused by d; independent of
any wait-depart decision is then given by

G(Z,dz) = Z wjyj.
JEG(r)

The algorithm can now be stated.

Algorithm 2: Enumeration for (TDM-const)

Input: N, P, wp,d;, sq,T -
Output: Optimal solution of (TDM), if the never-meet property holds.

Step 0.
1. Calculate the time-minimal solution y(Achange) if all connections
are maintained by Algorithm 1.
2. (Initializations) SP(ag) =0, f(ag) =0, Decompose = (), Compose = ().
3. (Calculate SP(ag)) For all i€ Eyg:
(@) f(ao) = f(ao) + G(i,d;)

(b) For all a = (ji1,52) € Achange With ji € G(i): If y; > 0 then
SP(ag) = SP(ag) U {a}, and Decompose = Decompose U {a}

4. (Optimality test) If SP(ag) =0 stop: [ is the optimal objective
value, Z, =0 for all a € Achange

Step 1. While Decompose # ()

1. Choose a = (i1,42) € Decompose
2. SP(a) =0, miss(a) = w,T, maintain(a) = G(iz,yi,)

3. (Calculate SP(a)) For all a' = (ji,/2) € Achange With ji € G(i2):
If y;; >0 then SP(a) = SP(a) U {a'}, Decompose = Decompose U {a'}

4. (Update Compose) If SP(a) =0 then Compose = ComposeU {a}.
5. (Update Decompose) Decompose = Decompose \ {a}.
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Step 2. While Compose # ().

1. Choose a € Compose with a € SP(a)
2. (Solve subproblem F,) f(a)= min{maintain(a), miss(a)},

L 0 if maintain(a) < miss(a)
Fa = 1  if maintain(a) > miss(a)

3. (Update values for parent problem a)
SP(a) = SP(a) \ {a}, maintain(a) = maintain(a) + f(a)
4. (Update Compose)
Compose = Compose \ {a}
I1f SP(a) =0 and a # ap then Compose = Compose U {a}

Step 3.

1. (Correct values for Z,) For all a € .Ach(mge: If z, =1 then set
Zy =0 for all a’ #a with a<d'.

2. Output: f(ap),Zz

Theorem 4 Algorithm 2 is correct and runs in time O(|A|).

Proof: We show by induction over all a € Acpange U {ao} that f(a) contains the
objective value for the subproblem P, at the end of Algorithm 2.

Start: Let a« = (i,7) be a maximal element of Acpange (With respect to <).
The subproblem with respect to a is (TDM-const) in the small network
N (i), which does not contain any changing activity except of a itself, hence
SP(a) = 0 in step 2 of the algorithm. Furthermore,

maintain(a) = Z ypwy, and
i'€g(i)
miss(a) = Tw,

give the objective values of this small network when maintaining or not
maintaining activity a. To see the correctness of miss(a) we note that due
to Lemma 3 yy = 0 for all ¢ € #H (i) (which equals G(7) in this case).

Since a € Compose we compare both values maintain(a) and miss(a) in
step 2, and choose the better as (correct) objective value, which is then
stored in f(a).
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Conclusion: Now take any a = (4,j) and let the induction hypothesis be true
for all ' with a < d'.

e If o is not maintained, we know from Lemma 3 that all connections
a' € N(j) are maintained and all i’ € H(j) satisfy yy = 0, i.e., the
objective value is given by miss(a) as calculated in step 2.

e If ¢ is maintained the algorithm calculates in step 2 the delay which
will be gained in any case, i.e., the delay of all events i’ € G(i) that
can be reached without passing any changing activity, and store it
in maintain(a). All changing activities ¢’ that can be reached from
J without passing any other changing activity are stored in SP(a).
Due to Lemma 4 the corresponding subproblems P, for o' € SP(a)
are independent and have objective value f(a') due to the induction
hypothesis, such that maintain(a) + Za’ESP(a) calculated in step 3
finally is the correct value of maintain.

Comparing maintain(a) with miss(a) and choosing the smaller of both gives
the best possible choice for activity a assuming the delay y; as given.

Finally, in step 0, the problem with the given source delays is decomposed into
a set of subproblems SP(ag). All these subproblems are independent due to
Lemma 4, and they are all solved optimally due to the claim above. Adding up
these optimal values and adding the delay of all events which are reached before
entering one of the subproblems gives the optimal objective function value f(ay).

For the time complexity we note that the number of subproblems equals the
number of changing activities, which in a tree is the same as the number of
events. For the decomposition steps we have to process each activity and each
event exactly once, and in the composition step we need one comparison and one
summation for each subproblem, and again a visit of all events. The overall time
complexity is hence linear in |A|.

QED

6 Future Research

Algorithm 2 relies on the fact that each activity a € Agpange appears in exactly
one list, i.e., for each a € Agpange there exists a unique @ such that a € SP(a),
or a € SP(ap). If the never-meet property is not satisfied, this needs not be the
case, and hence Algorithm 2 cannot be applied to (TDM) for general problems.
To resolve this problem (and to obtain a heuristic by applying Algorithm 2) one
can either allow that the same element is added more than once to Compose in
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step 2 (this would mean to duplicate activities until the never-meet property is
satisfied), or to update the values of maintain to the larger one, if an element
which is already contained is added.

(TDM-const) and (TDM) can both be solved by branch and bound, taking Z,
as branching variables and reducing the number of conflicts with the never-meet
property in each node. Lower bounds are derived in [Sch03]. Details and imple-
mentations are under research.

Two other directions of future research in delay management should be men-
tioned. First, it is a challenging task to make delay management approaches
applicable in railway transportation. The drawback here is that on the tracks
capacity constraints have to be taken into account. Different possibilities how
such constraints can be included in the models are under research. Second, it is
an open field to deal with the stochastic nature of the delays instead of assuming
that the source delays are fixed.

Appendix
Proof of Theorem 1: (TDM-A) and (TDM-C) lead to the same set of optimal
solutions y € R,

Proof: First, using (18) the objective function of (TDM-C) can be reformulated
to

from-—c = Z we(y; — yi) + Z waZa(T — ;)

a=(i,j)€As a:(i;j)eAchange
= > D wAy-w+ ) Y wBz(T —y)
a:(i,j)EAS pEPs:a€p a:(iaj)EAchange pEPs:a€p
= Z Wp Z Zo (Y5 — vi) + Z 2802a(T — yj)
peEPS a=(i,j)EA%:a€p a:(iyj)EAchange
acp
=: Z wpCp.
peP*

For the objective of (TDM-A), we define
Ay = yip)(1 = 2) + Tz

(TDM-C) = (TDM-A): Let (y, z, Z, w) be feasible for (TDM-C). Define z, =
2,(Z) as follows:

(35)

v J 0 ifz,=0forall a €pn Acrange
(%) = { 1 otherwise
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Then (6) holds due to (13), (7) holds due to (14), and (8) is trivially sat-
isfied, if 2, = 1, and for 2, = 0 we know that z, = 0 for all @ € p and
hence (8) holds because of (15). This means (y, z) is feasible for (TDM-A).
It remains to show that A, < C,. To this end, let p = (s,41,...,i) € P*
be a path with i(p) =ir.

Case 1: z, =0 for all @ € pN Achange- Then, we defined z, = 0. From (16)
we get that 22 =1 for all a € p. Since y, = 0 we conclude that

sz Z yj_yi:yiL_ys:Ap-

a=(i,j)€A%:a€p

Case 2: There exists a € p N Acpange With Z, = 1. Choose ¢ minimal with
respect to < with this property, say @ = (iz_1,4;). Then, since z,, 2P
satisfy (16) and (17) we obtain

ZP = Oforalla€pwitha <a
zP = 1forall a € p witha <X a.

Hence, for all a € Agpgnge N we get

by 1 ifa=a
a”@ 1 (0 otherwise

This yields

C, = Z Yi — i + (T — ys;)

a=(i,j)€A%:a€p
and a<a

= yifc_ys—i_T_yi;;:T:Apa

and consequently, fron o (Y, 3, % w) = from a(y, 2(2))-

(TDM-A) = (TDM-C): Now let a feasible solution (g, z) of (TDM-A) be
given. We replace ¢ by a time-minimal solution y which satisfies y; < T
for all 7 € £, and has equal or better objective value (see Lemma 1). Since
y satisfies (6) and (7) we can construct a feasible solution for (TDM-C)
according to (23),(24), and (25).

For the objective value of this solution we again compare C, and A, for a
path p = (s,i1,...,i5) € P*® and get:

Case 1: If 2, = 0, we get from (8) that y; —y; < s, for all a = (i, j) € p.
Hence, due to the definition of z, we conclude that z, = 0 for all
a € p N Achange, yielding C, = y;) = A, analogously to Case 1 of the
first part of the proof.
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Case 2: Now consider the case z, = 1.

Case 2a: y; — y; < s, for all a = (7,j) € p, yielding that z, = 0 for
all @ € p and hence C), = y;p,) < T = A,.

Case 2b: There exists a = (¢,j) € p such that y; —y; > s,. This
gives us Z, = 1. Choose @ = (iz_1, i3) minimal with respect to <
with this property. Then, from the definition of z? we get

2P = Oforalla€pwitha <a
ZP = l1forallaepwitha<Xa

and analogously to Case 2 of the first part of the proof C, =T = A,,.
Together, from—a(7,2) > from-a(y, 2) > from—c(y, C(y)).

Combining both directions yields that there exists an optimal solution for (TDM-
A) with delays y if and only if there exists an an optimal solution for (TDM-C)

with the same delays y. QED
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