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Abstract. Summary of results on the complexity status of the STATION
LOCATION problem.

1 Introduction

[KPS+02] [HLS*01] [MWO04] [Scho2] [?]

2 N P-Completeness

Problem 2.1 (STATION LOCATION). Given a geometric graph G = (V, E), i.e.
a set V of vertices in the plane (stations, switches, bends) and a set E of edges
(lines) represented as straight line segments, a set P of points in the plane
(settlements)and a fixed radius R. Find a minimum number of vertices S (new
stops) on the edges such that P C cov(S), where cov(S) = {z € R? : d(z,S) <
R}.

It was shown in [SHLWO02] that there exists a finite set C of candidate lo-
cations for new stops which contains an optimum solution and which can be
computed by an algorithm which is polynomial in the sizes of G and P.

1 if ¢ covers p
0 otherwise
p € P,c € C) is called the covering matrix of an instance of STATION LOCATION.

Definition 2.2. The matriz A = (ap.) with ap. = { (for all

In the following we will assume that some fixed set of candidates is given
and sometimes use the terms rows and stations (resp. columns and candidates)
as synonyms.

Given this, STATION LOCATION can be seen as a specialization of the well-
studied SET COVERING (aka. HITTING SET) problem. We use the following
notation to describe it as a linear problem:

min cx
s.t. Az > 1, (SCP)
z € {0,1}V,



where 1,, € RM denotes the vector consisting of M ones, ¢ € RY contains the
costs of the columns, and A°" is an M x N-matrix with elements a,,; € {0,1},
m=1,...,M, 37 =1,...,N. We may assume without loss of generality that
A neither has zero rows nor zero columns and that the costs ¢; are positive.

The goal is to find an optimal solution z*, or equivalently, an optimal set
N* C N :={1,...,N} of columns of A, where N* = {n € N : 2}, = 1}.

Theorem 2.3 ([HLS*01]). STATION LOCATION is N'P-complete.

Definition 2.4. 1. A matriz A over {0,1} has the strong consecutive
ones property (C1P) if all of its rowsm € {1,..., M} satisfy the following
condition for all j1,j2 € {1,...,N}:

amjy = 1 and amj, =1 == amj = 1 for all j1 < j < .

2. A matriz has the consecutive ones property (C1P) if there ezists a
permutation of its columns such that the resulting matriz has the strong
consecutive ones property

3. Let 1, (rm) be the index of the leftmost (rightmost) 1 in the m-th row of
AV, A matriz A with strong C1P is strictly monotone if the sequence
(Im)i<m<m and (Tm)i<m<m are strictly increasing.

Theorem 2.5 ([SHLWO02]). STATION LOCATION is polynomially solvable if
the covering matriz has consecutive ones property. This is the case if no settle-
ment can be covered from more than one line.

Lemma 2.6. Let A = (A;1|A;) where Ay and Ay both are strictly monotone
matrices. Then the SET COVERING problem with coefficient matrix A can be
solved in polynomial time.

Proof.

Theorem 2.7. STATION LOCATION is N'P-complete in the strong sense, even
for the case that no settlement can be covered from more than two tracks.

Proof. By reduction from PLANAR VERTEX COVER. In [GJS74] it has
been shown that this problem remains NP-complete even for planar graphs
with maximum degree 6. We can further constrain this to maximum degree
3: PLANAR DEG-6 VERTEX COVER x PLANAR DEG-3 VERTEX
COVER (PD3VC). Therefor we replace every node of degree six by the gadget
of eleven nodes shown in Fig. 1. A very similar procedure works for nodes of
degree four and five. So that the resulting graph G’ has |V | 4+ 10vg + 8v;s + 6v,4
nodes, maximum degree 3, and is still planar (vg,vs, and v, are the numbers of
nodes of degree six, five and four, resp., in the original graph G). A node cover
of size K in G exists if and only if a node cover of size K' := K + 5vg + 4vs + 3vy
exists in G'.

The next step is to reduce PD3VC to STATION LOCATION. There exists a
planar orthogonal unit grid drawing of G’ with O(n?) area and at most 2n + 4



Fig. 1. PLANAR DEG-6 VERTEX COVER x PLANAR DEG-3 VERTEX COVER

bends which is constructible in polynomial time (cf. [dBETT99], Theorem 4.16).
We construct an instance of STATION LOCATION as follows: Let R = 1/4 and
construct the settlements and candidates as follows. The unit grid cuts every
edge into segments of unit length. Let S be the set of all these segments. Each
grid segment of an edge has either two, one, or zero nodes of G' at its ends.
First, replace every node in V by a candidate. Then, replace the segments by
settlements and candidates according to the gadgets shown in Fig. 2. The result
of this construction is sketched in Fig. 3.

Fig. 2. Three gadgets (right) for the three different types of segments (left). Settlements
are depicted by squares, candidates for stations as small discs. The big circles indicate
the covering radius. The grid is dashed.

Note that, after all segments have been replaced, there are exactly |V|+2|S|
candidates and 3|S| settlements. Further note, that settlements are covered from
candidates from different segments if and only if the corresponding segments are
adjacent and no settlement is covered by more than two candidates. Finally, let

K":=K'+|S| .



Fig. 3. PD3VC o STATION LOCATION (with vertex cover resp. station cover in grey)

A vertex cover of cardinality K’ in G’ exists if and only if there is a solution
with cardinality K" for the constructed instance of STATION LOCATION. As the
construction works in polynomial time, this implies the A"P-completeness of this
variant of STATION LOCATION.

Corollary 2.8 The STATION LOCATION problem remains NP-complete even
for the case that the covering matriz can be written as (A|B), where A and B
have the consecutive ones property (even if (A|B) has ezactly 2 ones per row, A
has no more than one one per row and B has no more than two ones per row).

Proof. Consider the instance of STATION LOCATION and the graph G’ con-
structed in the above proof. There are two classes of candidates: Candidates
corresponding to nodes of G’ and candidates on edges of G'. Assign columns
corresponding to candidates of the first class to A and columns corresponding
to candidates of the second class to B. Order the columns of B in the natural
way, namely corresponding to their order on the edges between two nodes of G’
(cf. Fig. 3). Then the following properties hold:

1. No row of A has more than one entry, because every station can only be
reached by one class-A node. It follows that A has C1P.

2. An ordering of the columns of B following the above rule exists. For every row
covered by columns of B the (up to two) columns covering it are consecutive.

It follows that A and B have C1P and no row of (A|B) has more than two
non-zero entries.

3 Approximation

In [LY94] it is shown that SET COVERING cannot be approximated within a

factor of log(n) unless some likely assumption on complexity classes holds. Using
the so called shifting technique of [HM85] it was shown in [FCBO01] that a PTAS



exists for COVERING BY Discs, which is similar to STATION LOCATION except
for the fact that the locations for new stations are not restricted. [GGRVO01]
found a PTAS for a problem which is almost identical to STATION LOCATION,
however “cheating” a bit by assuming that stations cannot be arbitrarily close
to each other. However, these techniques cannot be easily adapted to our more
general problem, although the could probably work well in practice.

3.1 A block-based reformulation

Definition 3.1. If A%V is a row of A let bl,, be its number of blocks of
consecutive ones.

If a matrix has the consecutive ones property, i.e., bl,,, = 1 for all rows m, the
permutation of the columns making the ones appear consecutively can be found
by using the algorithm of [BL76,MPT98]. This algorithm can be performed in
O(MN). Without loss of generality we can therefore assume that a matrix with
consecutive ones property is already ordered, i.e. we assume that its ones already
appear consecutively in all of its rows. We say that a SET COVERING problem
has C1P if its covering matrix A°" has C1P.

Since SET COVERING problems in which AV has the consecutive ones prop-
erty can be solved efficiently the idea is to split each row m with bl,, > 1 into
bl,, rows, each of them satisfying the consecutive ones property, and to require
that at least one of these rows needs to be covered. We remark that the condi-
tion of the above definition will turn out to be necessary to ensure an efficient
behavior of our solution approach, but still there remain instances that cannot
be solved in reasonable time by our approach although satisfying the almost
consecutive ones property. Another criterion to classify well-solvable
matrices will be made precise at the end of this paper.

Now consider a zero-one matrix AV with M rows, such that bl,, = 1 for
m=1,...,p), and bl,,, > 1 in the remaining rows p+1,..., M.

For the ith block of consecutive ones in row m let

— fm,i be the column of the first 1 of block ¢ and
— Ui be the column of its last 1.

This means, that

o = 1 if there exists ¢ € {1,...,bl} such that fr,; <Jj <ln;
™ 7 10 otherwise.

Consider a row A%V of A®Y with bl,,, > 1. According to the transformation
introduced in [?] we replace ASY by bl,, rows,

B, B2y -+ Bl

each of them containing only one single block of row A,,, i.e., we define the jth
element of row B, ; as

1 if fm,i S .7 S lm,z’
0 otherwise.

(Bm,i)j = {



Due to [?] the SET COVERING problem (SCP) is hence equivalent to

min cx
s.t. Az >1 form=1,...,p
Bt 2 yms form=p+1,..., M,i=1,...,bly,
Z;’lz”iym,iZI form=p+1,.... M
Ym,i € {0,1} form=p+1,...,M,i=1,...,bl,,
z € {0, 1}V,

(SCP?)

It is more convenient to rewrite (SCP’) in matrix form. To this end, we define

— the matrix A as the first p rows of A%,

— bl = fo:p 11 bl as the total number of blocks in the “bad” rows of A,
i.e., in rows of A®V without consecutive ones property,

— I as the bl x bl identity matrix,

— B as the matrix containing the bl rows By, ;, m =p+1,..., M,i=1,...,bl,
and

— C as a matrix with M — p rows and bl columns, with elements

. +i—1 . +i
cij = 1 if Efn;pﬂ bl <j< an:zpﬂ bl
0 otherwise.

(SCP’) can hence be reformulated as

min cz
s.t. Ax >1,
Br —Iy > 0y ;
Cy> Ly, (86F)
x € {0,1}V,
y € {0,1}%

The constraint C'y > 1,,_, makes sure that at least one block of each row
ACY with m > p+ 1 is covered.

Note that all three matrices A,B, and C have the consecutive ones property.
Unfortunately, the coefficient matrix of (SCP’) does not have the consecutive
ones property, and is in general even not totally unimodular.

3.2 Approximation

We first clarify the complexity status of SET COVERING problems with at most
k blocks of consecutive ones per row.
Let &k be an upper bound on the number of blocks in each row of A, i.e., such
that
bl, <kforallm=1,..., M.

Corollary 3.2 For k =1 the SET COVERING problem is polynomially solvable,
for all fixed k > 2 the problem is NP-hard.



Algorithm 1: Linear Programming Heuristisc
Input: M x N matrix A
QOutput: approximate solution &
Solve LP-Relaxation of the reformulation (**) to obtain a solution (z",y").
form:=1,...,M do
Find an index i(m) with Y i(m) = Ym.,i for all k=1,...,0l;.
Define

[ VI R

_ _{1 if 5 = i(m)

Ymi =10 otherwise.

<3

Solve min{cz : Bz > ¢,z € {0,1}"} to obtain Z.
return 7.

(=]

We suggest the following algorithm, for which we will show that it provides a
k approximation, if k is an upper bound on the number of blocks of consecutive
ones per row.

Note that Algorithm 1 can be solved by linear programming, since in Step 3,
the coefficient matrix has the consecutive ones property. More efficent approaches
for solving SET COVERING problems with consecutive ones property can be
found in [NW88,?,?].

Theorem 3.3. Algorithm 1 is a k approximation algorithm, where

k= max bl,.
m=1,...,

Proof. Let (z*,y*) be an optimal solution and (z",y") be an optimal solution of
the linear programming relaxation of (SCP’). This means that

cx” < cx*. (1)

Now note that
ky:n,i > gm,i- (2)
This trivially holds for §,, ; = 0, while for §,, ; = 1 we know that

e '
.= max
Ym,i k=1,...,blm Ym,k

1 r
% Z ym,k

k=1,...,blm

\Y
|~

since Cy > 1y,

5

v
=

Moreover,

min{cz : Bx > §} = min{cz : Bz > §,z € {0,1}"V},



since in any optimal solution of the latter, z < 1, and the the integrality con-
straint z € NV can be deleted since B has the consecutive ones property and
hence is totally unimodular.

Now estimate B(kz") as

B(ke") = kBa" > ky” > §,

where the last inequality is due to (2). In other words, kz" is feasible for {z :
Bz > §}, and hence we get

kcx™ > min{cz : Bz > §}
= min{cz : Bz > §,z € {0,1}"}
=cz
Combining the latter with (1) we finally obtain
¢t < kex” < kex”.

Theorem 3.4. Is there a factor ¢ algorithm for for STATION LOCATION? So
far not. ..

Theorem 3.5. Is there a PTAS for STATION LOCATION? So far not. ..

Theorem 3.6. There is no FPTAS for STATION LOCATION since it is strongly
NP-complete.

4 Parameterized Complexity

Theorem 4.1. STATION LOCATION is solvable in O(poly(m,n) - 2F) if the dis-
tance between the first and last 1 is not greater than k for every column of A.

5 Conclusion

Remark 5.1. C1P for columns is more important than for rows

Niedermayer, Rossmanith 2002 JDA, Hitting Set kernel
Nemhauser Trotte Math. Prog, 1975 Vertex Cover
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