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Abstract

Assume that a train reaches a station with delay. At the station there
is a bus ready to depart. The question if such a bus should wait for the
delayed train or if it should depart on time is called the delay management

problem. Different single objective functions for this problem have been
introduced and analyzed. In this paper, we present a bicriteria model for
the delay management problem, taking into account both the delay of the
vehicles and the number of passengers who miss a connection. Our model
does not depend on detailed data about the passengers and can hence
easily be implemented in practice.

To analyze the problem, we present an integer programming formula-
tion and a graph-theoretic approach which is based on discrete time/cost
trade-off project networks. Using results of project planning we develop an
efficient solution method. We tested our procedure using real-world data.
The results show the applicability of the approach.

1 Introduction and Literature Review

Since delays are a major reason for complaints about public transportation, many
railway companies increase their efforts in avoiding delays. This can be done by
determining delay-resistant timetables (Liebchen and Stiller 2006; Liebchen et
al. 2007) or by including this goal in earlier planning steps, e.g. during the line
planning process (Schöbel and Schwarze 2006). However, many delays are not
avoidable. In this paper we aim to minimize passengers’ inconvenience in case of
delays. To this end, let us first discuss which effect the delay of a bus or train may
have on the passengers: If a vehicle reaches a station with a delay, passengers

∗partially supported by the Future and Emerging Technologies Unit of EC (IST priority -
6th FP), under contract no. FP6-021235-2 (project ARRIVAL).
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getting out there reach their destination with this delay. The situation becomes
worse if a passenger wants to change from the delayed vehicle into another bus
or train, but misses the connection. In this case he may have to wait a long time
before the next vehicle towards his destination arrives.

The situation for one single station, and only one wait-depart decision is depicted
in Figure 1. Here, vehicle g arrives with a delay. The question is to decide if the
vehicles h and h′ should wait for g or depart on time.

g h’

hv

Figure 1: The wait-depart decision at one single station.

It turns out that there are two conflicting goals: If all departing vehicles wait
for delayed feeder trains (or buses), no connections will be missed, but the sum
of delays over all vehicles will be enormous. On the other hand, if all vehicles
depart as punctual as possible, the number of delayed vehicles is minimized, but
many connections will be missed. We hence face a bicriteria problem. However,
only the following two (single-criterion) approaches have been investigated in the
literature so far:

1. The weighted sum of both functions has been minimized by an enumeration
procedure and by a greedy heuristic within a max-plus algebraic model
(De Schutter 1998; De Schutter and van den Boom 2001).

2. Another possibility is to minimize the average delay of the passengers. Lin-
ear integer programming formulations for this approach can be found in
(Schöbel 2001; Schöbel 2007) and were further developed in (Giovanni et
al. 2006). The NP-completeness of this problem has been shown in (Gatto
et al. 2005). Dynamic programming has been used in (Gatto et al. 2004)
to identify polynomially solvable cases. A branch & bound approach is
presented in (Schöbel 2006).

Due to the size and complexity of the problem other approaches mainly use
simulation and expert systems. We refer to (Suhl et al. 2001) for providing a
knowledge-based expert system including a simulation of wait-depart decisions
with a what-if analysis. Simulation has also been used in (Ackermann 1999; Suhl
and Mellouli 2001). Concerning applicability, a project in cooperation with the
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largest German railway company Deutsche Bahn is described in (Bissantz et al.
2005).

A drawback of many of the existing models concerns their applicability for real-
world problems, since in many cases very detailed data about the passengers is
required: As input, an origin-destination matrix (OD-matrix) is needed, which
provides information not only on the relations but also on the time at which the
passengers start their journeys. While OD-matrices are sometimes known for
railway transportation, many bus companies do not have this information, and
time-dependent OD-matrices are usually not available at all. In particular, nearly
nothing is known about passengers transferring between different transportation
companies. The bicriteria approach presented in this paper does not need such
detailed data and can hence be implemented in practice.

The remainder of the paper is structured as follows: We prove the NP-hardness
of the bicriteria delay management problem (BDM) and present an integer pro-
gramming formulation of (BDM) in Section 2. In Section 3 we discuss a simple
variant of the problem, in which we assume that the wait-depart decisions are
already given. We show the relation of this problem to project planning and
how it can be solved by a shrinking method. Based on these results, we finally
present an exact solution method for the bicriteria delay management problem
in Section 4. Numerical results using real-world data of a large traffic association
in the Palatinate region of Germany are discussed in Section 5.

2 A model for the bicriteria delay management

problem

Let a public transportation network, a set of vehicles (buses or trains), and a
timetable be given. Assume that some (unexpected) source delays occur. In
the bicriteria delay management problem, the goal is to decide if vehicles should
depart on time or wait for possibly delayed feeder vehicles. Our goal is to minimize
the following two objective functions:

• The sum of all delays of all vehicles at all stations, and

• the weighted number of missed connections.

In order to formulate (BDM), we use the concept of event-activity networks,
see e.g., (Nachtigall 1998) and references therein. Given a public transporta-
tion network PTN = (V, E) and the set of vehicles F , the corresponding event-
activity-network N = (E ,A) is constructed as follows. We define a set of nodes,
representing arrival events and departure events

E := Earr ∪ Edep,
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and a set of arcs, representing driving activities, waiting activities (relevant for
the vehicles) and changing activities (relevant for the passengers)

A := Adrive ∪Await ∪ Achange

as follows:

Earr = {(v, g, arr) : vehicle g ∈ F arrives at station v ∈ V },

Edep = {(v, g, dep) : vehicle g ∈ F departs from station v ∈ V },

Adrive = {((v, g, dep), (v′, g, arr)) ∈ Edep × Earr : vehicle g goes

directly from station v to v′},

Await = {((v, g, arr), (v, g, dep)) ∈ Earr × Edep}

Achange = {((v, g, arr), (v, h, dep)) ∈ Earr × Edep : a changing

possibility from vehicle g into h at station v should be provided}.

If a ∈ A is an activity joining events i and j of E , we write a = (i, j). Note that
an event-activity network is a time-expanded network and hence never contains
directed cycles. An example for an event-activity network representing the PTN
of Figure 5 is given in Figure 2.

driving
driving

driving

waiting

driving

changing

changing

of vehicle g

of vehicle g

of vehicle g

of vehicle h

waiting of vehicle h

of vehicle h

from vehicle h to g

from vehicle g to h

g,v1,dep

g,v0,arr

g,v0,dep

g,v2,arr

h,v4,arr

h,v0,dep

h,v0,arr

h,v3,dep

Figure 2: An event-activity network.

A timetable Π = (Πi)i∈E specifies the arrival and the departure time of each
vehicle at each station, i.e. it assigns a time Πi to each event i ∈ E . In case of a
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delay of event i, its actual departure time (if i ∈ Edep) or its actual arrival time
(if i ∈ Earr) yi does not coincide with the scheduled time Πi, i.e., we have

yi > Πi.

Also the arrival and departure times of other subsequent events may have to be
updated in this case. To obtain feasibility of such an updated timetable, we need
some further notation. For an activity a = (i, j) ∈ A its scheduled duration
is given by Πj − Πi. On the other hand, let La = Lij be the technical minimal
duration which is needed to perform activity a. In case that a ∈ Adrive is a driving
activity, La is the driving time needed, if the vehicle drives with maximum speed,
and in case of a ∈ Achange, La may refer to the time needed for the corresponding
transfer. We assume that the given timetable is feasible, i.e.,

Πj − Πi ≥ La

for all activities a = (i, j) ∈ A. The slack time sa = Πj − Πi − La is the time
which can be saved if activity a = (i, j) is performed as fast as possible.

We finally assume that all source delays da are known, where a source delay of
da = 0 means that the activity can be performed within the scheduled time. If
some activities have a source delay da > 0, the original timetable Π may not be
realizable any more. In this case, the original timetable needs to be updated. A
feasible update is called a disposition timetable. It is given by updated times yi

for all events i ∈ E such that

yi ≥ Πi for all i ∈ E and , (1)

yj − yi ≥ La + da for all a = (i, j) ∈ Await ∪ Adrive. (2)

Constraint (1) means that an event must not be scheduled earlier as in the orig-
inal timetable, while constraint (2) ensures that the source delays are taken into
account, and that a delay is transferred correctly along driving and waiting ac-
tivities. The model for the bicriteria delay management problem is hence the
following.

(BDM) Given N = (E ,A), a feasible timetable Πi for all i ∈ E , minimal du-
rations La for all activities a ∈ A, the number wa of passengers who want
to transfer at activity a ∈ Achange, and source delays da, determine a dis-
position timetable y = (yi)i∈E such that the following two objectives are
minimized simultaneously.

The sum of all delays over all vehicles and all stations:
∑

i∈E yi−Πi,
which is equivalent to the minimization of

fE(y) =
∑

i∈E

yi
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The weighted number of missed connections given as

fA(y) =
∑

a=(i,j)∈Achange:yj−yi<La

wa

What we mean by “minimizing simultaneously” is to find Pareto solutions which
are described next: Let y1, y2 denote two disposition timetables. Then y1 domi-
nates y2 if

fE(y1) ≤ fE(y2) and

fA(y1) ≤ fA(y2),

where at least one of the inequalities is strict. A Pareto solution is a disposition
timetable which is not dominated by any other disposition timetable. For an in-
troduction into multicriteria combinatorial optimization we refer e.g. to (Ehrgott
2005).

The objective space of (BDM) is given by
{(

f1(y)
f2(y)

)

: y is a disposition timetable

}

.

A point

(

fE(y
∗)

fA(y∗)

)

in objective space is called an efficient point if y∗ is a Pareto

solution. In this paper we will present an algorithm for determining all efficient
points, each of them together with a Pareto solution y∗.
Note that instead of minimizing the sum of all delays it is also possible to consider
arrival delays only, or to deal with delayed events instead of delayed activities
(Schöbel 2006).

Our first result clarifies the complexity status of (BDM).

Theorem 1 (BDM) is NP-hard, even if no two connections are contained in the
same connected component of the given PTN.

Proof: We reduce (BDM) to the knapsack problem, which is NP-hard (Garey and
Johnson 1979). Given an instance of the knapsack problem, i.e., n items, each
of them with cost ck and benefit bk, k = 1, . . . , n, and threshold parameters C

and B does there exist a subset of items with total weight less than or equal to
C and a total benefit of at least B?

Given an instance of the knapsack problem, we construct an instance of (BDM),
in which each wait-depart decision corresponds to one of the n given items of the
knapsack problem. To this end, we first construct a public transportation network
PTN = (V, E) as follows: V consists of 3n nodes, numbered by v1k, v2k, v3k,
k = 1, . . . , n. The edge set is given as

E = {(v1k, v2k), (v2k, v3k) : k = 1, . . . , n}.
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Construct 2n vehicles t1, . . . , tn, t̄1, . . . , t̄n where tk goes from v1k to v2k, while t̄k
starts at v2k and arrives at v3k, see Figure 3. We assume the (easiest) case of zero
slack times, i.e., La := Πj − Πi for all a = (i, j).

...

v11

v21

v12

v22

v1n

v2n

v32v31 v3n

t1 t2

t’2t’1

tn

t’n

Figure 3: Reduction of (BDM) to the knapsack problem.

There are n changing activities ak, k = 1, . . . , n, where ak refers to the changing
activity at station v2k, i.e., from (tk, v2k, arr) to (t′k, v2k, dep). As weight for ak

we set wak
:= bk.

Furthermore, assume that each of the driving activities from (tk, v1k, dep) to
(tk, v2k, arr) is delayed by ck, k = 1, . . . , n, and we set C ′ :=

∑n

k=1 ck + 2C
and B′ :=

∑n

k=1 bk − B.
Claim: There exists a solution to (BDM) with fE ≤ C ′ and fA ≤ B′ if and only
if the instance of the knapsack problem can be answered by yes.
To see this equivalence, let y be a solution of (BDM) and define

U∗ := {a = (i, j) ∈ Achange : yj − yi ≥ La}

as the set of maintained connections, each of them corresponding to an item
packed into the rucksack. The set of vehicles which do not depart on time hence
is

K∗ = {k : ak ∈ U∗} = {k : t′k waits for tk at v2k}.
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We obtain

fE(y) ≤ C ′

⇐⇒
n

∑

k=1

y(tk,v2k ,arr) − Π(tk ,v2k ,arr) +
∑

k∈K∗

y(t′
k
,v2k,dep) − Π(t′

k
,v2k ,dep)

+
∑

k∈K∗

y(t′
k
,v3k,arr) − Π(t′

k
,v3k ,arr) ≤ C ′

⇐⇒
n

∑

k=1

ck + 2
∑

k∈K∗

ck ≤
n

∑

k=1

ck + 2C

⇐⇒
∑

i∈U∗

ck ≤ C

and

fA(y) ≤ B′

⇐⇒
∑

a6∈U∗

wa ≤ B′

⇐⇒
∑

k 6∈K∗

bk ≤
n

∑

k=1

bk − B

⇐⇒
∑

k∈U∗

bk ≥ B.

This establishes the claim and consequently shows the NP-completeness.
QED

We now formulate (BDM) as a bicriteria (linear) integer program. We use two
types of variables:

• The disposition timetable is given by integer variables yi for all events i ∈ E ,
while

• the binary variables za determine if a connection a ∈ Achange is maintained
or not. More precisely,

za =

{

1 if a is not maintained
0 if a is maintained.

Furthermore, let M >
∑

a∈A da. The integer programming formulation of (BDM)
is the following.

min

(
∑

a∈A waza
∑

i∈E yi

)

(3)
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such that

yi ≥ Πi for all i ∈ E
yj − yi ≥ La + da for all a = (i, j) ∈ Await ∪ Adrive

Mza+ yj − yi ≥ La for all a = (i, j) ∈ Achange

yi ≥ 0 for all i ∈ E
za ∈ {0, 1} for all a ∈ A

This formulation is correct due to the following result.

Lemma 1 For M sufficiently large we have that

za = 1 ⇐⇒ yj − yi < La

in any Pareto optimal solution of (3).

Proof: Let a feasible solution (y, z) with objective value

(

zA
zE

)

be given. Take

a = (i, j) ∈ A. First note, that for za = 0, the constraint Mza + yj − yi ≥ La

yields yj −yi ≥ La. On the other hand, suppose that za = 1, but yj −yi ≥ La. In
this case we change za from 1 to 0 to obtain a new feasible solution with objective
value

(

zA − 1
zE

)

<

(

zA
zE

)

strictly dominating (y, z). Consequently, (y, z) is not Pareto optimal.
QED

3 The delay management problem with fixed

connections

An important building block for the main algorithm presented in Section 4 is
the solution of the delay management problem with fixed connections (DM-Fix).
In this variant we assume that the set of connections Afix ⊆ Achange which
have to be maintained has been fixed beforehand. In the resulting problem we
only have to calculate the disposition timetable yi for all events i ∈ E . We will
use this (simple) problem to construct a project network and solve it by the
shrinking method of project planning. The resulting procedure will be needed in
the approach for solving the bicriteria delay management problem (BDM).

(DM-Fix) Given N = (E ,A), a feasible timetable Πi for all i ∈ E , durations
La for all activities a ∈ A, source delays da and a set of changing activities
Afix ⊆ Achange determine a disposition timetable yi, i ∈ E satisfying

yj − yi ≥ La for all a = (i, j) ∈ Afix (4)

and minimizing fE =
∑

i∈E yi.
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Note that (DM-Fix) can be solved easily by setting za = 1 for all a ∈ Afix in the
integer program (3) which consequently simplifies to the following one-criteria
linear program.

min
∑

i∈E

yi (5)

such that

yi ≥ Πi for all i ∈ E
yj − yi ≥ La + da for all a = (i, j) ∈ Await ∪Adrive ∪Afix

yi ≥ 0 for all i ∈ E .

The coefficient matrix of (5) is totally unimodular (Schöbel 2006), such that the
solution of the linear program is integer. Hence the disposition timetable y can
assumed to be in minutes (which is usually required in practice), and (DM-Fix)
can be solved efficiently by linear programming methods. Other approaches which
give more insight when solving the bicriteria problem (BDM) will be presented
in the following.

We first construct a project network N̄ from the event-activity network N as
follows.

Ē := E ∪ {s, t} (6)

Ā := Await ∪Adrive ∪Afix ∪ {(s, i) : i ∈ E} ∪ {(i, t) : i ∈ E} (7)

L̄a :=







La + da if a ∈ Await ∪ Adrive ∪ Afix

Πi if a = (s, i), i ∈ E
0 if a = (i, t), i ∈ E

(8)

The additional arcs a = (s, i) ∈ Ā \ A are called timetable arcs.

The resulting project network N̄ = (Ē , Ā) is an acyclic digraph with exactly one
source s and one sink t. In project planning, s represents the start of the project
and t its completion. Ā refers to the activities that have to be performed. Note
that for each event i ∈ Ē there exists an s-t-path in N̄ containing i. Furthermore,
the network does not contain directed cycles, such that a partial order can be
defined as follows: For a, a′ ∈ Ā we order a′ ≺ a if a′ occurs before a on a path
from s to t.
Activity a can only be performed if all activities a′ with a′ ≺ a have been com-
pleted. The classical goal in project planning is to find the makespan, i.e., the
minimal completion time of the whole project. It is well known that this can be
done efficiently, e.g., by the critical path method (CPM) (Elmaghraby 1977).

Applying the forward phase of the critical path method (CPM) to the project
network N̄ recursively yields a disposition timetable ȳ with
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• ȳs := 0

• ȳj = maxi:(i,j)∈Ā{ȳi + L̄ij}

minimizing the completion time of the project. But in delay management we are
not interested in minimizing the completion time of the project, which is the time
(at the end of the planning period, e.g. at night) when the last bus reaches its
depot. We are, however, interested in minimizing the sum fE of all delays over all
vehicles during the planning period. The next result shows that CPM achieves
this goal.

Theorem 2 The forward phase of the critical path method (CPM) finds an op-
timal solution of (DM-Fix).

Proof: Let ȳ be the timetable calculated by (CPM) and let y be another feasible
timetable such that

fE(y) =
∑

i∈E

yi <
∑

i∈E

ȳi = fE(ȳ).

Take j∗ minimal w.r.t. ≺ satisfying yj∗ < ȳj∗. Then

yj∗ < ȳj∗ = max
i:(i,j∗)∈Ā

ȳi + L̄ij∗

≤ max
i:(i,j∗)∈Ā

yi + L̄ij∗

= yi∗ + L̄i∗j∗,

meaning that there exists i∗ ≺ j∗ which is not completed at time yj∗.

Case 1: i∗ ∈ E and (i∗, j∗) ∈ Await ∪ Adrive. Then L̄i∗j∗ = Li∗j∗ + di∗j∗, but
yj∗ < yi∗ + Li∗j∗ contradicts the feasibility of y, see constraint (2).

Case 2: i∗ ∈ E and (i∗, j∗) ∈ Afix. Then yj∗ < yi∗ + Li∗j∗ does not maintain
the connection due to the changing arc (i∗j∗) and is hence not feasible for
(DM-Fix), see (4).

Case 3: i∗ = s. In this case yi∗ = 0 and L̄i∗j∗ = Πj∗. Hence, yj∗ < 0 + Πj∗ which
contradicts (1). Consequently, y is not feasible.

QED

Unfortunately, CPM is not suitable to solve bicriteria project planning problems
like (BDM). But there are other possibilities of minimizing the project length
except of CPM. One of them (which can be easily extended to multi-criteria
problems) is to find a longest path of the network. Unfortunately, this method
cannot be adapted to solve (DM-Fix) since our objective function is not only
dependent on the longest path, but on the delays of all paths from s to t. On a
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first glance, the same holds for the shrinking method (Bein et al. 1992) of project
planning, but in the following we will show that this approach can be used to
solve (DM-Fix). In Section 4 we will then extend the shrinking method to solve
(BDM).

We first sketch the shrinking method for minimizing the project length. It is
based on the following operations:

Serial merge: Let a1 be an arc from i to j, let a2 be an arc from j to k, and
let no other arc in Ā be incident with node j ∈ Ē . Then merge a1 and a2

to one arc a from i to k with length L̄a = L̄a1 + L̄a2 .

Parallel merge: Let a1, . . . , ap be p arcs from i to j. Then merge all of them to
one arc a from i to j with length L̄a = max{L̄a1 , . . . , L̄ap

}.

Node reduction: Let i ∈ Ē such that only one incoming arc a0 is incident with
i, and let a1, . . . , ap be the outgoing arcs (or vice versa). Then merge a0 with
each arc a1, . . . , ap serially to obtain new activities a0

1, . . . , a
0
p; the length of

each new activity is calculated as in the serial merge.

Any project network can be reduced to one single arc from s to t by applying these
three operations. This final arc contains the minimal duration of the complete
project. If the network is a series-parallel network, it can be reduced to one
single arc by applying serial and parallel merges only (i.e. node reduction is not
required).

sink  s

sink  s

sink  s

(L2,0)(L1,d1)

(L1,d1)

(L2,d2)

(L1,d1)

(L2,0)

(L3,0)

(L4,0)

Serial merge:

Parallel merge:

Node reduction:

(Π.0)

sink  s

sink  s

sink  s

Serial merge:

Parallel merge:

Node reduction:

(L1+L2, d1)

(L,d)

(L1+L2,d1)

(L1+L3,0)

(L1+L4,0)

π
πwhere L=max{L1,L2,  }

d=[L−   ]   + d1 + d2

Figure 4: Situation before and after a serial merge, parallel merge, or node reduction,

when calculating the delay.

We now adapt the shrinking method in such a way that we are able to calculate
the delay correctly in the delay management problem. In order to keep track of
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the delay in each of the operations we introduce a second parameter d̄a for each
activity. We furthermore shrink the network in a specific order, namely, we only
merge activities if no preceding activities exist. This is specified in Algorithm 1.
Note that during the reduction process parallel edges may occur, such that the
notation a = (i, j) means activity a goes from event i to event j. Furthermore,
recall that each node (except of the source s and the sink t) is incident with
exactly one incoming timetable arc.

Algorithm 1 for solving (DM-Fix)

Initialize: Set d̄a = 0 for each arc, and let L̄a be defined as in equation (8).

Step 1: Until no further reduction is possible, do (see Figure 4)

Serial merge: Applicable for two activities a1 = (s, i), a2 = (i, j), i, j ∈ Ē if no
other activity is incident with i. Then delete i and merge a1 and a2 to a
new arc a = (s, j) with

L̄a = L̄a1 + L̄a2 (9)

d̄a = d̄a1 (10)

Parallel merge: Applicable for activities a1, . . . , ap with ak = (s, i) for a node
i ∈ Ē if there is no other activity with tail i.

Let as be the (at most one) timetable arc, i.e., L̄as = Πi, d̄as = 0. Then
merge a1, . . . , ap to one arc a = (s, i) with

L̄a = max{L̄a1 , . . . , L̄ap} (11)

d̄a =

{

∑

a=a1,...,ap
d̄a + (L̄a − L̄as) if i 6= t

∑

a=a1,...,ap
d̄a if i = t

(12)

Node reduction: Applicable for activities a0, a1, . . . , ap if a0 = (s, i) and ak =
(i, jk) with i, jk ∈ Ē for k = 1, . . . , p, and no other activities are incident
with i. Then arbitrarily choose an outgoing arc of i, say a1, delete i and
define the merged activities a0

1, . . . , a
0
p with parameters

L̄a0
k

= L̄a0 + L̄ak
, k = 1, . . . , p (13)

d̄a0
1

= d̄a0 (14)

d̄a0
k

= 0, k = 2, . . . , p (15)

Step 2 : If the network has been reduced to one single arc a = (s, t) let fE = d̄a.
STOP.

Before proving the correctness of the algorithm, we present an example.
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v0

vehicle g

vehicle g

vehicle h

vehicle h

v4

v3

v1

v2

Figure 5: A PTN with two vehicles g and h.

Example 1 Consider the situation shown in Figures 2, 5, and 6, consisting of
two vehicles g and h that meet at a station v0 where passengers can change between
the two vehicles.
The planned timetable and the lower bounds for each activity are given. Now let
vehicle g arrive at station v0 with a delay of 10 minutes, i.e., d̄s1 = 10. The
duration of the corresponding driving arc is L̄s1 = 18 + 10 = 28. Figure 6 shows
the complete network for the example, according to (6), (7), and (8), see page 10.
Table 1 shows the disposition timetable yi, the old timetable Πi, and the delay
yi − Πi for all i. The sum of all delays in the network is 23 minutes which is
minimal if both connections are maintained.

node event ȳi Πi delay [min]
s 8:00 8:00 0
1 g , v0, arr 8:28 8:18 10
2 h, v3, dep 8:06 8:06 0
3 h, v0, arr 8:20 8:20 0
4 g , v0, dep 8:32 8:26 6
5 h, v0, dep 8:34 8:27 7
6 g , v2, arr 8:46 8:46 0
7 h, v4, arr 8:47 8:47 0















































∑

i∈E

(yi − Πi) = 23 min

Table 1: New timetable computed by CPM.

The following three lemmas show the correctness of Algorithm 1.
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Figure 6: The PTN of Figure 5 as network N̄ . Activity (s, i) is delayed by 10 minutes.

Lemma 2 N̄ can be reduced to one single arc from s to t by Algorithm 1..

Proof: Let N̄ c = (Ē c, Āc) denote the set of nodes occurring in the network after c

steps of reduction. Note that there exists a directed path from s to each node in
Ē c, and from each node in Ē c to t. Take an arc a1 = (s, i) from s to the earliest
node of the current network, i.e., find i ∈ Ē c such that no node j ∈ Ē c \{s} exists
with j ≺ i.

• Either there are other arcs a = (s, i), then a parallel merge is applicable.

• Otherwise, a1 is the only incoming arc to event i. In this case, either i = t

(then N̄ c consists of one arc only), or i 6= t. In the latter case there exists
at least one arc starting at i, such that

– a serial merge is applicable, or

– a node reduction of node i can be performed.

QED

Lemma 3 Let during the reduction process a = (s, i) be the only activity from s

to i, i ∈ Ē . Then La contains the disposition timetable for event i in the optimal
solution of (DM-Fix).
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Proof: Applying the three shrinking operations together with the rules (9),(11),
and (13) is equivalent to CPM (Elmaghraby 1977). Furthermore, CPM yields an
optimal solution to (DM-Fix) (see Theorem 2). Together, the result follows.

QED

Lemma 4 Let a = (s, t) be the only remaining activity at the end of the shrinking
process. Then fE = d̄a.

Proof: We show by induction that in each step of the shrinking process
∑

a∈Ā d̄a

contains the sum of all delays of events in the set Ẽ , consisting of

• events which have already been deleted during the process,

• timetable events, i.e., events i ∈ Ē such that there exists exactly one incom-
ing arc a = (s, i).

After the initialization, we have d̄a = 0 for all a ∈ Ā. Since no activity has been
deleted, Ẽ only contains events with no incoming activity in Ā, i.e., before the
first delayed activity occurs. Hence, the claim is correct in this case. Now we
discuss each of the three shrinking operations.

Serial merge of a timetable arc a1 = (s, i) and another arc a2 = (i, j) means to
delete event i. Since i has been a timetable event before, and there exists
at least one more arc to j (namely the timetable arc (s, j)) Ẽ does not
change. On the other hand, activity a1 is replaced by a, but with d̄a = d̄a1 ,
justifying the claim.

Node reduction consists of d serial merges. Since the delay of the timetable
arc is transfered to exactly one of the new arcs, the claim stays correct
under this operation.

Parallel merge of a1, . . . , ap, all of them from s to i means that i becomes a
timetable event and is added to Ẽ . We have to show that the new calculation
of the delay includes the delay of event i. First, consider the case that
i 6= t and a1 is the unique timetable arc. Hence, La1 = Πi while L̄a =
maxk=2,...,p L̄ak

contains the (updated) time for event i in an optimal solution
of (DM-Fix) due to Lemma 3. This means, the delay of event i is zero if
L̄a ≤ Π, otherwise the delay is given by L̄a −Πi. Adding this new delay to
d̄ak

, k = 1, . . . , p and using the induction hypothesis proves the result.

In the case that i = t no further delay needs to be added. The claim stays
correct, when replacing a1, . . . , ap by one arc a since all single delays are
added to the delay of the new arc a.

QED

Lemma 3 and 4 together finally show the desired correctness of our procedure.
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Theorem 3 Algorithm 1 yields an optimal solution to (DM-Fix).

Note that using the results of this section (Theorem 2 or 3) the two lexicographical
minimal solutions of (BDM) can easily be determined:

• To minimize the number of missed connections fA we define Afix := Achange

and determine fE by (CPM-F).

• To minimize fE we proceed in two steps: First let Afix = ∅ and determine
fE by solving (DM-Fix) for no fixed connection. This yields a timetable y.
To get the correct value of fA we we have to check if yi − yj < Lij for each
(i, j) ∈ Achange.

Both lexicographic solutions are efficient. In the next section we present an
approach which determines all efficient solutions of (BDM).

4 An exact algorithm for (BDM)

In this section we present an algorithm which finds the set of all efficient solutions
of the bicriteria delay management problem (BDM). The algorithm is an exten-
sion of a procedure by (Demeulemeester et al. 1996) for the discrete time/cost
trade-off problem (DTCTP). It is based on the shrinking method introduced in
the previous section.

Let us start by first sketching the DTCTP and its solution procedure. The goal
in the discrete time/cost trade-off problem (DTCTP) is to minimize the project
length of a given project network, but one has the possibility to shorten the
minimal duration of an activity a ∈ Ā by spending additional money. The
duration L̄a is given as a discrete non-increasing function ga depending on some
cost c. The possible cost-duration combinations of the respective activities are
called modes and are given by {(L̄m

a , cm
a ), m = 1, . . . , Ma}. The goal of (DTCTP)

is to find efficient solutions with respect to the following two criteria:

• minimize the project length, and

• minimize the costs.

While continuous cost-duration functions ga have been widely studied (Elmaghraby
1977; Neumann 1975) and references therein, the literature on finding efficient
solutions in the case of a discrete cost-duration function is rather sparse. (De-
meulemeester et al. 1996) suggest to solve the problem with the following two
procedures. The first algorithm is based on a procedure by (Bein et al. 1992) for
finding the minimal number of reductions necessary to transform a general net-
work to a series-parallel network. The second one enumerates alternative modes
through a branch-and-bound tree. The approach has been further developed in
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(Demeulemeester et al. 1998). It is based on the shrinking method, calculating
the complete set of modes in each shrinking operation. In a serial or a parallel
merge this can be done as follows.

Serial merge: {(L̄m1
a1

+ L̄m2
a2

, cm1
a1

+ cm2
a2

), for all modes m1 of a1, m2 of a2}

Parallel merge: {(maxl=1,...,p L̄ml
al

,
∑p

l=1 cml
al

) for all modes ml of al, l = 1, . . . , p}

Note that many of the modes of the new arc a need not be constructed since they
are dominated by other modes of a.

Unfortunately, the third of the three shrinking operations, namely node reduc-
tion, cannot be performed as easily, since one has to exclude the combination of
two different modes of the same activity later on. Hence, for finding all efficient
solutions one needs to fix a mode in each node reduction and to enumerate all
possible combinations of modes. How to find a minimal set of activities to fix is
described in (Bein et al. 1992). For further details, we again refer to (Demeule-
meester et al. 1996).

We now turn our attention to the bicriteria delay management problem. To model
(BDM) as a discrete time/cost trade-off problem we first have to define modes for
each arc. For all activities a ∈ Achange we define two modes, given by (L̄a, 0) and
(−∞, wa). Choosing the first mode means to maintain the connection, i.e., the
duration of the changing arc has to be included in the calculation. On the other
hand, choosing the second mode means that we do not maintain the connection
and hence loose wa passengers. All other activities (waiting, driving) as well
as the timetable arcs only get one single mode (L̄a, 0). The third parameter,
calculating the delay in each step according to Section 3 is also necessary and
hence included in the modes. Consequently, the modes are given by (duration,
delay, weight of lost connections). In each step we reduce the network as in
Algorithm 1. This can easily be done for serial and parallel merges, but if we
perform a node reduction of some node i we have to distinguish two cases.

Case 1: If the common arc a = (s, i) only has one mode, we proceed as in
Algorithm 1.

Case 2: If a = (s, i) has two or more modes, we fix one of the modes and store
the remaining ones for further investigation.

Note that most of the activities only have one mode such that in many node
reduction steps no activity has to be fixed and no additional branching arises.

Algorithm 2 for solving (BDM)

0. Initialize: Set d̄a = 0 for each arc, and let L̄a be defined as in equation (8).
Initialize one mode m = (L̄a, d̄a, 0) for all a 6∈ Achange and two modes m1 =
(La, d̄a, 0),m2 = (−∞, d̄a, wa) for all a ∈ Achange.
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Step 1: Until none of the following operations is possible, do:

1.1. Serial merge: Applicable for two activities a1 = (s, i), a2 = (i, j), i, j ∈ Ē
if no other activity is incident with i. Then delete i and calculate the modes
of the new activity a by combining each possible combination of modes, i.e.,

{(L̄m1
a1

+ L̄m2
a2

, d̄m1
a1

, w̄m1
a1

+ w̄m2
a2

), for all modes m1 of a1,m2 of a2} (16)

where dominated modes are deleted.

1.2. Parallel merge: Applicable for activities a1, . . . , ap with ak = (s, i) for
one common node i ∈ Ē if there is no other incoming activity of event i.

Let as be the (at most one) timetable arc. Then the modes ml of the new
activity al are given by

{(
p

max
l=1

L̄ml
al

,

p
∑

l=1

d̄ml
al

+ (
p

max
l=1

L̄ml
al

− L̄as),

p
∑

l=1

w̄ml
al

) for all l = 1, . . . , p}

in the case that i 6= t. For i = t the modes are given by

{(
p

max
l=1

L̄ml
al

,

p
∑

l=1

d̄ml
al

,

p
∑

l=1

w̄ml
al

) for all l = 1, . . . , p}

where again, dominated modes are deleted.

1.3. Node reduction: Applicable for activities a0, a1, . . . , ap if a0 = (s, i) only
has one single mode, ak = (i, jk) with i, jk ∈ Ē for k = 1, . . . , p, and no
other activity is incident with i. Then arbitrarily choose an outgoing arc of
i, say a1, delete i, calculate the modes of the new activity a0

k, k = 1, . . . , p
by

{(L̄a0 + L̄m
ak

, d̄a0 , w̄a0 + w̄m
ak

) for all modes m of ak}, (17)

and delete dominated modes.

Step 2 :

2.1 Final reduction: If the network has been reduced to one single arc goto 3.

2.2 Fixing an activity: Otherwise, choose activity a = (s, i) such that i is the
earliest node still in the network, fix one mode of activity a and perform
node reduction as in step 1.3. Goto step 1.

Step 3: Evaluate: Add the modes of the new solution, delete all dominated ones
(compared to other solutions obtained in previous steps) and start again at step 1,
fixing another combination of modes during step 2.2

If all combinations of modes have been calculated, STOP.

Theorem 4 Algorithm 2 finds all efficient solutions of (BDM).
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Proof: Using the result of Theorem 4 we know that the delay fE has been calcu-
lated correctly when reaching step 2.1. Furthermore, the final value of w̄ in the
remaining activity from s to t equals fA. If all solutions had been determined for
each possible combination of modes, the resulting set would contain all efficient
solutions. Since a solution can never be Pareto if parts of it are dominated (i.e.,
can be replaced by a better solution) it is feasible to delete dominated modes for
single activities during the reduction process. Since in the final step, all remain-
ing dominated solutions are deleted, we end up with the set of non-dominated
solutions.

QED
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Figure 7: N̄ with the modes for DTCTP.

Example 2 Consider again Example 1. Figure 7 shows this example as a DTCTP.
First, a serial merge operation can be applied to activities 6 and 10. We denote
the new activity with mode (20,0,0) as number 17 and merge it in parallel with
activity 5 which yields the new activity 18 with mode (20,0,0). Now a node reduc-
tion step is performed for event 1, adding the costs of activity 1 to a succeeding
activity (in our example activity 8). We obtain activity 19 with mode (32,10,0).
Activity 9 can then be merged serially with activity 1. (Note that the costs are not
added in this case to avoid double counting.) This yields activity 20 with modes
(34,0,0) and (−∞,0,1). Now merge activity 3 and 19 in parallel. Since activity
3 is a timetable arc and the duration of activity 19 is greater than the one of
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activity 3, the difference of 6 minutes has to be added to the delay of the new ac-
tivity, which is numbered by 21 and has mode (32,16,0). Another parallel merge
operation can be performed with activities 2 and 20. It results in activity 22 with
modes (34,7,0),(27,0,1). The delay of 7 minutes in the first mode results from
the difference in the duration of activities 20 and 2 (34−27 = 7). Figure 8 shows
the network after these reduction steps. We can continue in the same way by per-
forming a node reduction with event 3. Table 2 shows the complete reduction plan.
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Figure 8: Network after the first six reduction steps.

The Evaluate construct in step 18 is used to compare the obtained solution
with solutions found in previous iterations. Since in this example we did not fix
an activity with more than one mode, the computation can be stopped and yields
two solutions: the first one with no missed connection and 23 minutes of total
delay and the second one with one missed connection, but only 16 minutes of total
delay.

5 Numerical results using real-world data

The algorithm described in Section 4 was implemented in C++ using LEDA1.
The input data was provided by a large traffic association Verkehrsverbund Rhein-
Neckar operating in the south-west of Germany. In the test data we analyze the

1Library of Efficient Data types and Algorithms.
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Action Activities New Modes
1.Series [6,10] 17 (20,0,0)
2.Parallel [5,17] 18 (20,0,0)
3.Reduce [1,8] 19 (32,10,0)
4.Reduce [1,9] 20 (34,0,0),(−∞,0,1)
5.Parallel [3,19] 21 (32,16,0)
6.Parallel [2,20] 22 (34,7,0),(27,0,1)
7.Reduce [18,11] 23 (24,0,0)
8.Reduce [18,12] 24 (26,0,0),(−∞,0,1)
9.Parallel [21,24] 25 (32,16,0)

10.Parallel [22,23] 26 (34,7,0),(27,0,1)
11.Series [25,14] 27 (46,16,0)
12.Parallel [4,27] 28 (46,16,0)
13.Series [26,13] 29 (44,7,0),(37,0,1)
14.Parallel [7,29] 30 (47,7,0),(47,0,1)
15.Series [28,15] 31 (46,16,0)
16.Series [30,16] 32 (47,7,0),(47,0,1)
17.Parallel [31,32] 33 (47,23,0),(47,16,1)
18.Evaluate 33

Table 2: Reduction plan for the example.
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effects of delays of trains on a special line (called Lautertalbahn) on subsequent
other trains and buses belonging to different public transportation companies.
The test set consists of

• 823 stations,

• 1314 vehicles, and

• 2118 direct rides.

As connections we considered all transfers possible within a time interval of 30
minutes. We obtained nearly 40.000 changing activities. The event-activity net-
work of a complete day hence consists of roughly 45.000 events and 85.000 ac-
tivities. All computations were done on a PC with a 266 MHz Intel Pentium II
processor.
The program we implemented allows to specify a time interval to select the events
which should be taken into account. This time interval in minutes is given in
the first column of the tables. Depending on the time period considered, the
number of events and activities can be drastically reduced, such that the resulting
(relevant) part of the network typically consists of roughly 2.000 events and 4.000
activities. The second column contains the number of changing activities which
may be affected. Moreover, the amount of the source delay, the CPU time in
seconds and the number of efficient solutions found by the program are given.

Example 3 Table 3 shows an example from the “Lautertalbahn”. A train from
station “Untersulzbach” to “Hirschhorn” arrives at its destination with delay.
Since a larger delay is not so easily compensated by the slack times it can spread
out through the network and hence yields a larger number of efficient solutions as
a small delay.

Table 4 summarizes the results we obtained in our numerical studies (Ginkel
2001). Each row contains the results belonging to different delayed activities,
which could typically occur in practice. For each delayed event, at least three
different amounts of source delays between 10 and 20 minutes have been tested.
The last two time intervals, 60 and 70 minutes, have been computed only for one
delayed activity, but with different amounts of source delay. The table shows
that the behavior of the algorithm and the number of efficient solutions found
strongly depends on the respective problem instance.
Summarizing, our numerical experiments indicate that Algorithm 2 runs rather
quickly if the relevant time interval to be considered is not too large. Evaluating
the delay and the missed connections for all events and activities within the
next 60 minutes could in most cases be done within a running time of less than a
minute on a standard personal computer. Both the running time and the number
of efficient solutions depend on the number of changing activities that need to be
considered. This behavior is depicted in Figure 9.
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time inter-
val in [min]

changing
arcs af-
fected

source de-
lay in [min]

cpu time in
[sec]

no. of effi-
cient solu-
tions

20 1 10 0.00 2
15 0.01 2

30 9 10 0.04 4
15 0.05 6

35 20 10 0.45 6
15 0.72 10

40 47 10 28.93 6
11 68.40 9
12 99.12 10
13 144.64 13
14 145.94 13
15 187.62 15

Table 3: Example with different amounts of the source delay.

time interval in
[min.]

changing arcs CPU time in
[sec.]

no. of efficient
solutions

20 [0,2] [0.00, 0.01] [1,3]
30 [0,9] [0.01, 0.05] [1,6]
40 [1,47] [0.01, 187.6] [2, 15]
50 [17,25] [0.37, 15.93] [2, 14]
60 28 [1.17, 22,56] [2,7]
70 45 [3.17, 79.07] [2,7]

Table 4: Numerical results for some real-world delays.
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Figure 9: Number of efficient solutions as function of the size of Achange.

The nice behavior of Algorithm 2 on our data is due to the fact that the number
of changing activities outside of the municipal areas is relatively small, such that
the event-activity network is close to a series-parallel one.

6 Conclusions and further research

We presented a new model treating the delay management problem in a bicrite-
ria setting, and developed a solution technique similar to the discrete time/cost
tradeoff problem in project planning. The method seems to have the potential
to be used as an online decision support procedure. Improvements can be ob-
tained by applying a branch and bound approach instead of fixing all possible
combinations of modes.

In delay management, the following two extensions seem to be most relevant for
solving real-world problems. The first is to include the limited capacity of rail-
way systems in the models, making sure that the wait-depart decisions lead to a
disposition timetable that is realizable without any conflicts. (An iterative proce-
dure for this problem is currently investigated within the project DisKon together
with Deutsche Bahn.) Another interesting topic is the question of robustness of
disposition timetables in the delay management problem. This question is under
research within the European research project ARRIVAL.
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