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Abstract

An important strategic element in the planning process of public trans-
portation is the development of a line concept, i.e. to find a set of paths
for operating lines on them. So far, most of the models in the literature
aim to minimize the costs or to maximize the number of direct travel-
ers. In this paper we present a new approach minimizing the travel times
over all customers including penalties for the transfers needed. This ap-
proach maximizes the comfort of the passengers and will make the resulting
timetable more reliable. To tackle our problem we present integer pro-
gramming models and suggest a solution approach using Dantzig-Wolfe
decomposition for solving the LP-relaxation. Numerical results of real-
world instances are presented.

1 Motivation and related literature

In the strategic planning process of a public transportation company one
important step is to find a suitable line concept, i.e. to define the routes
of the bus or railway lines. Given a public transportation network PTN =
(S, E) with its set of stations S and its set of direct connections E, a
line is defined as a path in this network. The line concept is the set
of all lines offered by the public transportation company, together with
their frequencies, where the frequency f; of a line [ contains the number of
vehicles serving line [ within the planning period considered. The frequency
of an edge e, on the other hand, is the number of vehicles running along
the edge.

The line planning problem has been well studied in the literature. For
an early contribution we refer to Dienst, see [Die78]. The many mod-
els given after this time can be roughly classified into the following two
types. In a cost-oriented approach the goal is to find a line concept serv-
ing all customers and minimizing the costs for the public transportation
company. The basic cost model has been suggested in Claessens et al.,
see [ZCvD96], where a binary (linear) programming formulation has been
given. A solution approach by branch and cut has been developed in
[GVHKO04]. In [Bus98] an alternative formulation with integer variables
has been proposed. In [BLLO04] Bussieck et al. present a fast solution
approach combining nonlinear techniques with integer programming.



In [Goo04] and [GvHKO02] the authors get rid of the assumption that
the passengers are assigned a priori for example by modal split to different
types of trains. This is done by assigning a certain type to every node in
the PTN, representing for example the size of the station.Then the type
of a line determines the stations they pass. For example a line of type 1
stops at every station it passes, a line of type 2 will not halt at a station of
type 1 but at every station of type 2 or higher. Several models, correctness
and equivalence proofs are presented.

Recently, a fast heuristic variable fixing procedure which combines non-
linear techniques with integer programming is proposed in [BLL04].

In [Goo04] a model that reconsiders the stations at which the trains
stop for a given line plan. This model is used to determine the halting
stations in such a way that the total travel time of passengers is mini-
mized. Lagrangian relaxation is used to find lower bounds for this prob-
lem. Preprocessing and tree search techniques augment the efficiency of
the branch&bound framework.

A new approach is to take into account that the behavior of the cus-
tomers depends on the design of the lines. A first cost-oriented model
including such demand changes was treated with simulated annealing in
two diploma theses in cooperation with Deutsche Bahn, see [K1i00, Sch01].

A second class of models are the customer-oriented approaches. In the
direct travelers approach by Bussieck et al. [BKZ96] (see also [Bus98]) the
goal is to maximize the number of direct travelers (i.e. customers that
need not change the line to reach their destination). As constraint, the
number of vehicles running along an edge is restricted for each edge in the
PTN, i.e. upper and lower bounds on the allowed frequencies on each edge
are taken into account.

Although the latter model is a customer-oriented approach it maxi-
mizes the amount of one group of customers but without considering the
remaining ones which might have very many transfers during their trips. It
also does not take into account the travel times for the customers: Some-
times it is preferable to have a transfer but reach the destination earlier
instead of sitting in the same line for the whole trip but having a large
detour.

A recent work by Quak [Qua03] treats line planning for buses instead
of trains. He develops a two phase algorithm with the construction of
the lines in the first and setting of frequencies and departure times in the
second phase. In contrary to the other models he is not taking lines out of
a given line pool but constructs them from the scratch, which is the main
part of his work.

[BGPO05] considers the pure travel time of the passengers without trans-
fer times and generates the lines dynamically.

In [LMMF04] also the selection of the key station sites is taken into
account. These stations are thus connected to lines in an optimization
process.

In this work we develop a new model which allows to sum over all travel
times over all customers including penalties for the transfers needed. The
first ideas for this model have been presented in [SS03]. We also show
how different frequencies of the lines can be taken into account. The
remainder of the paper is organized as follows. In Section 2 we introduce
the new line planning model, discuss its complexity in Section 3 and then
describe and discuss five integer programming models in Section 4. We



present two ways to solve the LP-relaxation, one based on Dantzig-Wolfe
decomposition (see Section 5). Finally, we present numerical results based
on a real-world application of German Rail (DB).

2 Basic definitions

A public transportation network is a finite, undirected graph PTN = (S, E)
with a node set S representing stops or stations, and an edge set E, where
each edge {u, v} indicates that there exists a direct ride from station u to
station v (i.e., a ride that does not pass any other station in between). For
each edge {u,v} we assume that the driving time t,, is known.

We assume the PTN as given and fixed. We further assume that a line
pool L is given, consisting of a set of paths in the PTN. Each line | € £
is specified by a sequence of stations, or, equivalently, by a sequence of
edges. Let E(I) be the set of edges belonging to line I. Given a station
u € S we furthermore define £L(u) = {l € L : u € I} as the set of all lines
passing through wu.

Moreover, let R C S x S denote the set of all origin-destination pairs
(s,t) where ws; is the number of customers wishing to travel from station
s to station t.

The line planning problem then is to choose a subset of lines L € L,
together with their frequencies, which

e allows each customer to travel from its origin to its destination,
e is not too costly, and
e minimizes the “inconvenience” for the customers.

In the literature, the main customer-oriented approach dealing with
the inconvenience of the customers is the approach of [Bus98] (see also
[BKZ96]) in which the number of direct travelers is maximized. In our
paper, however, we deal with the sum of all transfers over all customers.
On a first glance, the problem to minimize the number of transfers seems
to be similar to maximizing the number of direct travelers. That is in
general not the case, as the following example demonstrates.

Note that considering the number of transfers only would lead to solu-
tions with very long lines, serving all origin-destination pairs directly but
having large detours for the customers. To avoid this we determine not
only a line concept, but also a path for each origin-destination pair and
count the number of transfers and the length of the paths in the objective
function. This is specified next.

Given a set of lines L C £, a customer can travel from its origin s to its
destination t, if there exists an s-t-path P in the PTN only using edges in
{E(l) : 1l € L}. The “inconvenience” of such a path is then approximated
by the weighted sum of the traveling time along the path and the number
of transfers, i.e.

inconvenience(P) = k; Timep + ks Transfersp.

On the other hand, the cost of the line concept L C L is calculated by
adding the costs C; for each line [ € L, assuming that such costs C; are
known beforehand.



The line planning problem hence is to find a feasible set of lines L C L
together with a path P for each origin-destination pair, such that the costs
of the line concept do not exceed a given budget B and such that the sum
of all inconveniences over all paths is minimized.

Since the capacity of a vehicle is not arbitrarily large, we have to extend
the basic problem to include frequencies of the lines. This makes sure
that there are enough vehicles along each edge to transport all passengers.
If each origin-destination pair can be served, the line concept is called
feasible. We remark that often, the number of vehicles running along the
same edge is also bounded from above, e.g., for safety reasons.

3 Complexity Results

In this section we first show that the line planning problem as defined
above is NP-hard, even in a very simple case, corresponding to k; = 0 in
the above definition.

Theorem 3.1. The line planning problem is NP-complete, even if
e we only count the number of transfers in the objective function,
o the PTN is a linear graph.

o all costs C; are equal to one.

Proof. In the decision version, the line planning problem in the above case
can be written as follows:

Given a graph PTN =(S, E) with weights c, for each e € E, origin-
destination pairs R, and a budget B, does there exist a feasible set of B
lines with less than K transfers?

We reduce the set covering problem to the line planning problem:
Given a set covering problem in its integer programming formulation

min{l,z : Az > 1,,,2 € {0,1}"}

with an 0-1 m x n matrix A, and 1, € IR¥ the vector with a 1 in each
component, we construct a line planning problem as follows:

We define the PTN as a linear graph with 2m nodes S = {s1,t1,82,t2 .-, Sm,tm }
and edges E = {(s1,%1), (t1, 82), (52, t2), (t2,83), - - -, (8m,tm)}. We define
an origin-destination pair for each row of A,

R = {(Si,tz’) 1= 1,...,m}.
For column j of A we construct a line [; passing through nodes s; and ¢;
As an example, Figure 1 shows the line planning problem obtained
from a set covering problem with

1100
1 010
0 011
A= 0101
0110
1010

Setting K = 0 we hence have to show that a cover with less than B
elements exists if and only if the line planning problem has a solution
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Figure 1: Construction of the line planning problem in the proof of Theorem 3.1.

in which all passengers can travel without changing lines. Due to our
construction this is true and hence the theorem holds. |

A question that might arise in this context, is what happens if the lines
need not be chosen from a given line pool, but can be constructed as any
path. Some of the basic cost models become very easy in this case, but
unfortunately, the complexity status of the line planning problem treated
in this paper does not change which can be shown by reduction to the
Hamiltonian path problem (see [Sch05]).

4 A model for the line planning problem

To model the line planning problem as integer program we use the PTN to
construct a directed graph, the so-called change&go network Gog = (V, E)
as follows:

We extend the set S of stations to a set V of nodes with nodes re-
presenting either station-line-pairs (change&go nodes: Vo) or the origins
and destinations of the customers (origin-destination nodes: Vop), i.e.
V :=Veg UVop with

o Vog :={(s,1) € Sx L:1€ L(s)} (set of all station-line-pairs)

e Vop :={(5,0) : (s,t) € R or (¢,s) € R} (origin-destination nodes)
The new set of edges £ consists of directed edges between nodes of the
same stations (representing that customers board or unboard a vehicle or
change lines) and edges between nodes of the same line (representing the
driving activities):

&= gchange Uéop U ggo
with

o Eunange = {((8,11), (5,12)) € Vo x Vea} (changing edges)

e & :={((s,1),(s",1) € Vog x Vg : (s,8") € E} (driving edges of line

lel)

o &0 = Uje & (driving edges)

o Cop :={((s,0),(s,1)) € Vop X Vea and ((t,1), (t,0)) € Veg X Vobp :

(s,t) € R} (origin-destination edges)

We define weights on all edges e € £ of the change&go network repre-
senting the inconvenience customers have when using edge e. Given a set
of lines L C £ we then can determine the lines the customers are likely
to use by calculating a shortest path in the change&go network for each

single origin-destination pair. Therefore the choice of the edge costs c. is
very important. We give two examples:



1. Customers only count transfers:

o — 1 : eeé’change
€ 0 : else

Note that in this case, it is possible to shrink the change&go network
to a network with |£| + |S| nodes and |Ecnange| + |Eop| edges.

2. Real travel time:

0 : e€&op
ce = { travel time in minutes 1 e€&y
time needed for changing platform : e € E:pange

More specific, to model the line planning problem as defined in Sec-
tion 2, we set

0 ifeeéop
e =% kity ife=((u,1),(v,1)) € &
k2 ifee gchange

Since we assume that customers behave selfish we need an implicit calcu-
lation of shortest paths (with respect to the weights c,) within our model.
This is obtained by solving the following network flow problem for each
origin-destination pair (s,t) € R.

owst = by )

where
e 0 € ZV1*I€l is the node-arc-incidence matrix of Geg,
o by € Z! is defined by

_ 1 : i=(s,0)
.Zst = -1 : i= (t7 0)
0 : else

e and z¢, € {0,1} are the variables, where z¢, = 1 if and only if edge
e is used on a shortest dipath from node (s,0) to (¢,0) in Geg-.

To specify the lines in the line concept we introduce variables y; € {0,1}
for each line | € £, which are set to 1 if and only if line [ is chosen to be in
the line concept. Our model, Line Planning with Minimal Travel Times
(LPMT) can now be presented.

(LPMT1)
min Z Zwst Ce ﬂfgt (1)
(s,t)ER e€&
sty >l < [RIEy Vies (2
(s,t)ER ecé!
Ozg = by A (S,t) eER (3)
Y Cy<B (4)
lel
x5,y € {0,1} V(s,t)€ERe€&LEL (5)



Constraint (2) makes sure that a line must be included in the line
concept if the line is used by some origin-destination pair. Constraint
(3) models the selfish behavior of the customers, i.e., that customers use
shortest paths according to the weights c..

Having only constraints (2) and (3), the best line concept from a
customer-oriented point of view would be to introduce all lines of the
line pool. This is certainly no option for a public transportation company,
since running a line is costly. Let C; be an estimation of the costs for
running line [ and let B be the budget the public transportation company
is willing to spend. Then the budget constraint (4) takes the economic
aspects into account.

The objective function we use is customer-oriented: We sum up the
costs D .. Wst Ce To of a shortest path from s to t for each origin-
destination pair (s,t) € R, i.e., we minimize the average costs of the
customers.

We get three more formulations of this problem by substituting con-
straints (2) by one of the following constraints

Z z% < |Rly VieLect (6)
(s,t)ER
Yoak <IN VIEL(s,)ER (7)
ecé&l
xl <y Y (s,t) ER,e€&:lel (8)

We denote the formulation using constraints (6) (LPMT2), using (7)
(LPMTS3), and using (8) (LPMT4).

In [Sch05] we have shown that these formulations are equivalent, i.e.
they are valid IP formulations from the same integer set. Nevertheless the
bounds provided by the corresponding LP-relaxations differ.

Definition 4.1. ([Wol98]) A polyhedron P C IR" is o formulation for a
set X CZ™ if and only if X = PN (Z").

Given o set X C IR", and two formulations P4 and Pg for X, P4 is a
stronger formulation than Pg if P4 C Pp.

Given two formulations P4 and Ppg for the same integer set X with Py
stronger than Pg, then

min cx > min cx > min cx.
zeX xEPy zEPp

Theorem 4.2. The convex hull of the integer set described by formulation
(LPMT1) is denoted by Pi. The corresponding polyhedra described by
formulation (LPMT2), (LPMT3), and (LPMT4) are denoted by P>, Ps,

and Py, respectively. Then, the following holds:
e P, is stronger than Py, P, and Ps.
e P5 is stronger than P;.
e P, is stronger than P;.
o Comparing Ps and P2, none of them is stronger than the other.
The proof can be found in [Sch05]. Note that in real world instances

(LPMT3) comes out to be in most cases stronger than (LPMT2), see
Section 5.1.



In (LPMT) we implicitly assume that all customers traveling from
station s to station ¢ choose the same path in the change&go network, i.e.,
the same set of lines. This can be done if edge capacities are neglected in
(LPMT). In practice, this is usually not the case, since each vehicle only
can transport a limited number of customers and usually there is only
a limited number of vehicles possible along each line (e.g. due to safety
rules). In the following, we therefore present an extension of (LPMT)
taking into account the number of vehicles on each line in a given time
period. Consequently, this formulation allows to split customers along
different paths from s to ¢ in the change&go network Gea.

Let N denote the capacity of a vehicle and let the new variables f; € IN
contain the frequency of line [, i.e., the number of vehicles running along
line [ within a given time period. Furthermore we choose variables 2¢, € IN
and change the vector bg; to

. Wt if i = (s,0)
= —Wgy if i = (¢,0)
0 else

Then the Line Planning Model with minimal transfers and frequencies
(LPMTF) is the following:

(LPMTF)
min Z Z Ce Ty 9)
(s,t)ER e€E
1
st Y 24 <fi VieLee& (10)
(s,t)eER
Oxs = by \ (S,t) ER (11)
Y CGfi<B (12)
lel
Y LS VkeE (13)
leL:ke&
x5, fieN Vs,t)eR,ecllel (14)

Constraints (10) make sure that the frequency of a line is high enough
to transport the passengers. If f; = 0, the line [ is not chosen in the
line concept. Constraints (11) are flow conservation constraints routing
the passengers on the shortest possible paths. Note that the x¢, variables
can take integer values, such that passengers may choose different paths
for the same origin-destination pair. Constraint (12) is again the budget
constraint but with costs for each vehicle of a line (which are multiplied
by the frequency to get the costs of the line).The capacity constraint (13)
may be included if upper bounds for the frequencies are present.

5 Solving the LP-relaxation

As we have shown in Section 3 the line planning problem is NP-hard,
and, moreover in real-world instances, gets huge. But fortunately the
formulations of (LPMT) and (LPMTF) have block diagonal structure with
only few coupling constraints. Moreover, in both models, all blocks are
totally unimodular since they represent network flow problems.



In Section 5.1 we identify cases in which the solution of the LP-relaxation
can be found by solving shortest path problems. If this does not work we
have to take advantage of the block diagonal structure by using a Dantzig-
Wolfe decomposition, which is shown in Section 5.2.

5.1 Using the trivial solution

Definition 5.1. A trivial solution (Z, %), (z,%2), (Z,7%), (z,7*) of (LPMT1),
(LPMT2), (LPMTS3), (LPMT/), respectively, is defined as the solution Z¢,
of the shortest path problems

Oxs = bgt v (S,t) ER
on the changeédgo-network constructed of all lines of the line pool and

1. Z(s,t)ER EeEE’ jgt

= Viel LPMT1
Yi ‘ngRl € (fOT ( ))
max, R z
g2 = el I%I MERTS i 1eL (for (LPMTZ))
gi = max(s’t)er;llzeegl Ttoyier (for (LPMT3))
gt = (srgeécRreréag)ffjt VieLl (for (LPMTY4))

It is in general not unique and need not to be feasible in the sense that it
fulfills the budget constraint.

In real world instances it appears quite often that a trivial solution is
an optimal solution of the LP-relaxation of (LPMT1). This is clear since
the right hand sides |R||€!| of the coupling constraints (2) are chosen such
that all passengers could use all edges of all lines. In real world only few
edges of the network are used and so Kj := } , jcp D ccer T is much

smaller than |R||€!|, hence

K
1 1
chyl —ZQW <B

leL leL

is often satisfied.
The following Lemma generalizes this for the other formulations. The
proof can be found in [Sch05].

Lemma 5.2. Let i € {1,2,3,4} and let (Z,7%) be a trivial solution of
(LPMTi), as defined in Definition 5.1. If

Ti:= Z Ciyi < B
leL

is satisfied, the trivial solution (Z,7") is an optimal solution of the (LPMTi).
Note that for i = 4 the solution (Z,4*) of the LP-relazation of (LPMTJ) is
integer and thus if T4 < B holds, the trivial solution is an optimal solution
to the original problem.

In Table 1 we see the Ti-values for different line pool sizes, where the
line costs are set to one. Note that in this case a value below one means
that the trivial solution is always the optimal solution independently of



[ No. | [£][objval. | T1| T2 T3] T4 |

1| 10| 2271.3 | 0.69 | 0.99 9.53 | 10
2] 50| 9459.9 | 0.20 | 0.35 | 25.31 | 48
3| 100 | 24780.0 | 0.13 | 0.29 | 41.83 | 96
41132 | 31654.2 | 0.11 | 0.26 | 53.12 | 129
5| 200 | 15128.9 | 0.07 | 0.19 | 54.89 | 197
6 | 250 | 19096.0 | 0.05 | 0.16 | 61.07 | 235
71275 | 20118.2 | 0.04 | 0.15 | 63.47 | 252
8 | 300 | 26598.3 | 0.06 | 0.19 | 72.35 | 282
9| 330 | 26817.7 | 0.04 | 0.16 | 74.44 | 302
10 | 350 | 26450.0 | 0.07 | 0.23 | 90.04 | 331
11 | 375 | 27517.8 | 0.06 | 0.20 | 90.75 | 345
12 | 400 | 34781.3 | 0.06 | 0.20 | 100.05 | 370
13 | 423 | 35135.5 | 0.06 | 0.20 | 102.19 | 389

Table 1: Minimal budgets such that trivial solution is an optimal solution of the
LP-relaxation of the different formulations of the (LPMT), see Lemma 5.2.

the choice of the budget. Only if the given budget is smaller than the T
value, the trivial solution is not a feasible solution of the LP-relaxation
of (LPMTi). Thus, table 1 demonstrates the difference of the strength
of the formulations. The higher the T'i-value, the better the lower bound
provided by the corresponding formulation.

We see that in real world instances the bound provided by (LPMT3)
is much stronger than (LPMT2) even if we could not show this in general.
This is due to the fact that there exists an instance in which (LPMT?2) is
stronger than (LPMT3) but in real world this hardly ever happens.

Regarding the T'4-values, we recall that in this formulation the g} are
integer valued and since all C; = 1 this means that if we are allowed to
choose more than T'4 lines out of the line pool, every passenger can travel
on shortest path. If our budget is smaller, some passengers have a detour.
In this case we have to use other methods to solve the problem like the
Dantzig-Wolfe approach explained in the next section.

5.2 Using Dantzig-Wolfe decomposition

In this section we present an approach for solving the LP-relaxation of the
(LPMT) formulations using Dantzig-Wolfe decomposition. The method
can also be applied for solving (LPMTF) since the model structure is very
similar. However, the numerical results deal with (LPMT). We will present
two different decompositions. Since the blocks in both decompositions
are totally unimodular, we know that the bound provided by the Master
formulations is as good as the bound of the LP-relaxation (see [Sch05]).
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5.2.1 One block for each origin-destination pair
(LPMT1(LP))

min E E CoToy

(s,t)ER e€€

e < l
g(s’t)gnyzéeéx“ <[RIE Wy viel coupling constraints
lec VUL =

X1t
\Xs—m‘ ) |R| blocks

where X5t := {z, € RI® : 0y = byy,0< 2%, <1, Ve € £}
The coupling constraints can be written as

Ay y+ Z(s,t)E’R Ax zst <0
Cy <B

where

o Ax is an |L£| x |€| matrix given by elements a;. = 1, if e € &, zero
otherwise. It is equal for each origin-destination pair.

o Ay is an |£| x |£| diagonal matrix containing |R||E!| as its Ith diag-
onal element.

e (' is the line cost vector (C1,...,C\z)).

So, we get the following coefficient matrix of (LPMT1):

—Ay Ax ... Ax
C
0

0

Defining the weight-cost-parameters cS, := wstce, we get the following
Master Problem corresponding to decomposition (15):

(Master 1)
z=min 3 per 2i(Cst mg’))ait
s.t. Z(s,t)E'R >i(Ax wg?)a.it —Ayy+Iv=0
Ele L Cyi <B
iy =1 v
=1 v
v, gy, Y1 > 0
where the |L|-vector v are slack variables, and a:(s? are the extreme points
of Xt. This problem has |£| + 1 coupling constraints and |R| convexity
constraints.

s, t) ER
eL

For each (s,t) € R we obtain the following subproblem:

11



Zst = min (Cst - 71-AAX)'CL'st — Mst
s.t. Tg € X5

where {m;};cc are the dual variables of the coupling constraints, and

{st}(s,)er are the dual variables of the convexity constraints.

The X *t blocks correspond to shortes‘c path problems which are known

to be totally unimodular, hence the z')-values are in {0,1}€/. The for-
mulations (LPMT2), (LPMT3), (LPMT4) as well as (LPMTF) can be
reformulated analogously.

5.2.2 One block for all origin-destination pairs

If we treat the X *!-blocks as one block we get the following reformulation:

(LPMTL(LP))

Y2 <IR|E Ny VieL
ZZEE Cvlyl S B

1 block

with X = {z € Rl : z¢ = D(styerTot Ve € E, x5 € X*t} and

coupling constraints

€ . e
c® = Z(s,t)ERCSt'

The Master Program corresponding to decomposition (16) is

(Master 2)
z=min 3 ,(czD)al
st. S (Ax 29)al — Ay y+Tv=0
21 COy <B
Yuat=1

’Ul7ai;yl > 0

where the |£|-vector v are slack variables, and z() are the extreme

points of X. This problem has |£| + 1 coupling constraints and one con-
vexity constraints.

The subproblem of the X-block is

z=min 3 pep(css — TAX)Ts — pt
s.t. xg € X5t

where ¢ := 37 cp @5 and {mi}ic, are the dual variables of the cou-
pling constraints, u is the dual variable of the convexity constraint.

As in the previous formulation, the z(¥)-values are integer because they

are the component wise sum over shortest path problem solution which are
in {0, 1}. In this decomposition we loose the information of the exact paths
of the customers which are needed in (LPMT3), (LPMT4) and (LPMTF)
and thus this Master cannot be adapted to these formulations.

12



No. | [L[| [R[] CPUL | CPU2
0] 3 2 005| 0.1
1| 10| 2602 1] 228
2| 50| 4766 3| 606
3| 100 | 11219 16 | 8706
4132 | 18238 48 M
5| 200 | 10126 78 M
6 | 250 | 13246 | 329 M
7| 275 | 14071 | 691 M
8| 300 | 17507 | 1171 M
9| 330 | 18433 | 1911 M

10 | 350 | 17095 | 1814 M
11 | 375 | 18350 | 2727 M
12 | 400 | 22191 | 4789 M
13 | 423 | 22756 | 8715 M

Table 2: CPU times of the LP-relaxation of (LPMT1) and (LPMT3) using Dantzig-
Wolfe approach with (Master2) and (Master1), respectively, for different line pool sizes.
M denotes ”‘out of memory

2

5.2.3 Implementation

We implemented the Dantzig-Wolfe decomposition approach of (LPMT)
using Xpress MP 2003 and Microsoft Visual C++ 6.0. The CPU times of
this section are based on a 3.06 GHz Intel4 processor with 512 MB RAM.
The subproblems where solved with Dijkstra’s shortest path algorithm.

In column ‘CPUY’ of table 2 we see the CPU times in seconds for solving
the LP-relaxation of (LPMT1) using Dantzig-Wolfe approach with (Mas-
ter2) for different line pool sizes of the network of German long distance
trains. In column ‘CPU2’ we see the CPU times in seconds for solving the
LP-relaxation of (LPMT3) using Dantzig-Wolfe approach with (Masterl).
We have mentioned that the lower bound provided by (LPMT3) is stronger
than (LPMT1) and so the computation times increase in this case. We
see, that using our approach it is possible to solve the LP-relaxation of
(LPMTS3) for medium sized networks within reasonable time. Note that
the size of the problem not only depends on the size of the line pool but on
the number of origin-destination pairs and the size of the PTN which may
be much smaller e.g. in urban underground networks. Solving the LP-
relaxation of the weaker (LPMT1) formulation is possible even for big real
world instances like the long distance network of German railway within
two and a half hours.

As we have seen, the main problem of our approach is the size of the
change&go-network depending mainly on the size of the line pool. A wise
choice of a possibly small line pool is therefore advisable. On the other
hand it makes sense to analyze the underlying PTN. For example if two
lines go parallel for a long time, it is sufficient to add changing edges
only at the first and the last station. Also arcs between stations without
changing possibility can be shrunken to decrease the size of the network.
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6 Conclusions

We developed integer programming models for the line planning problem
with the goal to minimize the travel times over all customers including
penalties for the transfers needed and proposed an extension that includes
frequencies. We showed that the problem is NP-hard. Since the problem
gets huge, a straightforward solution of the LP relaxation is not possi-
ble. We showed that in many real world cases the trivial solution is op-
timal or, if it is infeasible, it can be found by a solution approach based
on Dantzig-Wolfe decomposition. Computational results for various real
world instances and different decompositions were presented.

We are currently working on a branch&price algorithm and heuristics
to get an integer solution.
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