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Abstract

The paper deals with variants of set covering problems whose co-
efficient matrices have the consecutive ones property, (i.e. the ones in
each row appear consecutively). We propose a new approach trans-
forming such problems to shortest path problems in acyclic digraphs.
The approach can also be used to solve the bicriterial variant of the
problem in which we aim to minimize the costs and to maximize the
weight of the cover simultaneously. Extensions to matrices with more
blocks of consecutive ones per row are also given.

1 Introduction

Let A be a zero-one matrix with costs for each of its columns. A row m
of A is covered by column j of A if the corresponding matrix entry a;; is
equal to one. The set covering problem then asks to choose a cover, i.e. a
set, of columns covering all rows of A, with minimal costs. In the unweighted
set covering problem, all costs are one, i.e. the goal is to find a minimum
cardinality set of columns covering all rows of A.

Set covering problems belong to the best studied combinatorial optimiza-
tion problems; many exact and approximate solution algorithms have been
published. We refer to the annotated bibliography [CNS97] or the survey
[CFTO00] on state-of-the art algorithms.



Among other reasons the interest in set covering problems is due to their
large potential of modeling real-world problems such as scheduling, facility
location, or production optimization problems. Unfortunately, the majority
of set covering problems arising in practice are very large. For example, in
crew scheduling one easily obtains set covering problems with thousands of
variables and constraints as it is reported, e.g., in [CFT*97] for railway and in
[MS00] for airline crew scheduling problems. Since the set covering problem
is NP-hard ([GJ79]) (even for no more than two non-zero entries in each
row) and also difficult from the point of view of theoretical approximation
([LY94]), such large problem instances are hard to solve. This motivates the
development of efficient heuristic procedures for solving large-scale problems,
see e.g. the Lagrangian-based heuristic of [CFT99].

In this paper, we follow another line, namely we discuss new approaches for
a special class of set covering problems. The type of problem we refer to
are set covering problems with a coefficient matrix satisfying the consecutive
ones property, i.e., the ones in each row appear consecutively. This property
becomes, in fact, very important, since set covering problems appearing in
real-world applications are often close to having the consecutive ones property
in their coefficient matrices. An example is the problem of locating stations
along an existing track system, such to cover a given set of demand points.
For this problem it has been shown in [SHLWO02, Sch03a] that the resulting
coefficient matrix has the consecutive ones property, if only a linear part of
the track system is considered, while for the complete data set of Germany, it
almost has the consecutive ones property, see [RS04]. Looking closer at other
types of set covering problems, e.g., in crew scheduling or line planning, it
also turns out that the columns in real-world data sets often can be ordered
to obtain a coefficient matrix that is close to a consecutive ones matrix. Note
that matrices with consecutive ones property also play an important role in
radiation theraphy planning, see [ BEHW05| and references therein.

Given an arbitrary m X n matrix, a permutation of the columns making the
ones appear consecutively can be found in O(mn) time using the approach
of [BL76, MPT98].

Our approach for solving set covering problems with consecutive ones prop-
erty can not only be used in the classical variant of the set covering problem,
but it can also be applied to find efficient solutions in the bicriteria set cov-
ering problem. In this problem, we need not cover all rows, but our goal is to
maximize the number of covered rows and to minimize the costs of the cover



simultaneously. We also may allow a weight w; for each row 7 and maximize
the total weight covered instead of just counting the number of covered rows.
A solution (i.e. a set of columns) is called non-dominated, if for all cheaper
sets of columns the weight of the covered rows decreases.

The remainder of the paper is structured as follows. In Section 2 we intro-
duce the notation needed and some basic properties. The new approach for
solving set covering problems with consecutive ones property is developed in
Section 3, including a few results for the unweighted set covering problem.
The solution approach for the bicriteria variant of the set covering problem
is presented in Section 4. Section 5 generalizes the results obtained to set
covering problems with more than one block of ones per row. Conclusions
and extensions follow in Section 6.

2 Basic properties

To formulate set covering problems as integer programs, let M = {1,2,...,m}
be the set of rows and N' = {1,...,n} be the set of columns of the given
matrix A. A cover of A is a set of columns A such that for each row i, i € M
there exists a column j € N with a;; = 1.

We use binary variables

0 otherwise ’

{1 ifjeN
,’Ej:

to state the well known formulation

(SCP)
min cx
st. Az > 1, (1)
z € {0,1}",
where 1,, € IR™ is a vector with a 1 in each component, and ¢ = (¢1, ¢o, .. ., ¢p)

contains the costs c; of the columns j. We further need the notation

M; = {ie M:a;; =1}, and
./V;' = {jEN:CLZ’jzl}.
The following reduction rules proposed in [TR73| can be found in many

textbooks (see, e.g. [NW88]). Nevertheless we collect them here since they
will be important later.



Lemma 1

1. If N;;, C N, then an optimal solution of problem (SCP) can be found
by considering the reduced problem without row 1.

2. If M;, € M,, and cj, > cj, then there exists an optimal solution of
problem (SCP) with z;, = 0, i.e. it is sufficient to consider the reduced
problem without column 7.

The set covering problem is NP-hard (even in the unweighted case and also
if only two nonzero elements exist in each row), see [GJ79]. In this paper,
however, we deal with a polynomially solvable variant of the set covering
problem, namely if the matrix A has the consecutive ones property. An mxn
matrix has this property, if in each row of A the ones appear consecutively,
ie.

aikzl,ailzlandk§l=>aij:1forallk§j§l.

It is well known that a matrix with consecutive ones property is totally
unimodular (see, e.g., III.1 of [NW88]), and hence the linear programming
relaxation of the set covering problem yields an integer solution, such that
(SCP) is polynomially solvable by linear programming in this case.

In a more efficient approach we can use the fact that the transposed of a
matrix with consecutive ones property is an interval matrix, and hence a
network matrix. Since there exists an optimal solution satisfying z; < 1

for all j € {1,..., N}, we omit these constraints and obtain the following
packing program as the dual of the set covering problem.
(Dual-SCP)
max 1py
st. ATn < ¢ (2)
n > 0.

Note that, since A is totally unimodular, the optimal solution values of (SCP)
and its dual formulation (Dual-SCP) are equal in this case.

Following the approach of Example 3.2. in Chapter II1.1.3 of [NW88|, this
dual formulation can be reformulated as a network flow problem in an acyclic
network. This network is constructed by interpreting the rows of AT as arcs
and the columns as paths. One starts by defining the set of nodes as

VﬁOW = {0,1,...,n},
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and by constructing an arc (j — 1,5) € Egoy for each row j of AT. Further-
more, each column 7 of AT can be interpreted as a path which is composed
of edges (j — 1, ) with a;; = 1. For such a path we add one additional arc to
Ejow, namely the one replacing the respective path. These arcs correspond
to the dual variables 7. Since all entries in A are positive, the network is
acyclic. Defining dy = ¢1, dj =¢jy1 —c¢jfors=1,...,n -1, and d, = —¢,
as the demand of the respective node in Vjoy, and setting 0 as the cost of arc
(1—1,14), and 1 as the costs for all other arcs, one finally obtains an equivalent
min-cost flow problem in an acyclic digraph with n+ 1 nodes, see [NW88] for
more details.

In this paper, however, we develop an alternative approach for solving set
covering problems with consecutive ones property. This approach transforms
the set covering problem into a shortest path problem in a directed acyclic
network with n + 2 nodes.

3 A new approach for set covering problems
with consecutive ones property

Let A be a matrix with consecutive ones property. Denoting

S; = mln{] € N Qi = 1}
e; = max{j €N :q; =1}

we may rewrite N; = {j € N : s; < j < e;} which is an interval for all
1 € M. We first show that a matrix A with consecutive ones property can
be transformed into the following — more convenient — form.

To this end, let us call a matrix A with consecutive ones property monotone
if s1 <s9...<5s,, and e; < ey... < e, hold simultaneously. Furthermore, if
51 <S3...<Spand e <ey...<en, Awe will be called strictly monotone.

Lemma 2 Let A, c be the input data of a set covering problem (SCP) with
consecutive ones property. Then there exists an equivalent set covering prob-
lem with input data A, c such that A is a strictly monotone matriz, possibly
with less rows than A.

Proof: The proof works by first sorting the rows of A according to s, and
then applying part 1 of Lemma 1 to eliminate rows until strictly monotonicity
is obtained.



This can be performed in O(m log m) time as follows:

Algorithm 1

Input: Matrix A with m rows and consecutive ones property.
Output: Strictly monotone matrix.
Step 1. Order the rows of A such that s1 < s9 < ... 8.

Step 2. If s; < s9... < 5, set i = 1 and goto Step 4. Otherwise choose i, i’
such that s; = s;.

Step 3. (Reduction 1) If e; > ey: delete row %, otherwise delete row i'. Let
m :=m — 1, and rename to obtain s; < s9,... < sp,. Goto 2.

Step 4. i := argmin{ey : i’ > i°}. If the minimum is not unique, choose the
one with the larger row index 1.

Step 5. (Reduction 2) Delete all rows i’ with i® <4’ <.

Step 6. If i > m — 1 STOP, otherwise set i := i + 1 and return to 4.

Due to Lemma 2 we may assume that the covering matrix A already is in
strictly monotone form. To find an optimal solution we transform the set
covering problem to a shortest path problem in a cycle-free digraph.

First, we need some more notation. Analogously to s;, e; for rows we define
for columns

5, = min{i € M :q;; =1} (3)
e; = max{ie M:a; =1}
The following observations are obvious.
Lemma 3
1. Let A be a strictly monotone matriz. Then AT is monotone.

2. If N = {j1, 59, Jp} C N is a cover of A with j; < ja... < j, then
55, =1 and &;, = m.



Figure 1: The digraph G, for the example.

Given the matrix A we are now in the position to define a digraph G; =
(Va El) by
Vi=NU{s,t}

and
E,={(j,k):j<kands,<ej+1}U{(s,7):5 =1}U{(4,1) : & = m}.

For each edge (j, k) we associate a cost

g ifg#L
GRTV 00 ifj=t

Obviously, G is a directed cycle-free graph. As an example, consider the
matrix

111000
011100
A_001110
000O0T1T1

The digraph G; corresponding to A is shown in Figure 1.

Now consider any s-t-path in GG with its set of nodes P. Since G; contains no
cycles, the path belonging to a node set P is uniquely defined. This justifies
the notation of the next theorem.



Theorem 1 Let P C V. Then P is a cover of M if and only if P U {s,t}
s an s-t-path in Gy.

Proof: Let P = {ji1, ja, ... Jp} With j1 < jo < ...7p.

1. Let P U {s,t} be a path in Gy, and assume that P is not a cover.
Choose an uncovered row 7 with minimal index. Consequently, row
i — 1 is covered, say by jx € N, and choose j, with maximal index.
Then

=i—1. (4)

€

We distinguish two cases, namely if j, is the last node on the path
before ¢ or if it is followed by another node jj1 # t.

k = p: Then (jk,t) € E, such that &, = m yielding i —1 = m, a
contradiction.

k < p: Then jxy1 # t is the next node behind j; within the path.
Hence, (jk,Jjks1) € E. According to the definition of E, this
means that 55, , < e; + 1. From (4) we consequently conclude

<. (5)

Sikt1

Furthermore, note that we have chosen j; as the column with
maximal index covering row ¢ — 1. Hence ji1 does not cover row
i — 1. Due to the monotonicity of AT we hence know

> i. (6)
(5) and (6) together show that jj,; covers row 4, a contradiction.
2. Now let P be a cover.
e Then 5;, =1 (Part 2 of Lemma 3) and hence (s, j;) € E.

e Analogously, e;, = m yielding (j,,t) € E.

e Assume (ji,jr+1) € E. Then 55, > €;, + 1. This means nei-
ther column j; nor column ji,; cover row €; + 1. Due to the
monotonicity of AT we further get (see Figure 2):

— 35, >¢j, +1forall k' > k+1, and
— &, < g, forall &' < k.
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Jk Jk+1

——————— R e I R |

Figure 2: Tllustration of second part of proof for Theorem 1

Together, row €;, +1 is not covered by any column, a contradiction.

QED

Since the cost of a cover equals the cost of the corresponding path and vice
versa, we finally get the following result.

Corollary 1 A shortest s-t-path in G represents a minimal cover and vice
versa.

This justifies the correctness of the following shortest path algorithm for
solving set covering problems with consecutive ones property.

Algorithm 2

Input: Set covering problem where A has the consecutive ones property.
Output: An optimal solution N.

Step 1. Use Algorithm 1 to transform A into a strictly monotone matrix.
Step 2. Derive the graph G; = (V, Ey).

Step 3. Find a shortest s-i-path P’ in G by a shortest path algorithm.
Output: N := P\ {s,t}.




Note that Algorithm 2 is still correct if we replace F; by
Ey={0.k) & +1€MitU{(s,j): 1€ M;} U{(jt) : m € My},

since E; still contains all minimal covers, i.e. all covers N which satisfy that
no N C N also is a cover. Minimal covers will also be needed in Section 5.

The unweighted case

Although set covering problems are still NP-hard in the unweighted case,
this case is significantly easier to solve if the matrix has the consecutive ones
property. The reason is due to the next lemma which is only true in the
unweighted case.

Lemma 4 A matriz A with consecutive ones property can be reduced to a
(smaller) unit matriz by applying a finite sequence of the two reduction rules
of Lemma 1.

Proof: Let A" be the reduced matrix. Suppose that no further application
of the rules of Lemma 1 is possible, and A’ is not a unit matrix. From
Lemma 2 we know that A’ can be assumed to be strictly monotone. Then
take ¢+ minimal such that

Case 1: either a; = 1 and a;; is not the only non-zero entry of column ¢
Case 2: or a;; = 1 and a;; is not the only non-zero entry of row ¢
Case 3: or a;; = 0.

Since A’ is strictly monotone, Case 1 cannot occur. Case 2 means a;; = 1 and
air, = 1 for k > i, yielding a;.; = 1 due to the consecutive ones property.
Below a;; only zero entries occur (since A’ is strictly monotone). This means,
M; € M, and column 7 could have been deleted. In the last case, if a;; =0
we get s; > 1, leading to s; > ¢ for all [ > 4 and column ¢ again could have
been deleted.

QED

Note that the remaining columns of the unit matrix obtained by Lemma 4
are the optimal solution. For the sake of completeness, we also repeat the
following well-known “folklore” algorithm which can also be used for solving
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an unweighted set covering problem with consecutive ones property. It can
be performed in linear time O(m log m + n).

Algorithm 3

Input: Unweighted set covering problem where A has the consecutive ones
property.

Output: An optimal solution N.

Step 1. Use Algorithm 1 to transform A into a strictly monotone matrix, set

i=1,N:=0
Step 2. N := N U{¢;}

Step 3. If {i' : sy > ¢;} # () choose i := min{i' : sy > ¢;} and goto 2, otherwise
STOP. Output: N

4 Bicriteria set covering problems

In practical optimization problems, one may not be interested in covering
all rows with minimal cost, but may wish to cover as many rows as possible
spending as few costs as possible. This leads to a bicriteria optimization
problem. To formulate this problem, we allow positive weights w,, for each
row m € M. For a given set N' C N we define

coverN = U M,
JEN

as the set of rows which are covered by N.
We consider the following two objective functions:

min f1(N) = [N], and
max fo(N) = Y wn.

mecover(N)

To state the bicriteria problem accurately, we need the following basic defi-
nition from multicriteria optimization. For a recent introduction into multi-
criteria optimization, see e.g. [Ehr05].
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Let F = {(f1, f2) : there exists some N C N : fi(N) = f, and fo(N) = fo}
be the set of feasible points in the objective space. Then the set of efficient
points is given by

Eff = {(fi1,f2) € F: There does not exist some (g1, g2) € F
with g1 < f1,92 > fo, and (f1, f2) # (91, 92)}-

Furthermore, each N with (fi(N), fo(N)) € Eff is called a Pareto solution.
The goal of the bicriteria set covering problem is to determine a set of Pareto
solutions, from which the decision-maker can choose the most appropriate.
In this section we show how the complete set Eff can be found in the bicriteria
set covering problem. The idea of the e-constraint method (see [HC83]) is to
bound one of the objectives and to solve the restricted problem optimizing
the remaining objective. Since in the unweighted case f; only can take the
values 1,2,..., N we consider

max fo(N) (7)
st N <k

for some fixed natural number £ < k*, where £* denotes the cardinality of an
optimal cover of the unweighted set covering problem (which can be found
by applying Algorithm 3 of Section 3). Due to Haimes and Chankong [HC83|
we have the following result:

Theorem 2 If N is a unique solution of (7) for some k < k* then N is a
Pareto solution belonging to the efficient point (fi(N), f2(N)). If more than
one optimal solution to problem (7) exists, the solutions with the smallest
fi-values are Pareto solutions.

In our case, if all w; > 0 all solutions of (7) with k£ < k* are Pareto solutions.

Consequently, we want to tackle problem (7). To this end, we define a cycle-
free digraph G, = (V, E3) by

Vi=NU{s,t}
and
Ey ={(J,k): j, ke N and j <k}U{(s,j) : j e N}U{(,t): 7 e N}.
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For each edge (j, k) we define weights

Tiemom Wi i j# s k#1
wjk; = EiEMk w; lf] = S,k #t

Furthermore, for an s-t-path P in G5 let W (P) denote its length according
to the edge weights w;;. We obtain the following result.

Theorem 3 Let P C N. Then W(P U {s,t}) = fo(P)

Proof: We use induction according to p := |P].
For p = 1 the claim is true. Now assume that

W(P'U{s,}) = fu(P)

for all P’ with |P'| < p. Take some P = {ji, jo, - - -, Jp, Jp+1} and assume that
J1 < J2 <...<Jjpy1. Define P' = {j1,jo2,...Jp}. Then we get

L(P) = > w

i€cover(P)

= Yoo owi+ > w;

i€cover(P’) iEMjp+1\cover(P’)
= WP U{s,t})+ > w (8)
iEMjp+1\Mjp
= W(PU/{s,t}),

where it remains to prove
Mjp+1 \ cover{j,... ’jp} = Mjp+1 \ Mjp

to show that (8) holds.

Since “C” is trivial, we only need to verify “O”.
To thisend, let i € M, ,,\M,,. We show that i ¢ M, forall k < p. Assume
the contrary, i.e. 1 € M;, and < € M, . This means that a;;, = a;;,,, =1,
and, since A has the consecutive ones property also a;;, = 1, a contradiction
to ¢ e Mjp.

QED
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Corollary 2 A longest s-t-path in Gy (with respect to the length W) with
no more than k edges is a mazximal cover with cardinality less than k, i.e. a
solution to problem (7).

Note that, since the digraph G5 contains no cycles, the longest path problem
is equivalent to a shortest path problem. To find a longest path with no more
than k edges, we can hence use the shortest path algorithm of Bellmann-Ford
(see, e.g. [NW88]). This algorithm needs O(kN?) time to find shortest paths
with cardinality less than £ from one specified starting node to all other
nodes in the graph. Since in our case, the graph contains no cycles, this
complexity reduces to O(¢®) where ¢ = max{k,n — k}, and that is also the
overall complexity of the next algorithm.

Algorithm 4

Input: Unweighted set covering problem where A has the consecutive ones
property.
Output: All efficient points, and a Pareto solution for each of them.

Step 1. Use Algorithm 1 to transform A into a strictly monotone matrix.

Step 2. Solve the unweighted set covering problem by Algorithm 3, let £* be
the cardinality of the optimal solution.

Step 3. Derive Go.

Step 4. Use the algorithm of Bellmann-Ford to find all longest paths from s to
any other nodes with k = 1,2,...k* edges. Let h* denote the length of a
longest s-t-path P*¥ with at most k edges.

Step 5. Let Ef = {(h',1)} For k = 2,...,k*: If h* > h*~1 set Eff =
Eff U{h*¥ k)}. Output: Eff .

In the context of stop location, a special case of this approach has been
formulated in [Sch03b].

5 More than one block of consecutive ones

In this section we investigate if the proposed approach can be extended to
set covering problems with coefficient matrices having more than one block
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of consecutive ones per row. Unfortunately, this is not the case: Even for two
blocks per row the set covering problem is NP hard. This can be shown by
reduction from wverter cover: Formulating the respective problem as integer
program yields a set covering problem with exactly two non-zeros per row.

The next theorem shows a special case with at most two non-zeros per row,
in which the set covering problem is already NP-hard.

Lemma 5 ([SMO05]) The set covering problem is NP-hard even for the case
that the covering matriz can be written as A = (A'|A?%), where A' and A?
both have the consecutive ones property and (A'|A?) has exactly two ones per
row, A' has no more than one one per row and A? has no more than two
ones per row.

However, we will show that the problem is polynomially solvable if A; and
A, both have the strong consecutive ones property, (independent from the
number of ones per row) and that it can be solved by extending our approach
of Section 3.

More specific, we now consider decomposable set covering problems of the
following form:

(SCP-dec)
min cx
s.t. (AYAY .. |AS)z > 1, 9)
z € {0,1}",
with m x ng matrices A9, g =1,...,G.

Theorem 4 (SCP-dec) with matrices A%, g = 1,...,G all satisfying the
strong consecutive ones property is polynomially solvable.

Proof: From part 1 of Lemma 3 we know that
A= (A"A%]...|A%)

is an interval matrix, i.e. AT has the consecutive ones property. Hence,
A is totally unimodular (see, e.g., III.1 of [NW88]), and hence the linear
programming relaxation of (SCP-dec) yields an integer solution, such that
(SCP-dec) is polynomially solvable.

QED
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Let us for the following assume that all matrices A9 have the strong consec-
utive ones property. We show that instead of just using linear programming
we can transform (SCP-dec) to a shortest path problem in an acyclic digraph
with Y5, ng + m nodes.

To this end, we need the following notations.

Let Ny ={1,...,n,} and N = U,y c{(9,7) : 7 € N} be the set of indices
for all columns in the set covering problem. We denote the elements of matrix
A9 by af;. Let AY be the jth column of matrix A9. Its index hence is given

by (g,7).

We furthermore extend (3) to our new case.

57 := min{i € M :af; =1}

el = max{i € M:aj; =1}.

We are finally in the position to define a digraph Gz = (V3, Ej).

Vs =N UMU{0}

and
Ey={((g,4),7) : €] =i} U{(i, (g9, 7)) : 8] <i+1<ej}

The first class of edges connects each column A to the last row it covers,
i.e., to i = & . The second class of edges connects a row i to all columns (g, j)
covering row % + 1. Since all rows with larger indices than 7 are not covered
by columns (g, j) belonging to incoming edges at i, the resulting digraph G
does not have any directed cycles.

For edges ((g,7),%) from N to M we associate costs c(,j); = 0 while we
define c; (, ;) = ¢} for edges from M to N.

Our goal is to show that a minimal cover can be found by calculating a
shortest path P from 0 to m and taking the nodes of P corresponding to
columns of 4, i.e., N = PNN.

While we can show that each 0—m path corresponds to a feasible cover, there
exist covers A which can not be represented by a suitable path in G5. The
correspondence between paths and covers hence is not a one-to-one relation
as in Theorem 1. But fortunately we are able to shown that covers which
cannot be represented as 0 — m paths will never be optimal. Let us first
consider the transformation from paths to covers.
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Theorem 5 Let P be a path from 0 to m in G3. Then PN N is a cover.

Proof: Let P be a 0 — m-path in G3 and N'= PNN. We have to show that
all rows i = 1,..., m are covered by a column (g,5) € N.

If i € PN M this is clear since the predecessor (g, ) of i in P corresponds
to a column AY covering 7 (since af; = 1 according to the definition of Ej).

Now consider a row ¢ € M\ P. Since each path ends at m we know that
i < m. Consequently, there exist two nodes 7, i € PN (M U {0}) such that
1<i<1 (10)

and the sequence (i, (g, ), 1) is a subpath of P for some (g, j) € N. We want
to show that (g, j) also covers i.

&
IA
.
+
—_
IA

&

e From (4, (g,7)) € E we know that

<.
.

S}

e From ((g,j),7) € E we know that é

Il
.

<

Combining these results with (10) we obtain

_g . . T__g
j_1+1<2<z—ej,

i.e., i is covered by (g, 7).
QED

We now have to deal with the set of covers which can be represented as paths.
To this end, we deal with (inclusion) minimal covers, i.e., covers N’ which
satisfy that N\ {j} is not a cover for all j € N.

In case of the strong consecutive ones property we obtain the following result
for (SCP-dec).

Lemma 6 Let N be a minimal cover of (SCP-dec). Then & # é?f for all
(9.9) # (¢, 3")-

Proof: If & = é?f for two columns (g, j) # (¢',j') both in N, one of them can
be deleted from A resulting in a smaller cover.

QED
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Theorem 6 Let N be a minimal cover. Then there ezists a path P from (
tom in Gz with PNN = N.

Proof: Let N a minimal cover. From Lemma 6 we know that no two columns
of N end at the same row. We consequently sort the elements of N according
to ég resulting in a sequence

(91, 51) < (92,72) < -+ < (GpsJp)-
Then the following properties hold:

. . — . 7g .. -
(*) If row i satisfies e]f <14 < e;;!} then i is covered by (gk11, jk+1)-

(**) All rows ¢ with i < €] are covered by (g1, j1)-

We now construct P as

P = (07 (gl7j1)7 égllv (QQ,jZ), ég; SRR (gpajp)a é_?;)'
Clearly, ((gx,jx),€}f) € Fj3 since this is the first type of edges in F.
It remains to show that also the other edges exist:

o (€%, (gk+1,Jr41)) € Bz forall k =1,...,p—1: From (*) we know that
i:= e&J* 4+ 1 is covered by (ji41,9r4+1) Consequently,

9k —9k+1
<€, + 1<e

Siry1 Jr41?

hence (€7, (gk+1, Jr+1)) € Es.

e Analogously, (0, (g1,71)) € E3 follows from (**).

e Finally, (g,, jp, m) € Es, otherwise row m would not have been a cov-
ered.

QED

We hence have shown the following result.

Corollary 3 A shortest path from 0 to m in G3 represents a minimal cover
and vice versa.

The resulting algorithm works analogously to Algorithm 2.

We remark that all nodes in M \ {m} can be deleted by the standard node
reduction of project planning (see, e.g., [EIm77]) such that a digraph G§ =
(V4, E%) with only |N|+ 2 nodes (but the same number of edges) remains.
Note that for the case of only one block per row, the resulting digraph GY is
exactly the same as the digraph (V| E!) defined in (3) on page 10 (identifying
s with 0 and ¢ with m).
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6 Conclusion

In this paper we discussed a new approach for solving set covering problems
with consecutive ones property, or decomposable set covering problems with
strong consecutive ones property. Some of the ideas might be transferred to
dynamic set covering problems and multi-covering problems.

From a practical point of view it is a challenging task to be able to solve large
instances of set covering problems using the block structure of the covering
matrix. An approach for problems obtaining almost the consecutive ones
property is presented in [RS04]| and an approximation algorithm whose ratio
depends on the number of blocks of consecutive ones in a row is suggested
in [SMO05].
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