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Abstract

We investigate potential functions for a class of infinite games, the path player
games. Existence of potential functions is ensured only for a few classes of games.
However, potential functions turn out to be interesting for existence and compu-
tation of equilibria in games. We show that path player games possess ordinal
potential functions. Furthermore, by extending the benefit functions, even exact
potential functions can be found. In addition, we propose a modified defini-
tion of potential functions, so called restricted potential functions which is valid
for generalized equilibria. We show that restricted potential functions can be
found for a generalized version of the path player game. From the existence
of potential functions, we derive two ways to compute equilibria. The first ap-
proach uses that optimal solutions of a linear restricted optimization problem
are equilibria. Afterwards, the computation of exact and approximate equilib-
ria by a greedy approach is discussed. In addition, we present classes of path
player games, where exact equilibria can be found within a finite number of im-
provement steps. Finally, we will present an alternative proof of the existence of
pure-strategy equilibria in path player games.

Keywords: network games, potential games, generalized Nash equilibrium games,
computation of equilibria. JEL-Code: C72

1 Introduction

Potential functions in game theory have been first mentioned by Rosenthal [19] who
used a potential function to prove the existence of pure-strategy equilibria in conges-
tion games. Monderer and Shapley introduced in [14] several definitions of potentials
and presented ways to characterize games with potential functions.
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Path player games are a game theoretic model that describes the flow in a network
from the viewpoint of the path owner. In this approach, see [18, 23], we consider paths
in a network as players. These players choose the amount of flow that uses the path,
which can be interpreted as offering bandwidth to the flow. The payoff is given e.g.
by the income a path owner receives from the fee the flow has to pay for using the
bandwith. The path player game is the basic model of the line planning game, which is
currently under consideration in the framework of the European project ARRIVAL [1],
see [22] for first results. Here, the line design of a public transportation network, like
in railway systems, has to be found. That means, the lines themselves and their fre-
quency have to be determined, see the referenced paper for details. In this framework,
the lines are players that want to minimize their delay with respect to given capacity
constraints and customer’s demand. The model in this paper is a building block for
the larger process of setting up traffic networks for real-world problems. It turns out
that line planning games are potential games as well, which allows to develop efficient
methods for computation of equilibria. Thus, this model can be used within the larger
framework of the European project ARRIVAL to finally achieve robust and large-scale
line plans.

As path player games are infinite games, our special interest is on infinite potential
games. Monderer and Shapley present in [14] sufficient conditions for the existence of
approximate equilibria and equilibria in infinite potential games. The former is sat-
isfied by path player games, the latter is not due to the non-continuous character of
the payoffs in those games. Kukushkin [9] proved the existence of equilibria in a re-
vised version of infinite ordinal potential games with compact strategy sets. Norde and
Tijs [16] are considering games where one or more players have infinite strategy sets
and present sufficient conditions for weakly determinedness of these games. A game
is weakly determined if it provides (¢, k)-equilibria, i.e. equilibra, where each player is
“reasonably” satisfied. That means, he either cannot improve his benefit more than
an € or is gaining already a benefit higher than k. In [28], Voorneveld extends the
results by Norde and Tijs, which were given for potential games to generalized ordinal
potential games.

Several research has been done linking the field of potential games with other fields
in game theory: Potential functions in cooperative games are considered in [3, 5.
[26, 25, 24] use the relation of potential games and the Shapley value of a cooper-
ative game. Games with incomplete information and robustness of equilibria in po-
tential games are studied in [27, 15]. Evolutionary processes are considered in [20]
where infinite player sets are given. In [2] evolutionary dynamics are considered under
stochastic perturbations. Mallozzi et al. [11] combine the concept of hierarchical games,
like Stackelberg games, with potential functions and introduce a hierarchical potential
game. Kukushkin [10] presents potential functions for games with perfect information
and the relation to subgame perfect equilibrium. Branzei et al. [4] investigate the re-
lation of potential games and submodular games.

Variations of the classical definition of potential games have been presented in the fol-
lowing publications: Voorneveld proposes in [29] best-response potential games, a class
of games containing the class of ordinal potential games. Best-responses potential func-



tions provide a sufficient condition for the existence of equilibria. A recent approach is
presented in Monderer [13], where multiple player types are considered in g-potential
games.

In this paper, we consider a class of infinite games, path player games, introduced by
Puerto et al. in [18]. Path player games are generalized Nash equilibrium (GNE) games
(see e.g. [7]), which have the crucial property that the strategy sets of the players are
not fixed, but mutually dependent on the strategies chosen by the other players. By
these dependencies, feasible and infeasible solutions can be described. To be able to
analyze GNE games, we introduce a new definition of a potential function, the re-
stricted potential function, that takes the dependency of strategy sets into account,
whereas the classical definition did not. We study the path player game with depen-
dent strategy sets and show that the newly introduced restricted potential function
exist in that case. Furthermore, we also study the case of non-dependent strategy sets
in path player games by allowing infeasible solutions which get punished by a negative
payoff. In this case, we present an ordinal potential function, which is a weaker type
of a potential. Moreover, we strengthen this result in a second approach to an exact
potential by extending the payoff function. The obtained potential functions are used
to develop a method for the computation of equilibria in path player games by solving
an optimization problem. The strength of this approach is that it is independent of
the type of payoff. Nevertheless, to obtain all equilibria, we study another approach,
which takes advantage of the existence of potential functions. In this approach, we
create (best-reply) improvement sequences, which, if they are maximal, end up with
an equilibrium. We are able to describe instances, where the best-reply improvement
sequences are finite, although we study a problem with an infinite number of strategies.
For all other cases, approximate equilibria can be obtained by using e-improvement se-
quences.

We start with a short introduction to path player games and the notations of potential
functions in Section 2. In Section 3, we define a restricted potential function which
is existing for the generalized version of the path player game. In the same section,
we present a linear restricted optimization problem that has feasible equilibria as op-
timal solutions. For the original path player game we propose an ordinal potential in
Section 4. Furthermore, an extension of the original benefit function enables an exact
potential for the path player game, which we will analyze in Section 5. Computa-
tion of equilibria using the greedy approach of improvement sequences is discussed in
Section 6. The paper finishes with a summary and an outlook to future work.

2 Preliminaries

We start with an introduction to the main properties of path player games, presented in
[18]. In these games a network with a single source s and a single sink ¢ is considered.
The players are represented by the paths P € P, connecting s and t. The private
information of each player is given by the flow fp > 0 assigned to the path. The cost
functions assigned to the edges are given by c.(f) and are assumed to be continuous
for f, > 0. The flow on an edge is given by f. = > ,...p fp. A player receives a certain
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benefit' bp(f), which is given either by a sum over cost on edges or by a punishment
of —M if the flow f is infeasible, i.e. exceeds a given threshold r.

_Joep(f) if Ypepfp<r
o) ={ ) e s

Therefore, for a profile of strategies f = (fp)pep the payoff function for player P is
bp(f) for any P € P. Existence of pure-strategy equilibria for path player games
is proved in [18]. Furthermore, Pareto-dominance of flows is investigated in [21]. It
is interesting that in path player games, in fact all relations between the set of non-
dominated solutions and equilibria are possible. In particular, in the paper mentioned,
an example similar to the Prisoner’s Dilemma is presented, where each equilibrium
is dominated and each non-dominated solution is non-stable. But also classes of
games with nice behavior are described, where the set of equilibria and the set of
non-dominated solution are equal, or at least, each non-dominated solution is an equi-
librium.

The following notation will be used in this text: The vector f p € R‘l}'_l is derived
from the flow f, by removing strategy fp. With

dp =T — Z fpk (1)

PLeP\{P}

we denote the decision limit of a player P. The decision limit is an upper bound on
the flow fp that yields a feasible flow f if it is satisfied. With

Irjnazc = {fp 2 0: fp maximizes bp(f_P, fp)} (2)

we denote the best reaction set of P, i.e. the set of strategies that maximizes the benefit
of player P with respect to the strategies chosen by the competitors.

In a game, a potential function is given by a player-independent, not necessarily unique
function that represents for each player the change of payoff due to the change of his
strategy. Formally, we call a function II : R'f‘ — R an ezact potential for a game I if

for every P € P, for every f_p € ]R'f'f1 and for every z, z € R, it holds:

bp(f-p,x) = bp(f-p,2) =II(f_p,x) = II(f_p, 2) . (3)

I is called an ezact potential game if it admits an exact potential function.

A weaker form of a potential function is defined as follows: A function II : R‘f' — R
is called an ordinal potential for I' if for every P € P, for every f_p € ]Rf'_l and for

every z, z € R,

bP(f_P,-T)—bP(f_P,Z)>0 A H(f_p,l')—H(f_p,Z)>0 :

'In the original definition, the benefit function covers a third aspect, the security payment. Security
payment will not be considered in this material.




Analogously, T is called an ordinal potential game if it admits an ordinal potential. By
definition of an equilibrium (see e.g. [17]) it is true that for an ordinal potential game
I, a flow f* is an equilibrium if and only if for every P € P and for every fp it holds

that II(f* p, f3) > H(f*p, fr)-

It follows that if we can find a maximum for the ordinal potential II, then the equi-
librium for I' exists in pure strategies. In [14] that fact is used to draw the conclusion
that each finite ordinal potential game has a pure-strategy equilibrium. Thus, knowing
a (ordinal) potential helps to identify equilibria in a game. It is therefore interesting
to have ways to check if a game is a potential game and to determine the potentials
themselves. For this purpose strategy sequences are introduced next.

Definition 2.1. A strategy sequence?, or simply sequence ¢ = (f°, f1,... fk,...) in

a game is given as an ordered sequence of flows f* such that for every k > 1 there is
a unique player P(k) with fF = (ff;}k),f}i(k)) and flli(k) # f]'f,(_kl). We call P(k) the
active player and the movement from f*=1 to f* the k™ step in .

A sequence is called improvement sequence if for every k > 1 it holds that

by (f*) > bp (FF71) . (4)

A game T satisfies the finite improvement property (FIP) if every improvement se-
quence is finite. For a sequence ¢, we call fO its initial flow and, if ¢ is finite, f~
its terminal flow. Furthermore, we say that a finite ¢ is connecting f° and f~. The
length of a finite sequence ¢ = (f°, f,..., fN) is given by l(p) = N.

A finite improvement sequence that ends because no improvement step is possible

anymore (a so-called mazimal sequence), provides an equilibrium as terminal flow. If
a game satisfies FIP we can use the improvement sequences to determine equilibria.
In [14] the authors show that every finite ordinal potential game satisfies FIP, as by
(4) for each improvement sequence, the potential values of the flows have to increase
strictly in each step. As the set of strategies is finite, each improvement sequence has
to be finite.
Unfortunately, although we can show in the following argumentation that path player
games have potential functions, we can not apply that result as path player games are
infinite. The improvement of benefit in a step may become arbitrarily small, which
may lead to infinite improvement sequences. Further approaches to create sequences
that yield equilibria or approximate equilibria are discussed in Section 6.

The cost of a finite sequence o = (f°, f1,..., f) is given by

=" [brw (F*) = bpay (FF7)] (5)

Note that for a sequence o=t = (f¥, f¥=1 ... f9) which is the reverse of ¢ it holds
that:
I(p)=—1(¢7") . (6)
2In [14], a “strategy sequence” is called “path”. As this term is here already occupied for the paths
that the players own in the network, we introduce the term “sequence” instead.




A sequence is called closed if fO = fV and a closed sequence is called simple if f¢ # f*
foral/ #kand 0 </, k< N —1.

With the next example, we show that path player games in their original notation are
in general no exact potential games.

Example 2.1. Consider the path player game illustrated in Figure 1. We set f =
(0,0) and f = (0.5,0.5). Consider the sequences p1 = ((0,0),(0,0.5),(0.5,0.5)) and
w2 = ((0,0),(2,0),(2,0.5),(0.5,0.5)). We have: I(p1) = (0.5—-0)+ (0.5—-0) =1 and

r=1

c(z) =z

co(z) =2

Figure 1: Example 2.1

I(py) = (—M — 0) + (=M — (—M)) + (0.5 — (—M)) = 0.5 and thus I(¢1) # I(p2).
The closed sequence that is obtained by connecting ¢ and 5" has cost 1 — 0.5 = 0.5.
By a result from [14] it is known that in an exact potential game, every simple closed
sequence of length four has cost zero. Thus, the presented game is not an exact potential
game.

As far as we know the study of potentials for generalized Nash games is new and no
reference can be traced back in the literature. Nevertheless, in the following sections, we
develop approaches to determine potential functions in path player games. We start the
investigation of potential functions just considering feasible flows. This is motivated by
the fact that if we consider the complete set of flows f € R‘f', the situation gets much
more complicated due to the non-continuity of the benefit function. Thus, in terms of
introducing the results, it is more convenient to start with the investigation of feasible
flows and to extend this concept later on to the complete set of flows. By considering
only feasible flows, we obtain a different type of game, namely a generalized path player
game, which is characterized by strategy sets that are restricted by the chosen strategies
of the competitors. We introduce this concept more in detail in Section 3. As the
classical definition of potential function is not applicable to restricted strategy sets, we
propose a new type of potential function, called ezact restricted potential function. We
show that generalized path player games possess exact restricted potential functions.
Furthermore, we develop an algorithmic approach to compute feasible equilibria by
solving an optimization problem. In Section 4, we consider the complete strategy set,
including the infeasible flows. Due to the structure of the benefit function, an exact
potential is not existing here. Nevertheless, we prove the existence of ordinal potential



functions, a weaker form of potentials. In a third approach in Section 5 we extend the
benefit function such that even an exact potential function for the complete strategy
set can be found. Finally, in Section 6, computation of equilibria by using a greedy
approach is discussed. We present classes of path player games, where equilibria can
be found within a finite sequence of greedy improvement steps.

3 Exact Potential Function for the Generalized Path
Player Game

In this section, we introduce a new definition of potential functions, valid for games
with mutually dependent players’ set of strategies. With this new notion, we are able
to obtain a (restricted) potential function for path player games. We allow a player
to choose fp only from [0,dp|. (Recall that dp was defined in (1).) Note, that dp is
dependent on the strategies of the competitors f_p. By feasibility, the benefit is then
given by bp(f) = cp(f). Games where the strategy sets of the players are dependent
on the strategies of the competitors are called generalized Nash equilibrium games (see
e.g. [7, 6]). See [23] for a generalization of path player games to games on polyhedra,
a special type of generalized Nash equilibrium games. Consequently, we call a path
player game, where the strategy set of each player is restricted to [0, dp] a generalized
path player game.

Definition 3.1. In a generalized path player game, a flow f* is a generalized equi-
librium if and only if for all paths P € P and for all fp € [0,dp(f_p)|, it satisfies
that

bP(fiP’ f;) > bP(fiP’fP) :

The investigation of generalized path player games is not only interesting for the
sake of finding potential functions. It makes also sense if we are interested in feasi-
ble equilibria, as the set of feasible equilibria in a path player game and the set of
generalized equilibria in the corresponding generalized path player game are coincide:

Lemma 3.2. Consider a path player game I' and the corresponding generalized path
player game F.AA flow f* is a feasible equilibrium in I if and only if f* is a generalized
equilibrium in .

The proof is obvious and therefore omitted. Since we are going to restrict ourselves
to feasible flows, the definition of potentials needs an adjustment. In the definition of
a classical potential it is not considered that strategy sets may be mutually players’
dependent.

Definition 3.3. A functionIl : f — R is an exact restricted potential for a generalized
path player game U if for every P € P, for every f_p with Zpkep\{P} fp, <1 and for
every x, z € [0,dp] it satisfies:

bp(f-p,x) —bp(f-p,2) = II(f_p,x) = TI(f_p, 2) . (7)



Consequentely, a path player game I is called an ezact restricted potential game if
it admits an exact restricted potential. This definition is extended in [23] to games on
polyhedra.

Definition 3.4. A sequence ¢ = (f°, ..., f") is called feasible if f* is feasible for
every 0 < k < N.

To prove the main result of this section we need the following Lemma.

Lemma 3.5. Let F = {f : fp >0V P €P A Y pepfr <1} be the set of feasible
flows in a generalized path player game I'. The following statements are equivalent:

I is an ezact restricted potential game (8)
I(p) = 0 for every finite closed feasible sequence ¢ 9)
I(p) =0 for every finite simple closed feasible sequence ¢ (10)

I(p) = 0 for every simple closed feasible sequence ¢ of length four — (11)

An exact restricted potential of T is given by fixing a feasible flow f and defining
II(f) = I(p) V feasible f where ¢ is a feasible sequence connecting f and f. Note that
I1(f) is well-defined, as I(y1) = I(p2) holds for ¢; and @y having the same initial and
terminal flow.

Proof. To prove the thesis of this lemma we follow an argument similar to the one in [14]
but applied to sets (the strategies of the different players are linked by constraints) of
strategies that are mutually dependent and to the exact restricted potential functions.
First, note that (9) implies (10) which implies (11). It remains to show that (8) is
equivalent to (9) and (11) implies (9).

(8) = (9) Let II be an exact restricted potential for I'. Consider a feasible closed
sequence ¢. By the definition of an exact restricted potential, the cost of a
sequence is given by

Ho) = 30 M) (/)] =1 (1Y) =1 (%) =0

k=1

(8) <= (9) We assume that I(¢) = 0 holds for any finite closed feasible sequence .
Now consider two feasible flows f, f € F. Any finite feasible sequence which has
f as initial and terminal flow and which contains f has cost 0 by assumption.
Thus, using Equation (6) it can be seen that all feasible sequences connecting f
and f have to have equal cost.
We define: For f € T, we set II(f) = I(y), for all feasible ¢ connecting a
fixed feasible f with f. It remains to show that II(f) is an exact restricted

potential in I'. Consider any P € P and any f_p with Y p p\(py fR, < 7
Furthermore consider z,z € [0,dp]. Let ¢, = (f, f',...,(f-p,)) be a feasible

sequence connecting f and (f_p,z). Set o2 = (f, f',..., (f-p,2)). It follows that
I(f-p,z) =1I(f-p,2) = I(¢1) — I(¢2) = bp(f-p, ) — bp(f-p, 2), from which we
conclude that II is an exact restricted potential.
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Part c) (11) = (9):
We suppose that (@) = 0 for every simple closed feasible sequence ¢ of length

I(p) = 4.
Assume there is a finite closed feasible sequence with non-zero cost and let us
consider such a sequence ¢ = (f°,..., fN) with minimal length I(p) > 4. As

the sequence is closed, there is a step ¢ with fP fP < 0, i.e. player P(q) is

decreasing his flow. Without loss of generality, let q be the first step: ¢ =1 and
set the active player in the first step P(q) = P;. Because of fO = fN there has
to be a 2 < j < N such that P(j) = P; with fP fP > 0, i.e. player P, has
to be active a second time where he increases hlS ﬂow For Jj = 2 we obtain a
contradiction to the minimality of I(¢), due to I(f°, f2,..., f¥) = I(p). A similar
contradiction can be obtained for j = N. Hence, we assume 2 < 7 < N — 1.

Consider the flow
1
fi = (P bopgeny T o)

which is obtained by proceeding step j+ 1 before step j. Note that P(j+1) # P

holds as otherwise we would have a contradiction to minimality of I(¢). Because
of
b=V PE{PLPG+1)}

and

j—1 j+1
ot < fh = 1

we can conclude that f is a feasible flow:

)N/ SR / S / Sl s

PeP PeP\{P1,P(j+1)}

S T e
PeP\{P1,P(j+1)}

pPeP

<r,
as fit! is feasible. It can be verified that the simple feasible sequence of length
four (fi=1, fi, fi+1 £ is closed and has by assumption cost zero. Thus, the fea-
sible sequences (f71, f4, fit1) and (f7°1, f7, fi*1) have equal length, and conse-
quently I(¢) = (@ )Wlth @ = (f9,..., fi 1 fi, f+1 . fN)is true. Note that in
@it holds P(j+1) = P;. By iteratlon of this replacement process we will obtain a
finite closed feasible sequence ¢* with I(p*) = I(¢) # 0 and P(N) = P(1) = P,
which leads to a contradiction of the minimality assumption of /(). We conclude
that I(¢) = 0 holds for each finite closed feasible sequence . O

A different representation of the cost functions will be needed for the following proof.
The cost of a path P is given by the sum of the costs on the edges belonging to this
path. We distinguish in the following two types of edges, the ones belonging exclusively
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to P, and the ones shared with other paths. Let E¥* ={e:e€ P Ae ¢ P,V P, # P}
be the set of exclusively used edges of P, and E¥™ ={e:e € P AN 3 P, # P:e € P}
the set of common used edges. As f, = fp holds for exclusively used edges, we obtain
the cost of a path in extensive form:

CP(f) = Zce(fe) = Z ce(fP)+ Z Ce (fP+ Z ka> (12)

ecP eCEere eCELO™ Pj:e€P;,, P, £P

We present now the main theorem of this section.

Theorem 3.6. Generalized path player games are exact restricted potential games.

Proof. We show that each generalized path player game satisfies property (11) of
Lemma 3.5.

Consider any two active players P; and P; that create a simple closed feasible sequence
¢ of length I(p) = 4 by alternatively choosing a new strategy and returning to the
first strategy afterwards. We denote the set of strategies of the remaining players with
J—{p,p;3- The sequence ¢ is given by:

Y = ((f—{Pz’Pj}’fPi’_ij)’(f—{Pin}’waij)a(f—{Pin}awaij)a
(f=gp.p;ys [ £P;), (f=ipipyys fPos fP)) -

As ¢ is feasible, we have bp(f*) = cp(f*) for all P and for all 0 < k < 3.
We obtain:

I(‘)D) = (CPi(fl) - cPi(fO))+(6Pj (f2) - ij (fl))+(CPi(f3) - CPi(f2))+(ch (fo) - CPj (f3)) .

To determine I(¢) we need only to consider the cost functions of P, and P;, and as
J—{p,p;} is fixed, the influence of f_(pp;} in the common used edges EE™ and Ef;‘;m
can be neglected. Thus, we modify the sets of common and exclusively used edges as
follows: Eg¢ ={ec€ E:ec€ P, AN e¢ P;}and Eg" ={ec€ E:e€ P, A e € P}.
The values Ef;fc and Ef;jm are defined analogously. As we are only considering the two
players P; and P; it holds: El%‘;m = Efp‘]?m =: E°o™_ Thus, to investigate the costs, apart
from the exclusive edges of P; and P;, we only consider that edges which P; and P;
have in common, while those edges which are used common with the remaining paths
carrying invariant flow, are represented in Ef° (and Ef* resp.). The path cost in
extensive form (see (12)) is thus rewritten:

CP(f): Z Ce(fP)+ Z Ce (fP+ Z ka> (13)

eEEffc ecEcom Py:e€ Py, P, #P

We denote S_(p,p,}(€) = X p.cep,pe(p,p,) [p and obtain:
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( ) )
Z ce(fp,) + Z (fP¢ + fp, + S—{Pz'Pj}(e))

\EEE;{C ec Ecom

(
Z ce(fp) + Z (fPi + ij + S*{Pipj}(e))

\eEE;,:_)C eeE‘com

( i o
Yo oelfr)+ Y, (fr+ fr+ S qmpp(e)

\CEE_‘?%C eeE‘com

( _
. clfr)+ Y (Fr+fr + S_(pry(e))

\CEE‘;;C eeE‘com

(
Z ce(fp,) + Z (fr + fr, + S—ppy(e))

\eeEle{_}c ec Fcom

( i o
Y elfr)+ Y, (fn+ fr, + S_ipry(e)

\CEE%?C eeE‘com

(
Z ce(fp;) + Z (fp + fr, + S—(p.pyy(e))

\CEE_‘;E.C ecEcom
J

( i i
Yo oeelfr)+ Y, (fr+ fr+ S qrpp(e)

\eEE_“;%C eeE‘com

0.

N— I 7 - — — I S — —

Definition 3.7. Let n = |P| be the number of players in a generalized path player
game. Consider a flow [ and a fized flow f. A sequence ¢ of length llp)=v<n+1
with o = (f, f',..., f*71, f) is called direct sequence from f to f, if for allk = 1,...,v

fhoy =T VL<k and fhp=FfroVI>k .

In a direct sequence, in each step a unique player P(k) changes its flow from f( P(k))
to fpk). After v steps, f is obtained.

Lemma 3.8. If f is a feasible flow then each direct sequence connecting the zero flow
J =0pp and f is a feasible sequence.
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Proof. As f is feasible it holds )., fp < r. For each step k =1,...,v it holds

=ZfPS7“-

peP

k

Z fb= pr(e) + Z 0< pr(e)
=

PeP =1 t=k+1
U

Note that Lemma 3.8 does not hold for arbitrary feasible f, which is illustrated in
the next example. Nevertheless, there always exists a feasible sequence connecting two
feasible flows f and f. We obtain such a sequence by ordering the players such that
those players, which want to reduce their flow, get active first.

Example 3.1. Consider the game represented by Figure 1. Set f = (0.25,0.75)
and f = (0.5,0.5). The direct sequence ¢ = ((0.25,0.75),(0.5,0.75),(0.5,0.5)) is
not feasible as the flow f'! is infeasible. A feasible direct sequence is given by ¢ =
((0.25,0.75), (0.25,0.5), (0.5, 0.5)), see Figure 2.

v

1/4

12 1

Figure 2: Feasible and infeasible direct sequences

By fixing f = 0;p| and using Lemmas 3.5 and 3.8 we can derive the following result:

Lemma 3.9. Consider a generalized path player game with n players. An exact re-
stricted potential Il is given by

([ Trm) [ Troy
fra 5 5
0( ) 0 n TP-1) TPk-1)
II(f) = I(¢) = |bpw) : —bpay | +Z bp(x) T — bp) 0
: 0 k=2 0 0
0 | :
o\ o0 ) \ 0

The next theorem provides a shorter representation of the potential function.
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Theorem 3.10. Consider a generalized path player game with n players. An exact
restricted potential 11 is given by

H(f) = Zce(fe) .

eck

Proof. We show that in an exact restricted potential game, each feasible sequence ¢
connecting a fixed flow f, say f = Ojp|, and some feasible flow f has cost

I((p) = Z [Ce(fe) - Ce(o)] :

ecE

Consider a generalized path player game with n players, a feasible flow f and a
direct sequence ¢ from f = Oip| to f. It is sufficient to prove the claim for direct
sequences only, as all feasible sequences connecting f and f have equal costs.

As f is feasible, it holds by Lemma 3.8 that ¢ is feasible too. Denote

Ii(p) = bpw) (f*) = bew) (f* 1) = cpu) (f*) — e (f* ). Then

I(p) = Z ce(frk)) + Z Ce | [Pk + Z b

ecBg B P:ec PAP£P(k)
- (0) + ft
Ce Ce P
ecBge ec B P:ee PAP#£P(k)

And thus

I(p) = Y Ti(y)

= 3 Y [alfew) - 0]

k=1 ec EG"S

P(k)
© - | 1
YY) el e+ D ) -c dooofE
k=1 ec B [ P:e€ PAP#P(k) P:ec PAP#P(k) J
#)

We reorder (#) by first summing up over the edges. For a given edge e, consider the
players P that use e but not exclusively: {P : e € E¥™}. Assume that these players get
active in the following order { P, ..., Py}, which is a subsequence of {P(k)}i=1,. n-
With E¢ we denote the set of edges that are used by more than one player, with E°

13



we denote the set of edges that are used by exactly one player.

(#) = Z Z Ce fP(k)+ Z f]lg — Ce Z fllg

ecE° k: eeE;"(’g) P:ec PAP#P(k) P:ec PAP#P(k)

S [ (zf> el (mzf)] 4

ecEc m=1

= ) lce (g fpi(q)) - ce((])]

ec k¢

= > [eelfe) = ce(0)] (15)

ecE¢

Equation (14) is true as in the direct sequence after the m' step, IE = = [p,, for

g <m and fp, , =0 for ¢ > m holds. In addition, (15) holds as fe = > p..cp fr-
By using that

Z Z Ce (fP(k:)) —c.(0 Z Z Ce fP(k - ce(O)} = Z [ce (fe) — ce(0)]

k=1 eEE‘ff(ﬁc) ecEe¢ k: eEE;,m(?c) ecEe

we are able to conclude:

I((p) = Z [ce(fe) - ce(o)] : (16)

ecE

By Lemma 3.5 it holds that (16) is a an exact restricted potential function. As c.(0) is
constant for all e € E, it holds that II(f) = >,y ce(fe) is an exact restricted potential
function, as well. O

Note that it would be an alternative (and shorter) proof for Theorem 3.10 to check

that II(f) = > cp ce(fe) satisfies (7). Nevertheless, the proof just presented contains
more information, as it illustrates the construction of the potential function.
The next theorem follows immediately from the previous result and Lemma 3.2. It
provides an algorithmic approach for finding equilibria in arbitrary path player games.
The strength of this approach is that it is independent of the choice of the payoff
function.

Theorem 3.11. In a path player game, feasible equilibria are given by optimal solutions
of the following problem:

max I1(f) = ZCe(fe) subject to feT .

ecE
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4 Ordinal Potential Functions for Path Player Games

To determine a potential, we reduced in the previous section the strategy space to the
feasible strategies. If we are considering the original path player game on the complete
strategy space f € R'f‘, the infeasiblity penalty complicates the situation. By allowing
infeasible strategies and thus infeasible sequences, we get problems with the cost of a
sequence each time the sequence leaves the feasible strategy space F. (see Example 2.1).
Nevertheless, we are able to present an ordinal potential for path player games. For
the proof, the next proposition is necessary.

Proposition 4.1. Let f* = (f_p,x) and f* = (f_p, z) be two feasible flows that differ
only in the component fp. Then

Docelf) =D clfS)=cr(f)—cr(f7) -

eckE eck
Proof.
docelfe) =Y eelf?)
ecE eck
= Z ce(f:)
eclE
= ) clfd) (17)
ecP
= cp(f*) —cp(f?) -
Equation (17) is true as f* and f* are different only with respect to path P. O

Theorem 4.2. Path player games are ordinal potential games. An ordinal potential
function is given by

_ ZeeEce(fe) if ZPE fp<r

Proof. Consider any player P and any two flows (f_p,z) and (f_p, z). We distinguish
four cases:
Case 1: (f_p,z) infeasible, (f_p, z) infeasible:

bp(f-p,x) —bp(f-p,2) = =M — (=M) =(f_p,z) — II(f-p,2) -
Case 2: (f_p,z) infeasible, (f_p, z) feasible:

bp(f-p,x) = bp(f-p,2) = =M —cp(f-p,2) <0,

as M is a large number. By the same argument,

N(f_p,2) —T(fp,z) =M= ce(fe) <0,

eckE
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holds.
Case 3: (f_p, z) feasible, (f_p, 2) infeasible:

bp(f-p,x) = bp(f-p,2) = cp(f-p,x) — (M) >0,

as M is a large number. Also,

I(f p,z) —(f p,2) = Zce(fe) —(=M)>0,

ecE

holds.
Case 4: (f_p,z) feasible, (f_p, z) feasible:

M(f) = T(f7) =Y el f) =Y el f?) =
ecE eckE
cp(f*) = cp(f?) = bp(f*) — br(f*) .
The final equation holds by Proposition 4.1.

Resulting from these four cases we can conclude that

bp(f_p,l') — bp(f_P,Z) >0 < H(f_P,.T) — H(f_P,Z) > 0. O

For two classes of path player games, namely for games on path-disjoint networks
and for games with strictly increasing costs, we are able to present a simpler description
of an ordinal potential function. A network is path-disjoint, if there is no edge that
belongs to more than one path. In path player games on path-disjoint networks, it

holds that cp(f) = cp(f_p, fr) = cp(-, fP)-

Theorem 4.3. In a path player game that is played on a path-disjoint network or in
a path player game where the cost functions c.(f.) are strictly increasing, an ordinal
potential function is given by:

_ | Yopeper(f) if Dpepfp<rT
- { % it Spepte>r 1)

Proof. Consider any player P and any two flows (f_p,z) and (f_p, z). We distinguish
the same four cases as in the proof of Theorem 4.2. The cases 1 - 3 are analogous to
that proof. We have only to consider case 4: ((f-p,z) and (f_p, z) feasible).

Path-disjoint network:

bp(f-p,x) = bp(f-p,2)
cp(f-p,z) —cp(f-p, 2)
(
(

= cp(x) —cp(2) (20)
= cp(z) —cp(2) + Z cp, (ka) - Z Cpy (ka)

PLeP\{P} PLeP\{P}
= I(f p,z) —TI(f p,2) . (21)
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(20) and (21) hold as we have a path-disjoint network.

Strictly increasing costs:
Assume

bp(f-p,x) —bp(f-p,2) = cp(f-p,z) — cp(f-p,2) >0

& r—2>0 (22)
& Y eplferm) = Y en(fop,2) >0 (23)
PLeP PLeP

= H(f_P,QT) — H(f_P,Z) >0 .

(22) is true as we have strictly increasing costs c.(fe) and due to the same reason
cp(f-p,x) —cp(f-p,z) > 0V P € P holds, which is used in (23).
0

In [21] the following definition is given: A flow f is non-dominated if there exists
no flow f such that the following clause holds:

[V PeP:bp(f) >bp(f) AN IPEP:bp(f)>bp(f)].

Lemma 4.4. In path player games that are played on path-disjoint networks or in
path player games with cost functions c.(f.) that are strictly increasing, there is an
equilibrium f* which is non-dominated.

Proof. Consider the equilibrium f* which is given as a maximizer of the potential
function (19). Theorem 1.11 in [8] proves that a flow maximizing the sum of the
benefits over all player in a game is non-dominated. O

In general it is not necessarily true that a maximizer f of a potential function is
also non-dominated. For instance, see [21], to find a path player game in which each
equilibrium is dominated. As the maximizer f is an equilibrium, it has to be dominated
in this case.

5 An Exact Potential for an Extended Benefit Func-
tion

We have already pointed out in Example 2.1 that the path player game as stated
originally is not an exact potential game. The problem is the discontinuity of the
benefit function at the point when the flows become infeasible. It is possible to handle
this drawback by a slight extension of the standard benefit function, by carrying the
cost function cp(f) into the infeasible region. With this approach, we are able to
present an exact potential function for the path player game.

In a path player game, the extended benefit function is given by

ex _ CP(f) ’Lf E e ka <r
bt (f) —{ M+ ep(f) if Z;ifpk >, - (24)
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The extended benefit function describes in fact a realistic model of economic situa-
tions. A player gets punished for sending too much flow, but nevertheless, he receives
the income created by the costs. For instance, consider a company that is producing
more goods than it is allowed to by a pollution regulation and gets punished. Nev-
ertheless, this company is selling all produced goods and thus obtains income from
them.

Theorem 5.1. The function

H(f) _ { ZeEE Ce(fe) if ZPG”P fp<r (25)
-M + ZeeE ce(fe) if ZPeP fe>r

is an exact potential function for any path player game with extended benefit function.

Proof. Consider any player P and any two flows (f*) and (f*). We distinguish four
cases. Proposition 4.1 is used in each case.
Case 1: (f”) infeasible, (f*) infeasible:

O -7 = M+ clff) - (—M+ D clf?)

eck eck
= —M+cp(f*) = (=M +cp(f*)) = be(f*) = bp(f?)
Case 2: (f”) infeasible, (f*) feasible:

(%) —I(f7) = M+ c(ff) =Y celf)

ecE eclk

= M +ep(f) — enlf7) = bp(f7) = bp(f?)

Case 3: (f”) feasible, (f#) infeasible:

O(f%) = I(f7) = Y elfd) - <M+Zce fe )

eckE eckE

= cp(f*) = (M +cp(f%)) = bp(f*) — bp(f*)

Case 4: (f”) feasible, (f#) feasible:

O(f%) =1(f%) = Y elf) =Y elfi)
ecE ecE
= cp(f*) —cp(f*) = bp(f*) — bp(f*)
Resulting from these four cases we conclude that
bp(f*) — bp(f%) = 11(f*) = IL(f*) ,

and thus, II(f) is an exact potential function. O

18



6 Computation of Equilibria by Improvement Se-
quences

One approach to obtain an equilibrium, is to solve the optimization problem given in
Theorem 3.11. The obvious drawback is that in general we will not find all equilibria
by this computation. In this section, another approach is presented. Dependent on the
initial flows, the algorithm is in principle able to deliver all equilibria in a path player
game. A proper choice of the set of initial flows is in fact an open question and an
analysis of the attraction region of the equilibria profiles is a topic of future research.
In Section 2 we have introduced sequences and the finite improvement property (FIP).
A finite improvement sequence terminates with an equilibrium, which is a motivation
to study this approach. Due to their infinite number of strategies, path player games
doesn’t satisfy FIP and we have to look for alternatives. We will investigate two
different approaches in this section. The first one will use best-reply improvement
sequences which are proposed in [12]. We will show in this section that in path player
games, best-reply improvement sequences are in general not finite. Nevertheless, we
will present classes of path player games, where best-reply sequences are finite and thus
end with an equilibrium. The second approach will analyze e-improvement sequences,
which yield approximate equilibria.

First, we consider the finite best-reply property, which is a greedy approach: at each
step the active player chooses a best reply as a new strategy, such that the improvement
of the active player’s benefit is maximized.

If in each step the active player shifts to a best reply strategy with respect to the

strategies of his competitors, i.e. if fl’f,(k) S ( f;}kﬂ does hold forall k =1,..., N,
the sequence is called a best-reply sequence. A best-reply sequence is called a best-

reply tmprovement sequence if a player will only get active if he can obtain a strict
improvement, i.e. if flli(_kl) ¢ b ( f;%k)) does hold for all k =1,..., N. (Recall that
f™% was introduced in (2).) A game in which every best-reply improvement sequence is
finite, satisfies the finite best-reply property (FBRP). The finite improvement property
implies the finite best-reply property but the reverse is not true. Unfortunately, also
best-reply improvement sequences may be infinite in path player games, FBRP is not
satisfied in general. This behavior is illustrated by the following example.

Example 6.1. Consider a path player game with two players and a flow rate r = 1.
Each of the two paths consists of two edges. One is owned exclusively by the player of
this path, the other one is shared with the second player (see Figure 3).

Let f1, fo be the flows of player 1 and 2. The cost of the exclusively used edges are
giwven by ce, (f1) = —f2Z for player 1 and ce,(f2) = —f2 for player 2. The cost of the
commonly used edge is ce,(f) = —(f1 + fo — 1)%. Thus, we get the cost of the paths as
a(f)=-f—(fi+ -1 ando(f)=—f = (fi + fo = 1)%

Given a fized fo, the first player will choose fi = 1/2 — f5/2 as best reply, while player
2 will choose fo =1/2 — f1/2 for a given fi. This best reply mapping has a fized point
at f* = (1/3,1/3) which is also the unique equilibrium of the game. See Figure 4 for an
tllustration of the set of feasible solutions and the best reply strategies. The equilibrium

19



f* can only be reached by the best-reply mapping if the starting point f° has either
Y =1/3 or fQ =1/3 or both. Any other start point will create an infinite best-reply
sequence, see e.g. Figure 5.

o

Cey (fl)
. /_\ Ces (f) t
\_/4 fl
1
3 r
Cey (fQ)
Figure 4: Best-reply Figure 5: Best-reply
Figure 3: Game network strategies improvement sequence

Nevertheless, we can present a class of path player games that satisfy FBRP.

Theorem 6.1. Consider a path player game where for all players P € P and for all
f-p € R'f‘_l the best reaction sets satisfy

JE €{0,dp} (26)
This game satisfies FBRP.

Proof. Consider a path player game with n players P = P;,..., P, and a best-reply
improvement sequence ¢ = (f°, f*,..., f¥,...). Let d* =r—3" ., f£ be the free flow
rate at step k.

We introduce a fictitious player P = P, ;1 who is “sending” the free flow rate as the
own strategy, i.e. f5 = d" holds for all k£ > 0.

For each player P = Pj,..., P, and each step k > 0, we define the set A% C
{Pi,...,P,;1} that is a subset of the set of players (including the fictitious one).
In addition, for each k > 0, the sets A% ,..., A%  have to be a partition of the set

. Ppt1
{Pl,...,Pn_H}, 1.e.
U AIICJ = {Pla"'aPTH-l}, (27)
P=P1,....,Pyq1
AhnAk, = 0 YP#£P, PP c{P,...,Pu1} . (28)

has to hold for all £ > 0.
In the following, we use these sets to show that in each step k, each initial flow f2 is
contributing to the flow of exactly one player.

20



Claim: For each k > 0 there is a partition of A%, P = P|,..., P,,, (satisfying (27) and

(28)), such that
k_ 0
fE= > f,
PjeAp

holds for all P = Py, ..., P,y1.
We prove the claim by induction:

k=0:
Set AL, ={P}V P=P"P,...,P,. It follows that

o= > =1,

PjeAY Pje{P}

(k—1) > k:

Assume the claim is true for step £ — 1. Consider the active player P(k), which is
changing his flow from f}i(kl) t0 fH- By (26), one of the two following cases has to be
satisfied:

(l) f}lg(k) =0,

.. k—1 _
(Z’L) fﬁ(k‘) == P(k) + dk 1 + an+1 .

In the second case, we use that the fictitious player is representing the free flow rate.
Automatically, his flow f}%n , is also changed by the move of the active player. Accord-
ing to the cases (i) and (ii) we have:

(Z) f]/gn+1 - Pn+1 + f ’
(i) fh., =0.

Furthermore, f£ = f&~! holds for all P ¢ {P(k), Puy1}-
For case (1), set Ay =0, Ap, | = Ap UAY,, and Ap = AV P ¢ {P(k), Py}
This is a partition, as (27) and (28) are satisfied. Furthermore, we have

> =Y.

Pj eAP(k) P;jed
fp, = fr fp + fra (29)
By P By Pn+1 k) ’
pieAy | PieAp PieAl

and for all P ¢ {P(k), P,+1}:

Zflgj: fogj_P =fp -

PjeAk, PjeAkt
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Note that in (29) we use that A’};lrl and A’;zkl) are disjoint, since by induction
hypothesis (28) is satisfied. For case (i7), set A’;(k) = A';,zkl) U A'fa;lrl, Ay =10, and
Ak = ARy P ¢ {P(k), P,y1}. This is a partition, as (27) and (28) are satisfied.

Furthermore, we have

Doofh= > fh+ D fh =g+ (30)

c Ak o ak—1 e Ak—1
Pj EAP(k:) P EAP(k) b eAl”n+1
0 _ —
> fh=2.=0,
PjEAIICDn_l_l P;eh

and for all P ¢ {P(k), P,+1}:

o= > ==

. k k—
Pje Ak, PeAk?

In (30) it is used that A';;l and A';;l are disjoint, since by induction hypothesis
1 (k)
(28) is satisfied. This last case finishes the proof of the claim.

There is a finite number of possibilities to partition { P, ..., P,,,} into sets A%. Thus,
the number of different flows f* that can be obtained by a best-reply improvement se-
quence is finite. Furthermore, in a best-reply improvement sequence, no flow f is visited
twice. This is true as the path player game is an ordinal/exact potential game and
thus, for a best-reply improvement sequence, a strict improvement of the ordinal/exact
potential function II(f) is required in each step. Since by this argumentation, a cycle
is not existing in any best-reply improvement path, and on the other hand the number
of different flows f* is finite, each best-reply improvement path is finite. O

. From the previous theorem the next corollary follows immediately, as the consid-
ered cost functions attain their maximum on the boundary of a compact interval.

Corollary 6.2. The following classes of path player games satisfy FBRP:
e PPG with cost functions ce(fe) that are linear in fp
e PPG with cost functions ce(f.) that are strictly increasing in fp
e PPG with cost functions ce(f.) that are strictly convez in f,

Previous results allow us to use best-reply improvement sequences to determine
equilibria for the presented classes of path player games in a finite number of steps.
For general path player games, Example 6.1 has illustrated that best-reply improve-
ment sequences may be infinite. Therefore, we need to consider different ways for the
determination of equilibria.

In the next approach we determine approzimate equilibria, which are described in [14].
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For € > 0, a sequence ¢ = (f°,...,f% ...) is an e-improvement sequence, if for all
k > 1 it holds that bp)(fk) > bpu)(fk—1) + €. A game T in which for all € > 0 every
e-improvement sequences is finite, satisfies approximate finite improvement property
(AFIP).

Theorem 6.3. The path player game satisfies AFIP.

Proof. Consider an e-improvement sequence ¢. First assume the initial flow f° of ¢ is
infeasible. Then, either no player is able to improve his benefit, that means f° is an
equilibrium and ¢ terminates with f~ = f% and [(¢) = 0.

Otherwise, there is at least one player which is able to improve the own benefit by
creating a feasible flow within one step. Then f! of ¢ is feasible.

For an improvement sequence it holds that if f* is feasible, the subsequent flow f*+!
is feasible, too. Thus, it is sufficient for the rest of the proof to consider the set of
feasible flows F since e-improvement sequences with /() > 0 will either start in F or
jump into I in the first step.

The benefit functions in path player games are bounded for f € F, as bp(f) = cp(f)
is continuous over the closed set F. Thus, the exact restricted potential function II(f),
which is existing according to Theorem 3.6, is bounded, as well. As an e-improvement
sequence increases the exact restricted potential function values by at least an € > 0
in each step, each e-improvement sequence has to be finite. O

Note that AFIP is also satisfied for any exact potential game with bounded benefit

functions, which is a result of [14]. A maximal finite e-improvement sequence yields an
e-equilibrium f€ as a terminal flow, i.e. a solution where bp(f<p, f5) > bp(f<p, fr) — €
holds for all P € P and for all fp > 0 and ¢ > 0. Note that e-equilibria may be
infeasible. An infeasible e-equilibrium can be only obtained as terminal flow of an
e-improvement sequence, with an infeasible equilibrium as initial flow (see [18] for a
characterization of infeasible equilibria in path player games). In this case, the initial
and the terminal flow coincide, the sequence has length one. We will neglect this
degenerated case and concentrate on feasible e-equilibria.
If we increase the precision for an e-improvement sequence, by decreasing ¢, we obtain
a sequence of feasible e-equilibria. By the following lemma, accumulation points of
that sequence are equilibria, such that e-improvement sequences can be used for the
computation of equilibria with a given precision.

Lemma 6.4. Consider a path player game and a sequence of feasible e-equilibria f*(€)
that is given for e = 0. Any accumulation point f* is a feasible equilibrium of the path
player game.

Proof. First, note that feasible e-equilibria exist for each ¢ > 0 as path player games
satisfy AFIP. Furthermore, by feasibility of e-equilibria, the sequence {f*(€)}c—o is
bounded. Thus, by the Theorem of Bolzano-Weierstrass, it has an accumulation point,
i.e. we can find a subsequence f*(€*) that is converging to f* for k — co. (Furthermore,

e *2% 0 holds for each subsequence of the original sequence.)
By the definition of e-equilibria one gets for each € > 0 that

bp(fiP(G), f;(E)) - bp(fiP(G), fp) > € VP € P,pr >0 . (31)
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Now consider the limit of (31):
ll_fng(f—P(e)a fp(e) — ll_I}abP(f—P(e)afP) > 11_1}36 VP eP,Vfp >0 .

As we assume to have continuous functions c.(f.), the benefit bp(f) is continuous for
any feasible f and we rewrite:

bp (lim £ o(€), lim f;;(e)) ~bp (hm £ 0(e), fp) >0 VYPeP,Vfp>0
e—0 e—0 e—0
g bP(ijafl);)_bP(ijafP)zo VPEP,VfPZO )
i.e. f* is a feasible equilibrium. 0
The following theorem is obtained directly from the previous lemma.

Theorem 6.5. In path player games with continuous cost functions c.(f.), equilibria
exust.

The above argument provides an alternative proof of the existence of pure strategy
equilibria in path player games, motivated by the existence of potential functions for
that kind of games. The first existence proof, which can be found in [18], uses a fixed
point argument. Note that Monderer and Shapley have provided in [14] a sufficient
condition for the existence of equilibria in infinite potential games. However, as path
player games have non-continuous benefit functions and moreover, mutually dependent
strategies sets of players, they do not satisfy those requirements. Hence, all the results
in this sections are completely new.

7 Summary

In this paper, the existence of potential functions for path player games is proved.
In particular, we found three different types of potential functions, which are used
to develop methods for the computation of equilibria in path player games. First,
the maximizers of potential functions are equilibria. We use this fact to generate an
optimization problem where optimal solutions are equilibria. Second, improvement
sequences that yield equilibria are analyzed. Finally, an alternative proof for the exis-
tence of pure-strategy equilibria is derived from the existence of potential functions.
In terms of future research in this field, it will be interesting to consider improvement
sequences and the corresponding attraction regions of equilibria. That means to iden-
tify sets of starting points for which improvement sequences will end in one equilibrium.
Furthermore, a generalization of path player games, the games on polyhedra, see [23],
is currently considered under the aspect of potential functions. It turns out that po-
tential functions can be found for special instances of such games. This is used to
prove the existence of equilibria, which is not given in general for games on polyhedra.
Moreover, the already mentioned line planning game, which is a potential game itself,
is developed further and in particular tested with real-world data within the European
project ARRIVAL [1].
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