
� �������	��
 � �
� ����� � ���
������������ �

� ���������� ��� �

!#"�$ %�&('�" %�)*&,+-$/.102&43 $�5
6�7 '�.�8:9�;�<='�>*8 7 & 7 9 $/?@;�>*)A>AB�.C>*&
DFEHGJILKNMPOPQ�RTS�ECU�VXWZYQ\[�K^]`_baLcdUHEZU�VXWfeg_hMjikK

l .,m�n4o2o�prqHs(t

u�vxwzyhvx{}|N~�����wzvx{}w/�hw*�
��|h��~x{}~���~��=����hv����h�-w*v�{������hwr�h|h���,|h��w��`��|h��~�wg����~x�hw*����~x{� 

¡�¢£~x¤*wz��~�vz¥�¦P§X��¦A¨
©ª�Z«k¬£­£¨�«2®��¢�~x~�{}|h��wz|



The Path Player Game:
Introduction and Equilibria

Justo Puerto Anita Schöbel Silvia Schwarze
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Abstract

We introduce the path player game, a noncooperative network game with a
continuum of mutually dependent set of strategies. This game models network
flows from the point of view of competing network operators. The players are
represented by paths in the network. They have to decide how much flow shall
be routed along their paths. The competitive nature of the game is due to
the following two aspects: First, a capacity bound on the overall network flow
links the decisions of the players. This network capacity can be considered
as a feasibility constraint, which leads to mutually dependent strategy sets of
the players. In this sense, the path player game is generalized Nash equilib-
rium game. Second, edges may be shared by several players which might have
conflicting goals.
In this paper, we restrict ourselves to study the existence of equilibria in
path player games, which is a non-trivial task due to non-continuity of payoff
functions and the infinite, mutually dependent strategy sets. We prove the
existence of equilibria in pure strategies by using a fixed point method. More-
over this approach takes into account the dependencies of the players’ strategy
sets such that we are even able to state the existence of an equilibrium that
satisfies the capacity bound. Furthermore, we analyze different instances of
path player games in more detail and present characterizations of equilibria
for these cases.

1 Introduction

Various types of games on networks have been studied in recent years. For instance
in routing games [24, 5], flow has to be transported from origin to destination nodes.
In load balancing games [20, 6], load is to be assigned to resources. In facility lo-
cation games and service provider games [29, 7], facilities have to be located and
assigned to the demand points. Network design games [9, 2] and coordination games
[14, 17, 4], describe the generation of networks. In [13, 15], properties of social net-
works are studied.
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In this work we study a new type of routing game. Usually, in routing games the
problem of sending flow in a network is considered from the point of view of the
flow itself, assuming that the flow can choose a path from origin to destination.
Another interesting aspect, which has not been considered yet, is the behavior of
the path owners, when they are allowed to choose the amount of flow that will be
sent along them. This new approach models systems where paths are owned by
decision makers, like in public transportation, energy or information networks. The
decision makers offer a certain bandwidth to be used by the flow, like a bandwidth
of electricity, or a certain daily frequency of trains. Equilibria in this model describe
a stable market situation among competing path owners. Thus, the existence and
characterization of equilibria is an important research topic and will be investigated
in this paper.

A rough description of path player game is given as follows: Consider a network
G and a set of players P , one for each path P ∈ P where the flow is defined as
f : P → R+. Each player’s strategy is to choose a nonnegative flow fP . An upper
bound to the flow is given by the flow rate r, which shall not be exceed by the
summarized flow in the network. The flow rate is motivated by the limited capacity
of the network resources and a violation is penalized in any case. In practice, this
bound may arise from society regulations like a limitation of traffic for ecological or
security reasons. Furthermore, each single player has a lower bound, the security
limit ωP . This aspect plays a central role in the application to the line planning
problem, a question of transport optimization. Both bounds may be violated, but
with consequences for the benefit (or payoff). An equilibrium in this game is given,
when each player is playing a benefit-maximizing strategy.

More detailed, the benefit is given by three parts: First of all, cost functions ce(x)
are assigned to the edges e that are dependent on the flow x sent on that edge. If
the bounds r and ωP are satisfied, the income of a player is derived by the sum
of costs over the edges that belong to the path. The other two parts of the payoff
come into operation if the bounds are violated. Then a constant benefit is payed.
Violation of the flow rate r (which causes an infeasible flow) results in a negative
benefit, a penalty. Violation of the security limit ωP is not necessarily penalized.

Note that the benefit is not necessarily strictly increasing. So a player is not neces-
sarily interested in routing as much flow as possible. Handling too much flow could
mean increasing operating costs, for instance due to over-hours or additional main-
tenance. The competitive aspect of the game is given on the one hand by the flow
rate that has to be satisfied by the network flow. Another interesting component of
the game is that the paths may own edges shared with other paths, as the flow on
an edge depends on the flow on the paths which are using the edge. This can have
positive or negative effects for the players. It may happen that players are forced
into situations where too much flow on a certain edge (created by competing paths)
decreases their benefit, or the other way around, that the flow provided by other
paths increases their income. Thus, the players sharing an edge may have different
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objectives regarding that edge, which leads to competitive situations.

In path player games we deal with a non-continuous benefit caused by the special
treatment of flow violating bounds r and ωP . If we consider just feasible flows, the
restriction by the flow rate implies mutual dependencies of the players’ strategy sets
as the maximal amount of flow a player may choose is bounded by the strategies
chosen by the other players. Games that take into account dependencies of strategy
sets are called generalized Nash equilibrium (GNE) games, see [16, 10]. An often
studied question in GNE games is the existence of equilibria, as it is in general not
given. Path player games are instances of GNE games with a simple structure, that
allows to state the existence of equilibria and moreover, provides several methods
for computation of equilibria. In [22] the concept of path player games is extended
to games on polyhedra. These games first allow a more general description of the
dependencies among strategy sets and second are not necessarily based on a net-
work structure anymore. See the reference for a study of computation of equilibria
in these cases.

In path player games, the penalty for violating flow rate r is a simple but efficient
way to avoid dependencies among strategy sets, i.e. fixed strategy sets are obtained.
For further analysis, it is worthwhile to consider both models, the approach using
infeasibility penalty and fixed strategy sets as well as the GNE path player game
with dependent strategy sets. As the first model is allowing infeasible game sit-
uations and thus is not bound to dependent strategy sets, it is more general and
easier to handle. On the other hand, without the infeasibility penalty, the second
approach provides a simpler (continuous) payoff. This is of advantage for instance
in the analysis of a potential function (see [23]), which turns out to exist for the
path player game in both versions.

Moreover, it turns out that path player games may have multiple equilibria. This
motivates analysis of the relation of equilibria and non-dominated solutions in the
sense of Pareto: A flow is dominated by a second flow if in the second flow, none of
the players has to accept less benefit while there is at least one player that receives
a higher benefit. This question is considered in [27]. It is interesting that in path
player games, in fact all relations between the set of non-dominated solutions and
equilibria are possible. In particular, in the paper mentioned, an example similar to
the Prisoner’s Dilemma is presented, where each equilibrium is dominated and each
non-dominated solution is non-stable. But also classes of games with nice behavior
are described, where the set of equilibria and the set of non-dominated solution are
equal, or at least, each non-dominated solution is an equilibrium.

As the path player game models situations in which several providers of a com-
modity are sharing a network, its applications can be found for instance in public
transport, telecommunication or information networks. Currently, an application to
the line planning problem is under consideration, which is the following: To create
a public transportation network, like a railway or bus network, lines have to be
installed. In particular, the lines are given by their stops, for instance a railway line
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may go from Hamburg to Basel with stops in Hannover, Frankfurt and Karlsruhe.
Assigned to each line is the frequency, i.e. the number of times a line travels within
a given time horizon, for instance twice a day. The line plan has to respect some
constraints. First, there is a given customers demand that has to be transported
from several origins to destinations and has to be satisfied by the frequencies. On
the other hand, upper bounds on the edges are given to limit the frequencies on the
edges. These bounds are usually given for security reasons, e.g. it is a rule that only
one train is allowed to be on a block at a certain time. Summarizing, the question
of line planning is: Which lines and what frequencies shall be installed such that
the constraints are satisfied? In terms of objectives there are several approaches, for
instance cost- or customer-oriented ones, see [25]. For the line planning game, we
minimize the average delay of each line.

Based on the path player game, the line planning game is developed and is currently
under consideration in the framework of the European project ARRIVAL [1]. In this
concept, the lines are players that want to minimize their delay with respect to given
capacity constraints and customers’ demands. This model is a building block for the
larger process of setting up traffic networks for real-world problems like it is a goal
of ARRIVAL. It turns out that efficient methods for computing equilibria in line
planning games can be developed. See [26] for first results and numerical studies
using data from interregional trains in Germany. Figure 1 illustrates a line concept
resulting from those studies.
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Figure 1: Line concept: Interregional trains in Germany

Concerning existing literature, we describe in the following three types of network
games that are related to path player games: We have already mentioned routing
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games, where the network flow is analyzed from the point of view of the flow. A
routing game is played like the path player game on a congested network, and the
flow is assumed to consist of a finite or infinite number of players. These players
act independently and selfishly. Each of them chooses a path from the source to the
destination that minimizes the cost of traveling along that path. This model can be
seen as a counterpart to the path player game, as it represents the point of view of
the travelers, i.e. of the flow. On the contrary, in the path player game, we analyze
the situation from the path owner’s point of view. Here we want to maximize the
income one gets from the flow using a path. Note that the cost functions in routing
games are sometimes interpreted as latencies. Thus, an increasing latency shall pre-
vent that too much flow is going over the edge, in some sense it acts as a substitute
for the missing capacity constraint. Our interpretation is different, as we assume
that the cost paid by the flow is meant as income for the path owners.

The strategies of the players in a path player game can be taken as offering band-
width to the flow. In fact, our model is related to bandwidth allocation games, as
described in [19, 18]. In bandwidth allocation games capacitated links are used by
several players. The players send bids to a central manager and the manager answers
with prices that are proportional to the bids. Moreover, he cares for satisfying the
capacity constraints. Each user has its own utility function that determines his pay-
off depending on the price and the bid. For these type of games it is distinguished
between price taking users and price anticipating users. The latter ones take into
account the reasoning of the manager and adjust their bids, while the first ones just
accept the price. Only the second approach represents a game. On the contrary to
this model, our model considers no capacities on the edges, although the flow rate r
is corresponding to a capacity in a single edge bandwidth allocation game. Also the
“bids” in the path player game, that means the strategies, are not answered by a
manager, but are directly accepted. So, the path player game is a simpler approach,
which enables us to get further results. In the path player game we allow general
continuous and nonnegative cost functions, while in bandwidth allocation strictly
increasing, continously differentiable and concave functions (so called elastic traffic)
are required. Furthermore, in bandwidth allocation the existence of equilibria can
not be guaranteed. In the path player game we are able to prove the existence for
continuous cost functions.

Another model describing the behavior of path owners is that of path auctions, see
e.g. [8, 3]. Here each edge is owned by a player, and a central manager has the task
to buy a shortest path from s to t from the edge owners. The edge owners know the
price of their edge, but they are allowed to report a wrong price if they benefit from
lying. The question is to develop a payment mechanism such that every edge owner
is interested to tell the truth. Such a mechanism is called truth telling. This model
is in a sense related to ours, assume our network consists of parallel edges from s to
t, our path owners would be edge owners as well. Nevertheless, in the path player
game we are in a previous step analyzing the game aspect and as a consequence we
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are able to obtain further results.

In this paper, we prove the existence of pure-strategy equilibria in path player games
using a fixed point approach. As we have non-continuous payoffs and a continuum of
strategies, we can not use the results existing in literature. Furthermore, the proof
takes into account the dependencies among strategy sets such that even the existence
of feasible equilibria should be shown. Afterwards, we discuss equilibria for several
instances of path player games. In particular, if we assume strictly increasing cost
functions on all edges, we obtain a necessary condition for equilibria. This result can
be strengthened, if we assume in addition non-compensative security (NCS) prop-
erty. If this property is given for a game, it assures that a player takes advantage of
the security payment only if he is forced to. Consequently, NCS property is given if
we have no security payment in the game. For games with strictly increasing costs
and NCS property, we derive even a necessary and sufficient condition.

The paper is organized as follows. In Section 2 we introduce the game model. After-
wards, in Section 3 we define equilibria in this class of games and show that feasible
equilibria in pure strategies exists. In Section 4 further properties of path player
games necessary, later on, for describing equilibria, are discussed. In Section 5 we
analyze the equilibria for strictly increasing cost functions and give necessary and
necessary and sufficient conditions for a profile of flows to be in equilibrium. The
paper ends with some suggestions for future work.

2 The Model

We consider a given network G = (V,E) with vertices v ∈ V and edges e ∈ E. A
path P in G is given by a sequence of edges e ∈ E: P = (e1, ...., ek). By P we denote
the set of all paths P in G from the single source s to the single sink t, thus the set
P is given by the structure of the network G. Each of the paths P ∈ P represents a
player1 in the path player game. Each player proposes an amount of flow fP that he
wants to be routed along his path. The complete flow is represented by a function
f : P → R+, while the flow on path P is denoted by fP . For each edge e ∈ E, the
flow fe along the edge can hence be determined by the sum of the flows on paths
that contain e, i.e.

fe =
∑

P :e∈P

fP .

We assume that the demand is high enough to ensure that the players can implement
the flow they proposed. Note that this is a considerable difference to bidding games,
like bandwidth allocation or path auction games.

Each edge e is associated with a cost function ce(·), that depends on the flow on
e. The cost function represents the income of the edge owners and we assume these

1In the course of this paper we will denote both, the path and the corresponding player with
P , as both notations are handled equivalently.

6



functions to be continuous and nonnegative for nonnegative flows, i.e. ce(x) ≥ 0 for
x ≥ 0. If the edge belongs to more than one owner, we assume that each player
receives the same income ce. (Note that it is possible to generalize this model by
allowing the owners to share the fee in an arbitrary way.)

To calculate the cost on a path P , we sum up the costs of the edges belonging
to that path, i.e.,

cP (f) =
∑
e∈P

ce(fe).

These costs are, however, not directly the benefit of player P since there are two
more issues to handle:

• We require that the sum of flows in the network is bounded by a given flow
rate r. It can be interpreted as a network capacity. We call a flow f feasible
for a flow rate r if

∑
P∈P fP ≤ r holds. If the flow rate is exceeded, the flow

is called infeasible and all players receive a penalty of −M , with M being a
large number.

Note that a feasible flow need not necessarily use the complete flow rate. This
makes sense in an economic context, where the resource providers only satisfy
the complete demand if this maximizes their income, but not if it is too costly
for instance due to overtime or additional maintenance of the resources.

• Furthermore, in the game a security system for the players is implemented: If
the flow of a player P lies below the so called security limit ωP ≥ 0, he will
receive a fixed security payment κP > −M . In this case, the path P is called
underloaded, while we call P loaded, if fP > ωP . For positive κP , the security
limit and payment serve as an insurance that guarantees a fixed income for
each player. On the other hand, if κP < 0, the security payment is a penalty
for underloaded paths. This penalty may represent for instance additional
costs for maintaining an unused resource.

Summarizing, we obtain the benefit function in the path player game:

Definition 2.1. The benefit function of player P ∈ P in a path player game for
f ≥ ~0|P| is given as:

bP (f) =





cP (f) if
∑

P∈P fP ≤ r ∧ fP ≥ ωP

κP if
∑

P∈P fP ≤ r ∧ fP < ωP

−M if
∑

P∈P fP > r
,

where cP (f) =
∑

e∈P ce(fe).

Some remarks about path player games should be added.

• There is a continuum of strategies as a player is allowed to choose any non-
negative real number. The benefit (or payoff) a player obtains after fixing a
strategy depends on the strategies of all players.
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• The path player game is noncooperative and thus it is possible that the flow
created by the decisions of the players is not feasible. For instance if the benefit
is a nondecreasing function, each player will try to get as much flow as possible
such that the sum of all proposed flows may exceed the flow rate.

There are two approaches for dealing with the latter issue. First, path player
games can be considered as a generalized Nash equilibrium game ([16, 10]). That
means, only feasible flows with

∑
P∈P fP ≤ r are considered leading to mutual

dependent strategy sets of the players. This approach is studied in detail in [22],
where a more general setting, namely games on polyhedra are considered. Path
player games are instances of games on polyhedra. Furthermore, in [23] generalized
path player games are studied and potential functions for such classes of games are
proven to exist.

In this paper we follow a second approach to handle infeasible flows. Namely,
infeasible flows are allowed, but punished with a negative payoff in the benefit func-
tion. This approach has one drawback: It turns out that also an infeasible flow
may be an equilibrium situation. Nevertheless, we will prove in Theorem 3.4 that
feasible equilibria do exist so that we can draw our attention to feasible equilibria.

3 Equilibria for General Benefit Functions

In this section we analyze equilibria in path player games for general benefit functions
while, later in Section 5, we derive additional results for strictly increasing cost
functions. The definition of equilibria in path player games follows the definition of
a Nash equilibrium (see e.g. [21]): A flow f ∗ is an equilibrium in a given path player
game if and only if for all players P ∈ P and for all fP ≥ 0 it holds that

bP (f ∗−P , f ∗P ) ≥ bP (f ∗−P , fP ) . (1)

We will call the equilibrium feasible if f ∗ is a feasible flow, infeasible otherwise. An
equilibrium is a game situation where none of the players is able to obtain a better
outcome by changing his strategy. Such a situation characterizes a stable state of
the system.

In order to find equilibria in the path player game we have to look at the benefit of
a single player who changes his own strategy, while the strategies of the competitors
remain fixed. We define f−P ∈ R|P|−1

+ by deleting the component belonging to path
P , such that we can fix the strategies f−P of the competitors and just consider the
influence of fP . The one-dimensional cost function assigned to a player P ∈ P for
a given flow f−P is denoted by

c̃P (fP ) = cP (f−P , fP ) =
∑
e∈P

ce


fP +

∑

Pk∈P\{P}:e∈Pk

fPk


 .
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Note that the term
∑

Pk:e∈Pk∧Pk 6=P fPk
is constant. It is clear that if ce(fe) are convex

(concave) functions, then c̃P (fP ) is also a convex (concave) function. We need two
other notations:

• The one-dimensional benefit for a player P and a flow fP ≥ 0 with respect to
the given flow f−P is denoted by

b̃P (fP ) = bP (f−P , fP ) .

• The decision limit of player P for a given flow f−P is

dP = r −
∑

Pk∈P\{P}
fPk

.

The set [0, dP ] is called the decision interval of player P , it contains all feasible
strategies for P .

From the definition of the decision limit we obtain the following corollary. It says
that if there is one player sending as much flow as possible (without violating the
decision limit), then this is true for all players.

Corollary 3.1. Any flow f satisfies: If there is a player Pk with fPk
= dPk

then all
players P ∈ P satisfy fP = dP .

Using the one-dimensional cost function c̃P (fP ) defined before and the decision
limit dP , we are able to describe the one-dimensional benefit function in more detail.

b̃P (fP ) =





c̃P (fP ) if fP ≤ dP ∧ fP ≥ ωP

κP if fP ≤ dP ∧ fP < ωP

−M if fP > dP

.

Figure 2 illustrates an example of a one-dimensional benefit function. The function
b̃P (fP ) is characterized by three parts: The two constant regions generated by the
security payment κP , the infeasibility penalty −M , and the middle part, created by
the cost function c̃P . As the players want to maximize their benefit, we define the
best reaction set for a player P with respect to a given flow f−P as

fmax
P = {fP ≥ 0 : fP maximizes b̃P (fP )} .

These sets are useful for a first characterization of equilibria. First, we need the
following result.

Lemma 3.2. Consider a path player game with cost functions ce(fe) being contin-
uous for all edges e ∈ E. Then, the sets fmax

P are nonempty for all P ∈ P.
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b̃P (fP )

fP

ωP dP
fmax

P

κP

−M

Figure 2: one-dimensional benefit function

bP (~0, fP )

fP

dPωP

Figure 3: fmax
P is empty

Proof. Consider the intervals I1 = [0, ωP ), I2 = [ωP , dP ] and I3 = (dP ,∞). Since
b̃P (fP ) is constant on I1 and I3, maxima exist for these intervals. The existence of
a maximum on I2 is confirmed by Weierstrass extreme value theorem since b̃P (fP )
is continuous on I2 and I2 is compact. The maximum of these three single maxima
hence is the overall maximum.

Figure 3 shows that in the case of non-continuous cost functions a benefit max-
imizing flow need not exits. We will use the following reformulation of equilibria in
terms of the best reaction sets.

Corollary 3.3. In a path player game a flow f ∗ is an equilibrium if and only if for
all P ∈ P with respect to f ∗−P it is satisfied that

f ∗P ∈ fmax
P .

For infinite games with continuous benefits it is known that there exists an
equilibrium in mixed strategies if the strategy spaces are nonempty and compact.
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Even more, if we assume continuous and quasi-concave benefit functions, there exists
a pure-strategy equilibrium (see [11]). In our game we cannot assume continuous
benefit functions. In addition, we have to deal with variable strategy sets if we just
consider feasible flows. Therefore, it is not evident that in path player games feasible
equilibria do always exist. We will in the following prove even more: the existence
of feasible equilibria in pure strategies.

Theorem 3.4 (Existence of feasible equilibria). In a path player game with con-
tinuous cost functions ce(fe) for all edges e ∈ E, there exists at least a feasible
equilibrium in pure strategies f̂ such that f̂P ∈ fmax

P ∀ P ∈ P.

Proof. Consider the set of feasible flows F =
{
f : fP ≥ 0 ∀ P ∈ P ∧ ∑

P∈P fP ≤ r
}
.

The set F is closed, bounded and convex. Furthermore consider the single-value func-
tion, T : F → R|P| defined as T (f) = f ′ whose components f ′P = t(fP ) are given
by

f ′P = fP +





min

{
fm

P − fP ;
fm

P −fPP
Pk∈P:fPk

<fm
Pk

(fm
Pk
−fPk

)
· d

}
if fP < fm

P

fm
P − fP if fP ≥ fm

P

, (2)

where fm
P = min {fmax

P } is chosen as the smallest flow that is benefit maximizing2

and d = r − ∑
P∈P fP is the flow left that can be distributed among the players

maintaining feasibility. Note that it holds for all P ∈ P that d = dP − fP ≥ 0. Note
furthermore, that by Lemma 3.2 fm

P exists and that by definition of fmax
P it holds

that
0 ≤ fm

P ≤ dP = r −
∑

Pk∈P\{P}
fPk

. (3)

A visualization and interpretation of the function T can be found right after this
proof. In the following we prove that T is a continuous function of F into itself. Then,
by Brouwer’s fixed point theorem a fixed point f = T (f) exists in F. Finally, we
will show that each fixed point in F is representing an equilibrium in pure strategies,
so that we will be able to guarantee the existence of a feasible equilibrium in pure
strategies.

Part a) (T : F→ F)
First note that f ′P ≥ 0 ∀ P ∈ P . Denote the sets P1 = {P ∈ P : fP < fm

P } and
P2 = {P ∈ P : fP ≥ fm

P }.
∑
P∈P

f ′P =
∑
P∈P1

(
fP + min

{
fm

P − fP ;
fm

P − fP∑
Pk∈P:fPk

<fm
Pk

(fm
Pk
− fPk

)
· d

})

+
∑
P∈P2

(fP + fm
P − fP )

2Note that for the proof it is not important which fP ∈ fmax
P is chosen for fm

P as long as it is
well-defined.
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=
∑
P∈P

fP +
∑
P∈P1

min

{
fm

P − fP ;
fm

P − fP∑
Pk∈P:fPk

<fm
Pk

(fm
Pk
− fPk

)
· d

}

+

≤0︷ ︸︸ ︷∑
P∈P2

(fm
P − fP )

≤
∑
P∈P

fP +
∑
P∈P1

fm
P − fP∑

Pk∈P:fPk
<fm

Pk

(fm
Pk
− fPk

)
· d

=
∑
P∈P

fP + d =
∑
P∈P

fP + r −
∑
P∈P

fP

= r .

Therefore, f ′ ∈ F since f ′P ≥ 0 ∀ P ∈ P and
∑

P∈P f ′P ≤ r.

Part b) (T (f) is continuous)
We distinguish the following exhaustive cases:

i) fP > fm
P :

f ′P = fm
P ∀ fP > fm

P , i.e. t(fP ) is continuous

ii) fP = fm
P + 0:

f ′P = fm
P for fP = fm

P + 0, i.e. t(fP ) is continuous to the right fP = fm
P + 0

iii) fP < fm
P :

Consider g(f) = fm
P − fP and h(f) =

fm
P −fPP

Pk∈P:fPk
<fm

Pk

(fm
Pk
−fPk

)
· d. The func-

tions g(f) and h(f) are continuous and so the minimum of both functions
is continuous too. It follows that t(fP ) with f ′P = fP + min {g(f); h(f)} is
continuous.

iv) fP = fm
P − 0:

Consider the following marginal value of the mapping that we take for each
flow f where fP → fm

P − 0:

lim
f :fP→fm

P −0



→fm

P︷︸︸︷
fP + min





→0︷ ︸︸ ︷
fm

P − fP ;

≥0︷ ︸︸ ︷
fm

P − fP∑
Pk∈P:fPk

<fm
Pk

(fm
Pk
− fPk

)
·
≥0︷︸︸︷
d






 = fm

P .

Thus, t(fP ) is continuous to the left at fP = fm
P − 0.

Hence, T is continuous.

Part c) (f̂ = T (f̂) ⇒ f̂ is a pure strategy equilibrium)
Since T maps F into itself and we have proved that a fixed point f̂ = T (f̂) exists
then f̂ ∈ F. Therefore f̂ is an equilibrium in pure strategies.
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Moreover, we can explicitly describe the form of such an equilibrium. Indeed, as
f̂ = T (f̂) then f̂ ′P = f̂P for each path P ∈ P which in turns implies that the bracket
in (2), that we will denote by KP , equals zero. Hence KP = 0 for all P ∈ P .
First note that f̂P < f̂m

P can not occur since from KP = 0 and f̂m
P − f̂P > 0 it follows

that d = 0. Then, from (3) we get

0 = d = r −
∑
P∈P

f̂P ≥ f̂m
P − f̂P .

This implies that f̂P ≥ f̂m
P , which means by (2) and as KP = 0 that f̂P = f̂m

P ∈ fmax
P .

In conclusion, the equilibrium satisfies

f̂P ∈ fmax
P ∀ P ∈ P .

Figures 4 and 5 illustrate the mapping T . The mapping can be interpreted
as a simple auction where the players bid the flow they want to route over their
paths. In particular, each player asks to receive the flow fm

P . Then, each player
receives a flow f ′P which depends on all bids and on the amount of flow that can
be distributed without exceeding the flow rate r. If the current flow of a player
P is greater than or equal to fm

P , then he is given exactly f ′P = fm
P , as reducing

flow will not violate the flow rate. If fP < fm
P holds, i.e. P asks for a larger flow,

we have to distinguish two cases. The first case is illustrated in Figure 4. Here,∑
Pk∈P:fPk

<fm
Pk

(fm
Pk
− fPk

) > d holds, i.e. the players want to increase their flow, but

ask for more flow than available. In this case the flow rate would be violated if each
player would receive his bid. Thus, each player receives a fraction of d proportional
to his bid and smaller as his bid. In the second case, the sum of the players’ bids is
not exceeding r:

∑
Pk∈P:fPk

<fm
Pk

(fm
Pk
− fPk

) ≤ d. Each player will receive exactly his

bid, which is illustrated in Figure 5.

f ′

P

fP

fm

P

fm

P

Figure 4: Players receive flow smaller
than bid

f ′

P

fP

fm

P

fm

P

Figure 5: Players receive exact bids
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Note hat in a path player game infeasible equilibria may occur. They are fully
characterized in the next lemma.

Lemma 3.5. In a path player game a flow f is an infeasible equilibrium if and only
if for all paths P in P the following is satisfied:

∑
P∈P

fP ≥ r + max
P∈P

fP .

Proof. (
∑

P∈P fP ≥ r + maxP∈P fP ⇒ f infeasible equilibrium)
Consider a flow f such that

∑
P∈P fP ≥ r+maxP∈P fP holds. This flow is infeasible

as maxP∈P fP > 0 holds. In addition for all paths P in P the following is true:

dP = r −
∑

Pk∈P\{P}
fPk

= r −
( ∑

Pk∈P
fPk

− fP

)
≤ r −

≥r︷ ︸︸ ︷( ∑
Pk∈P

fPk
−max

P∈P
fP

)
≤ 0

⇒ b̃P (fP ) = −M ∀ fP

⇒ fmax
P = [0,∞)

Therefore, we conclude that fP ∈ fmax
P ∀ P ∈ P and thus, f is an equilibrium.

(f infeasible equilibrium ⇒ ∑
P∈P fP ≥ r + maxP∈P fP )

Consider a flow f such that
∑

P∈P fP > r and fP ∈ fmax
P ∀ P ∈ P , i.e. f is

an infeasible equilibrium. Assume that the claim is not true, i.e.
∑

P∈P fP < r +
maxP∈P fP . Let P̄ be such that maxP∈P fP = fP̄ . Then,

dP̄ = r −
∑

P∈P\{P̄}
fP = r −

(∑
P∈P

fP − fP̄

)
= r −

<r︷ ︸︸ ︷(∑
P∈P

fP −max
P∈P

fP

)

⇒ dP̄ > 0

⇒ ∃ f ′̄
P

: b̃P̄ (f ′̄
P
) > −M

⇒ fP̄ /∈ fmax
P̄

,

which contradicts the assumption and thus the claim follows.

It is a consequence that infinitely many infeasible equilibria exist in path player
games.

4 Properties of Path Player Games

In this section we describe properties of path player games that will be needed for
the characterization of equilibria.
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Path-disjoint Network A set of paths P̄ is called disjoint if for all pairs P1, P2 ∈
P with P1 6= P2 it holds that P1 ∩ P2 = ∅.
We call a network path-disjoint if the set P of all paths from s to t is disjoint. In a
path disjoint network, cP (f) only depends on fP and is independent from f−P . In
the literature, cost functions cP with cP (f) = cP ( · , fP ) are also known as separable
functions (e.g. see [12]).

Trivial Games We will call a game with flow rate r and security limits ωP trivial,
if

∑
P∈P ωP > r holds, and nontrivial otherwise. In trivial games, it is possible that

the entire flow rate r is used, even if all players route fP < ωP for all P ∈ P , which
cannot happen in nontrivial games.

Lemma 4.1. Let f be a feasible flow in a nontrivial path player game. Then there
exists at least a P ∈ P such that dP ≥ ωP .

Proof. Consider a nontrivial path player game, i.e.
∑

P∈P ωP ≤ r and a given flow
f . It holds for all P ∈ P that

dP = r −
∑

Pk∈P\{P}
fPk

= r −
∑
Pk∈P

fPk
+ fP

⇒ ∑
P∈P dP = |P| · r − |P| ·

∑
P∈P

fP +
∑
P∈P

fP

= |P| · r − (|P| − 1) ·
∑
P∈P

fP

= r + (|P| − 1) ·

≥0︷ ︸︸ ︷(
r −

∑
P∈P

fP

)

⇒
∑
P∈P

dP ≥ r ≥
∑
P∈P

ωP

⇒ ∃ P ∈ P : dP ≥ ωP

Non-Compensative Security Property A path player game is called a game
with non-compensative security (NCS) property if for all paths P ∈ P and for all
flows f−P with dP ≥ ωP there exists at least a path P with flow fp ≥ ωP satisfying
b̃P (fP ) > κP .

In games with NCS property, no player P will choose the security payment κP

when a flow fP ≥ ωP is possible. If a player has the possibility to earn benefit by
receiving income by his “productivity”, i.e. by getting income from the cost function
cP , he has no reason to take advantage of the security limit. The security payment
shall only be used if the player has no other choice due to the strategies of his
competitors, i.e. if dP < ωP . The NCS property is an interesting attribute of games
as it will enable the characterization of equilibria for strictly increasing costs (see
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Section 5). Note that as we assume nonnegative costs, a game where κP < 0 holds
for all P in P has NCS property. In all other cases, it is not so easy to recognize
if a game has NCS property. However, in some cases, the NCS property of a game
follows from the following property of the benefit function. A benefit function bP (f)
with ωP < r has the non-compensative security (NCS) property if

κP < cP (0, . . . , 0, ωP , 0, . . . , 0) =: cP (~0|P|−1, ωP ) (4)

holds. If κP is sufficiently small, a player on an underloaded path gets a benefit
which is lower than the income he would get if he was able to route a flow of value
ωP over that path, while no other player routes anything. The idea is that no player
should have an incentive to choose his path to be underloaded if he is able to route
a flow fP ≥ ωP .
To illustrate benefit functions with NCS property, let us consider a benefit func-
tion bP (f), where all players apart from P are routing a zero-flow, i.e. bP (f) =
bP (~0|P|−1, fP ). A function bP (f) as shown in Figure 6 does not have NCS property

bP (~0, fP )

fP

dPωP

Figure 6: No NCS property

bP (~0, fP )

fP

dPωP

Figure 7: NCS property

as the player P will choose the security payment instead of the income obtained
by routing ωP . In general, that does not mean, that the player always prefers the
benefit κP . It may happen (like in this illustration) that there is a flow fP > ωP

with bP (~0|P|−1, fP ) > κP . However, for a benefit function without NCS property,
we can not guarantee that there will be a flow fP , that provides a higher benefit
than κP . On the contrary, a benefit function as the one shown in Figure 7 allows
the player to increase his benefit when routing more than ωP .
Let us now consider the relation between games with NCS property and benefit
functions with NCS property. Unfortunately, a game that possesses benefit func-
tions with NCS property is not necessarily a game with NCS property. Consider a
path P with dP ≥ ωP , whose benefit functions possess NCS property. It does not
necessarily hold that P is in any case able to obtain a benefit greater than κP . In
general networks, player may share edges. It is possible that on an edge e with de-
creasing benefit some of the players sharing e have incentive to raise the flow fe even
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if edge e induces a loss, if they can compensate that loss by gains on other edges.
Consequently, bP (fP ) ≤ κP ∀ fP ≥ ωP could hold, i.e. the game would possess no
NCS property. We call this effect of influencing the benefit of the competitors edge
sharing effect.
For instance see Figure 8, where P1 would accept a decreasing income from edge e,

P1

P2

fe = fP1
+ fP2

Figure 8: Edge sharing effect

as this loss is compensated by the remaining edges. At the same time, P2 does not
want to increase fe too much, as at a certain point his benefit bP (f) will decrease.
Nevertheless, P2 can not avoid that P1 increases the flow, i.e. he is forced into a
situation where sending flow can create loss. Note that in this situation, a positive
ωP and κP fulfill the purpose of being an insurance, as it helps the player P2 to
escape the harmful behavior of the competitors.
As the edge sharing effect may destroy the NCS property of games, we investigate
additional assumptions which prevent the edge sharing effect, obtaining situations
where benefit functions with NCS property induce games with NCS property.

Lemma 4.2. Let us consider a path player game with cost functions ce(fe) that
are monotonically increasing for all edges e ∈ E and benefit functions b̃P (fP ) that
possess NCS property for all paths P ∈ P. Such a game is a game with NCS
property.

Proof. Consider a path P ∈ P and a flow f−P with dP ≥ ωP . By the definition of
the benefit function, for all fP ∈ [ωP , dP ] we get that

b̃P (fP ) = c̃P (fP ) =
∑
e∈P

ce


fP +

∑

Pk∈P\{P}:e∈Pk

fPk


 (5)

≥
∑
e∈P

ce


ωP +

∑

Pk∈P\{P}:e∈Pk

0


 (6)

= cP

(
~0|P|−1, ωP

)
> κP . (7)

Condition (5) holds due to the definition of cP (f), while (6) holds because of the
monotonically increasing cost functions ce(fe). (7) is true as bP (f) possesses NCS
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property.
We conclude that b̃P (fP ) > κP for all P ∈ P and for all feasible f with fP ≥ ωP

and thus the game has NCS property.

Lemma 4.3. Let us consider a path player game on a path-disjoint network G.
Furthermore, let the benefit functions bP (f) possess NCS property for all paths P ∈
P. Such a game is a game with NCS property.

Proof. Consider a path P ∈ P and a flow f−P with dP ≥ ωP and set fP = ωP . As
the resulting flow f is feasible, it holds that

b̃P (fP ) = c̃P (fP )

= cP (~0|P|−1, fP ) > κP . (8)

Note that (8) holds since G is path-disjoint and bP (f) has NCS property. Hence,
the lemma follows.

The following lemma does not assume benefit functions with NCS property but
a similar condition for at least one edge in each path, to obtain a game with NCS
property.

Lemma 4.4. A path player game where each path P satisfies that

ĒP = {e : e ∈ P ∧ e /∈ Pk,∀ Pk ∈ P \ {P}} 6= ∅ ∀ P ∈ P ,

possesses the NCS property if

∑

e∈ĒP

ce(ωP ) > κP ∀ P ∈ P .

Proof. For a flow f consider all paths P with dP ≥ ωP and the corresponding flows
f−P . Set fP = ωP , therefore the resulting flow is feasible. Then, we obtain that

b̃P (fP ) = c̃P (ωP )

=

>κP︷ ︸︸ ︷∑

e∈ĒP

ce(ωP ) +
∑

e∈P\{ĒP }

≥0︷ ︸︸ ︷
ce(fe) > κP ,

and thus the lemma follows.
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5 Equilibria for Strictly Increasing Cost Functions

In this section we present characterizations of equilibria under the assumption of
strictly increasing cost functions. We will obtain a necessary condition for equilibria
and even a necessary and sufficient condition if the game has in addition NCS prop-
erty or if we consider a game with no security limit. There are further results for
other types of costs functions, which we will omit here. In short, for differentiable
costs a necessary condition can be found. For differentiable and concave cost func-
tions the necessary condition will become also sufficient in a game with no security
limit. Finally, for convex costs we are able to determine a dominating strategy set.
See [28] for details.
The next proposition will be useful for the proofs in this section.

Proposition 5.1. Consider a path player game with strictly increasing cost func-
tions ce(fe). Then the one-dimensional benefit functions b̃P (fP ) are also strictly
increasing for fP ∈ [ωP , dP ].

The proof of this proposition is based on the fact that c̃P (fP ) is a sum of strictly
increasing functions ce(fP +

∑
Pk∈P\{P} fPk

) and so it is again strictly increasing.
To obtain some of the results we require the non-security-property, i.e. we set ωP =
0 ∀ P ∈ P . The benefit functions and the one-dimensional benefit functions take the
following simplified form that will appear every time we require the non-security-
limit property:

bP (f) =

{
cP (f) if

∑
P∈P fP ≤ r

−M if
∑

P∈P fP > r
, (9)

b̃P (fP ) =

{
c̃P (fP ) if fP ≤ dP

−M if fP > dP
. (10)

b̃P (fP )

fP

dP

Figure 9: Strictly increasing cost function and no security limit

We obtain a necessary and sufficient condition for equilibria in path player games
with strictly increasing costs.
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Lemma 5.2. In a path player game with strictly increasing cost functions ce(fe)
on all edges e ∈ E and security limit ωP = 0 for all P ∈ P, a flow f is a feasible
equilibrium if and only if ∑

P∈P
fP = r .

Proof. (f equilibrium ⇒ ∑
P∈P fP = r)

Let f be a feasible equilibrium and assume that
∑

P∈P fP < r.

⇒ fP < dP ∀ P ∈ P
⇒ c̃P (fP ) < c̃P (fP + ε) ∀ ε ∈ (0, dP ], ∀ P ∈ P
⇒ fP /∈ fmax

P ,

i.e. f is not an equilibrium and hence,

∑
P∈P

fP = r .

Note that (11) follows as c̃P (fP ) is strictly increasing for all P in P .

(
∑

P∈P fP = r ⇒ f equilibrium)
As

∑
P∈P fP = r holds, it implies that fP = dP for all P ∈ P . Furthermore, for

all e ∈ E, c̃e(fe) is a strictly increasing function, thus b̃P (fP ) is strictly increasing
over [0, dP ] (see Prop.5.1) and fP ∈ fmax

P ∀ P ∈ P . Hence, by Corollary 3.3, f is an
equilibrium.

Now we need to investigate situations, where we can not assume ωP = 0 for all
paths P ∈ P . If we consider a game with strictly increasing cost functions ce(fe)
together with general security limit ωP ≥ 0, the statement of Lemma 5.2 still holds
provided that we assume, in addition, to have a nontrivial game with NCS property
(see Section 4).

Lemma 5.3. Consider a game with strictly increasing cost functions ce(fe) on all
edges e ∈ E. Assume, that the game is nontrivial and it satisfies NCS property.
Then a flow f is a feasible equilibrium if and only if

∑
P∈P fP = r.

Proof. (f feasible equilibrium ⇒ ∑
P∈P fP = r)

Consider a feasible equilibrium f and assume that
∑

P∈P fP < r, i.e. fP < dP for
all P ∈ P . Due to non-triviality we can find a path P̄ such that dP̄ ≥ ωP̄ (see
Lemma 4.1). We distinguish two cases:

Case 1: fP̄ ≥ ωP̄ ⇒ b̃P̄ (dP̄ ) > b̃P̄ (fP̄ ) (due to Proposition 5.1), which contradicts
f being a feasible equilibrium.

Case 2: fP̄ < ωP̄ ⇒ ∃ f̂P̄ ≥ ωP̄ such that b̃P̄ (f̂P̄ ) > κP̄ = b̃P̄ (fP̄ ) (due to NCS
property), which contradicts f being a feasible equilibrium.
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The above implies that
∑

P∈P fP = r.

(
∑

P∈P fP = r ⇒ f feasible equilibrium)
Consider a flow with

∑
P∈P fP = r, i.e. fP = dP for all P ∈ P . We analyze the two

cases:

Case 1: fP ≥ ωP : As there exists at least one f̂P ≥ ωP such that b̃P (f̂P ) > κP

(due to NCS property), and as b̃P (fP ) is strictly increasing over [ωP , dP ] (see
Prop.5.1), and in particular, b̃P (fP ) ≥ b̃P (f̂P ) > κP it holds that fmax

P = {dP}.
Case 2: fP < ωP : As b̃P (fP ) is constant over [0, ωP ) and dP < ωP , it holds that

dP ∈ fmax
P .

Hence, we conclude that f is a feasible equilibrium as fP ∈ fmax
P ∀ P ∈ P .

Unfortunately the converse of Lemma 5.3 does not hold: A game that satisfies
the property

“A flow f is a feasible equilibrium if and only if
∑

P∈P fP = r” (#)

does not have to be neither nontrivial nor satisfy the NCS property. For an illus-
tration we present the following examples:

Example 5.1. (#) ; NCS property.
Consider a game on a network with two paths, as illustrated in Figure 10. A flow
rate r = 1 has to be routed from s to t. On both paths the costs are cP (x) = x, but
the security limits and security payments differ: ω1 = κ1 = 1 and ω2 = κ2 = 0.
In this game a flow f with

∑
P∈P fP < r can not be an equilibrium as fmax

2 = {d2}
for all f−2, i.e. player 2 would in any case use up the remaining flow rate. On the
other hand, each flow f with

∑
P∈P fP = r is an equilibrium flow. If

∑
P∈P fP = r

holds, player 2 can not find any better strategy as he will always try to get as much
flow as possible, while player 1 is also not able to improve his payoff as his benefit
function is anyway constant over [0, 1]. That means, this game fulfills condition (#).
Nevertheless, the game has not NCS property. There is no f1 ≥ ω1 with b̃1(f1) > κ1

and so path 1 is destroying the NCS property of the game.

Example 5.2. (#) ; non-triviality.
Consider the game illustrated in Figure 11. The graph consists of two paths, and
we choose ω1 = 2 and ω2 = 0. The remaining components of the game, as cost
functions and security payments may be chosen arbitrarily, but it is important that
the cost functions are strictly increasing.
With a similar argument as in Example 5.1, it is possible to show that this game
fulfills condition (#). Nevertheless, the game is trivial, as

∑
P∈P ωP > r.

If we consider a game with strictly increasing cost functions and general security
limit, but we can not ensure NCS property or the non-triviality of the game, we are
still able to give a necessary condition for a profile of flows to be an equilibrium.
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s t

c2(x) = x; ω2 = 0; κ2 = 0

c1(x) = x; ω1 = 1, κ1 = 1

r = 1

Figure 10: Game graph of example 5.1

s t

ω2 = 0

ω1 = 2

r = 1

Figure 11: Game graph of example 5.2

Lemma 5.4. If a flow f in a path player game with strictly increasing cost functions
ce(fe) on all edges e ∈ E is a feasible equilibrium then at least one of the following
two cases holds:

(i)
∑

P∈P fP = r

(ii) fP < ωP ∀ P ∈ P.

Proof.
Let f be a feasible equilibrium and assume that (i) is not true, i.e.

∑
P∈P fP < r

then fP < dP ∀ P ∈ P .
Assume case (ii) is also not true, i.e. ∃ P̄ with fP̄ ≥ ωP̄ . Then b̃P̄ (f ′̄

P
) > b̃P̄ (fP̄ ) ∀ f ′̄

P
∈

(fP̄ , dP̄ ], as according to Proposition 5.1, b̃P (fP ) is strictly increasing over this do-
main. It follows that fP̄ /∈ fmax

P̄
. This contradicts f being an equilibrium, hence

fP < ωP for all P ∈ P .

To illustrate Lemma 5.4 we present two examples of feasible equilibria, where (i)
and (ii) do not hold.

Example 5.3. Consider a path player game with two vertices s and t, which are
connected by two edges, i.e. P = {1, 2}. A flow rate r = 1 has to be routed between
the two vertices. We set the security limits ω1 = ω2 = 0.5, the security payment
κ1 = κ2 = 1 and the cost functions cP (x) = x, P ∈ {1, 2}. The flow f = (0.2, 0.2)
with b1(f) = b2(f) = 1 is an equilibrium for which (ii) holds and (i) is not satisfied.

Example 5.4. Consider the following path player game: There are two vertices s
and t which are connected by two edges, i.e. P = {1, 2}. This game is a game on a
path-disjoint network. A flow rate r = 2 has to be routed from s to t. Furthermore,
the paths possess security limits ωP = 1, security payments κP = 1 and cost functions
cP (fP ) = 1 + fP .
The flow f = (0.5, 1.5) with b̃1(0.5) = 1 and b̃2(1.5) = 2.5 destroys property (ii)
while (i) does hold. This flow is an equilibrium as none of the players is able to
improve the current payoff.
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The following lemma provides a statement about the converse of Lemma 5.4.

Lemma 5.5. Consider a path player game with strictly increasing cost functions
ce(fe). Let f be a flow with the following properties:

(i)
∑

P∈P fP = r

(ii) fP < ωP ∀ P ∈ P
Then, f is a feasible equilibrium.

Proof.
For all players P in P and for all ε > 0, we have:

b̃P (fP + ε) = −M < b̃P (fP )

b̃P (fP − ε) = κP = b̃P (fP ), if ε ≤ fP .

It follows that for all P ∈ P and for all f̄P > 0

b̃P (fP ) ≥ b̃P (f̄P )

holds, and thus f is a feasible equilibrium.

Example 5.5 ((i) ∧ ¬(ii) ; f is feasible equilibrium). Let us consider a path
player game with strictly increasing cost functions ce(fe). Furthermore, consider
a feasible flow f such that

∑
P∈P fP = r holds and that there exists P̄ ∈ P with

fP̄ ≥ ωP̄ . It is possible to construct a game such that b̃P̄ (fP̄ ) < κP̄ holds (see
Figure 12) and thus, the flow f is not an equilibrium:
Set r = 1, ω1 = ω2 = 0.25 and the security payment κ1 = κ2 = 2. For cost functions
cP (x) = x with P = {1, 2} the flow f = (0.5, 0.5) fulfills (i) but not (ii). This flow
with b1(f) = b2(f) = 0.5 is not an equilibrium as fmax

1 = fmax
2 = [0, 0.25).

b̃P̄ (fP̄ )

fP̄

fP̄ = dP̄ωP̄

Figure 12: b̃P̄ (fP̄ ) < κP̄

b̃P̄ (fP̄ )

fP̄

dP̄ωP̄
fP̄

Figure 13: b̃P̄ (fP̄ ) < b̃P̄ (dP̄ )
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Example 5.6 (¬(i) ∧ (ii) ; f is feasible equilibrium). Let us consider a path
player game with strictly increasing cost functions ce(fe). Furthermore, consider a
feasible flow f such that

∑
P∈P fP < r and fP̄ < ωP̄ holds for all P ∈ P. Thus, it

holds for all P that fP < dP and it is possible to construct a game such that

∃ P̄ : b̃P̄ (fP̄ ) = κP̄ < b̃P̄ (dP̄ )

holds, (see Figure 13) i.e. f is not an equilibrium:
Set r = 1, ω1 = ω2 = 0.5 and κ1 = κ2 = 0.1. For cost functions cP (x) = x, P =
{1, 2} a flow f = (0.45, 0.45) with b1(f) = b2(f) = 0.1 is no equilibrium as fmax

1 =
fmax

2 = 0.55.

We have seen, that a feasible flow with property (ii) need not be an equilibrium.
This doesn’t change if we assume to have a trivial game or a game without NCS
property. The following example illustrates the assertion.

Example 5.7. Consider a game with two vertices s and t and two edges connecting
the vertices, i.e. P = {1, 2} on a path-disjoint network. A flow rate r = 5 has to
be routed from s to t. Both paths possess a security limit ωP = 3, i.e. the game is
trivial. Furthermore, the security payment is κP = 1 for P ∈ {1, 2} and the cost
functions are c1(f1) = f1 and c2(f2) = f2/10. This game possesses no NCS property
as there is no f2 > ω2 such that b̃2(f2) > κ2.
Consider the feasible flow f = ~0|P|. The flow f fulfills (ii) and dP = r for all P .

Nevertheless, since b̃1(d1) = 3 > b̃1(0) = κ1 = 1 this flow is not an equilibrium.

6 Conclusion

In this paper, we presented results for equilibria in a new network game, the path
player game. We proved the existence of feasible equilibria in pure strategies. Fur-
thermore, we presented a necessary condition for equilibria if the cost functions are
strictly increasing. If the game satisfies in addition the NCS property, we obtained
even a necessary and sufficient condition.
For future research, it will be a promising extension to consider not just paths but
complete subgraphs as players. This reflects the fact that in real-world situations
network providers usually own a subnetwork. Furthermore, some applications re-
quire integer solutions. Thus, the extension of the path player game to an integer
version is of interest and has been already implemented for the line planning game
in [28]. The same holds true for the extension to multiple source-sink pairs. The
first results obtained for the line planning game (see [26, 28]) are promising and
motivate further research in this field.
As in path player games we often have multiple equilibria, repeated or stochastic
versions of the game could be considered to refine the set of equilibria. Finally, it is
open work to analyze the situation as an optimization problem, that means to look
for minimal cost flows in the network, and to compare them with the equilibria of
the game.
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T. Roughgarden. The price of stability for network design with fair cost al-
location. In Proceedings 45th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 295–304. 2004.
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