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Abstract

We consider the problem of locating a circle with respect to existing
facilities on the plane, such that the sum of weighted distances between the
circle and the facilities is minimized. The problem properties are analyzed,
and we give solution procedures.

1 Introduction

Drezner, Steiner and Wesolowsky [3] considered the problem of locating a circle
on the plane with respect to existing facilities and suggested it as a model for the
out of roundness problem. These authors primarily treated a minimax model,
locating the circle so as to minimize the maximum distance between the circle
and the facilities.

Here we consider the corresponding weighted minisum model: locate a circle so
as to minimize the sum of weighted distances between the circle and the facilities.
Applications include the out of roundness problem and the problem of locating
circular facilities, e.g. a circular irrigation pipe in a field, circular conveyor belts,
or ring roads. In the former case, the minisum solution may be used to evaluate
the amount of rework required for an out-of-round part. Circular facilities such
as ring roads are also of practical interest; see Pearce [8] and Suzuki [12]. The
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related problem of locating a circle on a sphere is examined in Brimberg et al.
[1], and applications in diverse areas, including medical/biological and search-
and-rescue, are noted. These problems may be transformed to our model by
projecting the given points on various planes, and locating a circle relative to the
projected points. A discrete formulation of our problem is also studied in Labbé
et al. [5]. We investigated the minimax version of the model in [2].

The next section of the paper introduces the notation we will be using. Section 3
discusses some important properties of the mathematical model for the general
case where the radius of the circle is variable. These properties are used in
Section 4 to develop a solution approach. Section 5 examines the fixed radius
case, which interestingly appears to be more difficult to solve. The last section
provides a brief conclusion with suggestions for possible future research.

2 Notation

We use the following notation.

Let {A1, . . . , An} be a given set of existing facilities, i.e. the number of existing
facilities is n, J = {1, 2, . . . , n} and facility j is located at Aj = (aj , bj) with
associated positive weight wj, for j = 1, . . . , n. The existing facilities are also
called the fixed points.

The circle to be located, C, is determined by its center, X = (x, y), and its radius,
r. We use the shortcut C = (X, r).

The Euclidean distance between the center and facility j is denoted by

dj(X) := d(X, Aj), for j = 1, . . . , n.

The shortest Euclidean distance between the circle C and a facility j is denoted
as dj(C) and is given as r − d(X, Aj), if the facility is inside the circle, and as
d(X, Aj)− r, if it is outside. (If the facility is on the circle, the distance is 0, and
both expressions apply). Summarizing, in general we have

dj(C) := d(C, Aj) = |d(X, Aj) − r| for j = 1, . . . , n.

For a given circle C = (X, r), it is convenient to define the index sets of facilities
outside, on, and inside the circle:

J+(C) = {j : d(X, Aj) > r},
J0(C) = {j : d(X, Aj) = r},
J−(C) = {j : d(X, Aj) < r}.

Note that the sets depend on the center X and on the radius r of the circle C. If
it is clear which circle C is meant, we may simply write J+, J0, J−. We say that
a circle C = (X, r) intersects a point A if d(X, A) = r.

2



The problem we consider is denoted by (P) and given as

min f(C) = f(X, r) =
n
∑

j=1

wjdj(C) =
n
∑

j=1

wj |d(X, Aj) − r|.

This problem may either have a finite solution (which is a circle with a finite
radius) or it may have a solution with r → ∞. In the latter case the resulting
optimum is a straight line.

In the following, we consider first the general problem (P) and then the special
case (Pr), where the radius of the circle is fixed in advance.

3 Finding a circle with variable radius

If n ≤ 3, any circle that intersects all the existing facilities is optimal, and
the objective function has an optimal value of 0. (For the special case, where
n = 3 and the existing facilities are collinear, the optimum is not achieved,
but approaches the straight line through them as r → ∞.) Therefore, in the
remainder of the discussion of problem (P), we will assume that n ≥ 4.

The next result shows that a point (r = 0) is always inferior to a circle.

Lemma 1 The optimal solution of problem (P) must have a positive radius.

Denote any ’circle’ degenerated to a point X0 by C0 = (X0, 0). Its objective
function is f(X0, 0) =

∑n
j=1 wjd(X0, Aj) > 0, since n > 3. Now consider a circle

C1 with positive radius intersecting X0. For each j, we have dj(C1) ≤ d(X0, Aj) =
dj(C0). The inequality must be strict for at least one j, if the existing facilities
are non-collinear. In this case,

f(C1) =
n
∑

j=1

wjdj(C1)

<
n
∑

j=1

wjdj(C0) = f(C0).

On the other hand, if the Aj are collinear the straight line through them (r → ∞)
gives the best solution with objective function value zero. In both cases, C0

cannot be optimal. ⋄

From this result, it follows that a point facility (r = 0) can never be an optimal
solution of the circle location problem (P). However, the other extreme, a straight
line (the limit of a circle with r → ∞) may solve problem (P), as shown by the
following example.
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Figure 1: Illustration of the set C−
a = C+

b for the region enclosed by the two circles Ca

and Cb, and in which existing facilities can occur within the proof of lemma 2.

Let n = 4, A1 = (0, 0), A2 = (1, 10), A3 = (1, 0), A4 = (1,−10), and let
w1 = 1, w2 = w3 = w4 = 100. The limiting optimal solution of (P) for this
instance is given by the vertical line through A2, A3, A4. Under general conditions,
however, the optimal solution must have a finite radius, as shown by the next
result.

Lemma 2 Suppose that n ≥ 5 and that no triple of the existing facilities is
collinear. Then no optimal solution of problem (P) is a straight line, i.e., each
optimal solution has a finite radius.

Proof:
If the optimal solution of (P) occurs in the limiting sense, r → ∞, then this
solution is a straight line which also solves the linear facility minisum location
problem. It is well known (see [4, 11]) that each optimal solution of the Euclidean
line location problem intersects at least two of the existing facilities, and hence,
by the assumption in the lemma, exactly two of them. Therefore, consider a
straight line l through any pair of existing facilities; without loss of generality
we may assume that this pair is A1, A2. Denote by J1 and J2 the set of existing
facilities on either side of the straight line l, i.e. {1, 2, . . . , n} = {1, 2} ∪ J1 ∪ J2.

Construct two circles Ca = (Xa, r) and Cb = (Xb, r) of the same radius r, both
with center points on the bisector BA1,A2

between A1 and A2, on opposite sides
of l, and such that both circles intersect A1 and A2 (i.e. J0(Ca) = J0(Cb) =
{A1, A2}). If r is large enough, we also obtain J+(Ca) = J1 and J−(Ca) = J2

for Ca and analogously J−(Cb) = J1 and J+(Cb) = J2 for Cb. Consider an
existing facility Aj 6∈ {A1, A2}. Let lper be the line through Aj perpendicular to
l, and denote by Za, Zl, Zb the intersection points between lper with Ca,l, and Cb,
respectively (which exist since all Aj are contained in one of the circles Ca or Cb).
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Due to the symmetry we have δj = |Za −Zl| = |Zb −Zl|. We now want to relate
the distance from a point Aj to the line l with the distances from Aj to Za and
Zb. To this end, we denote

C−
a = {X : d(X, Za) ≤ d(X, l)} , C+

a = {X : d(X, Za) > d(X, l)}
C−

b = {X : d(X, Zb) < d(X, l)} , C+
b = {X : d(X, Zb) ≥ d(X, l)};

see Figure 1 for an illustration. Note that due to the construction C+
a = C−

b ,C−
a =

C+
b . Further defining

ǫj =

{

δj if j ∈ C+
a

−δj if j ∈ C+
b

we obtain d(Aj, Ca) ≤ d(Aj, l) + ǫj and d(Aj, Cb) ≤ d(Aj, l) − ǫj for all j =
1, 2, . . . , n. Since n ≥ 5 both inequalities hold strictly for at least one index.
If we further assume l to be optimal, we hence get

n
∑

j=1

d(Aj, l) ≤
n
∑

j=1

d(Aj, Ca) <
n
∑

j=1

d(Aj, l) +
n
∑

j=1

ǫj , and

n
∑

j=1

d(Aj, l) ≤
n
∑

j=1

d(Aj, Cb) <
n
∑

j=1

d(Aj, l) −
n
∑

j=1

ǫj ,

which cannot be satisfied at the same time; a contradiction and hence l cannot
be optimal. ⋄

Note that the strict result of Lemma 2 also holds in most cases for n = 4 existing
facilities. There is only one exception, namely, if A3 and A4 are both on the
bisector BA1,A2

of A1 and A2 on opposite sides of l. In this constellation the line
l through A1 and A2 has the same objective value as the two circles Ca and Cb

in the proof.

For line location it is well known that there always exists an optimal line inter-
secting two of the given existing facilities. We now discuss the question, if such a
property also holds for the location of a circle. The first result that we mention
has already been shown in [3]. Since it is an important building block for the
subsequent theorem, we state it with proof.

Lemma 3 There exists an optimal circle for problem (P) which intersects at least
one existing facility location.

Proof:
From Lemma 1 we know that r > 0. Furthermore, if the optimal solution is a
straight line (r → ∞) we know from results for Euclidean line location (see [13])
that there is an optimal line which even intersects two of the Aj. Therefore we
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only need to consider the case where the optimal solution has a finite radius, i.e.
0 < r < ∞.

Take any circle (X, r). Fixing X but leaving r as variable turns out to be a
one-dimensional location problem

min f(r) =
n
∑

j=1

wj|d(Aj, X) − r|

for which it is well known that an optimal solution r∗ = d(Aj∗, X) exists; the
resulting circle (X, r∗) intersects Aj∗. ⋄

The above result shows that the optimal radius satisfies the median property,
yielding the following corollary. It says that the sum of weights inside an optimal
circle and the sum of weights outside the circle cannot differ too much. The result
will be useful later.

Corollary 1 Let C = (X, r) be an optimal solution of problem (P) with corre-
sponding sets J+, J−, J0. Then we have that

∑

j∈J−∪J0

wj ≥
∑

j∈J+

wj, and

∑

j∈J+∪J0

wj ≥
∑

j∈J−

wj, or, equivalently

∣

∣

∣

∣

∣

∣

∑

j∈J−

wj −
∑

j∈J+

wj

∣

∣

∣

∣

∣

∣

≤
∑

j∈J0

wj .

Lemma 3 shows that there exists an optimal solution intersecting one of the
existing facilities. We first show that in general, there need not exist an optimal
circle intersecting three of the existing facilities. The first example has been given
in [11] thanks to [9]. A similar example is illustrated next.

Consider the following set of n = 6 existing facilities A1 = (0, 6), A2 = (−5, 0),
A3 = (−4, 0), A4 = (4, 0), A5 = (5, 0), A6 = (0,−6) with equal weights wj = 1
(see Figure 2). In this example, the circle C∗ = C((0, 0), 5) with center (0, 0) and
radius r = 5 leads to

f(C∗) = 4

which may be shown to be better than all circles passing through three of the
existing facilities.

The example above and Lemma 3 now pose the question, if there always exists an
optimal circle intersecting two existing facilities. This has already been mentioned
as an open question in [11]. The next theorem gives a positive answer. It should
be noted that this theorem extends a well known result for linear facilities (r →
∞).
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Figure 2: An example where no optimal circle intersects more than two existing facil-

ities.

Theorem 1 All optimal circles for problem (P) intersect at least two existing
facility locations.

Proof:
As in the preceding proof of Lemma 3 we only need to consider the case that
0 < r < ∞: As before we know that r > 0 due to Lemma 1. If the optimal
solution is a straight line (r → ∞) we know from [4] that all optimal lines
intersect at least two of the Aj .

Take an optimal circle (X, r′). From Lemma 3 we know that there exists a circle
(X, r), 0 < r < ∞ which has at least the same objective as (X, r′) and intersects
at least one of the Aj , say As. We consider two cases:

(i) X does not coincide with an existing facility, i.e. X 6= At for all t ∈
{1, . . . , n}:
Assuming that C intersects exactly As we perturb the center X of the circle,
but adapting the radius such that the perturbed circle still intersects As. In
a (sufficiently small) neighborhood about X = (x, y) the objective function
is hence differentiable and can be rewritten as

g(X) =
∑

j∈J−

wj(ds(X) − dj(X)) +
∑

j∈J+

wj(dj(X) − ds(X)). (1)

Using that
∂dj

∂x
= − cos Θj ,

∂dj

∂y
= − sin Θj,

∂2dj

∂x2 = (sin Θj)
2

dj(X)
, ∂2dj

∂y2 = (cos Θj)
2

dj(X)
,
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X

ΘjsΘ

As
Aj

Figure 3: The definition of the angles in the formulas of the derivatives.

where cos Θj = aj−x

dj(X)
, sin Θj = bj−y

dj(X)
(see Figure 3),

we obtain the following second derivatives of g:

∂2g

∂x2
=

∑

j∈J−

wj

(

(sin Θs)
2

ds(X)
− (sin Θj)

2

dj(X)

)

+
∑

j∈J+

wj

(

(sin Θj)
2

dj(X)
− (sin Θs)

2

ds(X)

)

,

∂2g

∂y2
=

∑

j∈J−

wj

(

(cos Θs)
2

ds(X)
− (cos Θj)

2

dj(X)

)

+
∑

j∈J+

wj

(

(cos Θj)
2

dj(X)
− (cos Θs)

2

ds(X)

)

.

It follows that

∂2g

∂x2
+

∂2g

∂y2
=
∑

j∈J−

wj

(

1

ds(X)
− 1

dj(X)

)

+
∑

j∈J+

wj

(

1

dj(X)
− 1

ds(X)

)

< 0,

since ds(X) > dj(X) for all j ∈ J− and ds(X) < dj(X) for all j ∈ J+.
Hence we conclude that at least one of these second-order derivatives is
negative, such that g(X) cannot be a local minimum. Hence there exists a
circle C∗ which is strictly better than the circle (X, r) (and hence also than
the original circle (X, r′)).

(ii) X coincides with an existing facility, i.e. X = At for some t ∈ {1, . . . , n} \
{s}:
In this case, the objective function (1) as treated in Case (i) is not differ-
entiable. Hence we separate the term for j = t and obtain

g(X) = wt(ds(X) − dt(X)) (2)

+
∑

j∈J−\{t}

wj(ds(X) − dj(X)) +
∑

j∈J+

wj(dj(X) − ds(X)). (3)

The second part of the objective (3) describes a reduced circle location
problem without At. From the first case we know that X = At cannot be
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optimal for the reduced problem. Moreover, for X = At the first part (2)
of our objective obtains a local maximum, since

ds(X) − dt(X) ≤ ds(At) − dt(At)

⇐⇒ d(As, X) ≤ d(As, At) + d(At, X),

and the latter holds for all X due to the triangle inequality. Together,
X = At cannot be an optimal solution.

In summary, we have shown that all optimal circles must intersect at least two
of the existing facilities. ⋄

4 Solution approaches for the variable radius

case

The objective function f(X, r) is observed above to contain two sums: one with
positive weighted Euclidean distances for the existing facilities outside the circle
(j ∈ J+), and one with negative weighted Euclidean distances for those within
the circle (j ∈ J−). Furthermore, the sets J+ and J− depend on the center X
and on the radius r of the circle. It follows that f(X, r) has a complex shape
that is non-convex in general. This makes the problem difficult to solve relative
to its counterpart, the location of a single point facility in the plane. Due to
the non-convexity, a local search will only guarantee a local optimum. Such
procedures are further complicated by non-differentiability of f(X, r) whenever
J+ or J− changes (i.e. one or more existing facilities are added or removed from
J0) or when X coincides with an existing facility. In the following we will use
the discretization approach of the previous section to design an algorithm for the
circle location problem.

First of all, by Lemma 2 we do not have to consider the limiting case r → ∞,
if no triple of the given facilities is collinear. In case that the points are not in
general position, we have to check all lines passing through at least two of the
existing points to find the best possible line. Checking all lines requires O(n3)
time, but more sophisticated approaches which solve the Euclidean line location
problem in O(n2) are available, see [6, 4].

As pointed out above, dealing with circles with finite radius is more complicated.
Based on Theorem 1, however, we know that the center point X of each optimal
solution lies on a bisector Bst of a pair of existing facilities As and At, such that
we may reduce the search for the optimal solution to a series of one-dimensional
searches along all bisectors. We analyze the situation if we move X along the
bisector Bst.
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Since the Euclidean distance is invariant under axis rotation and translation, the
reference axes may be reoriented such that the bisector Bst becomes the x-axis
and the origin is at the mid-point of the line segment [As, At]. We hence may
assume that

As = (0, bs), At = (0,−bs),

while the coordinates of all other existing facilities are given as Aj = (aj, bj).
Since the circle (X, r) we are looking for is required to intersect As and At we
obtain

X = (x, 0) and r = ds(X) =
√

x2 + b2
s.

The objective function hence is only dependent on x ∈ IR and takes the form

g(x) =
∑

j∈J
−

wj

(

√

x2 + b2
s −

√

(x − aj)2 + b2

j

)

+
∑

j∈J+

wj

(√

(x − aj)2 + b2

j −
√

x2 + b2
s

)

. (4)

Beginning at the origin and moving the center X of the circle to the left (or to
the right) along the bisector, we see that the circle radius increases, and points
will leave J− and enter J+ or vice versa. Each point Aj , non-collinear with As

and At has a unique intersection point Xj = (xj , 0) where the three bisectors Bst,
Bsj and Btj intersect, and where this transition occurs. For the circle with center
Xj it holds that

{Aj, As, At} ⊆ J0,

i.e., the circle intersects Aj at x = xj , while Aj is outside the circle for all x on
one side of xj and inside the circle for all x on the opposite side of xj .

Thus, there are O(n) intersection points Xj on the bisector Bst that can be
ordered from left to right in O(n log n) time. Note that the sets J−, J+, J0 only
can change at intersection points, i.e. in the interior of each interval I between
adjacent intersection points they are independent of the specific point X ∈ I.
We now may eliminate segments I ⊆ Bst between adjacent intersection points
that do not comply with Corollary 1. More precisely, whenever for any X in I
we have that

∣

∣

∣

∣

∣

∣

∑

j∈J−

wj −
∑

j∈J+

wj

∣

∣

∣

∣

∣

∣

> ws + wt,

we can eliminate the segment I ⊆ Bst which contains x.

As an example, we took the instance of a circle location problem depicted in
Figure 2. In Figure 4 we graphed the bisector for each pair of existing facilities.
The relevant part of the bisectors (i.e. the sections that might contain an optimal
solution and hence have to be analyzed) are denoted as B. They are indicated
in bold in Figure 4 for the sample problem in Figure 2. Note that the Median-
Voronoi diagram is a strict subset of B.

If the numerical search along each of the remaining O(n) eligible segments of Bst is
bounded by O(Kn), the optimal solution on Bst is obtained to a desired accuracy

10



Figure 4: The bisectors and their relevant parts B (shown in bold) for the example

depicted in Figure 2.
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in O(Kn2) time. As there are O(n2) bisectors to examine, the complexity of the
solution procedure is bounded by O(Kn4), making the algorithm suitable for
smaller problem instances.

For larger problem instances we derive another result, justifying that in the case
of many existing facilities the optimal circle is very likely to contain three of them.
Being more specific, let us consider the limiting case (P lim) defined below:

1. The number of existing facilities n → ∞.

2. The existing facilities are given as (r, Θ), where r ∈ IR and Θ ∈ [θ1, θ2]
are two independent random variables measured from optimal center X∗

obtained in the limit n → ∞, and the random variable r is bounded.

3. The points Aj = Y with positive probability in the distribution do not form
the contour of a circle.

4. The distribution of the angles Θj does not differ inside and outside the
optimal circle C∗ = (X∗, r∗). Formally, we require

E(sin2 Θj(X
∗)|j ∈ J+(C∗)) = E(sin2 Θj(X

∗)|j ∈ J−(C∗)),

where E(x|M) denotes the expectation of the random variable x given the
event M .

5. All weights wj are equal, and may be set to 1/n.

In the following we will see that the asymptotic behavior of this problem reveals
a useful property. First, we analyze the distribution of the existing facilities Aj .
From Conditions 2 and 3, we obtain

E(
1

dj(X∗)
|j ∈ J+(C∗)) ∗ c = E(

1

dj(X∗)
|j ∈ J−(C∗))

where the constant c > 1.

As an example, consider the case where the Aj are uniformly distributed on a disc
of unit radius (the density functions of r and Θ are, respectively, 2r for 0 ≤ r ≤ 1
and 1

2π
for 0 ≤ Θ ≤ 2π). With X∗ = (0, 0), the center of the disc, calculations

show that r∗ = 1/
√

2, E( 1
dj(X∗)

|j ∈ J+(C∗)) = 2(2−
√

2), E( 1
dj(X∗)

|j ∈ J−(C∗)) =

2
√

2; hence c =
√

2/(2 −
√

2) > 1.

Lemma 4 In the limiting case (P lim) the optimal circle intersects at least three
of the existing facilities.
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Proof:
According to Theorem 1 we know that any optimal solution is located on one of
the bisectors Bst between two existing facilities As and At. We hence consider
the objective function g along such a bisector Bst as given in (4). Our goal is
to show that g is concave between any pair of adjacent intersection points Xj

(defined on page 10) in the vicinity of X∗. To this end, we calculate the second
derivative of g by looking at the derivatives of the terms appearing in (4).

dj(x) =
√

(aj − x)2 + b2
j ,

d′
j(x) = −(aj − x)

dj(x)
= − cos Θj ,

d′′
j (x) =

b2
j

(dj(x))3
=

sin2 Θj

dj(x)
.

We obtain

g′(x) = cos Θs





∑

j∈J+

wj −
∑

j∈J−

wj



+
∑

j∈J−

wj cos Θj −
∑

j∈J+

wj cos Θj (5)

g′′(x) =
∑

j∈J−

wj

(

sin2 Θs

ds

− sin2 Θj

dj

)

+
∑

j∈J+

wj

(

sin2 Θj

dj

− sin2 Θs

ds

)

=





∑

j∈J−

wj −
∑

j∈J+

wj





sin2 Θs

ds

−
∑

j∈J−

wj

sin2 Θj

dj

+
∑

j∈J+

wj

sin2 Θj

dj

, (6)

where in all expressions dj, ds and Θj , Θs depend on the variable X (i.e. on the
center of the circle we are looking for). As remarked before the sets J− and J+

do not change between any pair of adjacent intersection points Xj.

Now let us fix some point X as center of a circle and assume that the median circle
with center X only intersects As and At, i.e. |J0| = 2. Recall that wj = 1/n for all

j = 1, . . . , n, hence we know from Corollary 1 that
∣

∣

∣

∑

j∈J−

wj −
∑

j∈J+
wj

∣

∣

∣ ≤ 2/n.

Since sin2(Θs) is bounded and the median radius ds(x) approaches a finite value
as n → ∞, the first term of the second derivative → 0. We now compare the
second and the third term using a stochastic approximation which is valid if |J−|
and |J+| are large enough:

∑

j∈J−

sin2 Θj

dj

≈ |J−|E
(

sin2 Θj

dj

|j ∈ J−

)

= |J−|E(sin2 Θj |j ∈ J−)E(
1

dj

|j ∈ J−) (Θj, dj are independent)

=
|J−|
|J+|

|J+| ·
E(sin2 Θj|j ∈ J−)

E(sin2 Θj|j ∈ J+)
· E(sin2 Θj|j ∈ J+)
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·
E( 1

dj
|j ∈ J−)

E( 1
dj
|j ∈ J+)

· E(
1

dj

|j ∈ J+)

≈ |J−|
|J+|

· |J+| · E(sin2 Θj|j ∈ J+) · c · E(
1

dj

|j ∈ J+)

≈ c
∑

j∈J+

sin2 Θj

dj

, since
|J−|
|J+|

≈ 1.

Summarizing,

−
∑

j∈J−

sin2 Θj

dj

+
∑

j∈J+

sin2 Θj

dj

≈ (1 − c)
∑

j∈J+

sin2 Θj

dj

< 0,

and hence, g(x) is strictly concave between the pair of adjacent intersection points
Xj. Consequently, the optimal center X∗ in the limiting sense must coincide with
an Xj. This means that the optimal circle intersects at least three of the existing
facilities. ⋄

This result hence allows the following (heuristic) approach for examples with
larger n: Determine for each triple of existing facilities As, At, Aj the circle Cstj

intersecting all three of them and take the best of these circles. The center point
of the circle Cstj is the intersection point of two of the three bisectors Bst, Bsj, Btj .
In contrast to the first approach presented we do not require any numerical search
along the relevant segments of the bisectors.

5 Finding a circle with fixed radius

When the radius of the circle is given, the only decision variable is the center of
the circle, and we consider the problem (Pr)

min fr(X) =
n
∑

j=1

wj|d(X, Aj) − r|.

We first remark that an optimal circle with fixed radius need not intersect any
of the existing facilities, as the following example shows: Consider n = 6 existing
facilities given by A1 = (1.1 cos 60o, 1.1 sin 60o), A2 = (1.1 cos 60o,−1.1 sin 60o),
A3 = (−1.1, 0), A4 = (0.9 cos 60o, 0.9 sin 60o), A5 = (0.9 cos 60o,−0.9 sin 60o),
and A6 = (−0.9, 0) (see Figure 5 for an illustration). Assume that the weights
w1 = w2 = w3 = 100 and w4 = w5 = w6 = 1. The radius r should be fixed to
1. Then the (unique) best circle with radius 1 is the circle ((0, 0), 1) with center
X∗ = (0, 0), which does not intersect any of the existing facilities.
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Figure 5: An example where no optimal circle with fixed radius intersects an existing

facility.

The example illustrates that we need not look for results similar to Lemma 3
or Theorem 1. However, we will in the following show some other interesting
properties. The first relates problem (Pr) to the well-known Weber problem,
(e.g., see [7]), where the goal is to find a point X ∈ IR2 minimizing the sum of
distances to the existing facilities, i.e.,

minimize
n
∑

j=1

wjd(X, Aj).

The solution to this problem turns out to be the solution to our problem, when
the given radius is sufficiently small.

Lemma 5 Let X∗ be an optimal solution to the Weber problem, and assume that
d(X∗, Aj) ≥ r for j = 1, . . . , n. Then X∗ is an optimal solution to problem (Pr)
with given radius r.

Proof:
Let X be an arbitrary point in the plane. We have

fr(X
∗) =

n
∑

j=1

wj|d(X∗, Aj) − r|
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=
n
∑

j=1

wjd(X∗, Aj) −
n
∑

j=1

wjr

≤
n
∑

j=1

wjd(X, Aj) −
n
∑

j=1

wjr

≤
n
∑

j=1

wj|d(X, Aj) − r| = fr(X).

Note also that if the existing facilities are not collinear, the Weber objective
function is strictly convex (e.g., see [7]), and therefore, the first inequality in the
preceding relation is satisfied in a strict sense, for all X 6= X∗. ⋄

The previous lemma deals with the case of an empty optimal circle, i.e., if J− = ∅.
The next result, however, presents cases in which the circle either intersects or
contains at least one existing facility.

Lemma 6 Let E∗ denote the set of optimal solutions of the Weber problem, and
let

d = max
X∈E∗

{ min
j=1,...,n

d(X, Aj)}.

If r ≥ d then |J0 ∪ J−| ≥ 1 in any optimal solution of (Pr).

Proof:
Let X∗ ∈ E∗ denote an optimal solution of the Weber problem with

min
j=1,...,n

d(X∗, Aj) = d.

Consider any point X (with corresponding circle (X, r)) such that J0 and J− are
both empty. Then X 6∈ E∗ since r ≥ d. Now move X along the line segment
[X, X∗] towards X∗, until the circle first touches an existing facility, and let
Y ∈ [X, X∗] denote the point where this occurs. Due to the convexity of the
Weber objective function, X∗ − X is a descent direction and hence

fr(Y ) =
n
∑

j=1

wj|dj(Y ) − r| =
n
∑

j=1

wjdj(Y ) −
n
∑

j=1

wjr

<
n
∑

j=1

wjdj(X) −
n
∑

j=1

wjr = fr(X).

Consequently, X cannot be an optimal solution of (Pr). ⋄

Combining Lemma 5 with Lemma 6 we see that if r ≤ d, a solution of (Pr) is
readily obtained from the set E∗, and J− = ∅ in this case. On the other hand, if
r > d, the (closed) disc formed by an optimal circle must contain at least one of
the fixed points (i.e. J0 ∪ J− 6= ∅). The next observation considers the opposite
case of a circle containing all existing facilities in its interior.
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Lemma 7 Let (X, r) be a circle such that d(X, Aj) < r for j = 1, . . . , n. Then
X is not an optimal solution to problem (Pr) with given radius r.

Proof:
For X we obtain

fr(X) =
n
∑

j=1

wj|d(X, Aj) − r|

= −
n
∑

j=1

wjd(X, Aj) + r
n
∑

j=1

wj ,

where the first part of this function is the negative of the classical Weber function
and strictly concave in X if the Aj are noncollinear, and strictly concave in at
least one direction otherwise, while the second part of the objective is constant.
Consequently, no X belonging to

{X : d(X, Aj) < r, j = 1, . . . , n} =
⋂

j=1,...,n

int(Aj, r),

can be optimal, where int(Aj , r) denotes the set of points contained in the interior
of the circle C = (Aj , r). Hence, in the optimal case, J+ ∪ J0 6= ∅. ⋄

If a circle does not intersect any existing facility, the sum of the outside weights
must be larger than the sum of the inside weights for the circle to be optimal, as
shown in the following result.

Lemma 8 If an optimal solution to problem (Pr) has J0 = ∅, then
∑

j∈J+

wj >
∑

j∈J−

wj.

Proof:
In a similar fashion as with variable radius, it may be shown that X = Aj cannot
be an optimal solution for any j. Hence we need only consider solutions X that do
not coincide with an existing facility, for which the objective function is infinitely
differentiable. Furthermore, since J0 = ∅, if follows from Lemma 7 that J+ 6= ∅
at the optimal solution being considered.

The objective function may be written as

fr(X) =
∑

j∈J+

wj(d(X, Aj) − r) +
∑

j∈J−

wj(r − d(X, Aj)).

After differentiation we obtain

∂2fr(X)

∂x2
+

∂2fr(X)

∂y2
=
∑

j∈J+

wj

dj(X)
−
∑

j∈J−

wj

dj(X)
.
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Consider an optimal solution, X∗, and for contradiction assume that

∑

j∈J+

wj ≤
∑

j∈J−

wj.

Then we have

∂2fr(X
∗)

∂x2
+

∂2fr(X
∗)

∂y2
=

∑

j∈J+

wj

dj(X∗)
−
∑

j∈J−

wj

dj(X∗)

<
∑

j∈J+

wj

r
−
∑

j∈J−

wj

r
≤ 0.

Therefore at least one of the second-order partial derivatives would have to be
negative, contradicting the fact that the objective function achieves a local min-
imum at X∗. ⋄

The stated properties may be embedded in a general branch-and-bound procedure
such as the big square small square (BSSS) method [10] to simplify the search
for an optimal solution of problem (Pr). The steps are outlined below.

Step 1.
Solve the associated Weber problem (r = 0) to obtain the median point Xm. If
Lemma 5 is satisfied, stop; Xm is an optimal solution of problem (Pr); otherwise
use Lemma 6 to set the smallest rectangle that must contain an optimal solution.

Step 2.
Use a general branch-and-bound procedure where the original rectangle in step
1 is divided systematically into progressively smaller cells as needed, until an
optimal solution is determined to a desired accuracy. A lower bound on the
objective function for any cell G may be calculated as follows:

LB =
n
∑

j=1

wj max{0, min{r − dj, dj − r}},

where dj = minX∈G dj(X), dj = maxX∈G dj(X), j = 1, . . . , n, are easily deter-
mined from the coordinates of the four corner points of G. An upper bound is
readily obtained by calculating the objective function at the centroid Xc of G;
UB = fr(Xc). Lemmas 7 and 8 may be incorporated as additional fathoming
rules.

6 Conclusion

We have considered the problem of locating a circle on the plane so as to minimize
the sum of weighted distances between some given facilities and the circle. The
main result is that any optimal circle intersects at least two facilities. This has
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allowed us to develop a solution procedure with complexity O(n4), where n is the
number of facilities. In many cases the optimal circle will intersect three facilities,
so a heuristic procedure is to consider the circles based on all triplets, and pick
the best one.

We also considered the special case, where the radius of the circle was given. For
this situation we investigated several properties, allowing us to solve the problem
quite efficiently in many cases.

Plans for future research include: using other norms, such as rectangular, general
ℓp and block norms; considering the multi-circle problem with potential applica-
tions in clustering and data mining; and programming and testing the algorithms.
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