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Abstract

In this paper we propose a general solution method for (non-differentiable) facility
location problems with more than two variables as an extension of the big square small
square technique (BSSS). We develop a general framework based on lower bounds and
discarding tests for every location problem. We demonstrate our approach on three
problems: the Fermat-Weber problem with positive and negative weights, the median
circle problem, and the p-median problem. For each of these problems we show how
to calculate lower bounds and discarding tests. Computational experiences are given
which show that the proposed solution method is fast and exact.

Keywords: approximation algorithms, facility location problem, p-median problem, Fermat-
Weber problem, continuous location, global optimization, non-differentiable optimization.
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1 Introduction

In this paper, we deal with some continuous, non-convex, and even non-differentiable location
problems with up to six variables. Our solution method is a generalization of the big square
small square technique to the multidimensional case.

Hansen et al. (1985) suggested the big square small square (BSSS) technique for some
location problems on the plane with two variables. Plastria (1992) generalized this method
to the generalized big square small square (GBSSS) technique. Using triangles instead
of squares, Drezner and Suzuki (2004) proposed the big triangle small triangle (BTST)
method, which was further generalized in Drezner (2007). Note that all these techniques
are branch-and-bound solution methods for problems on the plane with two variables. They
require lower bounds for each square or triangle.

The interval branch-and-bound algorithm is a more general optimization technique, which
can be applied to problems in every dimension using interval analysis, see Hansen (1979),
Hansen (1980), or Hansen (1992) for a survey on global optimization using interval analysis.
Here, lower bounds are obtained by inclusion functions and the main task is to find efficient
discarding tests. Apart from Hansen (1992), some discarding tests are suggested in Tóth
et al. (2007), Fernández et al. (2007), and Fernández et al. (2006). Note that for both, lower
bounds using inclusion functions and most of the discarding tests, a differentiable objective
function and information about the gradient are required.

Since in most location problems, the objective functions are not differentiable, we will de-
velop specific lower bounds and moreover, present some special discarding tests for the prob-
lems we consider. We will demonstrate our algorithm on three problems: the Fermat-Weber
problem with positive and negative weights, the median circle problem, and the p-median
problem.

The Fermat-Weber problem (see, e.g. Drezner et al. (2001) for a survey) is to find a
location for a new facility which minimizes the weighted sum of Euclidean distances to
a set of existing facilities. In the case that all weights are positive, these problems are
convex and can be efficiently solved by a fixed point iteration, see Weiszfeld (1937) and
Brimberg (1995). But if some facilities are disadvantageous, we have to deal with some
negative weights. Nickel and Dudenhöffer (1997) calculated a finite dominating set (FDS)
for the case that all distance functions are polyhedral gauges. Moreover, since the objective
functions for these problems are a difference of two convex functions, Tuy et al. (1995)
suggest to approximate the solution with the global D.C. optimization method. Conversely,
Drezner and Suzuki (2004) used the BTST method and could show that their technique is
much more efficient for Fermat-Weber problems on the plane than the D.C. method. Our
goal is to solve the three-dimensional Fermat-Weber problem with positive and negative
weights.

Considering irrigation pipes or ring roads, the median circle problem is to locate a circle
on the plane which minimizes the sum of weighted distances between the circle and a set
of n existing facilities. This problem was first formulated and analyzed in Drezner et al.
(2002). Further investigations can be found in Schöbel (1999) and Brimberg et al. (2008).

2



The latter suggest a solution approach with a run time of O(n4). Using our solution method,
we will show that on average the run time is almost proportional to the number of existing
facilities.

The p-median problem has 2p variables: the problem is to locate p new facilities on the
plane which minimize the weighted sum of distances to a set of existing facilities. Berman
and Drezner (2007) solved the 2-median problem on a network, while Lau et al. (2001) used
two dimensional meshes. The continuous p-median problem was revisited by Chen et al.
(1998), solving the problem with the D.C. method. We will apply our solution method to
the 2- and 3-median problem.

The remainder of our paper is organized as follows. In the next section we will extend the
BSSS method to more than two variables. Section 3 will present notations and formulations
for our three facility location problems. Before applying the solution method, we have to
calculate some lower bounds for each of the problems, see Section 4. In the subsequent
Section 5, we will discuss division rules and discarding tests. Using the presented lower
bounds and discarding tests, Section 6 shows some of our computational results. Finally,
we give a brief discussion.

2 The Big Cube Small Cube Method

This section describes the proposed solution method and can be applied to minimize an
arbitrary function f : Rm → R. Consider a feasible area C, which is an orthotope or
shortly cube with sides parallel to the axes, say

C = [x1, x1] × . . . × [xm, xm] ⊂ Rm.

In order to solve this problem we suggest the following algorithm.

Big-Cube-Small-Cube-Algorithm (BCSC)

Input A function f : Rm → R and a feasible cube C ⊂ Rm.

Initialization (Phase 1)

1. Create a list C of cubes. Initialize C = {C}, i.e. the list contains only the cube C.

2. The value of the objective function is evaluated at the center

c(C) :=
(

1
2
(x1, x1), . . . ,

1
2
(xm, xm)

)
of C. The resulting value f(c(C)) is taken as upper bound UB and the center itself
as incumbent (x1, . . . , xm)opt.

3. Calculate a lower bound LB(C) for C.
(How to calculate good lower bounds is described in Section 4.)
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Branch-and-Bound Phase (Phase 2)

1. Selection rule: Find the lowest lower bound LBmin for all cubes C ′ in C.

2. Termination rule: If LBmin + ε · |LBmin| ≥ UB stop: Return the optimal solution
(x1, . . . , xm)opt and UB as its value of the objective function.

3. Division rule: Select a cube C ′ ∈ C with LB(C ′) = LBmin and split it into some
smaller cubes.

(How to use division rules to split the selected cube is shown in Section 5.)

4. Evaluate the value of the objective function at the center of each smaller cube. If at
least one of these values is ≤ UB, update UB to the lowest value of all smaller cubes
and update (x1, . . . , xm)opt to the center of the associated cube.

5. Calculate a lower bound for all smaller cubes (see Section 4).

6. Add the smaller cubes to C and delete the original cube from the list.

7. Discarding test: If LB(C ′) + ε · |LB(C ′)| > UB for a cube C ′ ∈ C discard it from
C. If UB has not changed it is sufficient to check only the smaller cubes of Step 6.

8. Apply some further discarding tests for the smaller cubes (see Section 5).

9. Return to Step 1 of Phase 2.

As shown in Drezner and Suzuki (2004) for the case m = 2 this algorithm returns an
optimal solution (x1, . . . , xm)opt ∈ C within a relative accuracy of ε > 0 if it terminates. In
the following result we present a sufficient condition for the termination of our algorithm.

Lemma 1. Suppose a function f : Rm → R and a feasible cube C. For all cubes

C ′ = [x′1, x′1] × . . . × [x′m, x′m] ⊂ C

denote by c(C ′) the center of C ′ and define δ(C ′) as the length of the maximal width com-
ponent of C ′, i.e.

δ(C ′) = max{x′1 − x′1, . . . , x′m − x′m}.

Furthermore, assume |LB(C ′)| ≥ L for a fixed L > 0. Then the algorithm terminates after
a finite number of steps for every ε > 0 if there exists a fixed constant D > 0 such that

f(c(C ′))− LB(C ′) ≤ D · δ(C ′) (1)

for all cubes C ′ ⊂ C.

Proof. Suppose that Equation (1) is satisfied for all cubes C ′ ⊂ C. Then we have

UB − LB(C ′) ≤ f(c(C ′))− LB(C ′) ≤ D · δ(C ′).
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If all cubes in the list are small enough to satisfy

D · δ(C ′) < ε · L

we have
UB − LB(C ′) < ε · L ≤ ε · |LB(C ′)|

and therefore the termination condition of Step 2 is satisfied for all cubes C ′ if δ(C ′) is small
enough.

Note that the assumptions given in Lemma 1 depend strongly on the objective function
f and the bounding operation. For example, if f is Lipschitzian and strict positive, the
calculation of L and D is very simple.

Moreover, we remark that ε is a relative accuracy. For problems with zero as minimal
objective value, the termination condition of Step 2 may never be satisfied since we can not
guarantee the existence of a constant L > 0 with |LB(C ′)| ≥ L for all cubes C ′ ⊂ C. In
this case we suggest to use

LBmin + ε · |LBmin|+ εabs ≥ UB,

i.e. to add a small absolute error εabs > 0 in the termination criteria. Along the lines of the
proof of Lemma 1 we obtain the following results.

Lemma 2. Consider the termination criteria

LBmin + ε · |LBmin|+ εabs ≥ UB.

If there exists a fixed constant D > 0 such that

f(c(C ′))− LB(C ′) ≤ D · δ(C ′)

for all cubes C ′ ⊂ C the algorithm terminates after a finite number of steps for every ε > 0.

Furthermore, using the termination criteria

LBmin + εabs ≥ UB

and assuming again that there exists a fixed constant D > 0 such that

f(c(C ′))− LB(C ′) ≤ D · δ(C ′)

for all cubes C ′ ⊂ C, the algorithm terminates after a finite number of steps and returns a
solution with absolute error smaller than εabs.
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3 Formulation of the location problems investigated

In this section we briefly introduce the three location problems for which we apply the BCSC
algorithm. To this end we first need the following notation.

Let {A1, . . . , An} be a given set of n existing facilities. In R2 we denote Ak = (ak, bk), in
R3 let Ak = (ak, bk, ck). The Euclidean distance between X and AK is denoted as

dk(X) := d(X, Ak).

Note that dk is a convex function in X which is differentiable if X 6= Ak.

For each of the existing facilities we have furthermore given a weight wk ∈ R, k = 1, . . . , n
representing the importance of the existing facility. In many location problems the weights
are assumed to be positive.

The three-dimensional Fermat-Weber Problem with positive and negative weights

Let Ak = (ak, bk, ck), k = 1, . . . , n be a given set of existing facilities in three dimensions.
In this problem we allow the weights wk to be positive or negative. The Fermat-Weber
problem with positive and negative weights is to minimize

f(X) = f(x, y, z) =
n∑

k=1

wk · dk(X). (2)

This function can be expressed as a difference between two convex functions. In general it
is neither convex nor concave.

The Median Circle Problem

With positive weights wk > 0, the problem is to locate a circle so as to minimize the
sum of weighted distances between the circle and the facilities Ak = (ak, bk) on the plane.
Describing a circle by its center X = (x, y) and its radius r ≥ 0, we have to minimize the
function

f(X, r) = f(x, y, r) =
n∑

k=1

wk · |dk(X)− r|. (3)

This is a problem on the plane, nevertheless involving three variables. Its objective function
is neither convex nor concave and, furthermore, not differentiable at all solutions (X, r) with
dk(X) = r and k ∈ {1, . . . , n}. This is important, since any optimal solution of the median
circle problem satisfies dk(X) = r for at least two k ∈ {1, . . . , n} according to Brimberg
et al. (2008), and hence the optimal solution is always attained at a non-differentiable point.

6



The p-Median Problem

The p-median problem is to find p new locations

X1 = (x1, y1), . . . , Xp = (xp, yp)

on the plane. With positive weights wk > 0 we have to minimize

f(X1, . . . , Xp) = f(x1, y1, . . . , xp, yp) =
n∑

k=1

wk ·min{dk(X1), . . . , dk(Xp)}. (4)

This problem deals with 2p variables and is in general NP hard, see Megiddo and Supowit
(1984). We will solve the p-median problem for fixed p = 2 and p = 3.

4 Calculating Lower Bounds

For each cube C ∈ C, we are interested in a lower bound on the value of the objective
function inside that cube. One possible approach is to use interval analysis, see Hansen
(1992). Here we develop specific lower bounds for the three problems we consider.

We are using the same concept for all three problems: We bound and approximate every
summand of the objective function by a concave function from below. Since the sum of
concave functions is concave again, we end up with a concave optimization problem over
a cube whose optimal solution is a lower bound on the optimal solution of our original
problem. The optimal solution of the concave approximation can be calculated easily since
it is obtained at one of the vertices of the cube C. We now detail this approach for each of
our three location problems.

The Fermat-Weber Problem

Consider the cube

C = [xmin, xmax] × [ymin, ymax] × [zmin, zmax]

and one summand of the objective function, say

gk(x, y, z) := wk · dk(x, y, z).

We are looking for a concave function mk(x, y, z) with mk(x, y, z) ≤ gk(x, y, z) for all
(x, y, z) ∈ C.

For wk < 0 the function gk(x, y, z) itself is concave and we assign mk(x, y, z) := gk(x, y, z).

Now consider k ∈ {1, . . . , n} with wk > 0. In this case gk(x, y, z) is convex. It can be
bounded from below by its subgradient function, e.g. at the point

U = (u, v, w) =
(

1
2
(xmin + xmax),

1
2
(ymin + ymax),

1
2
(zmin + zmax)

)
.
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For U 6= Ak the subgradient function is given by the tangent plane of f at U , i.e.

hk(x, y, z) := gk(U) +
∂gk

∂x
(U) · (x− u) +

∂gk

∂y
(U) · (y − v) +

∂gk

∂z
(U) · (z − w)

= wk ·
(

dk(U) +
(u− ak)
dk(U)

· (x− u) +
(v − bk)
dk(U)

· (y − v) +
(w − ck)
dk(U)

· (z − w)
)

and we assign mk(x, y, z) := hk(x, y, z). On the other hand, if U = Ak we choose the
subgradient mk(x, y, z) = 0. Summing up the functions mk(x, y, z) for k = 1, . . . , n at the
vertices of C we obtain the following lower bound.

Theorem 3. Let C be a cube and denote by V1, . . . , V8 the eight vertices of C. Define

mk(x, y, z) =

 gk(x, y, z) if wk < 0,
hk(x, y, z) if wk > 0 and Ak 6= U,

0 else
.

Then

LB1(C) = min

{
n∑

k=1

mk(V1),
n∑

k=1

mk(V2), . . . ,

n∑
k=1

mk(V8)

}
is a lower bound for the Fermat-Weber problem on C.

Proof. We have to show that f(x, y, z) ≥ LB1(C) for all x ∈ C. To this end, first note
that mk(x, y, z) ≥ gk(x, y, z) for all x ∈ C. This is obvious if wk < 0 since we defined
mk(x, y, z) = gk(x, y, z) in this case. On the other hand, if wk > 0 we know that gk(x, y, z)
is convex and hence always bounded from below by its subgradient.

Hence for all (x, y, z) ∈ C we obtain

f(x, y, z) =
n∑

k=1

wk · dk(x, y, z) =
n∑

k=1

gk(x, y, z) ≥
n∑

k=1

mk(x, y, z) =: `(x, y, z).

Note that each of the mk(x, y, z) is a concave function and hence `(x, y, z) is a concave
function itself. In order to find the minimum of a concave function over a polyhedron it is
sufficient to investigate the extreme points of the polyhedron which are in our case the eight
vertices of the cube C. This yields

min
(x,y,z)∈C

`(x, y, z) = min{`(V1), . . . , `(V8)} = LB1(C)

and therefore finishes the proof.

The Median Circle Problem

Consider the cube

C = [xmin, xmax] × [ymin, ymax] × [rmin, rmax]
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and again one summand of the objective function, say

gk(x, y, r) := wk · |dk(x, y)− r| = wk ·max{dk(x, y)− r, r − dk(x, y)}.

As in the approach for the Fermat-Weber problem we are looking for concave functions
mk(x, y, r) for k = 1, . . . , n with mk(x, y, r) ≤ gk(x, y, r) for all (x, y, r) ∈ C. We then can
proceed analogously and minimize the sum `(x, y, r) =

∑n
k=1 mk(x, y, r) of these concave

functions by evaluating it at the vertices of C.

To obtain the required concave functions mk we consider the following three cases.

Figure 1: Examples for the two cases.

1. The four points

U1 := (xmin, ymin), U2 := (xmin, ymax),
U3 := (xmax, ymin), U4 := (xmax, ymax)

are all located inside the circle with center Ak and radius rmin, see the left part of
Figure 1 for an illustration. In this case we obtain that

gk(x, y, r) = wk · (r − dk(x, y))

is concave for all (x, y, r) ∈ C and hence assign mk(x, y, r) := gk(x, y, r).

2. The four points U1, . . . , U4 are all located outside the circle with center Ak and radius
rmax, see the right part of Figure 1. Here, we obtain

gk(x, y, r) ≥ wk · (dk(x, y)− r)

for all (x, y, r) ∈ C. We hence define the convex function

qk(x, y, r) := wk · (dk(x, y)− r)

and bound it from below by its subgradient, e.g. at the point

T := (U, s) = (u, v, s) =
(

1
2
(xmin + xmax),

1
2
(ymin + ymax),

1
2
(rmin + rmax)

)
.
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For U 6= Ak the subgradient of q in T is given by the tangent plant at T , i.e. by

nk(x, y, r) := qk(T ) +
∂qk

∂x
(T ) · (x− u) +

∂qk

∂y
(T ) · (y − v) +

∂qk

∂r
(T ) · (r − s)

= qk(T ) + wk ·
(

(u− ak)
dk(U)

· (x− u) +
(v − bk)
dk(U)

· (y − v)− (r − s)
)

= wk ·
(

dk(U) +
(u− ak)
dk(U)

· (x− u) +
(v − bk)
dk(U)

· (y − v)− r

)
and we have that

gk(x, y, r) ≥ qk(x, y, r) ≥ nk(x, y, r)

for all (x, y, r) ∈ C.

3. In all other cases there exists a (x, y, r) ∈ C with gk(x, y, r) = 0 and we define
mk(x, y, r) := 0 as (trivial) lower bound.

Proceeding analogously to Theorem 3 we have shown the following result.

Theorem 4. Let C be a cube and denote by V1, . . . , V8 the eight vertices of C. Define

mk(x, y, r) =

 gk(x, y, r) if dk(Uj) ≤ rmin for j = 1, . . . , 4,
nk(x, y, r) if dk(Uj) > rmax for j = 1, . . . , 4 and Ak 6= U,

0 else
.

Then

LB2(C) = min

{
n∑

k=1

mk(V1),
n∑

k=1

mk(V2), . . . ,
n∑

k=1

mk(V8)

}
is a lower bound for the median circle problem.

The p-Median Problem

Consider the cube

C = [x1
min, x1

max] × [y1
min, y1

max] × . . . × [xp
min, xp

max] × [yp
min, yp

max] ⊂ R2n

and one summand of the objective function, say

gk(x1, y1, . . . , xp, yp) := wk ·min{dk(x1, y1), . . . , dk(xp, yp)}.

In the same way as before, we will bound gk by a concave function mk respecting

mk(x1, y1, . . . , xp, yp) ≤ gk(x1, y1, . . . , xp, yp) for all (x1, y1, . . . , xp, yp) ∈ C.

First, we define for m = 1, . . . , p

Pm := (pm, qm) =
(

1
2
(xm

min + xm
max),

1
2
(ym

min + ym
max)

)
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and we will use the supporting hyperplanes at these points:

dk(xm, ym) ≥ hk,m(xm, ym)

:= dk(Pm) +
∂dk

∂xm
(Pm) · (xm − pm) +

∂dk

∂ym
(Pm) · (ym − qm)

= dk(Pm) +
(pm − ak)
dk(Pm)

· (xm − pm) +
(qm − bk)
dk(Pm)

· (ym − qm).

Next, we define the functions

mk(x1, y1, . . . , xp, yp) := wk ·min{hk,1(x1, y1), . . . , hk,p(xp, yp)}

if dk(Pm) 6= 0 for all k ∈ {1, . . . , n}, m ∈ {1, . . . , p}, and mk(x1, y1, . . . , xp, yp) := 0 else.
Note that mk is concave since hk,m is linear and the minimum of linear functions is concave.
Furthermore, we obtain

mk(x1, y1, . . . , xp, yp) ≤ gk(x1, y1, . . . , xp, yp)

for all (x1, y1, . . . , xp, yp) ∈ C. Summarizing our discussion we obtain the following result.

Theorem 5. Let C ⊂ R2p be a cube and denote by V1, . . . , V
p
4 the 22p = 4p vertices of C.

Then

LB3(C) = min

{
n∑

k=1

mk(V1),
n∑

k=1

mk(V2), . . . ,

n∑
k=1

mk(V4p)

}
is a lower bound for the p-median problem.

5 Division Rule and Further Discarding Tests

There are several division rules and discarding tests for the interval branch-and-bound al-
gorithm, see, e.g., Tóth et al. (2007), Fernández et al. (2007), and Fernández et al. (2006).
Most of these rules and tests require twice differentiable objective functions. Since our func-
tions are not even differentiable, we have to develop other approaches. We first describe our
division rules and then suggest additional discarding tests for some of the location problems
under consideration.

Division Rule

We will apply the following division rules.

For cubes in three dimensions (in the three-dimensional Fermat-Weber problem and in the
circle location problem), the selected cube will be split into eight congruent smaller cubes
as depicted in Figure 2.

Cuboids in higher dimensions (as in the p-median problem for p ≥ 2) will be bisected in
two smaller cuboids analogously to Tóth et al. (2007) perpendicular to the direction of the
maximum width component.
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Figure 2: The split of a cube into eight small cubes.

Order Test for the p-median problem

If we are looking for p new locations as a vector in R2p there are theoretically many symmetric
solutions due to all possible permutations of the p new facilities. Our first discarding test
aims to exclude such equivalent sets of new locations. This is done as follows.

We require
x1 ≤ x2 ≤ . . . ≤ xp

for the optimal solution (x1, y1, . . . , xp, yp)opt. We then can delete all cubes

C = [x1
min, x1

max] × [y1
min, y1

max] × . . . × [xp
min, xp

max] × [yp
min, yp

max]

with xm
min > xs

max for some m ∈ {1, . . . , p−1} and s ∈ {m+1, p}. This reduces the number
of cubes to be considered significantly.

Circle Feasibility Test for the median circle problem

The main result in Brimberg et al. (2008) is that all optimal solutions for the median circle
problem intersect at least two existing facility locations. We use this result for a discarding
test for the median circle problem as follows.

Consider an arbitrary cube C and check for every existing facility Ak if there is a circle
(X, r)k ∈ C which intersects Ak. A cube C can be discarded from C if there is only one
existing facility Ak with a circle (X, r)k ∈ C intersecting Ak.

We use this discarding test only for median circle problems with n < 100, since for problems
with n ≥ 100 only very few cubes could be excluded such that the test was numerically not
efficient in these cases.

Weiszfeld Test for the p-median problem

Especially for the p-median problem, we found one more helpful discarding test.

Consider the cube

C = [x1
min, x1

max] × [y1
min, y1

max] × . . . × [xp
min, xp

max] × [yp
min, yp

max]
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Figure 3: Example for the Weiszfeld test with C = X 1 ×X 2 ×X 3.

and an arbitrary existing facility, say Ak. If there exists an m ∈ {1, . . . , p} such that the
maximal distance between Ak and any X in

Xm := [xm
min, xm

max] × [ym
min, ym

max]

is smaller than the minimal distance between Ak and any X in

X s = [xs
min, xs

max] × [ys
min, ys

max]

for all s ∈ {1, . . . , p} \ {m}, then Ak is associated with the square Xm, see Figure 3.

If every existing facility Ak is associated with one square Xm, we can split the p-median prob-
lem into p subproblems. Each subproblem is a 1-median problem, which can be solved up to
every accuracy of δ > 0 with the Weiszfeld algorithm, see Weiszfeld (1937). The p solutions
(x1, y1) to (xp, yp) of these subproblems create together the point (x1, y1, . . . , xp, yp) ∈ R2p

and we obtain

f(x1, y1, . . . , xp, yp) ≤ f(x′1, y
′
1, . . . , x

′
p, y

′
p) + p · δ for all (x′1, y

′
1, . . . , x

′
p, y

′
p) ∈ C.

6 Computational Results

Our programs were coded in JAVA, compiled by JAVA 2 SDK 1.4, using double precision
arithmetic. All tests were run on a 1.3 GHz computer with 512 MB of memory.

We generated 10 ≤ n ≤ 10, 000 existing facilities randomly in [0, 1]3 for the Fermat-Weber
problem and in [0, 1]2 for the circle location and for the p-median problem. The weights
were generated randomly in [−1, 1] for the Fermat-Weber problem and in [0, 1] for the other
two problems.

Ten problems were run for different values of n for every problem. For accuracy, we applied
ε = 10−10 throughout all problems.
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The Fermat-Weber Problem

The Fermat-Weber problem was solved in C = [0, 1]3 and for every value of n we generated
n/2 positive and n/2 negative weights. These problems are very hard to solve and need the
highest run times, see also Tuy et al. (1995). Our results are reported in Table 1. Therein,
Cmax is the maximum number of cubes in our list C throughout the branch-and-bound phase
of the algorithm.

Run time (sec.) Iterations Cmax

n Min Max Ave. Min Max Ave. Min Max Ave.

10 0.00 0.06 0.02 69 540 271.6 46 558 226.2
20 0.00 0.08 0.02 84 539 273.1 24 641 198.9
50 0.02 0.14 0.06 114 838 451.1 50 945 380.0

100 0.02 0.31 0.10 102 1,419 426.2 60 1,119 314.0
200 0.06 0.59 0.25 168 1,443 578.0 76 1,228 400.6
500 0.22 2.34 0.83 186 2,437 830.3 74 1,995 666.0

1, 000 0.27 3.91 1.82 137 1,986 925.7 92 2,298 906.9
2, 000 0.94 16.41 6.67 257 4,414 1,802.2 82 1,613 793.1
5, 000 6.83 36.20 23.94 737 3,807 2,530.9 330 3,292 2,041.8

10, 000 16.09 108.44 66.72 747 4,893 3,036.7 341 4,523 2,833.5

Table 1: Results for the Fermat-Weber problem for 10 runs using LB1 and random weights.

As can be seen, our algorithm is very efficient. All problems with n = 10, 000 were solved in
less than two minutes with less than 5, 000 iterations and all problems with n = 1, 000 were
solved in less than four seconds with less than 2, 000 iterations.

For a computational comparison, we used the results from Drezner (2007). They solved the
Fermat-Weber problem only in two dimensions, they used the same accuracy, and ran their
programs on a computer with 2.8 GHz. For n = 10, 000 existing facilities, they needed on
average 54.05 seconds and for n = 1, 000 problems 0.60 seconds. Note that these results
are similar to our ones in three dimensions. Our standard deviation is quite high, but it is
comparable to the standard deviation using BTST (see Phase 3 of the algorithm in Drezner
and Suzuki (2004)).

For a further computational comparison, we also implemented the BTST method for the
Fermat-Weber problem in two dimensions. Our experiments show that the BTST method
is less efficient than BCSC for n ≥ 1, 000. The reason is that the BTST technique has to
handle up to 2n − 5 triangles in Phase 1, see Corollary 1 in Drezner and Suzuki (2004).
In our BCSC method we do not have to calculate lower bounds for such a large number of
cubes.
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The Median Circle Problem

The optimal solution for the median circle problem may be a circle with a big radius or even
a straight line, see Brimberg et al. (2008). In order to avoid these cases, we decided to solve
the median circle problem in C = [−1, 2]× [−1, 2]× [0, 3]. Our results are shown in Table 2.

Run time (sec.) Iterations Cmax

n Min Max Ave. Min Max Ave. Min Max Ave.

10 0.03 0.20 0.08 499 3,683 1,328.3 118 488 256.6
20 0.05 0.23 0.11 543 2,515 1,177.0 112 605 289.2
50 0.11 0.27 0.19 610 1,498 1,026.2 133 475 236.1

100 0.16 0.67 0.29 665 2,671 1,214.0 135 419 253.6
200 0.27 1.03 0.55 633 2,201 1,207.2 148 333 206.3
500 0.83 3.59 1.42 788 3,093 1,273.5 149 509 217.5

1, 000 1.67 3.55 2.39 793 1,586 1,087.4 161 300 194.6
2, 000 4.08 8.52 5.19 954 1,905 1,187.6 196 385 232.7
5, 000 10.05 19.03 13.76 935 1,688 1,251.0 200 258 214.2

10, 000 26.28 39.80 31.66 1,112 1,653 1,328.3 170 291 205.6

Table 2: Results for the median circle problem for 10 runs using LB2 and random weights.

All problems could be solved surprisingly efficient. Our ten test problems with n = 10, 000
existing facilities were solved in less than 40 seconds of computer time. Since the number of
iterations is with an average of 1, 200 almost constant, the run time seems to be linear.

To the best of our knowledge this is the first numerical study of circle location problems
such that a comparison to other numerical results is not possible.

The p-Median Problem

Using LB3 and the proposed discarding tests, we solved the p-median problem in C = [0, 1]2p

for p = 2 and p = 3. For the summarized results see Tables 3 and 4.

As the results show, the algorithm performed very well also for the p-median problem.
Problems with p = 2 and n = 10, 000 could be solved on average in 164.95 seconds and
problems with n = 1, 000 were solved in 10.40 seconds. Even the six dimensional 3-median
problem for n = 1, 000 could be solved on average in 958.91 seconds and problems with
n = 100 on average in 116.43 seconds.

The p-median problem was also solved in Chen et al. (1998) by a D.C. outer approximation,
but using a slower machine (SUN SPARC 2 with 28.5 mips processor, about 100 MHz) than
ours. For p = 2 they used ε = 10−5 and their results are on average 184.8 seconds for
n = 1, 000 and 2, 717.8 seconds for n = 10, 000, which is more than 16 times of our run time.
Problems for p = 3, ε = 10−3 and n = 30 were solved in 1, 079 seconds, while problems with
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Run time (sec.) Iterations Cmax

n Min Max Ave. Min Max Ave. Min Max Ave.

10 0.02 0.13 0.05 149 1,511 522.7 45 235 99.1
20 0.05 0.20 0.12 564 1,909 1,163.4 105 277 204.9
50 0.14 0.52 0.31 796 2,798 1,726.3 130 506 303.0

100 0.41 0.97 0.70 1,374 3,214 2,289.5 239 452 369.8
200 1.03 2.30 1.66 1,779 4,120 2,917.6 212 703 455.5
500 3.22 6.30 4.88 2,331 5,287 3,445.7 343 725 494.5

1, 000 8.52 13.91 10.40 3,469 5,643 4,209.2 430 789 575.7
2, 000 18.44 30.36 22.73 3,792 6,018 4,586.7 479 851 612.9
5, 000 54.36 82.53 67.25 4,391 6,690 5,458.6 548 895 716.7

10, 000 131.95 210.59 164.95 5,289 8,443 6,512.6 600 1,041 818.7

Table 3: Results for the 2-median problem for 10 runs using LB3 and random weights.

Run time (sec.) Iterations Cmax

n Min Max Ave. Min Max Ave. Min Max Ave.

10 0.11 16.31 3.87 1,142 14,521 8,166.7 258 2,702 1,384.9
20 1.00 29.94 12.27 4,338 23,827 12,591.3 725 5,423 2,376.7
50 21.81 245.44 83.43 16,946 64,345 34,847.0 2,401 10,107 5,487.5

100 67.48 183.91 116.43 29,489 60,850 42,007.1 3,774 7,903 6,341.3
200 192.38 434.80 258.07 55,406 93,425 67,453.2 7,593 14,436 9,930.6
500 285.49 819.02 525.88 81,758 202,336 138,618.3 12,541 30,726 20,005.2

1, 000 623.76 1552.94 958.91 95,318 212,948 140,197.8 13,415 30,029 19,635.0

Table 4: Results for the 3-median problem for 10 runs using LB3 and random weights.
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n > 30 ran out of memory. Note that these results were obtained although we used a higher
accuracy (ε = 10−10).

7 Discussion

We proposed a general solution method for multidimensional facility location problems which
is a generalization of the big square small square technique (BSSS). To develop the approach
we adapted the approaches for creating specific lower bounds from the BSSS method and
used ideas for specific discarding tests similar to those in interval analysis methods. In con-
trast to the BSSS method, our approach can handle more than two variables. Its efficiency
is still based on the calculation of good lower bounds for every cube. We remark that our
method is applicable to non-differentiable objective functions which is often not the case in
the interval analysis technique.

We implemented our method and demonstrated it on three example location problems for
which we derived specific lower bounds and discarding tests. All problems could be solved
efficiently even with large problem instances with up to 10, 000 existing facilities. The
method has also been tested for other location problems, e.g. for circle location problems
with Manhattan distance and for center circle problems, see Scholz (2007).

Future research in this area includes a comparison of different bounding techniques, the
development of further discarding tests, and the application of the method to further location
problems. Currently we are adapting the technique to solve multicriteria location problems.
Also its application to ScheLoc problems (see Hamacher and Hennes (2007) or Elvikis et al.
(2008)) is under research.
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2008-17 A. Schöbel, D. Scholz The big cube small cube solution method for
multidimensional facility location problems


