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Abstract

The Baker-Campbell-Hausdorff (BCH) series and the Zassenhaus product are of fundamental importance

for the theory of Lie groups and their applications in physics. In this paper, various methods for the com-

putation of the terms in these expansions are compared, and a new efficient approach for the calculation

of the Zassenhaus terms is introduced. Mathematica implementations for the most efficient algorithms are

provided together with comparisons of execution times.

Furthermore, we study two maps which translate the polynomial representation of the BCH and Zassen-

haus terms into representations in terms of nested commutators. The first of these maps yields the well

known Dynkin-Specht-Wever representation of the BCH terms while the second one generates a commuta-

tor representation which involves fewer terms than the Dynkin-Specht-Wever representation.
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I. INTRODUCTION

The product of the exponentials of two non-commutative variables x and y may be expressed as

the exponential of an infinite sum

exey = ex+y+
P∞

n=2 zn . (1)

This formula is easily obtained from a formal power series expansion of the exponential. The

famous Baker-Campbell-Hausdorff (BCH) theorem [1–3] asserts that the BCH terms zn may be

expressed as linear combinations of nested commutators. This is of fundamental importance for

the theory of Lie groups and their applications in physics.

Similarly, the exponential of the sum of two non-commutative variables a and b may be written as

an infinite product

ea+b = ea · eb ·
∞∏

n=2

ecn , (2)

which is known as the Zassenhaus product. The Zassenhaus exponents cn may be also expressed

as linear combinations of nested commutators as was first shown by Magnus [4] based on unpub-

lished work by Zassenhaus.

The BCH and Zassenhaus theorems proof the existence of a commutator representation, but do

not provide a simple way of constructing such a representation. The present paper focuses on the

question of how to compute the BCH and Zassenhaus terms efficiently, and then express them in

terms of nested commutators. Mathematica [5] implementations are provided.

There are several works which addressed these questions before: Methods for the BCH terms

based on the formal power series expansions of the exponential function and the logarithm were

discussed in Refs. [6–9]. A quite different approach for the calculation of the the coefficients for

single monomials in each zn was presented by Goldberg in Ref. [10]. Using a matrix representa-

tion, another approach was developed in Ref. [11].

For the calculation of the Zassenhaus terms a procedure based on the formal power series of the

exponential function was given in Ref. [4]. A similar method was discussed by Wilcox [12], and

was recently applied in Ref. [13]. An approach based on a matrix representation was suggested by

the present authors [14].
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Most methods cited above for the calculation of the BCH and Zassenhaus terms initially yield a

polynomial representation, and not the desired representation in terms of nested commutators. In a

number of independent papers, Dynkin [6], Specht [15], and Wever [16] provided a simple explicit

construction of such a commutator representation. This construction is explicitly given by the map

Θ defined in Eq. (13) of Section V. However, due to the Jacobi identity [[x, y], z] + [[y, z], x] +

[[z, x], y] = 0 and similar identities for higher order commutators, the commutator representation

is not unique. In fact, Oteo [17] formulated a conjecture concerning a commutator representation

of the BCH terms, which entails fewer terms than the Dynkin-Specht-Wever representation. This

new commutator representation is obtained from the map Φ defined in Eq. (14) in Section V.

It was conjectured recently that this different commutator representation also applies to the the

Zassenhaus exponents [14]. In the present paper, it is proved that Oteo’s map Φ generates indeed

a valid nested commutator representation for the BCH and Zassenhaus terms (and more general

polynomials as discussed in Section V and the Appendix).

The remainder of the paper is organized as follows: In Sections II and III, various methods for

the calculation of the BCH and Zassenhaus terms are discussed. For two algorithms, Mathematica

implementations are presented. In Section IV we provide comparisons of running times for some

of the methods. In the last section, the Dynkin-Specht-Wever theorem is reviewed, and Oteo’s

map for the translation of a polynomial representation into a nested commutator is presented. The

proof that this map indeed yields a valid representation in terms of nested commutators is given

in the Appendix. To the best of our knowledge this proof has never been published before. The

paper concludes with a brief discussion.

II. METHODS FOR COMPUTING THE BAKER-CAMPBELL-HAUSDORFF SERIES

The exponential function and the logarithm are defined by their formal power series

exp(x) =
∞∑

k=0

1

k!
xk and log(x) =

∞∑
k=1

(−1)k−1

k
(x− 1)k. (3)

All infinite series here and in the next section should be understood as formal. The region of

convergence has to be studied for each specific choice of variables x and y separately.
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Using these power series, we obtain for two non-commutative variables x and y

log (exey) = log

(
∞∑

r=0

1

r!
xr ·

∞∑
s=0

1

s!
xs

)
= log

((
1 + x +

1

2
x2 + . . .

)
·
(

1 + y +
1

2
y2 + . . .

))
=

∞∑
k=1

(−1)k−1

k

(
x + y + xy +

1

2
xx +

1

2
yy + . . .

)k

. (4)

From this expansion one obtains the polynomials zn = zn(x, y) by collecting all summands in

Eq. (4) with n factors of x or y, or, expressed differently, by collecting all terms which contain

words of length n.

In the literature, several different approaches concerning the question how to calculate the BCH

terms can be found. The most important methods will be discussed in the following.

A. Dynkin’s method

Dynkin’s method or the ‘expansion method’ (as we like to call it) is based on a direct application

of the formal power series expansions of the exponential and logarithm given above. The method

was discussed in a seminal paper by Dynkin [6]. From Eq. (4) one obtains

zn =
n∑

k=1

( ∑
p1,q1,...,pk,qk

(−1)k−1

k
· 1∏k

i=1 pi!qi!
· xp1yq1 . . . xpkyqk

)
(5)

where the second sum is over all possible combinations of p1, q1, . . . , pk, qk ∈ N ∪ {0} such that

pi + qi > 0 for i = 1, . . . , k,
∑k

i=1(pi + qi) = n, and 0! = 1.

The disadvantage of this method is the huge number of possible combinations of the pi and qi,

e.g. for n = 8 we already find 11, 144 allowed combinations. The method yields a polynomial

representation of the BCH series which can be translated into a sum of commutators using the

maps Θ or Φ discussed in Section V.

Alternatively, using the map Φ in Eq. (5) before performing the sums yields a commutator repre-

sentation of zn directly. In fact, such a procedure reduces the number of of possible combinations

to be considered in the summations, since we only have to take into account combinations be-

ginning with (p1, q1) = (1, t) or with (p1, q1, p2, q2) = (1, 0, 0, t) and t ≥ 1. Richtmyer and
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Greenspan [8] as well as the textbook by Varadarajan [9] provide an independent proof of the

BCH theorem, which lead to a procedure for the calculation of the BCH terms similar to the one

just described.

Bose [7] introduced a simple algorithm to calculate the coefficients for single monomials. The

idea of his algorithm is to collect all possible combinations of the (p1, q1, . . . , pk, qk) which are

associated with the same monomial, e.g. (1, 2) and (1, 1, 0, 1) (as well as other combinations) for

the monomial xyy.

B. Goldberg’s method

An efficient algorithm for the calculation of the BCH terms zn was published in 1956 by Gold-

berg [10]. It is based on a generating function for the numerical coefficients of the monomials in

each BCH term. For s ∈ N, one recursively defines the functions G1(t) = 1 and

Gs(t) =
1

s

d
dt

(
t(t− 1)Gs−1(t)

)
for n > 1.

Furthermore, let Wx be a monomial in x and y starting with an x such that Wx = xs1ys2 . . . ysm

for m even and Wx = xs1ys2 . . . xsm for m odd with s1, . . . , sm ∈ N. According to Goldberg [10]

the coefficient of such a monomial in a BCH term cn is given by

cWx =

∫ 1

0

tm
′
(t− 1)m′′

Gs1(t) . . . Gsm(t) dt (6)

with m′ = bm/2c and m′′ = b(m− 1)/2c. Here, b · c is the floor function. Furthermore, one can

show that gWy = (−1)n−1gWx . A proof of Goldberg’s method may be found in the textbook by

Reutenauer [18]. Using Goldberg’s method, numerical values for the zn up to n = 20 have been

listed by Newman and Thompson[19], but they did not provide their code.

In principle we have to calculate 2n coefficients for the 2n possible monomials in each zn. But

there is an obvious simplification due to Eq. (6): Each permutation of the {s1, . . . , sm} yields an

identical coefficient. Therefore, we are allowed to assume that s1 ≤ . . . ≤ sm.

A Mathematica (Version 6) implementation of Goldberg’s method is given by the following code:

g[1]=1;
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g[s_]:=g[s]=Expand[1/s*D[t*(t-1)*g[s-1], t]];

c[w_]:=c[w]=Module[{m, m1, m2, k},

m = Length[w]; m1 = Floor[m/2]; m2 = Floor[(m-1)/2];

Integrate[tˆm1*(t-1)ˆm2*Product[g[w[[k]]], {k, m}], {t, 0, 1}] ];

BCH[n_Integer, alph_List] := Module[{p},

p = Flatten[Permutations/@IntegerPartitions[n], 1];

Plus@@(c[Sort[#]]*(words[#, alph]-

(-1)ˆn*words[#, Reverse[alph]])&/@p)//Expand];

The BCH term zn is returned by BCH[n,alph] in terms of the two-letter alphabet alph, which

is entered as a list of any two letters, e.g. {"x", "y"}. The simplification resulting from the

ordering property of the si discussed above is implemented using Sort[#] when calling the

coefficient function c. In our code, the Wx are represented by the list {s1, s2, . . . , sm} as defined

above. The list p contains all possible Wx for a given n. A Mathematica 6 code providing a

translation between this representation and the corresponding words written in terms of alphabet

alph is given by the following code:

words[p_List,alph_List]:=StringJoin@(ConstantArray @@@

Partition[Riffle[p, alph, {1, 2*Length[p], 2}], 2])

Note that an implementation which generates the elements of p recursively together with their

translation into words is more efficient than the code given above. For very high orders of n such

an implementation may be preferable, if the translation into words is really needed.

C. Reinsch’s method

Reinsch’s method [11] is based on a matrix representation for the matrices ex and ey: Let

σ1, . . . , σn be arbitrary commutative variables and let F = (Fij) and G = (Gij) be two

(n + 1)× (n + 1) matrices defined by Fij = 0 and Gij = 0 for i > j and

Fij =
1

(j − i)!
and Gij =

1

(j − i)!
·

j−1∏
k=i

σk

for i ≤ j. Furthermore, let T be an operator translating a word W = σµ1

1 σµ2

2 σµ3

3 . . . σµn
n with

µi ∈ {0, 1} for i = 1, . . . , n into a product of x and y in the following way: If µi = 0, replace σµi

i
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by x, if µi = 1, replace σµi

i by y, e.g. T (σ2σ3σ5) = xyyxy for n = 6. Then we have

zn = T ((log FG)1,n+1) = T

(− n∑
k=1

(−1)k

k
(FG− I)k

)
1,n+1

 , (7)

where I is the (n + 1) × (n + 1) identity matrix and the index 1, n + 1 indicates the upper-right

element of the matrix log FG. Note that log FG can be calculated in finitely many steps because

(FG− I)m is the zero-matrix for m > n.

The implementation of this method (as given in Ref. [11]) is quite simple, but we find Goldberg’s

method superior both in speed and simplicity of implementation (see Section IV). Moreover, one

can apply the maps Θ or Φ discussed in Section V only after the whole polynomial zn has been

calculated.

III. METHODS FOR COMPUTING THE ZASSENHAUS PRODUCT

Again, using the formal power series expansion of the exponential function, the Zassenhaus prod-

uct for two non-commutative variables a and b may be written as

ea+b =
∞∑

k=0

1

k!
(a + b)k

= 1 + a + b +
1

2
a2 +

1

2
ab +

1

2
ba +

1

2
b2 + . . . (8)

=

(
1 + a +

a2

2
+ . . .

)
·
(

1 + b +
b2

2
+ . . .

)
·
∞∏

k=2

(
1 + ck +

c2
k

2
+ . . .

)
(9)

= ea · eb · ec2 · ec3 · ec4 · . . . . (10)

Our aim is to compute the polynomials cn = cn(a, b) which consist of all summands in Eq. (10)

with n factors of a or b, i.e. words of length n.

Methods for calculating the Zassenhaus terms cn using the power series expansion were discussed

by Magnus and Wilcox in Refs. [4, 12]. Recently, Quesne [13] used these methods for calculating

the Zassenhaus terms up to c6.

In the following we present a simple and efficient algorithm related to Wilcox´ method (expansion

method). Furthermore, we apply an approach similar to Reinsch’s method. This approach was

proposed by the present authors in a previous paper [14]. In contrast to the methods for calculating
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the BCH terms zn, the approaches for the Zassenhaus terms are recursive, i.e. one needs to know

c2 to cn−1 for the calculation of cn.

A. Expansion method

Comparing Eqs. (8) and (9) one obtains

cn =
∑

t1,u1,...,tn,vn

1

n!
· at1bu1 . . . atnbun −

∑
v0,...,vn−1

1

v0!v1! . . . vn−1!
· av0bv1cv2

2 . . . c
vn−1

n−1 (11)

where the first sum is over all t1, u1, . . . , tn, vn ∈ {0, 1} with tm + um = 1 for m = 1, . . . , n and

the second sum over all v0, . . . , vn−1 ∈ N ∪ {0} with

v0 + v1 + 2 · v2 + 3 · v3 + . . . + (n− 1) · vn−1 = n.

The main problem is to compute all allowed combinations for the vi. As it turns out, the number

of allowed combinations is quite small, e.g. for n = 8 there are only 66 possible combinations

compared to 11, 144 in Dynkin’s method for z8. Although we have to calculate the cn recursively,

the method can be implemented quite efficiently (see Section IV).

Wilcox [12] used the same simple basic idea for the determination of the Zassenhaus terms, namely

to collect all summands in Eq. (10) with n factors of a or b. However, in contrast to Wilcox’

approach, our method reduces the calculation of the Zassenhaus terms to a simple and well de-

fined combinatorial problem, i.e. the determination of all terms contributing to the finite sums in

Eq. (10). A nested commutator representation is then immediately obtained with the help of the

maps Θ and Φ given in Section V.

Here we provide a Mathematica 6 implementation:

zassenhaus[2, alph_List]:=zassenhaus[2,alph]=-StringJoin[alph]/2+

StringJoin[Reverse[alph]]/2;

zassenhaus[n_/;n>2, alph_List]:=zassenhaus[n, alph]=

Module[{a,c,e,j,p,t,u,v,w},

p = IntegerPartitions[n];

u = Rest[BinCounts[#, {1, n, 1}] & /@ p];

v = Flatten[(e=t=First[#]; Table[Join[{j=t--,e-j}, Rest[#]],{e+1}])&/@u,1];

c = tTransform/@Join[alph, Table[zassenhaus[j, alph], {j, 2, n-1}]];
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p = Flatten[Permutations/@p, 1];

w = Plus@@Join[words[#, alph]/n! & /@ p, words[#, Reverse[alph]]/n!&/@p];

a = MapThread[tScalar, {Times@@(1/#!)&/@v,

tProduct[MapThread[tPower, {c, #}]]&/@v}];

w - tTransform[a]];

The coefficients cn are returned by Zassenhaus[n,alph] for all n ≥ 2 for a two-letter al-

phabet alph, e.g. {"a", "b"}. The possible combinations for the vi to be summed over are

contained in the list v. The two sums to be subtracted according to Eq. (11) are stored in w and a.

In order to support the calculation of the product and the power of non-commutative terms cn, our

implementation uses the following routines which must be loaded before the above code can be

executed

tPower[X_List, 0] := {{1, ""}};

tPower[X_List, 1] := X;

tPower[X_List, n_ /; n > 1]:=Nest[{#[[1,1]]*#[[2,1]], #[[1,2]]<>#[[2, 2]]}&/@

Flatten[Outer[List, #,X, 1], 1] &, X, n-1];

tProduct[X_List] := Fold[{#[[1, 1]]*#[[2,1]], #[[1, 2]]<>#[[2, 2]]}&/@

Flatten[Outer[List, #1, #2, 1], 1]&, First[X], Rest[X]];

tScalar[c_, X_List] :={c*First[#], Last[#]}&/@X;

tTransform[X_List] :=Plus @@ (Times @@@ Flatten[X, 1]);

tTransform[X_String]:= {{1, X}};

tTransform[X_Plus] :=List@@@(List@@ X);

Furthermore, we need the translation between different representations of words given in Subsec-

tion II B.

After the full polynomial representation has been obtained, one may apply the maps Θ and Φ given

in Section V in order to obtain a representation in terms of nested commutators. However, it is

also possible to formulate a method similarly to the method by Richtmyer and Greenspan for the

BCH terms discussed above, which directly uses nested commutators.

B. Matrix method

This method was first presented by the present authors in Ref. [14] and is analogous to Reinsch’s

method for the BCH series. Let τ1, . . . , τn be arbitrary commutative variables and let J = (Jij),
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K = (Kij), and L = (Lij) be three (n + 1)× (n + 1) matrices defined by Jij = 0, Kij = 0, and

Lij = 0 for i > j and

Jij =
1

(j − i)!
·

j−1∏
k=i

(1 + τk), Kij =
(−1)i+j

(j − i)!
, and

Lij =
(−1)i+j

(j − i)!
·

j−1∏
k=i

τk

for i ≤ j. Furthermore, we define the two (n + 1)× (n + 1) matrices P and Q by

Pij = δi+1,j and Qij = δi+1,j τi,

where δij is the Kronecker delta, i.e. δij = 0 for i 6= j and δij = 1 for i = j. Similar to the

operator T , let U be an operator translating a word W = τµ1

1 τµ2

2 τµ3

3 . . . τµn
n with µi ∈ {0, 1} for

i = 1, . . . , n into a product of a and b in the following way: If µi = 0, replace τµi

i by an a, if

µi = 1, replace τµi

i by b, e.g. U(τ2τ3τ5) = abbaba if n = 6. Then we have

cn = U
((

e−Cn−1 · e−Cn−2 · . . . · e−C2 · L ·K · J
)
1,n+1

)
, (12)

where Cm = cm(P, Q) is for m < n the m-th Zassenhaus exponent in terms of the non-

commutative matrices P and Q. Again, the index 1, n + 1 indicates the upper-right element of

the matrix on the right-hand side.

Using the matrix method, one can apply the maps Θ or Φ discussed in Section V only after the

complete polynomial cn has been obtained. The implementation of the matrix method is rather

simple (see Ref. [14] for a Mathematica implementation), however in our experience less efficient

than the expansion method described before.

IV. COMPUTATIONAL EXPERIENCES

For the BCH series, we compared the running times of our implementation of the three methods

discussed above for various values of n. Similarly, for the Zassenhaus product, we compared the

expansion method with the matrix method. In all cases, a complete polynomial representation of

a BCH or Zassenhaus terms was calculated.
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All programs were coded in Mathematica 6 and run on a standard personal computer with 1.8 GHz

and 1,024 MB of memory. A comparison of the running times for various values of n is given in

Table I.

n Dynkin Goldberg Reinsch Expansion Matrix
2 0.000 0.004 0.000 0.000 0.000
3 0.000 0.021 0.000 0.005 0.023
4 0.047 0.057 0.000 0.005 0.047
5 0.140 0.083 0.016 0.020 0.141
6 0.360 0.099 0.015 0.037 0.203
7 2.172 0.130 0.078 0.083 0.453
8 44.687 0.240 0.094 0.125 1.125
9 – 0.370 0.188 0.224 3.125

10 – 0.593 0.390 0.614 7.781
11 – 0.912 1.141 1.677 19.406
12 – 1.427 2.313 4.823 46.735
13 – 2.250 6.234 12.828 110.078
14 – 3.557 14.391 36.062 –
15 – 6.036 37.437 99.026 –
16 – 9.844 91.531 – –
17 – 18.526 – – –
18 – 32.276 – – –
19 – 65.219 – – –
20 – 117.505 – – –

TABLE I: Running times for the calculation of BCH and Zassenhaus terms for various values of n.

As expected, the running times for all methods grow exponentially with n. For the BCH terms,

Goldberg’s method is the most efficient while with Dynkin’s formula we could not calculate the

BCH terms for n > 8 in our time limit of 120 seconds. The method by Goldberg is particularly

fast because we can use the symmetry mentioned above.

For the Zassenhaus product, the expansion method is the fastest. However, the calculation of the

Zassenhaus terms is more expensive compared to the BCH terms since both methods we studied

are recursive.
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V. POLYNOMIALS AND NESTED COMMUTATORS

As stated in the introduction, the terms zn = zn(x, y) in the BCH series and the terms cn = cn(a, b)

in the Zassenhaus product may be written as polynomials in x and y or in a and b, respectively.

The BCH and Zassenhaus theorems assert that an translation of this representation into linear

combinations of nested commutators exists. Obviously, given a commutator representation of zn

or cn, we obtain the polynomial representation by applying [x, y] = xy − yx iteratively. In this

section we want to show how to translate the polynomial representation into a nested commutator

representation.

Consider the free associative algebra R over the field Q of rational numbers generated by the the

non-commutative variables x and y. We will investigate the polynomials P (x, y) contained in the

algebra R, which can be expressed as commutators. Such polynomials are called Lie elements.

Call [[· · · [x1, x2], . . .], xn] a left normal nested commutator of the xi with xi ∈ {x, y}. Each

polynomial P ∈ R may be written as

P (x, y) =
∑

a(xi1 , xi2 , . . . , xik) · xi1xi2 . . . xik ,

where xi1 , . . . , xik ∈ {x, y} and a(xi1 , xi2 , . . . , xik) ∈ Q. The sum runs over a finite number of

factors (xi1 , xi2 , . . . , xik) ∈ {x, y}k, and k in each term is arbitrary. A polynomial with just one

summand is called a monomial.

We now define a subalgebra T ⊂ R as the smallest subset of R which contains the following

elements (cf. Ref. [6]):

1. x, y ∈ T,

2. If P, Q ∈ T, then λP + µQ ∈ T for all λ, µ ∈ Q,

3. If P ∈ T, then [P, x] and [P, y] ∈ T.

Therefore, the elements of T are linear combinations of left normal nested commutators of x and

y. Note that due to [x, P ] = −[P, x] all Lie elements contained in R are elements of T and each

element of T is a Lie element.
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Furthermore, we define two maps Θ, Φ : R → T as follows:

Θ (P (x, y)) = Θ
(∑

a(xi1 , xi2 , . . . , xik) · xi1xi2 . . . xik

)
=
∑ a(xi1 , xi2 , . . . , xik)

k
· [[· · · [xi1 , xi2 ], . . .], xik ] (13)

and

Φ (P (x, y)) = Φ
(∑

a(xi1xi2 . . . xik) · xi1xi2 . . . xik

)
=
∑ a(x, y, xi3 , xi4 , . . . , xik)

nx(xi3xi4 . . . xik) + 1
· [[· · · [[[x, y], xi3 ], xi4 ], . . .], xik ]. (14)

Here, nx(xi3xi4 . . . xik) is the number of x generators in the set {xi3 , xi4 , . . . , xik}, e.g.

nx(xyxxy) = 3. Note that the map Φ only involves terms starting with xy.

For example, for the polynomial

z3 =
1

12
xxy − 1

6
xyx +

1

12
xyy +

1

12
yxx− 1

6
yxy +

1

12
yyx

the maps Θ and Φ yield

Θ(z3) = − 1

18
[[x, y], x] +

1

36
[[x, y], y] +

1

36
[[y, x], x]− 1

18
[[y, x], y], (15)

Φ(z3) = − 1

12
[[x, y], x] +

1

12
[[x, y], y]. (16)

For the map Θ, the following theorem has been proved independently by Dynkin [6], Specht [15],

and Wever [16].

Theorem 1 For all P ∈ T, it holds that Θ(P ) = P .

In other words: If we know that a polynomial P (x, y) can be written in terms of commutators,

then we can construct such a representation using the map Θ defined in Eq. (13).

As conjectured in Refs. [17] and [14] without proof, we also have the following result:

Corollary 1 For all P ∈ T, it holds that Φ(P ) = P .

Using this corollary we obtain a commutator representation which contains fewer terms than the

Dynkin-Specht-Wever representation. A proof of this Corollary can be found in the Appendix.

Note that Θ(P ) = Φ(P ) = P for all P ∈ T and zn, cn ∈ T for all n ≥ 2.
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VI. CONCLUSION

For the calculation of the Lie elements zn of the Baker-Campbell-Hausdorff (BCH) series or the

cn of the Zassenhaus product, efficient methods are required. Our aim in this paper was to analyze

several of such methods and to provide efficient implementations.

For the BCH series, we compared three different methods (Dynkin’s, Goldberg’s, and Reinsch’s

method). For the Zassenhaus product, we discussed an expansion and a matrix method. Our

computational experiences show that Goldberg’s method is most efficient for calculating the BCH

terms, and the expansion method appears to be the best for the calculation of the Zassenhaus terms.

In our approach the BCH and Zassenhaus terms are obtained in a polynomial representation. A

translation into a nested commutator representation is provided by the famous Dynkin-Specht-

Wever theorem. Another translation into a commutator representation is stated in Corollary 1 and

proven in the Appendix. It yields a representation with fewer terms than the Dynkin-Specht-Wever

representation.

Both methods we studied for the Zassenhaus product are recursive. Non-recursive, potentially

faster methods similar to Goldberg’s method for the BCH terms are not known. It is an open

question if a generating function (similar to Eq. (6)) for the coefficients in the Zassenhaus terms

can be constructed.

APPENDIX A: PROOF OF COROLLARY 1

We will first collect a number of elementary properties of the Lie elements which may be easily

proven by induction, see e.g. Ref. [15].

Lemma 1 Left normal nested commutators [[· · · [x1, x2], . . .], xn] may be expanded as

[[· · · [x1, x2], . . .], xn] = x1x2 . . . xn + . . . , (17)

and the terms not written out explicitly do not start with x1.

Lemma 2 Each arbitrarily nested commutator can be written as a linear combination of left

normal nested commutators.
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Lemma 3 For a left normal nested commutator [[· · · [x1, x2], . . .], xn] and a given k ∈ {1, . . . , n}

there exists a c(xk, xj2 , . . . , xjn) ∈ Q such that

[[· · · [x1, x2], . . .], xn] =
∑

c(xk, xj2 , . . . , xjn) · [[· · · [xk, xj2 ], . . .], xjn ]. (18)

The sum is over all permutations j2, . . . , jn of the numbers 1, . . . , k − 1, k + 1, . . . , n.

We now want to prove Corollary 1: For all P ∈ T, it holds that Φ(P ) = P (see Section V).

Note that our proof is purely algebraic, and all infinite series and products are formal. We do not

introduce a topology and, therefore, cannot address questions of convergence. Our proof heavily

relies on Dynkin’s methods discussed in Ref. [6].

Proof. According to Lemma 2, each polynomial contained in T can be written as a linear combi-

nation of left normal nested commutators. Therefore, it is sufficient to prove our assertion for

P (x, y) = [[· · · [xi1 , xi2 ], . . .], xik ]

with xi1 , . . . , xik ∈ {x, y}, i.e. we only need to show that Φ(P (x, y)) = P (x, y). Expanding the

commutators by repeated application of [xi, xj] = xixj − xjxi we obtain

[[· · · [x1, x2], . . .], xn] =
∑

a(xi1 , xi2 , . . . , xin) · xi1xi2 . . . xin , (19)

where the sum is over all permutations i1, . . . , in of the numbers 1, . . . , n, and

a(xi1 , xi2 , . . . , xin) ∈ Q.

According to Lemma 3, for a fixed k ∈ {1, . . . , n} it holds that

[[· · · [x1, x2], . . .], xn] =
∑

c(xk, xj2 . . . xjn) · [[· · · [xk, xj2 ], . . .], xjn ]. (20)

Here, the summation runs over all permutations j2, . . . , jn of the numbers 1, . . . , k−1, k+1, . . . , n.

Furthermore, according to Lemma 1 it holds that

[[· · · [xk, xj2 ], . . .], xjn ] = xkxj2 . . . xjn + . . . , (21)

where the terms not written out explicitly do not start with xk. Using Eqns. (19) and (20) one

obtains∑
a(xi1xi2 . . . xin) · xi1xi2 . . . xin =

∑
c(xk, xj2 . . . xjn) · [[· · · [xk, xj2 ], . . .], xjn ],
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which, according to Eq. (21), may be written as∑
a(xi1 , xi2 , . . . , xin) · xi1xi2 . . . xin =

∑
c(xk, xj2 , . . . , xjn) · (xkxj2 . . . xjn + . . .).

Consequently, it holds that a(xk, xj2 , . . . , xjn) = c(xk, xj2 , . . . , xjn), and for arbitrary but fixed k

one finds

[[· · · [x1, x2], . . .], xn] =
∑

a(xk, xj2 , . . . , xjn) · [[· · · [xk, xj2 ], . . .], xjn ], (22)

and the sum is over all permutations j2, . . . , jn of the numbers 1, . . . , k − 1, k + 1, . . . n.

Now we write down as many copies of Eq. (22) as there are x generators in the set {x1, . . . xn},

one copy for each xk = x, and add them up:

nx(x1 . . . xn) · [[· · · [x1, x2], . . .], xn] =
∑

a(xi1 , . . . , xin) · [[· · · [xi1 , xi2 ], . . .], xin ]

=
∑

a(x, xi2 , . . . , xin) · [[· · · [x, xi2 ], . . .], xin ], (23)

and here the sum is over all permutations i2, . . . , in of the numbers 2, . . . , n and xi1 = x. The

symbol nx(x1 . . . xn) denotes the number of x generators in the set {x1, . . . , xn}.

From Eqns. (19) and (23) we obtain using [x, x] = 0

Φ(P (x1, . . . , xn)) = Φ
(∑

a(xi1 , xi2 , . . . , xin) · xi1xi2 . . . xin

)
=
∑ a(x, y, xi3 , . . . , xin)

nx(xi3xi4 . . . xin) + 1
· [[· · · [[[x, y], xi3 ], xi4 ], . . .], xin ]

=
∑ a(x, xi2 , . . . , xin)

nx(xi3xi4 . . . xin) + 1
· [[· · · [[x, xi1 ], xi3 ], . . .], xin ]

=
∑ a(x, xi2 , . . . , xin)

nx(xi1xi2 . . . xin)
· [[· · · [[x, xi1 ], xi3 ], . . .], xin ]

=
1

nx(x1 . . . xn)
·
∑

a(x, xi2 , . . . , xin) · [[· · · [[x, xi1 ], xi3 ], . . .], xin ]

= [[· · · [x1, x2], . . .], xn],

which proves Corollary 1.
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