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Abstract

In this paper we discuss Sobolev bounds on functions that vanish at scattered points
on the n-sphere S™ in R**!. The Sobolev spaces involved may have fractional as well as
integer order. We then apply these results to obtain estimates for continuous and discrete
least-squares surface fits via radial basis functions (RBFs). We also address a stabilization
or regularization technique known as spline smoothing.

1 Introduction

Scattered data surface fitting on the sphere has become increasingly important by virtue of
its many applications in the geosciences. A very popular method of surface fitting is to use
interpolation and approximation by (conditionally) positive definite and radial or zonal functions,
see for example [3, 4, 5, 17, 22]. It is this method that we discuss here.

Several authors have provided error estimates for such reconstruction processes (see for
example [7, 9, 10, 11]); these error estimates were based upon using either spherical harmonics
or charts. When the corresponding results in Euclidean space R" are known, the chart approach
is the easier of the two. However, until now, deriving the correct orders for the errors involved a
very technical argument (see [8, 9]), especially when L,-norms other than L., were considered.
Moreover, only limited information on simultaneous approrimation, i.e. error estimates that
involve also derivatives has been known [14, 12, 13].
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In this paper, we will derive general simultaneous error estimates for interpolation by RBFs.
These results are based on recent results in R" for Sobolev bounds on functions having many
scattered zeros [15] or with many points where the function is sufficiently small [21].

We will begin by establishing Sobolev bounds for functions that are defined on S™ and that
are small at sufficiently many points. Using the results we get, we will derive error estimates for
radial basis function interpolation and both continuous and discrete least squares approximation.

Let us now describe the interpolation and approximation problems we want to discuss. We
will restrict ourselves exclusively to the sphere, although it is clear that much of our analysis
carries over to more general compact Riemannian manifolds. In particular, if the data sites are
situated inside a chart then the analysis applies immediately and the results hold true.

Assume that we are given a set X = {zi1,...,zn5} of data sites located on the n-sphere
S* = {z € R*! : ||z||s = 1} and data values fi,-...,fn € R which stem from a continuous
function f € H = H(S™), where H(S™) C C(S™) is a certain function space consisting of
continuous functions on the sphere. This space will later be the Sobolev space W7 (S™) with
7 > n/2. We are interested in finding the solution of

min {[|s||% : s € H with s|X = f|X}, (1)

which we will denote by sg, or, if necessary, by so x.
This is just the usual minimal norm interpolant for the problem. However, if the data values
are noisy, then it is advisable to look at the smoothing spline solution s, of

min & 3 ls(e;) = fa)P + Alslf s s € H b 2)

where A > 0 is a certain smoothing parameter, which has to be chosen carefully, to balance
between interpolation and approximation. The determination of A has intensively been studied
in the literature, see for example [19].

To discuss the solutions to both problems we have to make two more assumptions on the
function space. The first assumption is a natural one. Since we want to work with point
evaluation functionals, it is reasonable to assume that point evaluation functionals are continuous
on H, i.e. that for every x € S™ there exists a constant C, > 0 with

|f(z)| < Cellflln, for all f € H.

Our second assumption is not that natural, but it will greatly simplify the theory and it will
provide no severe restrictions in applications. We will assume that our function space H is a
Hilbert space.

A Hilbert space H of functions f : S — R with continuous point evaluation functionals is
known to be a reproducing kernel Hilbert space (RKHS) (see e.g. [1]), i.e. it possesses a unique
kernel ® : S™ x S™ — R such that

1. ®(-,z) € H for all z € S™,
2. f(z) =(f,®(-,x))y for all z € S™ and all f € H.



In a RKHS the reproducing kernel @ is always symmetric and positive semi-definite; it is
even positive definite if the point evaluation functionals are linearly independent, which is what
we actually assume. This means that for arbitrary distinct point sets X = {z1,...,zx} C S™,
the matrices

A= Ag x = (®(zi,25))i

are positive definite. It is well known, that in this situation the solutions of (1) and (2) have a

representation of the form
N

sa(x) =) a;®(, z5),

j=1
where the coefficient vector o € RY is uniquely determined by the linear system
(A+ A)a = f|X.

Besides these two reconstruction methods we will also address error estimates for least-
squares fitting in both the continuous and discrete sense. To this end we introduce the space

Vx = span{®(-,z;) : z; € X}

and another discrete data set Y = {y1,...,yn}, which is supposed to be “finer” than X.
Then, we are interested in the behavior of the solution of the continuous least-squares problem

min {[|f — sz sm : s € Vx } (3)
as well as in the solution of the discrete least-squares problem
M
min ¢ Y [f(y;) — s(y)] 15 € Vx - (4)
j=1

It is our goal to state error estimates for all these approximation methods in the case of
H = W3 (S™). This includes results on how to choose the smoothing parameter in (2) a priori
(see the remarks after Corollary 3.4).

The reproducing kernel of a Hilbert space H of continuous functions is uniquely determined
by the inner product. On the other hand, every kernel ® defines a Hilbert space of continuous
functions for which it is the reproducing kernel (see for example [20]). Hence, from now on we
will use the following relaxed definition.

Definition 1.1 Let (#,]| - [|3) be a RKHS of functions defined on S™ with reproducing kernel
. We will say that ® : S™ x S™ — R is also a reproducing kernel of H, if it generates the same
space H and the induced norm is equivalent to the original one.

_In the case of Sobolev spaces this definition means that the Fourier coefficients of the kernel
® have to satisfy a certain decay condition, which is determined by the smoothness index of the
Sobolev space. Since this is rather standard we omit the details here.

We will derive our results by means of charts. Hence, in the next section we will state
relevant results on subsets of R™. In the final section we will deal with the results derived for
the sphere. We will start that section with a short review of Sobolev spaces on the sphere by
means of charts.



2 Results for the Euclidean case

In this section, we will let 2 C R" be a bounded domain satisfying an interior cone condition
and having a Lipschitz boundary. We will need various Sobolev spaces; details may be found
n [2]. The Sobolev space W;“(Q), k € Ny, consists of those distributions v with distributional
derivatives D%u € L,(Q), |a| < k. Associated with these spaces are the (semi-)norms

1/p 1/p
lwpey = | S5 1Dl o) and Jullwgioy = | 32 1Dl g
lo|=F o<k

The case p = oc is defined in the obvious way:

lulw () = sup [D%l[Ly(0) and  lullws @) = sup [[D%ull Ly, ()
|a|=k la|<k

For fractional order Sobolev spaces, we use the norms below. Let 1 <p < oo, k>0, k € Z, and
let 0 < s <1, then

| (w)| v
D%u(z) — D%u(y)|P
|u\W§+S(Q) = Z// R dzdy )
al=k —Y
/p
Ihggeny = (”““%mﬁ'“']v)vﬁ“(m) -

We define the fractional order Sobolev spaces W1§€+5(Q) to be all u for which the last norm is
finite.

Error estimates for scattered data approximation problems are usually given in terms of the
mesh norm or fill distance. For a finite set X C Q, we define the mesh norm (or fill distance) of
X in Q to be

hx,q = sup min ||z — z;||2.
weQ]}]E

We will also need two additional geometric quantities, the separation radius qx and the mesh
ratio px = px,n. They are defined by

1 .
ax = gminlle; — 2l px = pxa = hxa/ax-
i#]

To shorten our presentation we collect several global assumptions on the indices that we will
employ throughout the rest of the paper.

Assumption 2.1 Let t=k+swithkeN, 0<s<1,1<p<oo,1<qg< o0, meNy with
E>m+n/pifp>lork>m+n/pifp=1.

The following results were established in [15, Theorems 2.12 & 2.13] and [21, Theorem 2.6].
We will need them in the sequel. However, the assumption in those papers differs from our
Assumption 2.1 in the following way. In those papers the number s was supposed to satisfy
0 < s < 1. Here, we use the improved form 0 < s < 1. While this seems to be minor at first
sight, it gives the “correct” condition 7 > m+ n/p for integer 7. This change in assumption has
been justified in [16].



Theorem 2.2 Suppose Q@ C R" is a bounded domain satisfying an interior cone condition and
having a Lipschitz boundary. Let X C ) be a discrete set with sufficiently small mesh norm
h = hx,q. Under the Assumption 2.1, for each u € W, (Q) we have that

[ulwm@) < C (hT*m*n(l/pfl/q)J"|U|Wg(9) + h7m||u|X||oo)
where C' > 0 is a constant independent of u and h, and (z) = max{z,0}.

The next result is for the discrete least-squares problem (4). To measure the error in this
case, we will employ a discrete norm, which is defined as

1/q

M

lelle,v) = { (ﬁ 2 j=1 IU(yj)Iq> for 1 < q < o0,
maxi<j<um u(y;)]  for g = oo,

for a discrete set of points Y = {y1,...,yp} C Q. Derivatives can also be included, for example,
if u € C*¥(Q) is given, we define

1/q 1/q

gy = | 22 ID%ulg, vy | and fullugeny = | 22 D%l | (5)
le|=k o <k

With this notation in hand, the required result on R” is the following one:

Theorem 2.3 Suppose 2 C R" is a bounded domain satisfying an interior cone condition and
having a Lipschitz boundary. Let X C ) be a discrete set with sufficiently small mesh norm
h = hx. Let Y = {y1,...,ym} be a second discrete set, with hy < h. Under the general
Assumption 2.1, if u € W (Q) satisfies u|X =0, then

ulwm ) < Cpy/ U —mn/p=1/0)+ ulwy (),

where C > 0 is a constant independent of X,Y and u. In particular, if m =0 and p = q = 2,
then

lulles vy < Coy/ > lulwg (o-

3 Application to the Sphere

The unit sphere S™ in R"*! will serve as an example of how to treat a compact manifold.

To introduce Sobolev spaces on the sphere, one can either express functions in spherical
harmonics or use charts. Here, we will follow the latter approach [6, 18].

Let A = {Uj,zbj}gnzl be an atlas of n-dimensional charts for S™, i.e. the open sets U; C S™
cover the sphere S™ and the mappings 1); are homeomorphic mappings from U, to the open unit
ball B(0,1) C R", such that for two charts 1; and 1; having U; N U; # () the composition

piow; (U NU;) — (U N U;)



is C*°. With such an atlas, we always have an associated family {x; : S" — R}JL; of C*
functions forming a partition of unity with respect to the open covering {U;}7.,, i.e. they
satisfy x; > 0, supp(x;) C U; and Z;”Zl Xx; = 1 on S™ Next, for a function f : S™ = R we
introduce the projections m;(f) : R* — R by

fouii(a), e BO,1),

0, otherwise.

mi(f)(z) = { (6)

We then use both the projections and the partition of unity to define the Sobolev space W (S™
via

W, (S") == {f € Ly(S™) : mj(x;f) € W, (R") for j = 1,...,m}.
This space can be equipped with the norm

1/p

1wz o0y = | 32 106 e
]:

for 1 < p < o0. The case p = ¢ is defined in a similar manner.

It is important to know that even if the norm depends on the chosen atlas, the space does
not. Moreover, all norms provided by different choices of atlas are equivalent.

Hence, in the rest of the paper, we can and will restrict ourselves to a specific atlas, one
consisting only of the following two charts. Let # = (0,...,0,1)T, § = (0,0,...,—1)T be the
north and south pole of S™, respectively. We denote the spherical cap with radius 6 € (0, 7) and
center z by

G(z,0) :={£ € S":d(z¢) <0},

where d(z,£) = arccos(z - £) denotes the usual geodesic distance. Next, we fix an angle 0y €

(g, %”) and consider the following two specific spherical caps,

U = G(ﬁaeo)a Uy = G(§a00)

The homeomorphic mappings 11 : Uy — B(0,1) and 9 : Uy — B(0,1) associated with these
caps are defined by
1

= T
= tan(ao/Z)(l+£n+1)(§1""’§”) ,

1()

and
1

= tan(6o/2) (1 — énr)
Except for the scaling factor, these are simply stereographic projections (cf. [8]).

The following result is easily established. It relates the Euclidean distance between two
points to the Euclidean distance between their images under the charts.

P2(§) (&, &)

Lemma 3.1 For u,v € Uj, j = 1,2, we have

sin(6o)||1; (u) — 1 (v)ll2 < [lu — vllz < 2tan(6o/2)[|4h; (u) — 1;(v)]2



Proof: The relation
2tan(6o/2)|[; (u) — ¥ (v)ll2
(1 + tan®(60/2) 1% (uw)1I3)*/2 (1 + tan®(60/2) I (u)II3)*/
follows from a similar one for the stereographic mapping (see [8]). Since 9;(u) € B(0,1) for all
u € Uj, this yields the upper bound and the lower bound, after a few more steps. O

lu —vll2 =

From now on, let Cp, = sin(fy)~!. Since the shortest path between two points in R**! is
the line, we can conclude that

13 (u) = ()ll2 < Cpollu —vll2 < Cpyd(u, )

for j = 1,2 and u,v € U;. This allows us to relate the mesh norm on ;(U;) = B(0,1) to the
mesh norm on the sphere. The latter, of course, is now defined using the geodesic distance:

hxgn := sup min d(z,z;).
zeSnT;€EX

Proposition 3.2 With the previous notations we have for j = 1,2
ha (x00;)5(05) < 3Cahx sn-

Proof: We can conclude from the definitions that
ho (XAU )i (U;) = Sup min ||z — z||2
Vi (X003 (Us) we; (U;) T1ES; (XNT;)

sup iy @) = sl

IN

sup min Cy,d(z,z;)
zerwIEXﬂUj

< Coohxnu;,u;-

Finally, suppose x € Uj is given. Then, we can connect this  with the corresponding pole of U;
by a great circle and choose a y on this great circle with d(z,y) < 2hx gn. To this y there exists
an z; € X with d(y, z;) < hxgn, and so z; € Uj. Since the triangle inequality yields that

we can finally conclude
hxnu;,u; < 3Chhx,sn,

which settles our statement. O

With this relation at hand, the results corresponding to Theorem 2.2 can easily be established
for the sphere. However, if we are considering functions u which do not vanish at X and
derivative estimates, we need actually also an estimate of the form hy, (xnu;)y;@;) = chxsn
which is equivalent to an estimate of the form thUj,Uj > chxgn. Unfortunately, such an
estimate can be wrong if the mesh norm on one of the U; is much smaller than on the other
one. On the other hand, it is quite natural to assume additionally that the points are similarly
distributed on both spherical caps.



Theorem 3.3 Suppose that Assumption 2.1 on T = k + s, p, q, and m holds, and also that
X C S"L s finite and has a sufficiently small mesh norm h = hxgn. If u € WI)T(S") satisfies
u|X = 0 then the following estimate holds

T—m—n(l/p—1/q)+
[ullwmsny < Ch [ullwg sm)-
Finally, if we assume that in case of m > 0 the mesh norms on both caps U;, j = 1,2 are
comparable to the mesh norm on S", then for any u € W (S™), we have

||u||W(3n(Sn) <C (hT—m—n(l/p—l/Q)+||u||W]_’r(Sn) 4+ h_m||u|X||oo) )

Proof: With the abbreviation u; = m;(x;u), j = 1,2, and Minkowski’s inequality we get

||U||W;"(S”) = (||U1||q m(B(0,1)) + ||U2||%V(;n(3(0,1)))1/q

< uallwmso,) + lluzllwe so,1)-
Applying Theorem 2.2 to both summands on the right hand side, setting X; = 1;(X N Uj;) and
hj = hx; B(o,1) and using |u;(;(z))| < [u(z)| yields

T—m—n(l/p—1 —
Huj“W(}“(B(O,l)) < C (hj (1/p /q)+|Uj|W];r(B(0,1)) + hj m||uJ|X]||oo)

T—m—n(1l/p—1 _
< C (hx,gni n(l/p /q)+||uj||WpT(B(0,1)) +hXtrSln||u|X||oo)

by Proposition 3.2. Finally, by definition we have ||u;{lwy(B(0,1)) < llullwysn). This leads to the
desired estimates. O

Hence, for the solution sy, A > 0, of (1) and (2) with H = WJ(S™) we have the following
corollary.

Corollary 3.4 Under the assumptions of Theorem 3.3 the following error estimate holds for all
fewsg(s"):

Hf - 3,\||wqm(§n) < C (hT—m—n(1/2—1/4)+ + h—m\/X) ”f”W{(S")

Proof: For A = 0 this follows immediately from the norm-minimal interpolation property of sg.
For A > 0 simply note that

N
max{[(f — )| X]*, Msalliyzen} < D[ (@5) = sx(@)] + Mllsallfyz s
=1
< AIf vy sy

by using s = f as an upper bound to the quadratic form. The rest follows from Theorem 3.3. O

This again gives a priori information on a good choice of A > 0. For example, setting ¢ = oo,
p =2, and m = 0 leads to the error estimate

1f = 3l za(smy < € (72 + V) I fllw o)

8



Hence, in this situation, a choice of the form
A S ChZT—n

is necessary to keep the optimal approximation order.
Another consequence of this result is that we now also have an error bound on the Ls-best
approximation error.

Corollary 3.5 Let s* be the solution of the continuous Lo(S™) least-squares problem (8), where
X C S", ® is the reproducing kernel of WJ(S™), and f € WJ(S™). Then, the error can be
bounded by

1f = 8" zosmy) < ORI llwg sy
Proof: Simply use ||f — s*||z,sn) < ||f — 80|z, (s and then Corollary 3.4. O

This settles the case of continuous least squares approximation. However, we are also in the
situation to bound the error for the discrete least squares problem (4). To this end we remind

the reader of the separation distance gx and the mesh ratio px, which are now accordingly
defined to be

1 .
ax = imlnd(ﬂﬂi,ivj), px = pxsn = hxgn/qx,
i#]
respectively. Theorem 2.3 yields the following result, which is proven like Theorem 3.3.

Theorem 3.6 Under the general Assumption 2.1 let X C S™ be a discrete set with mesh norm
h=hxgn. LetY = {yi,...,ym} be another discrete set on the unit sphere with hygn < h. If
u € Wy (S") satisfies u|X = 0 then

—m—n(1/p—1
gy < CpY IRT=m= PP~ D+ |11 0
with a constant C > 0 independent of u and X.
As a consequence, we have error estimates for discrete least-squares approximation.

Corollary 3.7 Under the assumptions of Theorem 3.6 let s* be the discrete least squares solu-
tion of (4) to f € W] (S™), where ® is the reproducing kernel of W] (S™), then there is a constant
C independent of s* and X,Y such that

2
1 = 8"llescry < Coy*hix ol Fllwg sm):
Proof: Simply use the previous result for u = f — sg x. O

It remains to remark that, when working with conditional positive definite functions of finite
smoothness (i.e. mainly functions of thin-plate spline kind) all results remain valid.
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