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1 Introduction

Fitting a surface to scattered data arising from sampling an unknown func-
tion defined on an underlying manifold comes up frequently in applied prob-
lems. When the underlying manifold is a sphere — or, more generally, the
n-sphere S™ —, there are applications to geodesy, meteorology, astrophysics,
geophysics, and other areas. Several review articles [5, 12], a book [6], and a
recent volume [21 (2004)] of the journal Advances in Computational Math-
ematics have been devoted to the topic itself or its applications.

Currently, there are two main approaches to solving such problems. For
the case S?, one can use spherical triangles and employ a local polynomial
approximation. This approach is described in a review article by Fasshauer
and Schumaker [5], and recently Neamtu and Schumaker [20] have derived
error estimates for it.

Another approach, and the topic of this paper, is to use spherical basis
functions (SBFs), which we precisely define in Section 3. These functions go
back to work of Schoenberg [26] and have properties similar to the familiar
radial basis functions (RBFs). Like the RBFs, SBFs provide the means to
interpolate scattered data, only on S™ rather than R™.

Early interpolation error estimates for SBFs mirrored the RBF results
so that error estimates were obtained which applied only to functions lying
in an underlying reproducing kernel Hilbert space, called the native space,
determined by the interpolating class of SBFs. Thus the method of in-
terpolating by SBFs was hampered with the same problem that afflicted
interpolation by RBFs; namely, the error estimates applied to an unsatis-
factorily small class of functions. A major improvement was presented in
[17], where the first error estimates that applied to functions outside of the
native space were given. Even there, the results did not apply to the stan-
dard Sobolev spaces. Indeed, it was only recently that Hubbert and Morton
[10], who employed techniques similar to those used by Duchon [4] for R",
obtained such results for target functions in the native space of an SBF.

The SBF's we discuss here, like the ones in [10], have native spaces equiv-
alent to Sobolev spaces. The thin-plate splines restricted to the sphere and
Wendland’s compactly supported RBFs [28] restricted to the sphere give
rise to such SBF's.

The purpose of this paper is not only to get error estimates for SBF
interpolation and approximation for target functions in Sobolev spaces less
smooth than the SBFs, but also to show that the rates achieved are, in a
sense, best possible. Both of these results are new, and the inverse estimates
are the first of their kind for SBFs. For RBFs in R” and in a native space



setting, Schaback and Wendland [25] also have obtained inverse results.

Proving the inverse estimates requires two results of interest their own
right. One is a technical tool involving centers (data sites). Namely, we show
the existence of nested sequences of centers on S™ that have the property
that they maintain uniformity, which here means the ratio of the mesh norm
to the separation distance (or, radius, actually) remains bounded above as
points are added. The second is establishing a Bernstein-type theorem,
where the smallest separation between data sites plays the role of a Nyquist
frequency.

The method of establishing these results is novel as well. We introduce
a method that relates or “lifts” various norms and inequalities involving a
given SBF on S™ to corresponding ones for a related RBF on R**!, allowing
one to apply results obtained previously for R**! to S™. Thus, this paper
makes explicit how RBF error estimates on R"*! give rise to SBF error
estimates on S”. Previously, results on the two different manifolds, although
parallel by nature, were obtained independently.

The paper is organized as follows. Section 2 contains a discussion of the
geometry of sets of centers, including various terms we use throughout the
sequel. It also includes the result about nested sequences mentioned above.
Next, Section 3 reviews spherical harmonics, SBF's and their native spaces,
and various Sobolev spaces. We describe the lifting method and obtain
results using it in Section 4. In Section 5, we use the concept of a norming
set to derive Sobolev-type error estimates for SBF interpolation when the
target function f is not smooth enough to be in the native space of the SBF.
In the concluding section, Section 6, we establish the Bernstein inequality
in inverse estimates mentioned above.

2 Geometry of Sets of Centers

We will let X = {xj}év:l C S™ be a set of N distinct points on the sphere,
and we will call X a set of centers. There are three useful quantities we will
associate with X: the separation radius, gx, the mesh norm, hx, and the
mesh ratio, px. If d(x,y) is the geodesic distance between two points z and
y in S™, then these quantities are defined by

gx := zmind(z;,z;), hx =maxmind(z,z;), and px = hx/qx.
2 j#k TeS™

For p > 1, we will say that a family F = F,(S™) comprising sets X of centers
is p-uniform if every X € F satisfies px < p. Unless confusion would arise,



we will not indicate either p or S”, and just use F to designate a family.
The specific p or sphere S™ will be clear from the context.

On the circle S!, a set of N equiangular points has ¢ = h = 7/N,
and p = 1. For n > 1, it is clear that p = 1 cannot be achieved, and so
the corresponding family F is empty. Which p and n have nonempty F is
directly related to the extent one can uniformly distribute points on spheres
and other manifolds [3, 8, 9, 22, 24]. For instance, Habicht and Van der
Waerden [8] studied the best packing of N non-overlapping hexagons on S2.
A careful inspection of their proof shows that the X they constructed has a
mesh ratio px < 2/v/3+ CN~Y/6, where C is a constant independent of N.

On the other hand, when p > 2 there is a simple proof that F is
nonempty no matter what n is. Look at the set X = {£e;,+eq,...,+e,} C
S™, where e; is the point on the unit sphere with all 0’s except for a 1 in
the j** position. X has separation radius qx = 7/4, because the vectors
involved are all orthogonal. A point on S™ at maximum distance from X
isy = (ﬁ,...,ﬁ); here, hx = cos_l(ﬁ). Thus, px = %cos_l(ﬁ) <2,
and so F is nonempty as long as p > 2. The proposition below shows that
F also contains arbitrarily large, nested sets of centers that have additional
properties that we will need in Section 6.

Proposition 2.1. Let p > 2 and let F be a p-uniform family of sets of
centers X. Then, there exists a sequence of sets Xy, € F, k=0,1,..., such
that the sequence is nested, Xy C Xg+1, and such that at each step the mesh
norms satisfy ihxk < th+1 < %th.

Proof: Start with a set of centers X,, which we assume to be in the
nonempty family F, and suppose that we have constructed the requisite
sets up to Xj. Let the mesh norm, separation radius, and mesh ratio be hy,
qr, and pr < p, respectively. We need to show that we are able to find a
set Xgy1 € F, such that Xi 1 D Xk, ihk < hg41 < %hk. The clearest way
to present the proof is to describe it in terms of steps in an algorithm. We
initialize the algorithm by setting X = Xy, h = hg, etc.

1. Find y € S™ such that h = dist(y, X). The compactness of S™ allows
us to do this.

2. Form the set X' = X U {y}.

3. Compute the mesh norm h', separation radius ¢', and mesh ratio p'
for X'. Each of these can be estimated in terms of corresponding
quantities for X. Because we have added a point to X, the mesh norm



of X’ is smaller than that of X, so A’ < h. In addition, the midpoint of
the great circle joining y to its nearest neighbor in X is at a distance
h/2 from y, and thus k' > Zh. The separation radius ¢ is half of the
separation distance for points in X'. If the two closest points in X’
come from the set X, then ¢’ = gq. The only other possibility is if one
of the two closest points is 4 and the other is from X. In that case,
q = %dist(y,X) = %h. Thus, ¢’ = min{g, %h}, and so it follows that
h'/q" < max{h/q,2} < p. Hence, X' € F.

. If B! > 1hy, then go back to Step 1 and use X' as the new X. If
< %hk, then stop; set X1 = X'. First of all, the algorithm must
stop after a finite number of iterations. Suppose it does not stop. A
point is added to X each time the algorithm runs, and the new set
X has a separation radius that is at least (3hy)/p. Balls centered
at points in the set and having this radius do not intersect. Thus,
the total volume occupied by these balls is less than the volume of
S™. On the other hand, because the number of points in the set X
is growing without bound, the volume associated with each set would
become arbitrarily large as the algorithm ran on; in particular, larger
than the finite volume of S™ — a contradiction. When the algorithm
does stop, we have h' = hyy1 < $hg. In addition, b’ > 3h, where h
comes from the next to last step. Since the algorithm did not stop at
that step, h > %hk. Putting these inequalities together, we see that
Thi < hig1 < Shi 0

The proof does not involve any property special to S™, other than that it

has a metric, finite volume, and a few other things associated with compact,
connected C*° Riemannian manifolds. Thus it holds for these spaces. We
summarize these observations below.

Remark 2.2. If the appropriate metrics are used and if F is not empty
for some p > 2, then Proposition 2.1 holds for any compact, connected C'*°
Riemannian manifold.

3 Spherical Basis Functions & Associated Spaces

Spherical harmonics. We will let L2(S™) be the Hilbert space equipped
with the inner product

(fr9) == | f(z)g(z)dp(z),

Sn



where dy is the standard volume element for S™. The Y ;,,’s will be taken to
be the usual orthonormal basis of spherical harmonics [14], which we may
assume to be real. For £ fixed, these span the eigenspace of the Laplace-
Beltrami operator on S™ corresponding to the eigenvalue Ay = £(¢ +n — 1).
Here, m =1,...,dy, where dy is the dimension of the eigenspace correspond-
ing to Ay and is given by [14, p. 4]

1, £=0,
de=9q (2+n—-1)T(L+n—1) (3.1)
I'(¢+1)T(n) oo
For large ¢, dy = O(Z”_l). We will let H;, be the span of the spherical

harmonics of order £ < L. If f € L?(S™), then we may expand it in a series
of spherical harmonics,

oo dg
=33 f(&,m)Yym, where f(£,m) := (f,Yom).

=0 m=1

We will make use of one more fact concerning the spherical harmonics.
If we let = -y to be the “dot” product in R**!, then spherical harmonics
satisfy the addition formula [14]:

d
an Yem(y) = —“Pe(n+ Lz -y). (3.2)

n

Here Py(n+1;t) denotes the degree £ Legendre polynomial in 7+ 1 variables
and wy, is the volume of S™.

Sobolev spaces on S™ Let D'(S™) be the space of distributions on S™.
Because each Yy, is in C*°(S"), the coefficient f(e,m) = (f, Yy m) is defined
for every distribution f € D'(S™). The Sobolev space H,(S™), 7 € R, is then
given by [7, 11]

H(S") = {f € D'(S™) : It sm) = D_ (e + V7| (€, m)* < 0},

m

with the inner product being

<fa > -(Sm) = Z(Al + I)Tf(ﬁ’ m)g(ﬁ, m)

m



The Sobolev imbedding theorem [7, p. 35] implies that if 7 > %, then H,(S™)
is continuously imbedded in C(S™), and so H,(S™) is a reproducing kernel
Hilbert space, with the reproducing kernel being

o

pr(z-y) = D (e+1)” ZYem )Yem(y)
=0
@r(6)
o0 A d@
= > ¢ ()= P(n+ 152 y). (3.3)
£=0 n

There is a useful inequality for norms for these spaces; it is an easy
consequence of Holder’s inequality applied to the sequences defining the
norms involved. Namely, let s, be nonnegative and satisfy 1/s + 1/t = 1.
If @ > [ are also nonnegative, then for every f € H,(S™), we have

112, ey < IF I 1 sy - (3.4)

Spherical basis functions. We will say that a continuous function ¢ :
[-1,1] — R is positive definite on S™ if for every possible finite set X of
distinct points in S the matrix A;j := ¢(cos(d(zj,zk))), ; and zj in X, is
positive semi-definite. We will say that ¢ is strictly positive definite on S™ if
these matrices are all positive definite. Here, d(z,y) is the geodesic distance
between x and y on S™, and is precisely the angle between the vectors x and
y in R**1_ since |z| = |y| = 1, we have -y = cos(d(z,y)). Thus, the matrix
A above has entries A = ¢(x; - ).

Positive definite functions on spheres were introduced and characterized
by Schoenberg [26]. In our notation, what he showed was that a function ¢
is positive definite if its expansion in (n + 1) variable Legendre polynomials,

de

Wn

¢z -y) =Y pO)—Pin+1L;z-y), (3.5)

£=0

has all Fourier-Legendre coefficients $(£) > 0 and Y dpp(l) < o0

Strictly positive definite functions are especially important. Because the
matrix A corresponding to any X is positive definite, and hence invertible,
one can always use an interpolant of the form Z;vzl ajp(z - zj) to solve a
scattered-data interpolation problem where a value d;, which may be real or
complex, is given at each z; in X. Recently, for n > 2, Chen, Menegatto, and
Sun [2] gave necessary and sufficient conditions for functions to be strictly



positive definite, and, in the case of the circle S!, Pinkus [21] has charac-
terized them. A useful sufficient, but not necessary, condition is that the
Fourier-Legendre coefficients are all positive [23, 30]; that is, ¢(£) > 0 for
all £. This has the added advantage of allowing one to solve generalized
Hermite interpolation problems [15]. We will say that ¢ is a spherical basis
function (SBF) if ¢(£) > 0 for all £.

The kernel ¢, defined by (3.3) is an SBF. Indeed, restricting an order
0 radial basis function (RBF) on R**! to S™ is a way to generate SBFs, as
the result below shows.

Theorem 3.1 ([17, Theorem 4.1 & Corollary 4.3]). Let ® be a pos-
itive definite radial function having a nonnegative Fourier transform ® €
LY R, and let ¢(z - y) := ®(z — y)|zyesn. For £ >0, we have that

d(0) = /Oo B2 dt, v b+ (3.6)

0 2

where J, is the order v Bessel function of the first kind. Moreover, if B is

nontrivial — i.e., positive on a set of nonzero measure —, then ¢(£) > 0 for
all £ and ¢ is an SBF.

A more general version of this result, which applies to RBFs of order 1
or more, is given in [16, Proposition 3.1]. Similar results were given in [1].

Just as ¢, is the reproducing kernel for the Sobolev space H(S™), every
SBF ¢ is itself a reproducing kernel for a Hilbert space Ny, its native space.
This space and its inner product are defined below:

FemP _

o h

Ny = {feD(S™ : Ifl5=>
m

ot = 3 HomiEm)

Ly

Of course, H,(S™) is exactly the same space as N,_, with ¢, given by (3.3).
An order 0 RBF @& on R**! for which ®(¢) > 0 has a native space

N associated with it. This is a reproducing kernel Hilbert space having a

convolution kernel ®(z — y). The norm and inner product for it are

o [ F@OP . _ [ f©a©
715 = [, G md (o= [ FERae.



4 Lifting

We are interested in looking at the relationship among various norms of
functions related to interpolants produced with an SBF ¢. We begin our
discussion with this lemma.

Lemma 4.1. If X = {:vj}é-vzl 18 a finite set of distinct points in S™ and
a € CN, then

H Z ajqﬁ(x . .’EJ)”Z = Zakajqﬁ(a:j . :L'k) , (4.1)
J gk

and also
e dy
1Y i@ opll; =D 60 DY aVem(@).  (42)
J £=0 m=1 j

Moreover, if ¢p(z-y) = Zf:o q@(f)ﬁ—in(n—l—l; x-y), where L is a nonnegative
integer, then

00 dy
I Zaj(¢ —¢r)(z- HCj)Hj5 = ) d Zl | Za]’Y@,m(l‘j)‘Z. (4.3)
j m=1 j

{=L+1

Proof: The first equation (4.1) follows by virtue of ¢ being a reproducing
kernel. To get the second, we let g = >, aj¢(z - z;) and note that, from
(3.5) and the addition theorem (3.2), we have

gtm) = (0) > ;Y m(a;)
J

Calculate || g||§> using its series definition and the expression above for G(¢, m).
Simplifying the terms in the resulting series then gives us (4.2). The last
series follows via similar steps. O

We now want to “lift” norms involving SBFs on S™ to ones for RBFs
on R**1. Doing that requires that we have a connection between SBFs and
RBFs in the first place. Suppose that (z - y) = U(z — y)|zyesn, where ¥
is an RBF, with U € L'(R**!). Then, by Theorem 3.1, v is an SBF. For
o > 0, define the function

s [T <o,
lI&f(é“)-—{ 0 16> (4.4)

Ne)



Let ¥, be its (radial) inverse Fourier transform. Again by Theorem 3.1, the
function 9, := V(2 —y)|zyesn is an SBF with Fourier-Legendre coefficients
given by

g
G0 = [ 80T, s (i
0 2
The following result holds.

Proposition 4.2. With the notation introduced above, if an SBF ¢ satisfies

ap(f) < $(£) < brp(£) (4.5)

for all £ > 0, where a and b are positive constants independent of £, then we
have the inequality,

al| Yoy - )|y < > (e )|l < bl Z%"I’(m — )|y (46)
J J J

Moreover, if there is a constant ¢ > 0 such that when o < cL we have
Vo (£) < 39(£) for all £> L, then

137 (o = de)a - wi)lly < 20D 5% = To)w =)y (47)
J J
Proof: From (4.2) and (4.5), we have that
all Zaﬂﬁ(x -zl < Zaﬂﬁ(ﬂ? cxy)[I7 < bl Zaﬂﬁ(ﬂf z5)[, -
J J J
Now, from (4.1), we also have that
||Zaj¢($'xj)”fp = z};akaj¢($j'$k)
J s
= Jzkakaj\IJ(wj — Zg)
g,
= | ;aﬂ!(w — )y

where the last equation follows from ¥ being a reproducing kernel for Ny.
Combining this with what we did above yields (4.6). For o0 < ¢L and all

10



¢ > L we have 9, (£) < 34(¢), so that 9(£) < 2(sh(£) — 1, (£)). Using this
and (4.5) in conjunction with (4.3), we obtain

00 dy
1D es@—du)a-zp)lly < 20 30 @ =do)®) 32D 0Vem(a)[*

{=L+1

00 dy

< WY@ 9)O S| aVimlay)
=0 m=1 j

< 2b25k6¥j(¢ — o) (zj - T) -

3k
Now, since ¥ (z - y) = Vo(z — y) |z yesn, wWe arrive at
2 _
1D aj(¢—dr)(@-z;))|[, <267 @aj(¥ - Up)(w; — ).
J Jk
Writing out the functions involved on the right above using Fourier trans-
forms, we can easily show that

> o (T — ) (a5 —zx) = | D (T — To)(z — ;)3
gk J
Using this in the previous inequality then gives us (4.7). O
We will apply these results to specific kernels that generate Sobolev

spaces on S” and R"*!. Before we do that, we will obtain this simple,
general estimate on 1, (£).

Lemma 4.3. Let U € L' (R™1) be radial and nonnegative, and let £ > 0.
Ife>0andv =10+ ”T_l, then

~ 7~ 2e U(0)(em)™ eo 2v=ntl
bott) = [ ewRa < IO (2 )T )
Proof: We begin with the inequality [27, (1) §3.31],
2| |V el ()]
I(v+1)
Using this in our integral and making a few obvious estimates, we obtain

o o
I 2 2w-—n+l3, n
/0 t‘I’(t)JV (t)dt 71_12(1/ n 1) /0 t \If(t)t dt

1
|J,(2)] < , |z| >0, v> —5- (4.9)

2—21/

272110.21/fn—|—1 o __
< — U (¢)t"dt.
= ) /0 )

11



We also have that

o __ n o _— i N B (27T)n—|—1
/0 Tyt dtg/o B(tyndt = /RW B(e)de = w(0).

Wn,

Using this in the previous inequality and simplifying, we obtain this:

Bot) = [wea < TGP

O %0 1) T(0). (4.10)

We will now employ a sharp version of Stirling’s formula for the Gamma
function [29, §12.33, pg. 253]: If z > 0, then I'(z) = 27rx“”7%e*“+9/(12w),
where 0 = 6(z) and 0 < € < 1. Consequently, we have that I'(v + 1) >
V2r(v + 1)”+%e_”_1, so that after doing a little algebra we obtain

dg"H (o /22"t 2eW(0)(em)" [ eo  \*T"
o+ O =) (2(y+1)) :

Replacing the right side in (4.10) with the right side above yields (4.8). O

For fixed s > "T“ , we have from [16, Proposition 4.1] that if there are
constants C7 and Cs such that

CL(1+[¢%)™* <€) < Co(1 + )~ (4.11)
then as £ — oo,
Cle 2t (14 0(™h) <4h(e) < CLe = 1+ 0@ ™Y) (4.12)

where C] = Cl% and C} = 02253(*2%1:21()3)' If we divide (4.8) in
Lemma 4.3 by 1(£), use (4.12), and replace v by £ + 2=1 then there is an

Zo such that when ¢ > ¢, we have

~

o (£) (_a)f
g = )

;From this it follows that we can find Ly > £y such that if £ > L > Ly and
o < e 'L, then

wf'(e) S Cs,n£28_1_n 2—2( S

P(¢)
Let 7 = s — % Recall that the reproducing kernel for the Sobolev
space H(S™) is ¢, which is defined in (3.3). Now, ¢,(£) = (A\¢+ 1) 7 =

. (4.13)

N | —

12



7277(1+ 0(¢Y)) = 7257 (1 + O(¢71)). This and (4.12) imply that for all
¢ sufficiently large we have

oy ti+oe) <Y cortiroe).

Since both (£) and ¢, (£) are positive for all £, it follows that there are
constants a and b such that for all £ we have

o< (4.14)

Applying Proposition 4.2 then proves the following result:

Proposition 4.4. Let s > 2 and r:=s—1. If T satisfies (4.11) and @,
is as in (3.3), then there are positive constants a, b such that

al| Zajlll(a: — ;)5 <|| Zaj%(év z)|l5, < Z%"I’(m — 25)|y-
J J J

Also, there is a constant Ly > 0 such that if L > Lo and 0 < e 'L, then

[ D2 es(0r —ornta-ap)lly, <2617 05(% = To)(@ — ;)3
J

J

5 Interpolation and Near-Best Approximation

5.1 Existence of a polynomial interpolant

Our aim in this section is to prove the theorem below. This asserts that we
can use a spherical polynomial of order L to both interpolate a sufficiently
smooth function f : S® — C on a set X C S™ of distinct, scattered points
and simultaneously get a near-best approximant to f in a Sobolev norm,
provided L is large enough.

Theorem 5.1. Let ¢ = gx be the separation radius for X = {:(:j}j-v:l cs”
and let T > n/2. There exists a constant K, which depends only on n and T,
such that if L > k/q, then for every f € H.(S™) there is a spherical polyno-
mial p € Hy, such that p|x = f|x and ||f — pllg, (s» < 5disty, gn) (f,HL)-

We will postpone the proof until we establish certain preliminary results.
In preparation for them, we state this proposition, whose proof can be found
in [18].

13



Proposition 5.2. Let Y be a (possibly complex) Banach space, V a subspace
of Y, and Z* a finite dimensional subspace of Y*, the dual of Y. If for every
z* € Z* and some v > 1,7 independent of z*,

12% ]y <Al Wwllv-, (5.1)

then for y € Y there exists v € V such that v interpolates y on Z*; that is,
2*(y) = z*(v) for all z* € Z*. In addition, v approximates y in the sense
that ||y — v|| < (1 + 2v)dist(y, V).

We want to apply this result to the case in which the underlying space is
the Sobolev space, Y = H.(S™), with 7 > n/2. The reproducing kernel ¢,
for this space is defined in (3.3). Since point evaluations are continuous, we
may take Z* = span{éwj };-Vzl, where the points are distinct and come from
a finite set X = {a:j}é-v:l C S™ Finally, we will also take V = H, the span
of the spherical harmonics of order ¢ < L.

The quantities in Proposition 5.2 can be put in terms of the reproducing
kernel .. First, we observe that

H Z ajéwj ||HT(Sn)* = H Z aj(PT(l' . 'Tj)”HT(S")' (5_2)
J j

Second, with ¢ 1(z-y) = Zfzo()\g +1)77 Zfrf:l Yim(2)Yem(y), we obtain

H Z ajéwj |7'1L |

o = sup  [(p(2), Y ajeor(z - 25))m (o)
L pEHL, |lplI=1 j

= sup  |(p(x), zaj%,L(iB %)) |, (s |
J

pEHL, |Ip||=1
= > ajorrla- )| 7, smy- (5.3)
J

Moreover, since ¢ r(z - z;) and @, (z - zx) — @ 1(x - z;) are orthogonal in
H,(S™) for all j, k, we can use the Pythagorean theorem to obtain

I3 i)l o = I 3 sor el 0
J J

|| Z o (r(z - zj) — pro(z - z5)) HiIT(S")'
J

(From this and the quantities above, it follows that 7 in Proposition 5.2
satisfies the inequality below, which is equivalent to (5.1):

” Ej a; (SDT(CU -xj) — err(z- xa)) HHT(S“) <1- i (5.4)
|22 ejer(z - )|

,-),2

2
H,(S™)
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Proof of Theorem 5.1. We begin by “lifting” the problem into R**!.
Set s = 7+ & and let \/I}(f) = (1 + |£]?)*. The function ¥ is the repro-
ducing kernel for Hy(R"™'). If 7 > 2, then s > %! and the conditions of
Proposition 4.4 are met. Using the inequalities and notation there, we have

2
|| Zj aj(er(z-z;) —orp(z- xj))”HT(S”) < 25| Zj aj (U — U, )(z — ;)3

1525 eser(@ - 2|57, g T | -2

?

where we take 0 = e"!L and L > Lgy. Of course, || - |l¢ = || - | 2, (RP+1)-
The ratio of the squares of the norms on the right above was estimated
in proving [19, Lemma 3.3]. In our notation, the result obtained there was

132, (T —U,)(z — 2;)|3

2

15 0% (@ — 2))fy
where C = C(s,n + 1) and Qx is the Euclidean separation radius for X
as a subset of R**!. For a set X with any appreciable number of points,

Qx =~ gx. At the very worst, Qx > (2/7)gx. Also, 0 = e"!L. Combining
all of these things yields

< C(O-QX)TL—FI??S’

|32, iler(@ - 25) — ¢r e mj))”izf(sn)

< C"(Lgx)" 7", (5.5)
|| Zj ajpr (T - 7;) H;(sn)

where C" = 2:(;)%. Choose k > 0 so that C"k" 27 < %. Since 7 > 7,
the exponent n — 27 < 0. If Lgx > &, then C"(Lgx)" 2" < 3. Thus, (5.4)
holds with v = 2 when Lgx > . Applying Proposition 5.2 then finishes the

proof. O

5.2 Sobolev error estimates for the polynomial interpolant

We want obtain Sobolev error estimates for the polynomial interpolant p
constructed previously. We begin by stating a result of Hubbert and Morton
[10], but with our notation and for the case of interest here. Let 7 > n/2
and again take ¢, to be the SBF in (3.3). In addition, recall that ¢, (¢) =
(A + 1) 7 is the Fourier-Legendre coefficient for ¢,. Finally, let ¢ be an
SBF that satisfies

apr () < $(6) < by (0), (5-6)
where a,b are positive constants independent of £. By our earlier remarks

in Section 3, the native spaces for ¢ and ¢,, Ny, N, , coincide with the
Sobolev space H;(S™), up to norm equivalence.
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Proposition 5.3 ([10, Theorem 3.4]). Let the SBF ¢ satisfy (5.6) with
T >n/2, and let X be a finite set of distinct points on S™ having mesh norm
h. If f € Ny and I x f is the ¢-interpolant for f, then for all h sufficiently
small there is a constant C > 0 that is independent of f and h such that

If = Ixofll2@em S CATIf = Ixgfllg - (5.7)

Proof: We just need to reconcile our notation with that of [10, Theorem
3.4]. Our n corresponds to their d—1, and our 7 corresponds to 3(a+d—1).
Also, we have taken p = 2. O

Our aim is to prove the following result.

Corollary 5.4. Let the assumptions and notation of Theorem 5.1 hold, and
let 0 < pu < 7. If the mesh norm h of X 1is sufficiently small, then there is a
constant C' > 0 that is independent of h, p, and f for which the interpolating
polynomial p € H, satisfies

If = plla,sm < CRTH|| flla, sm)- (5.8)

Proof: Apply the estimate in (5.7) with ¢ = ¢,. Using the minimizing
property of the interpolant Ix , f together with the fact that A, and
H_(S™) are the same, we obtain

If = Ixo- fllzsny < ORI = Ixo  fllo, < OO f |l sm) -

By Theorem 5.1, there exists a constant x > 0 such that we can find a poly-
nomial p € Hy, for which f|x = p|x and ||f _pHHT(Sn) <5 diStHT(Sn) (f,Hr)
hold, provided L > x/q.

We can easily derive estimates on ||p|| g, (gny. Just use distg, (gny(f, Hr) <
| f1l &, sy together with the the estimate on || f — p| g, (s») to get

1f = plla, s <5 flla, sm- (5.9)
Next, employ the triangle inequality; the result is
1Pl 7, s7) < 61| £l o, (s7)- (5.10)

In addition, we have that Ix , f = Ix,,p, because f|x = p|x and the
interpolants only depend on function values from X. Making use of these
facts and applying the inequality (5.7) to p, we get the following:

If —pllzesny = f —Ixp f+ Ixp.p —pllrosn

If = Ixp, fllL2sn) + Hx,p,p — PllL2(sn)

Ch || f |, sm) + ChT|Ipll o, (sm)

C'W N fll b, (sm)- (5.11)

INIAIA
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Next,leta=71,8=0,s=7/u, 1/t =1 — p/7, and apply the inequality in
(3.4) to [|f = plla,(sn)- This gives us

1F = Pllm,sm < 1 =l m1F = Pllates -

Employing the bounds given in (5.9) and (5.11) in connection with the
inequality above yields (5.8), after simplifying the exponents involved. [

5.3 Sobolev error estimates for the SBF interpolant

Our goal is to derive Sobolev-type error estimates for SBF interpolation
when the target function f is not smooth enough to be in the native space
of the SBF. Specifically, we will prove the result below.

Theorem 5.5. Let 7 > [ > n/2 and let ¢ be an SBF satisfying (5.6). Also,
take X to be a finite set of distinct points on S™ having mesh norm hx,
separation radius qx and mesh ratio px = hx/qx. If f € Hg(S™), then for
0 < u < B we have

I = Ix,pf lmusm) < CPx PR 1 Nl (sm) - (5.12)

Proof: Let ¢ = ¢x and h = hx By Corollary 5.4, with 7 replaced by 8 and
0 < p < B, we have a constant k£ > 0 such that for any integer L > k/q,
there is a polynomial p € Hy, for which p|x = f|x,

I = plla, s < CRP #|fllyem and ||pllmysn < 6l flayn - (5.13)

The second inequality above is (5.10) with 7 replaced by 3. Since p|x = f|x,
we also have Ix ¢p = Ix4f, because the interpolants only depend on the
values of f on X. Applying Proposition 5.3 to p, with the same 7 used here,
gives us

Ip = Ix,gfllp2sm) = P — Ixgpll2sm < CW7llp — Ixgplls -

Using the variational properties of the SBF interpolant and the bounds in
(5.6), we have the inequality,

b—1/2| —1/2|

P — Ixopllm s < llp — Ixeplle < Pl < a™ lplla, (sm)-

Putting this inequality and the previous one together, we have that

lp — Ixgplrosny < Ca '/2A7||p|ly, sm
lp — Ixpplla, smy < (b/a)l/QHPHHT(S")-
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As in the proof of Corollary 5.4, we apply the inequality in (3.4), with a = 7,
B=0,s=1/p, 1/t =1 — p/7, along with these inequalities to obtain this:

1P = Ix,¢pll 1,57 < C'R"HlIpll 1, (s 5 (5.14)

where C' = p#/(7)C1=1#/7q=1/2, We now apply a well-known L? Bernstein
theorem for spherical polynomials: If p € Hy, and A\, = L(L +n —1), where
A7 is an eigenvalue of the Laplace-Beltrami operator for S™, then

ﬂ
Pl a,sm) < (14 AL) 2 [Pl sn)- (5.15)

If we choose L = [k/q] and employ the second inequality in (5.13), then

1Pl e, sm) < C&" N f |11, (s)-

Using this inequality in conjunction with (5.14) results in

Ip = Ix6pllm, s < C"B" ¢TI fllmy(sm - (5.16)

Next, from the triangle inequality and the identity Ix 4f = Ix gp, we see
that

If = Ixoflla,sm < f —plla,sm + 1P — Lx ¢pll g, s7)-
If we now use (5.13) and (5.16) in conjunction with the inequality above, we
obtain

1f = Ixpf musm) < B2 H(C + C (/)T )1 f g (sm) -

Finally, noting that px = h/q > 1 and 7 — 3 > 0, we can lump the constants
involved into a single “C” to get (5.12). O

There is an immediate corollary to the previous theorem, one that deals
with a p-uniform family F of centers. Recall that a set X of centers being
in F means that px < p. Thus, in the inequality in the theorem we can
replace px by p to get the result below. The importance of this lay in its
defining the idea of convergence in the context of SBF interpolation and
approximation. We will turn to these topics in the next section.

Corollary 5.6. Let F be a family of p-uniform sets. If X € F, then
1f = Tx oSl (sm) < CRY " 1F lag(sm,

where CpTxfﬁ < Cp™ B =: Cr is fized for all X € F.
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6 A Bernstein Inequality and an Inverse Theorem

In this section we want to establish two theorems. The first deals with
bounding smoother norms of interpolants by weaker norms, similar to the
classical Bernstein inequality bounding the derivative of a polynomial by its
L norm. The second result is an inverse theorem, dealing with the char-
acterization of smooth functions by convergence orders of SBF interpolants.

Let 7 > n/2. For any SBF ¢ satisfying (5.6) and any finite set X of
distinct points on the sphere, define the space

Vo x :=span{¢(z - z;) : z; € X}. (6.1)

Of course, since ¢(z-z;) € H-(S™), it follows that Vy x is a finite dimensional
subspace of H;(S"). Indeed, set go(z) = > ; aj¢(z - z;) and gy, (z) =
> ajpr(z - z;), where ¢, is defined in (3.3). From

196117, 5m = D (1+ A)*(0)* D Yo ()|

m j

and (5.6), it follows that

allge. 1 m,sm < 196l .7 < bllgp.l,(sm) -
Bearing this in mind, we have the following Bernstein-type inequality.

Theorem 6.1. Let Vy x be as in (6.1), with qx being the separation radius
of X. For 0 < u <, ifg€Vyx, then there is a constant C' = Cy ; ,, n that
is independent of X and g such that

lgllz, s < Cax"llgllL2sm-

Proof: We will work with ¢ = ¢,. By the preceding remarks, there is no
loss of generality in doing so. Note that the y = 0 case is trivial. To get
the p = 7 case, we turn to equation (5.5), where we again require Lgx > &
to get (5.4) to hold with v = 2. In the notation here, the equation (5.4)
becomes

||g - gLH%{T(sn)

< 3/4,
1913 o

where g(z) = >, ajp-(z - ;) and gr(z) = 32, ajprr(z - z5). Of course,
the a;’s are arbitrary and so g is an arbitrary function in V,_x. Also,
since @r1(z - z;) is the orthogonal projection of the ¢.(z - z;) onto Hp,
the span of the spherical harmonics of order £ < L, the function g7, is the
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orthogonal projection of g onto #Hp,; thus, g1, € Hr. Standard orthogonality
in H(S™) implies that ||g — grll3;_gn) = 19l gn) — 92117, (sny- Using this
in conjunction with the inequality above, we obtain

gl 2, sm) < 2ll9Lll a2, (sm)-

The L? Bernstein inequality in (5.15) holds for any polynomial in Hz, not
just the particular one used there. We can thus apply it to gz, with 8 =0,
to get lglla, sm < (1+A2)7?gzlr2sm < Cralllgrllze(sn)- Since gz is
the orthogonal projection of g onto Hr,, we have ||lgr || z2(s») < ||gllz2(s») and,
consequently,

gl 7, (sm) < 2CnL7|gllL2(sm)-

This holds if Lgx > k. In particular, we will take L = [k/qx| < 2K/gx, to
arrive at

gl sz, 57 < Crndx " lgllr2sm)-
Finally, we apply the inequality in (3.4) to [|g[|g,sn), with @ =7, 8 =0,
s=7/p, 1/t=1—p/T, to get

gl sy < gy m llgls30 < Caxllgllzan) -

O

Inverse theorems give indications of rates of approximation being best, or
nearly best, possible. The two results below, which involve slightly different
conditions on a target function f, are inverse theorems for the approximation
rates derived in Section 5.3.

Theorem 6.2. Let 7 > n/2 and ¢ be an SBF satisfying (5.6). In addition,
let F be a p-uniform family, p > 2. If for some f € C(S™) there are
constants 0 < p < 7 and cy > 0 such that

If = Ixgfllp2sm < crhx (6.2)
holds for all X € F, then, for every 0 < 8 < pu, f € Hg(S™).

Proof: By Proposition 2.1, we can find a nested sequence X € F, each X},
having mesh norm hj, := hx, that satisfies ihk < hgg1 < %hk < 2ikho. Let
fr = Ix; ¢f € Vp x,, C Hr. Infact, because Xy C X1, we have fi, € Vy x;
for all 7 > k. We want to show that fi is a Cauchy sequence in Hg. From
the Bernstein estimate in Theorem 6.1 and the inequality hgi1/qr+1 < p,
we have

[ fr+1 = frllagsny < Cp’gh;;flﬂfkﬂ — frllL2(sny-
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And by (6.2), we also have

IN

COPh N fret — Frllzzgsmy
CoPh (ks — Fllzam + 11F = fill2gsm)
< Ccfpﬁh;:fl(hg+1 +hg) < 012—(u—ﬁ)k’

| fr+1 = Sl g sm)

AN

where C' is independent of k. Take j > k. Using the previous inequality, a
standard telescoping-series argument, and the sum of terms from a geometric
series, we arrive at this:

9—(u=8)j _ 9—(u—B)k
1 —2-(u=5)

1fi — fillzgsmy < C

Letting 7,k — oo, we see ||fj_fk||Hﬂ(Sn) — 0. Thus, f} is a Cauchy sequence

in Hg(S™) and is therefore convergent to f € H 5(S™). Moreover, by (6.2)
with X = X}, we see that fi, — f in L?(S"), so f = f almost everywhere.
Hence, we have f € Hg(S"). O

The space Vy x is finite dimensional, because X is a finite set. Thus for
X}, in the sequence and any f € L*(S™), we can find fj € Vj x, such that

diStL2(Sn(f, V¢,Xk) = ||f - fk||L2(§n) .

By replacing (6.2) with dist;2gn(f, Vg,x) < crhfy in the theorem, we can
weaken the condition f € C(S") to f € L?(S™), and then use a nearly
identical proof to reach the same conclusion. We state this result as a
corollary.

Corollary 6.3. Let the notation and assumptions of Theorem 6.2 hold,
except that we suppose for some f € L?(S™),

diStL2(Sn)(f, V¢,X) < th“X

holds for all X € F. Then, f € Hg(S™) whenever 0 < 8 < p.
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