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Abstract

Error estimates for scattered-data interpolation via radial basis
functions for target functions in the associated reproducing kernel
Hilbert space have been known for a long time. Recently, these es-
timates have been extended to apply to certain classes of target func-
tions generating the data which are outside of the associated RKHS.
However, these classes of functions still were not “large” enough to be
applicable to a number of practical situations. In this paper, we ob-
tain Sobolev-type error estimates on compact regions of R” when the
RBFs have Fourier transforms that decay algebraically. In addition,
we derive a Bernstein inequality for spaces of finite shifts of an RBF
in terms of the minimal separation parameter.
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1 Introduction

The problem of effectively representing an underlying function based on its
values sampled at finitely many distinct scattered sites X = {z1,...,zn}
lying in a compact region 2 C R™ is important and arises in many appli-
cations — neural networks, computer aided geometric design, and grid-less
methods for solving partial differential equations, to name a few. A good
example of this type of problem is addressed in a recent paper of Carr et
al. [4]. There, the authors used radial basis function (RBF) interpolation to
reconstruct 3D objects from “clouds” of points. Handling the large numbers
of points was aided by new, fast evaluation techniques for RBFs.

This problem of representing a multivariate function by interpolating
at scattered values is a difficult one. RBFs were introduced as a means to
attack this problem. An RBF is a radial function ®(z) = ®(|z|) that is
either positive definite or conditionally positive definite on R™. Interpolants
for multivariate functions sampled at scattered sites are constructed from
translates of RBF's, with the possible addition of a polynomial term. It was
Duchon who introduced a type of RBF, the thin-plate spline, which he con-
structed via a variational technique similar to those used to obtain ordinary
splines. The error analysis he provided for thin-plate splines involved repro-
ducing kernel Hilbert space (RKHS) methods. Later, there were important
contributions by Madych and Nelson [6] and Wu and Schaback [16], who
also used RKHS methods to obtain scattered-data interpolation error esti-
mates for a wide class of RBF'S, including the Hardy multiquadrics and the
Gaussians.

Important as these results are, they do suffer from a common difficulty.
In all cases, convergence is proved only for functions in an RKHS that de-
pends on ®: the smoother the function ®, the smaller the RKHS for which
convergence estimates apply. This drawback had restricted the use of RBFs
in applications and had seemed artificial, especially in light of both the
lattice-based least-squares theory, which was completely and satisfactorily
solved in [1] and the work of Schaback dealing with pure approximation by
RBFs [14]. Indeed, Yoon also had noted this problem, and introduced scaled
RBF's in which a parameter A is required to depend on the spacing of the
data. In effect, the radial function is changing with the data. [7]

This difficulty has been partially overcome. The first “escape” from
native space came in connection with the n-sphere, S™, for spherical basis
functions (SBFs) rather than RBFs [11]. By “escape” we mean that the
RBF interpolant Ix f for a function f, whose native space norm is infinite,
is still an effective approximation to f. Put another way, RBF interpolants



are smooth, but they still provide a good fit to less smooth functions. Other
work [3, 12, 13] was directed at problems where the underlying space was a
domain in R”. For a more complete description of these results, as well as
other references, see [7].

The estimates in the escape theorems up to now still do not fully address
the most common error estimates required in applications to PDE, learning
theory, and so on. What’s been lacking are estimates with appropriate norms
on both sides of the inequality. In particular, for a quasi-uniform X, a main
result of this paper will be to show that a Sobolev least-squares estimate of
the form,

k,
If = Ix fllyoigqy < Ox 1 lwgyy 0 <ol <k,

holds for f outside of the native space of ® — at least in the case where d has
an algebraic singularity at the origin and algebraic decay at oo; e.g. thin-
plate splines and Wendland functions. Other “escape” estimates involving
W;(Q) will also be derived.

The main results of this paper may be viewed in two ways. From the
theoretical point of view, they provide a much larger class of functions for
which interpolation error estimates apply. From a practical point of view,
they allow more flexibility in the choice of RBF's when applied for collocation
purposes and faster convergence rates of interpolants away from singularities
of the target function. This may even make possible using RBF methods
for singularity detection.

This paper is organized as follows. Section 2 is devoted to notation and
background information. Section 3 is key for obtaining our main results.
In it, we prove a theorem constructing a band-limited function that is both
an interpolant and nearly a best approximant in the Sobolev space Wf ,
B > n/2. The band length is proportional to the reciprocal of the mini-
mum separation of data. As a corollary, we obtain a similar result, with
R™ replaced by a compact region ) that has a Lipschitz boundary. The
main result, which is in section 4, concern Sobolev error estimates for RBF
interpolation. The RBFs have native spaces equivalent to Sobolev spaces or
Beppo-Levi spaces. A by-product is the interesting fact (cf. Corollary 4.3)
that the interpolation map Ix : Wf Q) — WQB () is bounded under mild
assumptions on X and ®. Finally, in section 5, a Bernstein inequality is
given for functions in spaces of the form span{®(- — z;) : z; € X}.



2 Notation

We will take 2 to be a compact set in R". Unless we explicitly state other-
wise, we will assume in addition that () satisfies an interior cone condition
and has a Lipschitz boundary. The set X = {z1,...,znx} C Q will always
be a finite subset of €2, with the points all assumed to be distinct. There are
two useful quantities associated with X. The first is the separation radius,

T .
gx ‘= —1Iin |(|r; — Tkll2
min 2 — |
which is half of the smallest distance between any two distinct points in X.
The second is the mesh norm for X relative to () given by

hxq :=sup inf |z —z;|2;
zeQ Tj ex
it measures the maximum distance any point in {2 can be from X. It is easy
to see that hxn > gx; equality can only hold for a uniform distribution
of points on an interval in R. The mesh ratio p = px,0 := hxa/qx > 1
provides a measure of how uniformly points in X are distributed in €.
Our conventions for the Fourier transform and its inverse are

w /f e W'Tqr  and Y (z

ZUJ wdw

We will make use of the Sobolev spaces WF(R") and WQk(Q) These spaces
consist of all f € L? having distributional derivatives D*f, || < k in L.
In the case of Wf (R"™), where 8 > n/2 can also be a non integer, the norm
that will be used here is

1/2
gy = | [0+ 11 Flw) P
R
Associated with W¥(Q), are the (semi-) norms
1/p 1/p
iy = | 3107l o | and lullwgey = | 3 1D%uE
o=k o|<k

We will also make use of some interpolation theory in Sobolev spaces.
To be more precise, we will employ the following result, which is a direct
consequence, for example, of [2, Prop. 12.1.5 and Thm. 12.2.7]).



Lemma 2.1. Suppose T : W3 (2) — WJ(Q) is a linear operator, where
Q CR” is a Lipschitz domain. Suppose further that the operator is bounded
in the following way:

Tflla) < Cillfllwg @), 1TFllwz) < Collfllwg), fe Wi (Q).

Then, for every 0 < B < T we also have

ITf sy < CL77C I lwgy  f € WE(Q).

3 Band-Limited Functions

In this section, we review and establish certain interpolation and approxima-
tion results in the Paley-Wiener class of band-limited functions. Let o > 0.
We then define B, to be

B, := {f € L*R"): supp f C B(0,0)},

where B(0,0) is the (closed) ball in R” having center 0 and radius o.
Functions in B, are, of course, in L? and are analytic. Moreover, they
satisfy the Bernstein inequality

1D foll oy < o' 1f | a(n)-

The results in this section are central for those that follow, and they con-
cern simultaneous interpolation and approximation by functions in B,. In
preparation for them, we state the following proposition, whose proof can
be found in [12].

Proposition 3.1. Let ) be a (possibly complex) Banach space, V a subspace
of Y, and Z* a finite dimensional subspace of Y*, the dual of Y. If for every
z* € Z* and some v > 1,7 independent of z*,

125y < Allz"vllv-

then for y € Y there exists v € V such that v interpolates y on Z*; that is,
2*(y) = z*(v) for all z2* € Z*. In addition, v approximates y in the sense
that ||y — v|| < (1 + 2y)dist(y, V).

In addition to the proposition we just stated, we also need results in-
volving the function space Wf (R™). Recall that this space is a reproducing
kernel Hilbert space for 5 > n/2. The kernel Kg is characterized by its



Fourier transform having the form Eﬁ(w) = (14 ||lw|j3)~?, and it is given by
[15, Theorem 6.13]

Ks(2) = colllly " Knpas(lall2) = callelly " Kpnpalllall) (1)

where K, is the modified Bessel function of the second kind and cg is a
constant. The equality of the two expressions on the right follows from K,
being even in its order v. We will need the properties for Kg stated below.

Lemma 3.2. The kernel Kg(z) is radial, positive, decreasing on [0, 00), and
has the bound

2
Ksg(z) < v27rcm"”_%e_r+ﬁ, r = ||z|]2 > 0,
where v =3 —n/2.
Proof. See Corollary 5.12 and Lemma 5.13 in [15] for proofs. O

Suppose that X = {z1,...,zy} C Q is a set of distinct points from a
bounded set 2 C R", and that ci,...,cy are scalars in R. If § > n/2 and
g := Y ¢jKg(- — x;), then it is straightforward to show that

191, oy = 20" D cicrC(o; — ). (2)
Ji.k

Consequently, we have that

(2m)"Ax|lellz < llgll? < (2m)"Ax|lell3,

WB (R7) —

where Ax and A x are, respectively, the minimum and maximum eigenvalues
of the N x N matrix (Kg(z; — zy)).

The minimum eigenvalues associated with such kernels were estimated
from below in [9, 10]; those for the particular kernel Kz were dealt with in
[15, Cor. 12.7 and 12.8]. The result is

Ax > CB.n Cﬁ?ina (3)

where cg;, depends only on Kg and n, but not on gx or X. Upper estimates
for the maximum eigenvalues of matrices for kernels related to the Gaussian
kernel F,(z) = e ?ll3 were given in [8]. Now the properties of F, used
to obtain the results in [8] are just that F), is positive, radial, decreasing
on [0,00), and decays fast enough for certain series to converge. These are
the same as those given in Lemma 3.2 for Kg. Thus, merely repeating the



arguments used to establish [8, Theorem 2.2], with appropriate notational
changes, gives us the following estimate,

Ax < Kg(0) + Z3n (k+2)" 'K (kgx). (4)
k=1

Of course, by the bound in Lemma 3.2, the series on the right is uniformly
convergent and decreasing in ¢gx, at least for values of gx bounded away
from 0. We now make use of these things to establish another lemma.

Lemma 3.3. Let g := E;VZI ¢iKs(- — x;) and define g» by §o = GXB(0,0);
where X p(,s) 8 the characteristic function of the ball B(0,0). Then, there
erists a constant k > 0, which is independent of X and the c;’s, such that
for o = k/qx the following inequality holds

1
Iy =g _ga||W2ﬂ(Rn) < EHQHWQﬂ(R")' (5)

Proof. From the definition of I; in (5) and a change of variables to w = o¥¢,
we have that

2 2
, ‘Z] cjefzw T; ‘ZJ cjefzﬁ ozT;
2 = / d"w=o" / d"¢.
7 1+ [wli3)? (1 +02|€l13)7

llwll2>0 llgll2>1

i > — L ___< 26 1
Since ||€||2 > 1, we have (ito 2||£|| P = 0% () so that

‘Zj Cje_ifT”f ’
(1+11€13)?

‘Zj Cje_’fT”J' ’
(1+[1€113)?

I2 < 2B gn—28 / dré

ll€ll2>1

Hence, we see that

dn& < Qﬁo.n—Qﬂ/
Rn

2 < (2m)"206™ %0 Z cickKploz; — oxy) < (2m)"2%6" 20 Asx||cll3.
j,k=1

Combining (2) and (3), we also have that
2
@) cand el < 915 g
and consequently we obtain

2 8.~ n—28 2
12 < 20651, (00x)" " Nox 15



We now make two observations. The first is that the set ¢ X has separation
radius g,x = oqx, so if we choose ogx > 1, then (4) implies that

Aox < Kp(0) + ) 3n(k +2)" ' Kg(k) =: Cpn,
k=1

where Cj3 ,, depends only on n and 3. From this, it follows that

2 -1 -2 2
Io' < 2ﬁcﬂ,ncﬁ,n(qu)n ﬂ||g||W2ﬂ(Rn)
The second is that we may now choose ogx = k so large that the factor
multiplying || g||3vﬂ (&™) is less than 1/4. Taking square roots then completes
2

the proof. O

We may now combine Lemma 3.3 with Proposition 3.1 to arrive at the
following conclusion.

Theorem 3.4. Let 8,t € R satisfy B >n/2 and t > 0. If f € W2ﬂ+t(R"),
then there exists an f, € B, such that f;|x = f|x and

Ilf — faHWzﬂ(Rn) <5- diStwf(Rn)(f, B,;) <5- K_tqg(HfHW?ﬂ‘H(Rn)a (6)

with ¢ = Kk/qx, where Kk > 1 depends only on n and 3.

Proof. We will apply Proposition 3.1. To do that, take ) = Wf(R"), V=
By, and Z* = span{d;; : z; € X}. Recall that we may identify Y* with
Y. In particular, we may use the reproducing kernel Kg to identify Z*
with span{Ks(- — z;) : z; € X}. Thus z* =}, ¢;0(- — z;) corresponds to
g =>_;¢iKg(-—z;), and also [|2* ||y~ = Hg“w{”(Rn)' It is easy to see that z*|y

corresponds to taking the Wg’g (R™) inner product of a function in B, with

9o, where g, is defined in Lemma 3.3; consequently, ||2*|y|lv+ = || 9ol ;8 (Rn)"
2

Now, by Lemma 3.3 we have that for sufficiently large x and all o = k/gx,

l9ollyaany > 19llypny =190 = lyagan

1 1
> HgHW?l*(Rn) - §||g||W2B(Rn) = §||g||W2B(Rn)'

The conditions of Proposition 3.1 are thus satisfied, with the parameter
v = 2. It follows that for f € Wf(]R”) there will be an f, € B,, with
o = k/qx, that interpolates f on X — f,|x = f|x — and approximates it, in
the sense that

If— fU||W2/3(Rn) <5 diStWé’(Rn)(fa B;)

8



To finish the proof, we note that if f € Wf *H(R™), then we have

distyys ) (F, Bo)* = /(+||w|| Afw)dw
loll22e
(L + [Jw]I3)"*
= [ T dge e
loll>>o
< N ypreny

Taking square roots, using ¢ = k/qx, and combining the resulting inequality
with the estimate from the first part of the proof, we obtain (6). O

We have assumed that €2 is compact, has a Lipschitz boundary, and satis-
fies an interior cone condition. These assumptions are sufficient to ensure the
existence of a continuous extension operator Eq : Wf Q) - W2’6 TR,
as we noted in the proof of [13, Lemma 3.1]. Since X C 2, any function
fe Wf (Q) coincides with its extension Eqf on X. Hence, if we extend the
function f € Wf”(Q) to Eqf € Wf’Lt(R”) and choose f, € B, as before,
but this time for Eq f, then we find f,|x = Eqf|x = f|x and

||f_f0'||W2l8(Q) = ||EQf_fU||W25(Q)
< 1Baf — follypgn < CaslBaf lyprege, ()
< Cakllf i) (8)

by Theorem 3.4. The middle equation (7) has another interesting conse-
quence. Set ¢ = 0 above and note that

COHEQfHWzﬁ(Rn) < CHfHWzB(Q) (9)

IN

We collect these remarks in the corollary below.

Corollary 3.5. With the assumptions and notation of Theorem 8.4, we
have that f, also satisfies

1f = Follwp oy < Callfllys+eq

In addition, we have

Hfa“W?ﬂ(Rn) < C'HfHWzﬂ(Q)



4 Radial Basis Functions

In the following we will assume that the native space N is isomorphic to
either WJ (R™) or BL,(R"), the Beppo—Levi space; that is, we assume for
the rest of this section that our (conditionally) positive definite kernel ® has
either a classical Fourier transform that satisfies

a(l+[w3)™ < Bw) <1+ |wl3)7,  weR, (10)
or a generalized Fourier transform that satisfies
allwl;? < B(w) < eollwl;?, TEN, weR\ {0},  (11)

where we take 7 > n/2. We note that the functions involved include both
the Wendland functions and the thin-plate splines. Finally, given such a @
and a finite set X, we will denote the associated interpolant for a continuous
function f by Ix f.

The proofs for the error estimates we provide in this section depend upon
the Sobolev space interpolation result stated in Lemma 2.1. We will use this
lemma, several times below. Our first error estimate, which we need in the
sequel, concerns functions which are in the Sobolev space W3 (§2), which is
essentially the native space for both types of RBFs.

Lemma 4.1. Let 1 = k+ s with 0 < s <1 and k € N with k > n/2. If
feWi(Q), then

If = Ixflwpioy < Chx ol lws @, 0<B<T

Proof. We have ||f — Ix fllL,i0) < Chk ol fllwg) by [13, Prop. 3.2 and
Cor. 3.6]. Moreover, by the best approximation property of the interpolant,
we can conclude | f — Ix fllwg ) < C| fllw;(q)- Hence, Lemma 2.1 yields

1—
1 = IxFllwsgay < OB 1 lws o),
which is the inequality we wished to obtain. O

We now come to the case of interest, namely to error estimates for RBF
approximation of f € Wf(Q), with 8 < 7. The function f is not in the
native space, and so the traditional rkhs techniques do not apply.

Theorem 4.2. If 7 > 3, f=k+s with0 < s <1 and k > n/2, and if
fe WZﬂ(Q), then

10



Proof. The function f — Ix f vanishes on X. Hence, by [13, Theorem 2.12]
there exists a constant C' > 0 such that if 0 <m < k —n/2, then

I = IxFlwpo) < OB = Tx fllyp -

To apply Lemma 2.1 to interpolate the operator norms involved, we need to
prove that

If = Ixfllypa) < C% G

holds. According to Theorem 3.4, there exists k > 0 such that with o =
k/qx, we may select f, € WQﬁ(R") so that f,;|x = f|x and

|f||W23(Q) (12)

Hf - fa“wg(g) < C||f||W2ﬂ(Q)

The fact that f, interpolates f on X implies that Ix f = Ix f,. Putting this
together with the inequality above yields

Hf - IXfHWZB(Q) < C”f”wg(g) + ||f0 - IXfU||W2B(Q) : (13)

To bound the second term on the right in (13), we apply Lemma 4.1 to f,
to obtain

1fs = Ix follws oy < CH5 4 follws (@)

Additionally, since o = k/qx, from the Bernstein Theorem for band-limited
functions, one gets || fo|lwy®n) < qu{THf(,HWzg(Rn) so that
Ifo = Ixfollws gy < Chx adx ol ey = CP% oM allys @n-

iFrom Corollary 3.5, we have Hfﬂ”wﬂ(Rn) < C||f||W5(Q), with C' > 0 inde-
2 2
pendent of f, (12) holds. Applying Lemma 2.1 then completes the proof. [

We will say that a set of centers X C (2 is p uniform if the mesh ratio
px,n < p- In a p-uniform set of centers, the mesh norm hx o and separation
radius gx are comparable. Of course, we must have p > 1. The smallest
value it can take for an Q isn’t known. For a hypercubic grid, p = /n.

Corollary 4.3. Let 7> =k+s with0< s <1 and k > n/2 and assume
that ® satisfies (10) or (11). For all p-uniform X C Q, the interpolation
map Ix: Wf(Q) — WQ’B(Q) is bounded uniformly in X.

11



Proof. Let f € W2’3(Q) be given. By Theorem 4.2 we find

< (1+ ok f lwpay
< (1 + CpT_ﬁ)HfHWzﬁ(Q)
This implies that ||Ix|| < 1+ Cp™#, which is independent of X. O

We point out that, under the assumptions listed in the corollary, RBF
interpolation is comparable to best approximation.

5 A Bernstein Theorem for RBF's

In this section we wish to establish a Bernstein Theorem for certain RBFs.
More specifically, the next theorem deals with bounding stronger norms of
interpolants by weaker ones.

Throughout this section we assume that our basis function ® has a
Fourier transform that satisfies (10), so that its associated reproducing ker-
nel Hilbert space coincides with W7 (R").

We are now interested in bounding the norms of functions from the
following space:

Vo,x =span{®(- — z;): z; € X},

where X = {z1,...,zy} C Q. Naturally, Vg x is a subspace of W7 (R").

Theorem 5.1. Suppose that ® satisfies (10) and that 0 < p < 7. Then
there is a constant Cs such that

I llwe ey < Coax" I fllz2@ny, [ € Va,x.

Proof. Since (10) holds for @, f =}, ¢;®(- — z;) satisfies

e 3 e = ) psgrny < I llwgny < e2ll 32 (- = 2) s o
j .

J
(14)
where K is the reproducing kernel for W7 (R") that is given in (1), with
[ instead of 7. This inequality means that there is no loss of generality in
making the simplifying assumption that ® = K, and we now do so.

12



We begin with a simple observation that follows easily from Eg(w) =
(1 + ||w||3)~#; namely, we have that

12 eskrt = 2)llwpny = | 22 5Korul = 23) lwgrsieny -
J J

Next, let 8 = 27 — p in Lemma, 3.3. In the notation of Lemma 3.3, there is

a constant kK = kg > 1 such that when o = k/gx, we have ||g—go-||Wﬂ(Rn) <
2
Sl 9llys oL where of course g, € B,. From this inequality it easily follows
2
that ||g||W25 < 2||gg||Wé;(Rn). Consequently, we have

iwT rs |2
|Z.Cjezw mj‘
lol2,s < [ 4O el

1+ [wli3)?
lwliz<o
iwTz;|2
<aproty [ om0l
(1+ wli3)?

llwll2<e

2+ 2 2
< 2| Y 6K (= 2) ||y ey
J
Using the connection between ¢ and gx, we arrive at this inequality:

I52 eiter = alligany <2 R | o ealen = )l -
j J

Since £ > 1 and p < 7, the constant multiplying ¢y* may be replaced by
one depending on 7 or, equivalently, ®. The equivalence of norms from (14)
then implies the desired result. U
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