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Abstract

In this paper, we study the stability of symmetric collocation methods for boundary
value problems using certain positive definite kernels. We derive lower bounds on the
smallest eigenvalue of the associated collocation matrix in terms of the separation distance.
Comparing these bounds to the well-known error estimates shows that another trade-
off appears, which is significantly worse than the one known from classical interpolation.
Finally, we show how this new trade-off can be overcome as well as how the collocation
matrix can be stabilized by smoothing.
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1 Introduction

Meshless collocation methods for the numerical solution of partial differential equations have
recently become more and more popular. They provide, for example, a greater flexibility when
it comes to adaptivity and time-dependent changes of the underlying region.

Radial basis functions or, more generally, (conditionally) positive definite kernels are one
of the main stream methods in the field of meshless collocation. There are, in principle, two
different approaches to collocation using radial basis functions. The unsymmetric approach
by Kansa ([10, 9]), which has the advantage that less derivatives have to be formed but has
the drawback of an unsymmetric collocation matrix, which can even be singular ([8]). Despite
this drawback unsymmetric collocation has been used frequently and successfully in several
applications.

In this paper, however, we will concentrate on symmetric collocation methods based on
radial basis functions, as they have been introduced in the context of generalized interpolation
in [22, 13] and used for elliptic problems in [3, 4, 6, 5].

Radial basis functions, in general, are a powerful tool for reconstruction processes from
scattered data (see for example [2, 20]).

We consider boundary value problems of the following form:

Lu = f inQ (1)
Bu = g on 0N (2)



where L is an partial differential operator of order m of the form

Lu(z) = Z ca(2)D%u(x)

la|<m

and B is a typical boundary operator. In our analysis later on, we will restrict ourselves to
B =1, i.e. we will only deal with Dirichlet boundary conditions, though Neumann or mixed
boundary conditions can be treated similarly.

While error estimates for a discretization of (1) and (2) by symmetric collocation have
been investigated in [6, 5, 20, 7], the other important question concerning the stability of the
associated collocation matrix has not yet been addressed.

It is the goal of this paper, to give first results on the condition number of the collocation
matrix, if specific kernels, including the Wendland kernels, are employed. To this end we use a
simplified version of results for the classical interpolation problem (see for example [11, 12, 14,
16]).

This paper is organized as follows. In the next section, we will shortly review the meshless,
symmetric collocation method. The third section is devoted to specific kernels for which our
analysis applies. The fourth section gives the main result on the stability by bounding the
smallest eigenvalue of the discrete collocation matrix from below. The final section deals with
regularization and stabilization of the collocation problem.

2 Meshless symmetric collocation

The symmetric collocation approach to discretize (1) and (2) based upon positive definite kernels
can be described as follows.

First, two sets of discrete points X7 = {z1,...,znx} C 0Q and X2 = {TN+1,...,2Zm} are
chosen. Then, a positive definite kernel ® : R? x R¢ — R is fixed and the approximate solution
is formed as

s(@) =) a;j(6, 0 BN)®(z,9) + Y (6, 0 L") ®(x,y). (3)
Jj=1 J=N+1

Here, (6, o B)u is defined to be (6, o B)u = (Bu)(z) and the additional superscript in (d,, o
B)Y®(z,y) indicates to which argument of ® : 1 x — R the linear functional §,, o B is applied.
The unknown coefficients in the representation (3) are determined by the collocation condi-
tions
Bs(zj) = g(z;), 1<j<N,
Ls(@)) = flz;), N+1<j<M

(& 5)e= (i, @
with the block matrices given by

A = (60 Bm)(dzj o BY)®(z,y)
C = (6:c, o BZ)(‘SzJ o Ly)q)(xvy)
D = (00 Lw)(dzj o LV)®(,y).

This results into the linear system

It is well-known (cf. [6, 5, 22, 20]) that such a reconstruction problem can be put in the
more general framework of generalized interpolation. Defining the functionals

)\‘._ (5.7}_7'037 ]-SJSNJ (5)
7T Gy oL, N+1<j<M,



shows that the interpolant s in (3) can be written in the unified form

= aXje(,y). (6)

Moreover, the collocation matrix in (4) simply becomes
Ax = (A Aj (2, y)). (7)

In the above cited sources, it is shown, that this matrix is a Gramian matrix and hence posi-
tive semi-definite. Moreover, if the functionals A; are linearly independent over the reproducing
kernel Hilbert space associated to ®, then the matrix is even positive definite. The functionals
defined in (5) are known to be linearly independent (see for example [7]) for all relevant kernels
provided that the centers z; are not singular points of the differential (or boundary) operator.

Definition 2.1 The point x € R? is called a singular point of L if §, o L = 0, i.e. if co(z) =0
for all |a| < m.

In this paper we are mainly concerned with estimating the smallest eigenvalue of the collo-
cation matrix Ax.

3 Some typical kernels

For the rest of this paper, we will assume that the kernel ® is translation invariant and hence
defined on all of R?, i.e. of the form

®(z,y) = 2(z —y).

The function ® : R — R is assumed to be integrable and to act as a reproducing kernel of a
Sobolev space W (R?) with 7 > d/2.

Sobolev spaces are introduced in the usual way. Let Q C R? be a domain. For k € Ny,
and 1 < p < 00, we define the Sobolev spaces W;“(Q) to consist of all u with weak derivatives
D%y € Ly(Q), |a| < k. Associated with these spaces are the (semi-)norms

1/p 1/p

lulws () = Z ID%ull7, (o) and [[ullwr@) = Z ID%ull7, (o)
la|=Fk la|<k

The case p = oo is defined in the obvious way:

|U|W'c Q) = |51‘lp ||Dau||L°°(Q) and ||U||W'c Q) = |s1|1p | D* U||L (Q)-
To deal also with fractional Sobolev spaces, let 1 < p < oo and let 7 = k 4+ s with k£ € Ny,

and 0 < s < 1. We define the fractional order Sobolev spaces W (€2) to be all u for which the
norms below are finite.

1/p
|Da “u(y)l?
|u|W:’+S(Q) - / / d+ps d.’L'dy
|a|=k y”
1/p
lallwsreqy = (e + |u|’;vpk+sm,) :
Here, || - ||> denotes the Euclidean distance on R?.



In the case p = 2 the Sobolev spaces WJ () are Hilbert spaces. Moreover, the fractional
Sobolev space Wy (R?) can also be introduced employing Fourier transforms. If the Fourier
transform of a function f is defined by

flw)=@m) 2 [ f@)e " “da,
Rd

then R
Wi (R?) = {f € Ly(RY) : (1+ |- [3)7/* € Lo(R%)}.

This, on the other hand, leads to a simple characterization of kernels ®, which generate
W3 (R?) by linear combinations of their translates. For us, the following result will be of
importance, which can be found, for example, in [20].

Proposition 3.1 Suppose ® : R? — R is integrable with a Fourier transform satisfying
a(l+wlB) " <Bw) <e(l+|wB) 7, weR, (8)

with T > d/2. Then, ® generates an inner product on WJ (R?) by

f@)gw) ,

— (27)—/2
N

7

which leads to a norm equivalent to the Sobolev norm
£ llwg ey == 1+ 11 113)72 Fll pare-

Moreover, ® is the reproducing kernel for W.J (R?) with respect to this inner product, i.e. for
every f € W (R?) and every x € R?, the reproduction

f@)=(f,2(—2))e
is satisfied.

Because of this proposition we will call ® with (8) a reproducing kernel of WJ (R?), relaxing
in this way the fact that a reproducing kernel is otherwise uniquely determined.

The following result contains the details to what we have mentioned at the end of the last
section. Its proof can be found in [7].

Proposition 3.2 Suppose ® : R? — R is a reproducing kernel of WJ (R?) with 7 > m + d/2.
Let L be a linear differential operator of degree m. Let X1 = {z1,...,2ny} C 00 and X, =
{ZNt1,---,xzMm} C Q be two sets of pairwise distinct points such that Xo contains no singular
point of L Then, the functionals A = {\,..., A} with A\j = 0,,, 1 <j < N, and \j =d,; 0L
for N +1< j < M are linearly independent over W3 (R%).

For our analysis in the next section, it will be crucial to have a compactly supported function
® that satisfies the decay condition (8).

Definition 3.3 We say that the Sobolev space W] (R?) and hence every associated reproduc-
ing kernel ® is feasible, if there exists at least one compactly supported reproducing kernel for
Wi (R?).

Typical examples of feasible kernels are the Wendland kernels ([18, 19]). They are radial
kernels 4 € C?*(R?), which lead to Sobolev spaces Wi (R?) with 7 = d/2 + k + 1/2. Hence,
in odd space dimensions, integer order Sobolev spaces are feasible, while in even space dimen-
sions, Sobolev spaces of order “integer plus a half” are feasible. However, using the fact that



the Fourier transform of the convolution of two functions is the product of the two Fourier
transforms, we see that, for example, also all Sobolev spaces of order 7 = d+ 2k + 1 are feasible.

It is still an open question, whether any Sobolev space WJ (R?) of order 7 > d/2 is feasible
in this sense.

When we consider Sobolev spaces over domains  C R?, we will always assume that (2
has a sufficiently nice boundary, such that there exists an extension operator, i.e. a mapping
E : W3(Q) - Wi (R?) with Ef(z) = f(z) for f € WJ(Q) and z € Q and [|Ef|lw;rsy <
C|Ifllwz(e)- Such extensions are well studied, in particular for integer order Sobolev spaces,
but they also exist for fractional order Sobolev spaces, if the domain (2 satisfies an interior cone
condition and has a Lipschitz boundary, see for example [1]. This assumption allows us to work
always with a function from W] (R?) instead of W] (Q).

4 Bounding the smallest eigenvalue

Since numerical tests show and the Gerschgorin theorem implies that the maximum eigenvalue
of the collocation matrix A, is uncritical, we will concentrate on the smallest eigenvalue to
measure the ill-conditioning of the collocation matrix.

We consider the following simplifications of (1) and (2). From now on we will assume that
B = I is the identity on 012, i.e. we deal with Dirichlet boundary conditions, only. Furthermore,
we will assume that L has only constant coefficients c, .

It is now time to derive our main result. We will measure the smallest eigenvalue in terms
of the separation distance. Let X = X; U X5. Then, the separation distance of X is defined as

1 .
qx = 51;;;}91”331' — zk|2-

Theorem 4.1 Suppose ® is a positive definite kernel function satisfying (8) with T > d/2+m
for a feasible Sobolev space Wi (R?). Suppose L is an mth-order differential operator with
constant coefficients and B = I. Then, the smallest eigenvalue of the collocation matrix can be
bounded by

)\min(AA) > ng{_d;

with a constant C > 0 independent of X.

Proof: We use again the functional notation, which now becomes

Ao = 0z;0L for1<j<N
(R for N+1<j< M.

Then, we have to establish the following bound
M
D BiBkXA[®(@ —y) > Ca¥ B3, BeRM.
Jk=1
To achieve this, we introduce the symbol of the functionals A; defined by
. T
o'j(w) = )\;(e” @),

which is simply ¢;(w) = €% “ in the case of the boundary functionals and

oj(w) = Z cae”iT“’(iw)“

la|<m



in the case of the interior functionals. With this notation, the quadratic form becomes

2

M
S BBN N =) = () [ Zﬂm B (w)d.

Jok=1
Since W] (R?) is feasible, we can choose a compactly supported function ¥ with support in the
unit ball B(0,1) satisfying the decay condition (8) and set ¥5 = ¥(-/4).
Next, let us assume that 6 < 1. Then,
T (w) = 69T (dw) < (W)L + [|6w]|2) " < ea(T)6 27 (1 + [lwll3) "

obviously yields

~ P
B0) 2 @)+ W) > L )
which establishes
M c (@) M
D BiBA M (z —y) > c;(q,) 8N BBk AN Ws(z — ).
Jik=1 jik=1

If we choose § = gx as the separation distance and assume without restriction gx < 1, the last
estimate reduces to

M (D)
> BB XN Bz —y) > @) ]AW% z—y)
7,k=1
c1(®) 2r—d al 2 2 z\Y
= @’ Z,B\IJ Zﬂjquxw—)
j=1 j=N+1

Finally, since the matrix (Af A} ¥s(z — y)) is positive definite, we see that the function

F(0) :=NXNUsx—y)= Y  cacg(—1)Pls7loI=IFIDp>+Fg(0)
la,|8]<m

is positive for all § > 0 and independent of N +1 < j < M. Since F(§) = oo with § — 0,
the function F' attains its minimum in (0,1]. Thus, we have F'(¢x) > ¢ with an appropriate
constant ¢ > 0, which is independent of the data sites. This shows

M
c(®) . .
> BB - 3) > L min (90),2) %1818,
jk=1
which immediately gives the stated lower bound. O

Note that for non-constant coefficients we still have

NNT, (z—y)= Y calz)es(z)(~1)lgy 1P D+ 5 (0) > 0,
|al,|B]<m

but this time, the right hand side still depends on j. Nonetheless, this technique can be extended
to more general situations if appropriate conditions on the coefficients of the operator L are
imposed.



Moreover, for specific operators L, the constant ¢ can be determined more explicitly. Con-
sider, for example, the Poisson equation

—Auy = finQ
u = g on 0f)

Then, using the notation of the proof, we find
NNV s(z —y) = 6 *A%T(0)

for N+ 1< j < M. Hence we have

a2 2@palS puo s Y setat)
S )L P o
Jj=1 J=N+1
> ) o i (w(0), g5 A2 (0)} 1813

Unfortunately, the q;{1 factor, which would result into a better conditioning is overruled by
the constant ¥(0) part.
Note, however, that, in the case of only interior functionals, i.e. in the case of a collocation
matrix of the form B
A= (A% (z; — )
the proof just established shows that
)\min(lzi) 2 ng('r—d—4

and leads hence to a better conditioned matrix. The same holds true for any other differential
operator L.
As a conclusion we can state:

Corollary 4.2 The collocation matriz for a mized problem is as badly conditioned as a pure
interpolation matriz would be.

On the other hand, the approximation error is determined by the derivative part. We will
make this more precise now, to work out a new trade-off problem and to establish a remedy in
the next section.

We introduce the fill distance for the region Q2 and the discrete point set Xo C  as usual
by

i
To define the fill distance for the boundary, we have to be more specific. We will assume that
the bounded region Q C R? has a C**-boundary 012, where 7 = k+s with k € Ny and s € [0, 1).
This means in particular, that 9Q is a d — 1 dimension C*>*-sub-manifold of R?. It also means
that 0} is Lipschitz continuous and satisfies the cone condition.

We will represent the boundary 9Q by a finite atlas consisting of C*-*-diffeomorphisms with
a slightly abuse of terminology. To be more precise, we assume that 9Q C UJKZIVJ-, where

V; C R? are open sets. Moreover, the set V; are images of C**-diffeomorphism

pj: B — V}',
where B = B(0,1) denotes the unit sphere in R?"!. Finally, suppose {w,} is a partition of
unity with respect to {V;}. Then, the Sobolev norms on 91 can be defined via

K

||U||€v;(39) = Z [[(uw;) o ('OJ'W;V;‘(B)'
j=1



It is well known that this norm is independent of the chosen atlas {V},;} but this is of less
importance here, since we will assume that the atlas is fixed. For us, it is more important that
we have the trace theorem, which states that the restriction of u € WJ (Q2) to 99 is well defined,

belongs to W7 ~/%(89), and satisfies

hally 37200y < Il -
Using the fixed atlas {V}, ¢;}, we can now define the mesh norm be

hx, 60 = max hr, B
1<j<k

with T; = go}l(X 1NV;) € B. As mentioned before, we will assume the atlas is fixed and hence
do not have to care about the dependence of hx, sn on the atlas. However, it is interesting to
see that

hr, B = in ||z —t in ||¢; t(y) — ¢!
T;,B Slelggreuqr,;llw ll> sup min [lo; " (y) — ¢~ (s)]]2

yEVj SEXJ'

< sup min [V (&,)ll2lly — s]l2
yEVj SEXJ'

S thvj,)}ja

where X ;7 = X1NVj. Hence, the fill distance on the boundary is comparable to the fill distances
of the boundary points measured in the Euclidean norm in R%.
The following result comes from [7].

Theorem 4.3 Suppose ® is a reproducing kernel of W (R%) with k := |7] > m +d/2. Let
Q C R? be bounded satisfying an interior cone condition and having a C**- boundary. Let L
be a linear differential operator of order m with coefficients co in WE"™+1(Q) Finally, let s be
the generalized interpolant to uw € W] (). If the data sets have sufficiently small mesh norms
then the error estimates

ILu—Lsllp ) < Chy, o “llullwzo) 9)
lu=sllzooay < Chi, Yollullwse) (10)
are satisfied.

For simplicity, let us assume that h = hx, o ~ gx and that hx, go ~ h'~*/?7=4)_ Then,
Theorem 4.3 means for second order elliptic problems, using the maximum principle, that

lu = sullLo(@) < CA™ 2 2 |lullwg (o),
while the smallest eigenvalue of the collocation matrix behaves like
Amin(An) > Ch?7 4.

Hence, in this situation the trade-off principle (cf. [16]) is even worse than in the situation of
pure interpolation. This is a consequence of the behavior of the Fourier transform. While the
Fourier transform of the differential operator applied to the basis function leads to a slower decay
of the resulting Fourier transform and hence to a slower convergence, the Fourier transform of
the pure function is responsible for the smallest eigenvalue.



5 Smoothing and overcoming the new trade-off

The estimates in Theorem 4.3 were derived from a general result in [15]. This result states that
a function u € WJ (), which vanishes on a discrete set X C 2 satisfies the estimate

Julw @) < Chy g™ WP |y . (11)

Obviously, (9) follows immediately from this, while for (10) the result has to be combined with
and applied to an appropriate atlas of the boundary.
A generalization of (11) has been done in [21], it states that

Julwm () < C {hTXTS;n_(d/q—d/p)+|u|W;(Q) + rmnez@cm(xﬂ} . (12)

This result has then, among other things, been applied to spline smoothing. We want to
use this result here also in the context of (generalized) spline smoothing.

Sticking to the functional notation introduced in the second section, we will now not enforce
collocation, but solve the minimization problem

M
min $ > [h(s) = Ay ()] + ellsll3 - s € Wi (RY) 5. (13)

=1

It is well known (see for example [17]), that the solution to this problem also has a representation
of the form (6), but this time the coefficient vector o € RM is determined by the linear system

(91X
(Ar +el)a = (le;> ,

where A, is the collocation matrix from (7) and I is the identity matrix.

Lemma 5.1 Suppose the linear functionals A1,...,A\n are linearly independent over Wi (Q).
Then, the solution s to (13) satisfies

o [N\j(u—s)| < Vellulls < Cvellullwy (o)

¢ |lu=selle < llulle < Cllullwg )

Proof: This follows immediately from

M
max{|Xj(u = s)*ellsclls} < D [Ai(s) = Aj()]® +ellsllp
j=1
< elulld < Ce”““%vg(g),
since u is a feasible candidate for the minimization problem (6). In the last estimate we have
used the fact that the ®-norm is equivalent to the WJ(R?)-norm and that we can replace

u € WJ(Q) by its extension Fu € WJ (R?) without changing s.. O

Hence, combining this result with (12) shows for the solution s, of (13) the estimate

IA

7—m—(d/2—d
IZu — Lsellz, ) c{hX o 2D Ly — Ls ||y ) +

2y

T—m—(d/2—d
C {th,Q (d/ /p)+ + \/g} ||’LL||W2T(Q),

=}

max
N+1<j<M

IA



since ||Lu—Ls€||W;—m(Q) < Cllu=selle < Cllullw; (). Moreover, turning to the boundary part,
we set ug := ((u—sc)w) 0wy, which belongs to W;_1/2(B) and satisfieson T; = ¢ 1 (X1NV;) C
B:

lun(t5)] = |(u = se) (@ )w(w)] < [(u = s¢)(5)] < CVellullwy @)-
Hence, we have for 1 < p < o0

K
lu= sl o0y = D luell], i)
k=1
K
T—1/2—(d-1)(1/2—-1
< O (T L el
k=1
< OO L e u = sl g,

—1/2—(d— —
< C{hl))((:,aslum (d—1)(1/2 1/p)+)+‘/g}||“||€vg(9)

and the case p = o0 is, of course, treated in the same fashion.
In conclusion, we have for an mth order differential operator L, the following error estimates
for the smoothing solution:

Theorem 5.2 Under the assumptions of Theorem 4.3 on the domain, the Sobolev space, and
the operator, let s. be the solution of (18). Then, the error between u € WJ(Q) and s can be
bounded by:

c {hrng,(dﬂfd/ph + \/E} ||’u,||W2"(Q)a
o {h;}gg‘“—”“”‘””” + \/E} llullws -

||L’LL — LSG”LP(Q)

IA

IA

[lu — 56||L,,(39)
Returning to the case of a second order elliptic partial differential operator and p = oo:
ILu— Lsdlreo@) < C{W0 ™ + Ve} lullwz @),
lu = sllzooy < {5 % + Ve lulws @,

which gives by the maximum principle

—2—d T—d
lu = sl < € {h35 " + hi i + Ve lullws -

On the other hand, the smallest eigenvalue of the matrix Aj + el has the lower bound
Amin (AA + €I) = Amin (An) + € > ngg_d + €.

In the situation of h = hx, o, hx, 00 ~ h'~¥ 27D and an arbitrary gx > 0, this reduces to

o= sellew@ < C{p 2124+ e} lullws )
Amin(Ar +€el) > Ce¥ %+

Hence, the choice € & h?"~4~?  gives the symmetric bounds

lu—sellz.@ < ChT_Q_dm”U”W;(Q)

Amin(Ar +€I) > Ch2T—27d/2),

This means, that, without changing the order of convergence, we have improved the behavior
of the smallest eigenvalue by a power of 4. Note again, that this remains true, even if the
separation distance gx is much smaller than the fill distances.

10



Corollary 5.3 Suppose the discretization on the interior and the boundary have o fill distance
proportional to h and h'=*/ 7D respectively. Selecting € = h*7=2=4/2) for the smoothing
parameter in the collocation solution has the following effects:

o The discretization error keeps its optimal convergence order.
o The smallest eigenvalue can be bounded from below in terms of h instead of qx .

e The exponent in this lower bound improves by four orders and matches now the conver-
gence order.

We end this paper by remarking that most of our analysis applies also to the family of
thin-plate or surface splines, but leave the details to the reader.
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