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TU M ünchen

Boltzmannstr. 3
D-85747 Garching bei M ünchen
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Institut f ür Numerische
und Angewandte Mathematik

Universit ät G öttingen
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Abstract

In this paper, we derive error estimates for generalized interpolation, in
particular collocation, in Sobolev spaces. We employ our estimates to collo-
cation problems using radial basis functions and extend and improve previ-
ously known results for elliptic problems. Finally, we use meshless colloca-
tion to approximate Lyapunov functions for dynamical systems.

Key words: partial differential equation, radial basis function, error estimates,
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1 Introduction

Meshless collocation methods for the numerical solution of partial differential
equations have recently become more and more popular. They provide a greater
flexibility when it comes to adaptivity and time-dependent changes of the underly-
ing region.
Radial basis functions or, more generally, (conditionally) positive definite kernels
are one of the main stream methods in the field of meshless collocation. There
are, in principle, two different approaches to collocation using radial basis func-
tions. The unsymmetric approach by Kansa ([12, 11]) has the advantage that less
derivatives have to be formed but has the drawback of an unsymmetric collocation
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matrix, which can even be singular ([10]). Despite this drawback unsymmetric
collocation has been used frequently and successfully in several applications.
In this paper, however, we will concentrate on symmetric collocation methods
based on radial basis functions, as they have been introduced in the context of
generalized interpolation in [24, 14] and used for elliptic problems in [2, 3, 5, 4].
Radial basis functions, in general, are a powerful tool for reconstruction processes
from scattered data (see for example [1, 22]).
In this paper, we study a general linear partial differential equation of the form

��� � �
on ��� (1)

where � is a domain in �
	 and
�

is a linear differential operator of the form
���������� �

� ��� �����
� ������ � ������ � (2)

where the coefficients have a certain smoothness �
���! #" � ���$� � , i.e. the deriva-

tives of order % with & %'&)(+* exist and are continuous on � .
Moreover, we consider boundary value problems, where additionally to (1),

�
is

required to satisfy the following boundary condition
����,�-� ./��,�

for
 �10 ��2 (3)

The numerical solution of such boundary value problems by collocation using ra-
dial basis functions has been studied by several authors. First error estimates have
been given in [5, 4]. However, despite following a rather general approach, the
authors of those papers show that the problems are well-posed and provide error
estimates only for differential operators with constant coefficients �

� . A general-
ization to non-constant coefficients without zeros including also a more thorough
discussion of the boundary estimates can be found in [22]. However, in that book
the approximation orders are, to a certain extent, not optimal. Moreover, the re-
striction to nonzero coefficients is not sufficient for our applications in dynamical
systems.
It is the goal of this paper to investigate well-posedness of the collocation problem
for the differential operator (2) with non-constant coefficients and to state error
estimates with optimal orders in Sobolev spaces. To this end we will put the setting
in the general framework of generalized interpolation in reproducing kernel Hilbert
spaces and then use a recent result [16] on error estimates in Sobolev spaces for
arbitrary scattered data reconstruction methods.
Next, we will apply the general estimates to derive error estimates in Sobolev
spaces for elliptic partial differential equations. Another major and new application
will be the approximation of Lyapunov functions in dynamical systems. Here, the
differential operator is given by the orbital derivative of a function

�
with respect

to the ordinary differential equation 34�+56��,� , i.e. by

�
����,�'78�:9<;=������ � 56��,�$>?� 	�
@BADC

5 @ ���� 0 @ ������ 2
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This operator � is a first-order differential operator of the form (2) with �������	��
���� �	��
 . The approximation of the orbital derivative for Lyapunov functions has
been studied in [7, 6, 8]. However, the approximation orders of those results can
be improved significantly with the results of this paper.
This paper is organized as follows: in the rest of this section we will introduce
notation which is necessary throughout the paper. Section 2 deals with generalized
interpolation and is mainly a collection of known results, which will be helpful in
this paper. In Section 3 we investigate collocation by radial basis functions, derive
our new estimates and apply these results to elliptic problems. The final section
deals with applications to dynamical systems. In particular, we describe a method
to calculate Lyapunov functions and thus to calculate the basin of attraction of an
equilibrium.

1.1 Notation

We will need to work with a variety of Sobolev spaces. Let ������� be a domain.
For ������� , and �! #"%$�& , we define the Sobolev spaces '%() �*�+
 to be all , with
distributional derivatives -/.0,1�2� ) �*�3
 , 4 5647 8� . Associated with these spaces
are the (semi-)norms

4 ,94 :<;=?>A@CB � DE%F
G . G H ( I - . , I ) J = >K@CB

LMONQP )
and

I , I :R;=S>K@TB � DE%F
G . G U ( I - . , I ) J = >K@CB

LMVNQP )XW
The case "��Y& is defined in the obvious way:4 ,94 : ;Z+>K@CB �\[^]`_G . G H ( I - . , I J Z >A@CB and

I , I : ;Z+>K@TB �\[a]`_G . G U ( I - . , I J Z >K@CB
W

We also need fractional order Sobolev spaces. Let �b c"#$�& and let d��e�bfhg
with �i�j��� , and k2$lgm$n� . We define the fractional order Sobolev spaces'Yo) �*�3
 to be all , for which the norms below are finite:

4 ,74 : ;Xprq= >K@CBts � DE F
G . G H (

u @ u @ 4 -v.w,x�	�S
9yz-<.w,9�	{`
|4 )I �vy#{ I �~} )��� � � � { LMONQP
)��

I , I : ;Xprq= >K@CB s � � I , I ) :R;=S>K@CB f�4 ,94 ) : ;�p�q= >A@CB�� NQP ) W
Here,

I���I � denotes the Euclidean distance on ��� .
Let � s ����� N �|W|W|W�� �?��� be a finite, discrete subset of � , which we now assume
to be bounded. There are two quantities that we associate with � : the separation
radius and the mesh norm or fill distance. Respectively, these are given by��� s � ��!�R������H ( I � � y#� ( I �

� � ��� @ s ��[^]`_��� @ ��� �� � � � I �<y#� � I �
W
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The first is half the smallest distance between points in � , the second measures the
maximum distance a point in � can be from any point in � . Frequently, when it is
clear from the context, what the set � (or � ) is, we will drop subscripts and write���

or
�

. Other notation will be introduced along the way.

2 Generalized Interpolation

2.1 Reproducing Kernel Hilbert Spaces

Let ���	��
��� be a Hilbert space of functions ��������� and let ��� be its dual.
We consider a generalized interpolation problem of the following form:

Definition 2.1 Given � linearly independent functionals ����������� �!�#"%$&�'� and� function values �(��������� �)�*"+$,� , a generalized interpolant is a function -.$� satisfying �0/0
�-1'23��/ , 4&576859� . The norm-minimal interpolant is the
interpolant that minimizes in addition the norm of the Hilbert space, i.e. -:� is the
norm-minimal interpolant if it is the solution of

;�<>=@?BA - A!C �0�D/0
�-1E2���/*��4F5G6H5I�KJL� (4)

It is well known that the norm-minimal generalized interpolant is a linear combi-
nation of the Riesz representer of the functionals and that the coefficients can be
computed by solving a linear system. Such problems can best be solved in repro-
ducing kernel Hilbert spaces.

Definition 2.2 A reproducing kernel Hilbert space � is a Hilbert space of func-
tions �M�D�I�N� , which has a unique kernel OP�0��QR�I�S� , satisfying

1. OF
UTV�XWYZ$R� for all WR$R� ,

2. �E
[WYE28
��\�!OF
UTV�XW]X C for all WR$R� and all �M$^� .

Here, the Riesz representer of a functional ��$K�G� is simply given by applying it
to one argument of the kernel, i.e. by �\_1OF
UTV�X`� .
Lemma 2.3 ([22, Theorem 16.1]) If � is a reproducing kernel Hilbert space then
the solution -a� of (4) is given by

- � 2
"b
/dce��f /1� _/ OF
UTV�X`B!�

where f $g� " is the solution of the linear system

hji\k l
f 2��

with
h i\k l 28
m�Bno0� _/ OF
[We�X`BX and �p2q
���/r .
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Note that the Matrix ����� ���	��
����� is a Gramian matrix because of


 ��� ������ ����� ����������� �!���� � �#"$���%�&�&����'� �#"$�������)(*� �!� � �&� � �)(,+
and hence positive semi-definite. In the last equation we have used the fact that the
Riesz representer of a functional � is given by � � � �#"$����� . Since the functionals are
supposed to be linearly independent the matrix is even positive definite.
Looking at point evaluations ���-�/.0�1�*2 �43 �/.0�1�*.1���'�5� alone, shows that the kernel
of a reproducing kernel Hilbert space is positive definite in the sense that all the
matrices � � ��� � ��� � ���46�7 ��� � 798
are positive definite, provided that point evaluation functionals are linearly inde-
pendent.
Now, it is easy to see that the kernel of a reproducing kernel Hilbert space is
uniquely determined. On the other hand, also the Hilbert space is uniquely deter-
mined by the kernel. Moreover, every positive definite kernel generates a unique
Hilbert space to which it is the reproducing kernel. This can simply be achieved by
completing the pre-Hilbert space: � �/;<�=� span > � �#"$���%�,?@��AB;DC
with respect to the inner product defined by

� � �#"$���E�&� � �#"$�������F?G� � ���H�����&I
More details about this fact and the construction of such native function spaces can
be found in [22]. Here, the only thing that matters is that two different kernels can
generate the same function Hilbert space J but with different, but equivalent inner
products.
In such a situation we will say that both kernels are reproducing kernels of J , thus
relaxing Definition 2.2.
Moreover, it will be helpful to consider kernels defined on all KML instead of only;*NOK L . Such kernels are often translation-invariant meaning � ����������� � ���=PQ���
and often even radial meaning � ���������1� � �&RS�TPU��RWV5� .
This will be very useful when it comes to Sobolev spaces. Remember, that the
Sobolev embedding theorem states that X	YV ��K L � can be embedded into Z[��K L �
provided that \^]`_Hacb . Hence, in this situation X YV ��K1L0� is a reproducing ker-
nel Hilbert space. Unfortunately, the reproducing kernel involves some modified
Bessel functions of the third kind.
However, it is well known that other reproducing kernels of XdYV ��K L � can be char-
acterized by their Fourier transforme� �gfh�1� �/bci��4j L k@l�m � ���%�)nMj � �poqsr-��I
To be more precise, the following result holds:
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Lemma 2.4 ([22, Corollary 10.13]) Let ����� ���
. Suppose the Fourier transform

of an integrable function �
	������� satisfies��������������� ��"! #%$'&)(� �*� !+& � � �����,����� ��"! #%$.- �0/ �  - (5)

with two constants � �21 �"� �43 . Then, the kernel � is also a reproducing kernel of5 $� � �6 ! and the inner product defined by

�87 -�9:! 	<; =?>A@ (7B�*� ! ( 9 �*� !(� �*� ! C �
is equivalent to the usual inner product on

5 $� � �6 ! .
The following observation will be of use. It follows straight-forward from the
Fourier inversion theorem.

Remark 2.5 If � /EDF�"� �  ! satisfies (5) with �G�0H � � ���
, then � /JI ��K � �  ! .

The most prominent examples of kernels satisfying (5) are the Wendland functions
([20, 21]). They are positive definite and radial functions with compact support. On
their support they can be represented by univariate polynomials. They are defined
by the following recursion with respect to the parameter L , cf. also Table 4.2.

Definition 2.6 (Wendland functions) Let M /�N , L /�N�O . We define by recursionPRQ�S O �UT ! ; ���WVXT ! Q Y (6)

and
PRQ�S Z Y � �UT ! ; = �

[)\ PRQ�S Z � \ ! C \ (7)

for T]/ � YO where �U^ ! Y ;`_badcfe ^ - 3.g .

We fix the parameter M depending on the space dimension � and the smoothness
parameter L . Then we have the following properties for the function � �U^ ! ;PRQ�S Z �h�i�j^k� � ! with scaling parameter � �43 .

Proposition 2.7 ([20, 21]) Let L /lN and Mm	<; n  �?o � L �p� . Let � �U^ ! 	<;PRQ�S Z �h�i�j^k� � ! with � ��3 . Then

1.
PRQ�S Z �h�qT ! is a polynomial of degree n  �?o �sr L �`� for T]/,t 3 - �u�v .

2. � /,I � ZO � �  - � ! , where I � ZO denotes the functions with compact support,
which are

� L times continuously differentiable.

3. The Fourier transform (� is an analytic function. It satisfies the decay condi-
tion (5) with �w;)L �x� � �`� ! ��� .
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Note that these functions generate integer order Sobolev spaces in odd space di-
mensions, while for even space dimensions the order is integer plus a half.
Though most kernels, which generate Sobolev spaces, are radial, there exist also
kernels, which are not even translation invariant, cf. [18, 17]. Our results will hold
regardless whether the kernels are translation invariant or not.
We end this section by citing a general convergence result from [16] in its improved
form (see the remarks in [15]).

Theorem 2.8 Let ������� be a bounded domain with a Lipschitz continuous
boundary, satisfying an interior cone condition. Let �	��
��� , ��������� , and
let ������� and ����� satisfying ��� �"!#�%$�&(')
 if 
*!+� , or ��� �",#�%$�& if
.-%� . Also, let /0�1� be a discrete set with sufficiently small mesh norm 2 . If3 �54768:9 �<; satisfies 3�= />-@? , then

= 3A= BDCE�FHGJI ��K	2 6MLON:L � FQPSR 8 L PSRUTVIXW = 3�= BZY[\F]GJI_^ (8)

where 9�` ;Va�-�bZcMdfe ` ^ ?hg .
3 Partial Differential Equations

3.1 General PDE operators

It is now time to look at specific collocation problems. We start with the partial
differential equation (1), i.e. we want to solve

i 3 9�` ;kjl- mn opn q N
r o 9�` ;ts o 3 9�` ;�-@u 9�` ;

numerically on a bounded region �v�@� � . Following the general approach of the
previous section, we define functionals

wyx 9 uz;{jl-}|�~)�{� i 9 uz;�- 9 i uz; 9�` x ;
with scattered points /�->e ` P ^�������^ `�� g5��� . Hence, employing a sufficiently
smooth kernel ��jy�@������ results in the approximating function

� -
�
m��� Py�

� 9 |�~��k� i ;S�M� 9t� ^V� ; ^ (9)

and the interpolation conditions become

u 9�` x ;�- 9 |�~)��� i ; ~ 3 9�` ;�- 9 |�~)��� i ; ~ � 9�` ;
-

�
m ��� P �

� 9 |�~)�k� i ; ~ 9 |�~��k� i ; � � 9�` ^V� ; �
We summarize the interpolation problem.
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Definition 3.1 (Interpolation problem, operator) Let � ���������
	
	
	������� be a
set of pairwise distinct points in ������� and ������� � . Let � be a linear
differential operator.
The interpolation matrix � �"!$#&%('�)$%+* '
, � *.-.-.- *  is given by

#�%('/�"!1032+465��6) 2 !1032�7�5��6)98;:<!=�>��?@)(	 (10)

The reconstruction A of � with respect to the set � and the operator � is given by

AB!=�C)D�
E
'F, �BG 'H!1032 7 5I�6) 8 :<!=�J��?K)(�

where G is the solution of � G �MLN��!1L % ) with L % �O!1032+4�56�6) 2 �P!=�Q)R�SLT!=� % ) .
According to Lemma 2.3, the generalized interpolation matrix is positive definite,
provided that the involved functionals are linearly independent.

Definition 3.2 (Singular points of � ) The point �VUW� � is called a singular point
of � if 0F2X56�Y�SZ , i.e. [
\]!=�C)R� Z for all ^ G ^B_a` .

Proposition 3.3 Suppose :b�]� � �c� is a reproducing kernel of dfeg !=� � ) withhji `�kmlJn;o . Let � be a linear differential operator of degree ` . Let � �
��� � �
	
	
	����  � be a set of pairwise distinct points, which are no singular points of
� . Then, the functionals p % �M0 2+4 5�� are linearly independent over dfeg !=� � ) .
PROOF: First of all note that, according to Remark 2.5, (10) is well defined for
reproducing kernels of dfeg !=� � ) even with hWi `qkrlJn;o . Moreover, the functionals
are indeed in the dual space to d eg !=�T�]) .
Next, suppose that E

'F, �
s 'tp@'<�SZ (11)

on d eg !=�T�]) with certain coefficients
s � �
	
	
	�� s  .

Then, we choose a flat bump function ufUwvyxz !=� � ) , i.e. a nonnegative, com-
pactly supported function with support {|!$ZH��}�) which is non-vanishing and satis-
fies u�!=�C)6�O} on {|!$ZH��}�n;o&) . Fix }�_�~�_�� . Since � % is not a singular point of � ,
there exists a ��U|� �z with minimal ^ �6^B_�` such that [
�C!=� % )X��SZ . Employing the
separation radius ��� , the function

u % !=�Q)R� }�R� !=����� % )
� uC!�!=���q� % )�n��
��)

then satisfies � \ u % !=��'t)I�fZ for all ^ G ^�_m` and �C'W��f� % . Furthermore, we have
� \ u % !=� % )T�SZ if G ���� and � � u % !=� % )��O} . Hence, (11) gives in particular

Z��
E
'
, �
s ';p�'B!�u % )�� E� \ � �@�

E
'
, �
s '�[ \ !=��';)�� \ u % !=��'t)R� s % [3��!=� % )(�
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which implies ������� . Since � was chosen arbitrarily, this shows that the function-
als are linearly independent. �
This proposition is a generalization of the results in [4], where only constant coeffi-
cients have been allowed and of the results in [22], where also variable coefficients
without zeros were treated.
Note also that the reproducing kernel Hilbert space does not have to be a Sobolev
space at all. It is only necessary that the Hilbert space contains bump functions of
the described form. Hence, the results remain true, if, for example, function spaces
associated to Gaussians or (inverse) multiquadrics are considered.
Next we turn to error estimates. We need a simple auxiliary result.

Lemma 3.4 Fix 	�
� with ������	������������� , where � is the order of the
differential operator � . Suppose that the coefficients  ! of the differential oper-
ator � belong to "$#&%('*)�+, -/.�0 . Then, � is a bounded operator from "213 -/.�0 to" 14%('3 -/.50 , i.e. 6 �87 6 9;:=<?>@ ACBED8FHG 6 7 6 9 :@EACBEDJI 7K
�" 13 -/.50ML
PROOF: Take a multi-index NO
QP8RS with T NUT F �V�XW*YZ� . Then,

T [ ! - �87 0 T\� ]]]]]] ^_ `�_ a ' ^b a !
c Ndfe - [ ! % b  ` 0g- [ b ) ` 7 0 ]]]]]]F G ^_ `h_ a ' ^b a ! T [ b ) ` 7iT I

where we used the boundedness of the derivatives of the coefficients. This shows
that

6 [ ! - �87 0 6kj @ AlBED F�G 6 7 6 9 >nmpo q?o@ AlBED
and hence 6 �87 6 9sr <?>@ AlBED F G 6 7 6 9 r@pAlBED6 �87 6 9 r m�t/<?>@ AlBED F G 6 7 6 9 r m�t@ ACBED L
From this, the result for fractional order Sobolev spaces "f13 -/.50 follows by inter-
polation theory. �
Theorem 3.5 Suppose u is the reproducing kernel of " 13 - �vR 0 with �Owx�y��	��z����{����� . Let .X| �iR be a bounded domain satisfying an interior cone condition
and having a Lipschitz boundary. Let � be a linear differential operator of order� with coefficients  ! in " #&%('})�+, -/.50 Finally, let ~ be the generalized interpolant
to 7�
�"�13 -/.50 from Definition 3.1. If � |�. has sufficiently small mesh norm�(�

, then for W FZ�QFH� , the error estimate6 ��7�YO��~ 6kj?� AlBED F�G � 14%('5% R A +�� 3 %n+���� D m� 6 7 6 9 :@�AlBED
is satisfied.
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PROOF: Note that ����������
	��������������� by assumption, while ��� ����������� by
Remark 2.5. Hence, application of � is feasible.
Since �����  "!#�$�%�  by definition, we can apply Theorem 2.8 to derive

& ���(')��� &+*-,/.103254 �76 �98 � 8 �
.;:=< � 8

:=<?>/2A@
B & ���(')�$� &DCFEHGJIK .1032

4 �76 �98 � 8 �
.;:=< � 8

:=<?>/2A@
B & �('L� & C EK .M032ON

where we have also used Lemma 3.4.
Next, we follow the ideas in [16]. Our assumptions on the region 	 allow us to
extend the function ���P������
	�� to a function Q7��������R������� . Moreover, since �	 and Q7�S� 	 !T��� 	 , the generalized interpolant ��!U�9V to � coincides with
the generalized interpolant �XW�V to Q�� on 	 . Finally, the Sobolev space norm on� �� ��� � � is equivalent to the norm induced by the kernel Y on � �� ��� � � (Lemma
2.4) and the generalized interpolant is norm-minimal (Lemma 2.3). This all gives

& �(')� & C EK .1032 ! & Q7�Z')�[W�V & C EK .10\2�4]& Q7�Z')�[W�V & C EK ._^a`J24 � & Q�� & C EK .b^c`92 4 � & � & C EK .1032dN
and this establishes the stated error estimate. e
The most important choices of fg!�h and fi!Pj yield

& ���Z')��� &+* K .M03254 ��6 �98 �B & � & C EK .M032& ���(')��� & *%kl.M032 4 ��6 �98 � 8 �
< �B & � & C EK .1032dm

As a consequence, using the compactly supported functions from Definition 2.6,
we have to set nZ!Po�p ��q pir �Os h , where o is the smoothness index of the compactly
supported functions, i.e Yt!vu�wyx z �?{ &R|%& � � � � � z ��� � � . Note that this o is different
from the o in Theorem 3.5. As a matter of fact the o in that theorem is given by} n�~�!�o�p } ��q p#r �Os h9~ .
Corollary 3.6 Denote by o the smoothness index of the compactly supported func-
tions from Definition 2.6. Let oL����'

:� if q is odd or oL��� if q is even. Let

{�� ��� z 8 ���
: �$� `

@��
K��� . Suppose ����� z � . �X� :=2;< �� �
	�� . Then, employing the basis

functions from Definition 2.6 yields

& �R�Z'��$� & * k .10\2 4 �76 z 8 �$�
�KB & � & CF� @�� ` @��A�M� KK .10\2 m

3.2 Boundary Value Problems

The collocation problem of the previous section will already be useful in its form
in our application to dynamical systems; however, also boundary value problems
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will occur, cf. Section 4. For other applications like solving elliptic PDEs it is even
crucial to incorporate also boundary values.
In order to solve a boundary value problem of the form (2), (3), we have two linear
operators � and ��������� , the values of which are given on 	 , 
�	 , respectively. The
ansatz for the approximating function � reflects this. We choose two sets of points,���� ����� ����������� ��������	 and

! "� ��������# ���������$� �%�&#(')���*
�	 and define the
functionals by +-, � .0/2143�5 � � for 6�798"7;: �/2143�5 ��� for :=<�6�798"7;:�<?> � (12)

The mixed ansatz for the approximant � of the function @ is then given by

�BAC�(DE� �&#('FGIH ��J
G +LKGNM AC� �PO D

� �FG�H � J
G A /21�Q&5 �RD K M AC� �PO DS< �&#('FGIH �&# � J

G A /21�QR5 � � D K M AC� �PO D � (13)

where we will assume that �&�T�0�U� . The coefficient vector JWVYX ��#(' is deter-
mined by the interpolation conditions

A /2143R5 �&DIAZ�[D\� A /2143�5 �RDIAC@�D]�W^_AC� , D � 6�7`8!7;: (14)A /2143�5 � � DIAZ�[D\� A /2143�5 � � DIAC@(D]��a"AC� , D � :�<�6b798T7;:c<`> �
(15)

Plugging the ansatz (13) into both (14) and (15) one obtains

A /2143&5 �RDIAC@�D\� �FG�H �dJ
G A /2143R5 �&D 1 A /21�Q�5 �&D K M AC� �PO D

< �&#('FG�H ��# � J
G A /2143&5 �&D 1 A /21 Q 5 � � D K M AC� �PO D

for 6�798"7;: and

A /2143�5 � � DIAC@�D\� �FG�H � J
G A /2143R5 � � D 1 A /21 Q 5 �&D K M AC� �PO D

< �&#('FG�H ��# �-J
G A /2143&5 � � D 1 A /21�QR5 � � D K M AC� �PO D

for :�<W6�798!7e:�<Y> .
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This is equivalent to the following system of linear equations��������
with

��	�
��� � �� ����������������� �"!#�$�%��� �'& (16)

For the definition of the matrices cf. the following definition, where we summarize
the mixed interpolation problem.

Definition 3.7 (Mixed interpolation problem) Let (*) �,+'- )'. &/&/& . - �103254 and(76 �
�8+'- ��� ) . &/&/& . - �%��� 0�2:9;4 be two sets of pairwise distinct points and let< � 4>= � be the solution of (2), (3).
The interpolation matrix

��
from (16) has sub-matrices

�?�A@CBEDGFIH �J� ��!E� ,
:�@CKLDGFIH ��� ��!E� and

���M�?@CBN�DGF H ��� ��!E� with elementsBODQP FR� @TSLU'VXW�Y�H U @TSLU[Z�W�Y�H"\^]1@Q- .`_ HK DQP acb � � @TSLU'VXW�Y�H U @TSLUedfW�Y � H \ ]g@Q- .`_ HB �h b � P a`b � � @TS Uji W�Y � H U @TS U dkW�Y � H \ ]1@Q- .`_ H &
for l1monp.rqsm>t , tvu�l1m�w;.cx�m>tAuzy . The reconstruction { of < with respect
to the sets ( ) and (76 and the operators

Y
and

Y��
is given by

{ @Q-|H}� �~h/� ) � h @TSLUji�W�Y�H \ ]g@Q- .`_ H u �����~h/� �%� ) �
h @TSLUji�W�Y � H \ ]1@Q- .`_ H .

where
� ��� ����� is the solution of

��������
with

�NF�����@Q-NFjH
for l3mzq�m5t and�NF�����@Q-EFIH

for t�u�l1m�q7m>t8u�y , respectively.

As in the case of one operator, it is easy to show that the functionals � F , this time
defined by (12) are linearly independent.

Proposition 3.8 Suppose
]A� ��� = � is a reproducing kernel of �	�6 @ ��� H with���8� u��k�^� . Let

Y
be a linear differential operator of degree � . Let ( ) �+'- ) . &/&/& . - � 072�4 and (76 ��+'- ��� ) . &/&/& . - �%��� 0 2�9;4 be two sets of pairwise

distinct points such that ( ) contains no singular point of
Y

. Then, the functionals�>�:+ ��)'. &/&/& .�� �%����0 with � F ��S U[Z W�Y , l3m�q�m�t and � F �	S U[Z for t8u�l�mq�m>t�u�y are linearly independent over �	�6 @ ��� H .
Next we turn to error estimates. To this end we have to make certain further as-
sumptions on the boundary.
We will assume that the bounded region 4	2 � � has a

 h P �
-boundary 9;4 , where� � w�u�{ with w � � � and { �z¡ ¢ .'l H . This means in particular, that 9;4 is a �s£�l

dimensional
 h P �

-sub-manifold of � � . It also means that 4 is Lipschitz continuous
and satisfies the cone condition. For details, we refer the reader to [23].
We will represent the boundary 9X4 by a finite atlas consisting of

 h P �
-diffeomor-

phisms with a slightly abuse of terminology. To be more precise, we assume that

12



���������	�
��� 	 , where � 	 ����� are open sets. Moreover, the set � 	 are images of����� �
-diffeomorphism � 	���� � � 	"!

where �$#%�'&)(*!,+.- denotes the unit ball in
���0/ �

. Finally, suppose 1,2 	43 is a
partition of unity with respect to 1 � 	"3 . Then, the Sobolev norms on

���
can be

defined via 5 6 587 9;:<>=@?,ACB #
�D	E
�
5 & 6 2 	4-GF � 	

587
9H:<=JIKB�L

It is well known that this norm is independent of the chosen atlas 1 � 	�! � 	"3 but this
is of less importance here, since we will assume that the atlas is fixed. For us, the
next also well known result will play a crucial role.

Lemma 3.9 Suppose
�M�N� �

is a bounded region with a
� ��� �

-boundary
�C�

.
Then, the restriction of 6PORQ�ST & � - with U #WVYX[Z to

���
is well defined, belongs

to Q S / �]\ TT & �C� - , and satisfies5 6 5 9;^E_0`ba]cc =@?,AdB�e
5 6 5 9 ^c =@AdB L

Moreover, we now have two different mesh norms, fhg ` � A for the domain part andf g c � ?.A for the boundary part. Using the atlas 1 � 	 ! � 	 3 , we simply define the latter
to be f g c � ?,A �i# jHkml�on0	pn � f*qsr � I
with t 	u# � / �	 &wv Tyx � 	.- � � . As mentioned before, we will assume the atlas
fixed and hence do not have to care about the dependence of f g c � ?,A on the atlas.

Theorem 3.10 Suppose z is the reproducing kernel of Q ST & ��� - with V{�i#}| U*~��� X���4� . Let
�W�����

be a bounded domain having a
����� �

-boundary. Let � be a
linear differential operator of order � with coefficients � � in Q � /���� �� & � - Finally,
let Z be the generalized interpolant to 6�O�Q�ST & � - from Definition 3.7. If the data
sets have sufficiently small mesh norms then for + e���e�� , the error estimates5

� 6�� � Z
5��
< =@ACB e � f S /���/�� = �]\ T / �]\

7 Bb�g ` � A
5 6 5 9 ^c =@AdB (17)5 6;� Z 5 � < =@?,AdB e � f S / �]\ T / = �0/ � B)= �]\ T / �]\
7 B��g c � ?,A
5 6 5 9 ^c =@AdB (18)

are satisfied.

PROOF: Estimate (17) follows as in Theorem 3.5. For the second estimate, note
that the functions 6 	�#�&o& 6�� Z4- 2 	�-GF � 	 belong to Q S / �]\ TT &)�H- and vanish on t 	 .
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Hence, using the definition of the Sobolev norm on ��� and Theorem 2.8 yields

�����	�
��� ������������ ������� ��� � ���  �!�#"$�
% & ���'����( �

�*)!+ �-,/. +0�*12+ � �3� �-,/. + �-, � �546�7�8:9 " ��� � � � ;=<�>2?A@-BB �#"$�
% & ( �

�*)!+ �-,/. +0�*12+ � �3� �-,/. + �-, � �54��C B 9 �D� ���E�F�G� � ; <�>H?A@�BB ���D�I�
% & ( �

�*)!+ �-,/. +0�*12+ � �3� �-,/. + �-, � �54��C B 9 �D� ���E�F�G� � ; <B �����

for J %LKNMPO
and the case

K � O
is treated in the same fashion. Finally,

since
�

is a norm-minimal interpolant, the norm in the last expression can again be
bounded by the norm of

�
. Q

The two most important estimates for the boundary part are hence�����F�
� SRT������� % & (
)!+G1 ,/.C B �D� ���U� ; <B �#���WV���E�F�G�  B ������� % & (
)!+ �-,/.C B 9 �D� ���U� ; <B ������X

The proof of Theorem 3.10 shows, that the following alternative version of Theo-
rem 3.10 is also true.

Corollary 3.11 Suppose Y[Z\�I� is a part of the boundary satisfying

Y � ]�����'^`_ �ba ���dc X (19)

This means, that the first e charts f _ � Vhg � i
�'��� are exclusive for Y , or that, forJ %kjl% e , _ �da ^ ���nmTYoc �qp

. Suppose further, that the boundary collocation
points r . are chosen only on Y , while the interior points are still chosen in � , then
estimate (17) remains valid and (18) becomes���E�F�
�  � ��s � %t& (

)!+ �-,/. +0�*12+ � �3� �-,/. + �-, � �54C B 9 s ���U� ; <B �#��� V (20)

where ( C B 9 s �tu=v!w �Wx2�Dx  ( 7�8:9 " with y � defined as before.

As a matter of fact, neither condition (19) nor the fact that r . ZzY are necessary
to derive (20). But if (19) is not satisfied, the fill distance ( C B 9 s might be larger
than necessary if r . is only chosen from Y . On the other hand, if r . is dense on
all of ��� , than, of course, (18) implies (20).
Considering again the compactly supported functions { �t|~} 9 � ^ ���H� . c , i.e. choos-
ing � ����� ^�� � J�cW��� gives this time

14



Corollary 3.12 Let ���������
	�� if  is odd or ����� if  is even. Let����������������� ��! "$#&%')(* . Suppose + �,� �-��.0/1��� 243655 798;: . Then, employing the ba-
sis functions from Definition 2.6 yields<>= +?� =A@�<>BDC .FEG2�H IKJ �
���L��� 365M %ON E < + <QP?R #&ST"$#&%VUXW '' .XEG2ZY (21)< +?� @�< B C .F[\EG2 H IKJ ����� 365M ' N [\E < + < P]R #^ST"�#^%VUFW '' .FEG2O_ (22)

A similar statement holds also for `ba�c 8 , cf. Corollary 3.11.

3.3 Elliptic PDEs

We now consider the following elliptic operator of second order in a bounded do-
main 8 aed / with a sufficiently smooth boundary

= + 7gfh:�i0j /kl N mQn � o l m 7gfh: c l N m + 7gfh:qp /k l n � r l 7gfh: c l + 7gfq:sp � 7gfh: + 7gfh: (23)

where o ,
r

and � are bounded, o l m 7gfq:tj o m l 7gfh: (symmetry) and � 7gfq: Heu holds for
all f � 8 . Moreover, let

=
be strictly elliptic, i.e. there is a constant vw� u such

that v <Zxy< 55 H /kl N m$n � o l m 7gfq: x l x m
for all f � 8 and

x � d / . Then, if + � IKz 7 8;:q{ I 5 798;: is the solution of= + j | in 8+ j } on c 8 Y
it enjoys the following estimate (see [9, Theorem 3.7])< + < BDC .XEG2 H < } < B^C .X[\E~2 p I v < | < B^C .FEG2 Y (24)

where the constant I depends on the diameter of 8 and on
< r < BDC .FEG2 	1v .

Corollary 3.13 Assume that the solution + belongs to ���5 798;: with �g�^�K��� p �	�� .
Then, the error between + and its collocation approximation

@
can be bounded by< +?� @&< B C .XEG2 H I���J � �G5$��/�365M %ON E p J � ��/�365M ' N [
E�� < + < P]�' .XEG2H I�J � �G5$��/�365M < + < P��' .XEG2 Y

where J M j������h� J M %ON E Y J M ' N [\E�� .
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PROOF: Using Theorem 3.10 and (24) gives���������	��
������� ���������	��
�������������	� �!�"�#���	��
�����
� �%$�&�')(�*+(�,.-/*02143 � �5&�')(�,.-/*07683 �9�;: ��� �8<�=6 ������>

?
Note that this result unfortunately means that we have to choose a higher data
density in the interior than on the boundary.
The result for the compactly supported functions is���!����� ��
����� �@�A$9&�B9(�C�-/*02143 � �D&�BE(GFH-/*0I683 ���G: ��� � <�J/K�LNMOK 1QP�RH66 ����� >
In the case of constant coefficients, i.e. SUTWVYX[ZG\^]_S`TWV , a8T4X[Zb\^]Aa8T and cdX[Zb\^]ec for
all Zgf@h , this result was obtained in [4] using a Transformation Theorem. Our
result, however, also holds for non-constant coefficients and is mainly a simple
application of Theorem 3.10.

4 Dynamical Systems

4.1 A Short Introduction

In the theory of dynamical systems given by an ordinary differential equation

iZj]lk ZkYm ]onpX[ZG\8q
where Z7X m \rfts , , one is interested, among other things, in the construction of Lya-
punov functions. The definition goes back to Lyapunov, cf. [13]. These Lyapunov
functions are a tool to determine the basin of attraction of equilibria or other invari-
ant attracting sets. The main characteristic of a Lyapunov function uvf � F X[s , q4s#\
is that its orbital derivative uxwyX[Zb\ , i.e. the derivative along solutions of the differ-
ential equation, is negative. The orbital derivative is given by

u w X[ZG\ ] � u�X[ZG\ ] ,z
T|{ F n.T/X[ZG\/}YTHu!X[Zb\

and defines thus a first-order differential operator
�

of the form (2).
It is well known that there exists a special Lyapunov function, which satisfies the
linear partial differential equation of first order

� u!X[Zb\2]~u w X[ZG\I] ,z
T|{ F n.T/X[ZG\/}YTHu!X[Zb\2]

��� Z � Z�� � ** ]��IX[Zb\8q
which is of the form (1). We approximate this solution by

�
and thus obtain a

function
�

with negative orbital derivative itself, i.e. a Lyapunov function. We will
now explain the method in more detail.
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Consider the ordinary differential equation�
� � �������
	 (25)

where �������������	������ , ����� , and ��������� ��� . We search for solutions �!����� ,� ��" of the initial value problem (25), ��� " �#�%$ . We denote these solutions
also by &�' $)(*�+�!����� . Since � is at least -, , we have existence and uniqueness of
solutions of this initial value problem locally in time.
Since one cannot determine the solutions of (25) in general, dynamical systems
theory is interested in the qualitative long-time behavior of solutions. Therefore,
one studies simple solutions such as equilibria, i.e. solutions which are constant in
time.

Definition 4.1 �/.0�1� � is called an equilibrium for (25) if �����2.3�#� " . Then&�' ��.4�5�6. for all � ��" , i.e. the constant function �������7���2. is a solution of (25).

The concept of stability describes the behavior of solutions near the equilibrium��. . Stability can be analyzed using the linearization of � at �8. .
Proposition 4.2 Let ��.9�:��� be an equilibrium for (25). If all eigenvalues of
the Jacobian ; ����� . � have negative real part, then � . is asymptotically stable, i.e.
stable and attractive, which is defined as follows:< Stability: for each =?>�" there is a @A>B" such that $C�#DE���2.F	 @ � implies that&�' $ exists for all � �B" and that &2' $G�HDI����.F	 = � for all � �B" .
< Attractivity: there is a @FJ�>B" such that $C�KDI����.3	 @LJ � implies that &�' $ exists

for all � ��" and that MONOP-'RQ�ST&�' $U�5�6. .
For asymptotically stable equilibria �2. we can define the basin of attraction V ���
.L� ,
which is the set of all initial conditions, for which the solution tends to � . as�XWZY . The set DE����.F	 @ J � , cf. the definition of attractivity, is a subset of V ���[.L� .
However, since the basin of attraction is a global object in contrast to the local
character of the asymptotic stability, its determination cannot be obtained by lin-
earization.

Definition 4.3 Let � . �)�!� be an asymptotically stable equilibrium for (25). Then
we define the basin of attraction as

V ���6.L�\(*��]^$-�)� �`_ MRNOP'RQUS &�' $U�5�6.Facb
Note that V ����.L�ed� f and V ����.L� is open.
A method to determine subsets of the basin of attraction is the method of Lyapunov
functions. The main characteristic of a Lyapunov function g �h�,L������	��i� is that
its orbital derivative g J ����� , i.e. the derivative along solutions of (25), is negative.
The orbital derivative can be calculated by the chain rule:j

j � g �����������7�+kml g ���!�������
	
�
��������no� �pq
r ,

�ms q g �[�����������t� q �����������
b
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Definition 4.4 Given a function ���������
	����	�� its orbital derivative with respect
to (25) is defined as

�����
������������� �
�!�"$#%�
����&�� �'(") �
* ( � �
�!�+# ( �
�!�",

Note that we do not need to know the solution of (25) to calculate the orbital deriva-
tive. Moreover, the orbital derivative is a linear differential operator of first order
of the form (2): -

�.�
�!���/�����
�!�0� �' 1 ) � #
1
�
�!� *

1
���
���",

Here, the singular points, i.e. those points where ��2�354
-
���76 , are simply the

equilibrium points, i.e. those points satisfying #%�
�!�8�96 .
The following theorem explains the use of Lyapunov functions for the determina-
tion of the basin of attraction.

Theorem 4.5 Let :;�<�5���
	����	�� and =?>@	�� be a compact set with neighbor-

hood A such that �%BC�ED= . Furthermore, let

1. =F�HGI���JALKM:N�
�!��OQPSR with an P@�T	 , i.e. = is a sublevel set of : .
2. : � �
�!��UV6 for all �W��=7XYGI� B R , i.e. : is decreasing along solutions in=ZX[GI�\B]R .

Then =^>Q_S�
� B � .
Hence, a Lyapunov function provides information on the basin of attraction through
its sublevel sets. However, it is not easy to find a Lyapunov function for a general
system (25). Although existence of several types of Lyapunov functions is known,
their construction is not easy.
For linear differential equations, i.e. #%�
��� is linear, however, one can easily cal-
culate a Lyapunov function. For a nonlinear system we consider the linearized
system at the equilibrium point, namely `�L�baY#!�
�cB��d�
�feg�%B�� . This is a lin-
ear system and, thus, one can easily calculate a Lyapunov function of the formh �
�!�i�j�
�Tek�%Bl�+m��Y�
�;en�\BI� , where the positive definite matrix � is the unique
solution of the matrix equation a�#%�
��B�� m �Qo<�ia�#%�
�\BI�0�@eqp , cf. [19]. The func-
tion h is not only a Lyapunov function for the linearized system, but also for the
nonlinear system in a neighborhood of �cB , for details cf. [7].

Lemma 4.6 (Local Lyapunov function) Denote by �r�Q	 �tsu� the unique solu-
tion of the matrix equation a�#%�
��B�� m �HoH�vaY#!�
�\BI�w�xe[p and define the local
Lyapunov function h �
���0���
� ey�\B�� m ���
��ey�%Bl�",
Then, there is a compact set = with a neighborhood A such that �zBS� D= . More-
over, h � �
���CUH6 holds for all �f�{=|XiGI�%B]R and =}�~GI�f�{AFK h �
����O�PSR withP@��6 .
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We return to Lyapunov functions which have negative orbital derivative for all ������ ���	��
������� . We consider special Lyapunov functions satisfying certain equations
for their orbital derivatives. In the first part of Theorem 4.8 � � ������������������� is a
feasible candidate. For the second part we need

Definition 4.7 (Non-characteristic hypersurface) Let ��� �"! �$#&%(')# � . The set*,+ #&%
is called a non-characteristic hypersurface if

- * is compact,

- � � ����/. holds for all �0� * ,

- �21 � �3�546. holds for all �0� * , and

- for each ��� ��� �7�	�8
9������� there is a time : � ��;� # such that <>=@?BA	CD��� * .

An example for a non-characteristic hypersurface is a level set of the local Lya-
punov function, cf. Lemma 4.6.

Theorem 4.8 ([7])

1. Let � � ��E�F�G! �$#&%(')# � satisfy the following conditions:

(a) � � �3�EH6. for �,I�J�7� ,
(b) � � �3���LK � ���M�,������N� � with OMHP. for �RQS�3� ,
(c) for all TUH6. , � has a lower positive bound on

# % 
5VXW � ���	� .
Then, there exists a Lyapunov function Y"ZU�F�G! �D�[� � � � ')# � such that

\ YZ � �3�]��^�Z � ��E_B�`��� � �3� for all �0� ��� � � �ba
2. Let c�Hd. , let

*
be a non-characteristic hypersurface, see Definition 4.7,

and ef�6�G! � * ')# � . Then, there is a Lyapunov function Y � �6�g!
�D��� � � �h


������� ')# � such that

\ Y �
� �3�i� ^ �

� �3�E_B�j�kc for all �0� �[� �7�	�
k���7��� '
Y �
� �3�i� e � �3� for all �0� * a

4.2 Approximating Lyapunov Functions

Theorem 4.8 shows two possibilities to approximate Lyapunov functions. We can
use the first part to approximate Y Z by solving the problem

\;l Z � ���� \ Y Z � �3�]�j�&� � �� ' ��� �[� �7�	�ba
This is an example of an operator problem of type (1) and our theory from Section
3.1 applies.
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On the other hand, the second part of Theorem 4.8 implies to solve the boundary
value problem

���������
	�� �������	�������� ������������	 ��!"�#��$%�
� � ���
	�� &'���
	(� ����)*�

such that we can use our theory from Section 3.2.
However, in both cases the application of our error estimates has now a different
character. An error bound of the form

+ �-,'���
	.�/���0���
	 + � + ,213���
	.�/��13���
	 +0465

leads to � 1 ���
	-78, 1 ���
	 9 5:4<; �
provided that

5
is sufficiently small. Remember that

,
, as a Lyapunov function

satisfies
, 1 ���
	 46;

. Hence, in this case
�

is itself a Lyapunov function.
However, for the specific choices of Lyapunov functions from Theorem 4.8 we
have a problem if

�
is close to

� �
. In the first case,

, 1= ����	:�> = ���
	��?�A@.����	
and@B���
	DC ;

as
�ECF� �

. Hence, this estimate will not hold near
� �

and thus
� 1 = may

be positive near
�
�

. The same problem arises for the approximation
�%�

of
,G�

, since, �
is not defined in

� �
. Fortunately, locally, it is easy to determine the basin of

attraction by linearization, cf. Lemma 4.6.
Before we can apply the results of this paper to the calculation of Lyapunov func-
tions, we need some information about the level sets of Lyapunov functions. We
assume that H is bounded in

����� � 	
. This can easily be achieved by considering

the system I�J�?KL���
	�MN� OQPSR�T=VU.W OQPNR�T WYX . Note that Z KL����	 Z 7 =� . This system has the

same equilibria and basins of attraction as the system (25), since
K[���
	

is obtained
by multiplication of H ���
	 by a positive, scalar factor, i.e. the orbits of both systems
are the same, but the velocity is different.

Theorem 4.9 ([7]) Let
� �

be an equilibrium of I�\� H ����	 , H ��]2^#��_A`[�a_A` 	 , bdcfe
and let the maximal real part of all eigenvalues of ghH ��� � 	 be negative. Let H be
bounded in

�i��� � 	
and let

,��j,lk
, m � e �on be one of the functions of Theorem 4.8.

Then for all pdq ;
the set

!"�8�r����� � 	A�s!"� � $ + ,'���
	i7 p $utv!"� � $
is compact.

Moreover, there is a
]2^

-diffeomorphism

w �E] ^ �yx `{z = �|!"�����i��� � 	 + ,h����	�� p $�	(�
where

xB`}z = ��!"���~_A` + Z � Z � � e $ . For
, �

we have ����� R���R"� , � ���
	*�����
.

In the second case
, �

, one first has to link the function
, �

to a local Lyapunov
function to obtain the above theorem. For details, see [7].
In order to apply the results of Section 3 to approximate the functions

, = , , � of
Theorem 4.8, respectively, we have to choose a set � in an appropriate way. For, = we consider the set � MN��!"���������
��	 + , = ���
	-7 p $[��!"����$ , which has a smooth
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boundary. For ��� we choose �����	��
������
���������
���������� ��
��"!$# and %&��
��"')(*�
where % is the function defining the non-characteristic hypersurface, cf. Definition
4.7, and #�+$( is large enough such that ��
,������
 � � �-��
 � �.� � � ��
/�0�1#*��243�65 .
This set � has a smooth boundary as well.

Theorem 4.10 Let 78���:9�;=<>+@?�ACB&DFE . Consider the dynamical system defined by
the ordinary differential equation G
H��I���
�� , where IJ�LK�MN��OQPSRTOQP/� . Let 
 � �OQP
be an exponentially asymptotically stable equilibrium. Let I be bounded in ����
 � �
and denote by �VUH�	W@X� �Y����
 � �ZRTO"� , � � �[W6X� �Y����
 � �\����
 � ��RTO]� the Lyapunov
functions of Theorem 4.8.

1. The reconstruction ^NU of the Lyapunov function �-U with respect to the oper-
ator _0`a��
��b�:ced�`a��
��ZRfI���
/�Tg and a set hji[�k���l��
m�n����
 � �o����U���
/�4!#*�"�b��(*� , #�+$( , satisfies

p ^�q U0r �oqU pts=ubvxw�y � p ^�q U Az pts=ubvxw�y !1K>% X�{ U {|PF} �~ p �/U pZ���� vxw�y��
2. Let 3��k��
�������
 � �V����
 � ���*%-��
/���@(*� be a non-characteristic hypersur-

face and set ������
)������
 � �a����
 � �,�/� � ��
/�C!k# and %&��
���'�(*� , where#.+)( is large enough such that ��
,�����
 � �/�b��
 � ����� � ��
/�0��#*��2�3L�65 .
The reconstruction ^�� of ��� with respect to the boundary value problem_0`a��
��0�kced.`S��
��ZRfI���
��Tg , `S��
/�0��(C�1����
�� for 3 and the data sites hHU��)�
and h � �$3 satisfiesp ^�q� ��
�� r �>q� ��
�� pts=u�vxw�y � p ^�q� ��
��VA�� pts=u�v�w�y

! Ko% X�{ U {|P } �~]�f� w p ��� p � �� v�w�y Rp ^ � ��
/� r � � ��
�� p s u v���y � p ^ � ��
/� p s u vx��y ! Ko% X�{|P } �~ � � � p � � p ���� vxw�y �
PROOF: Note that the data sites 
|� , ?�!m��!$� are no singular points, i.e. I���
|������( or equilibria in this case, since there are no equilibria in ����
 � �V����
 � � .

1. We apply Theorem 3.5 with ���[? . The set � is bounded and has a smooth
boundary by Theorem 4.9 and thus satisfies the conditions of Theorem 3.5,
cf. [23]. The functions ��� are I��>�,K�M*��OQP&RTO]� and thus in W M¡ �e��� .

2. We apply Theorem 3.10 with �¢�£? . The sets � and 3�� ¤�� are bounded
and � has a smooth boundary by Theorem 4.9 (see also [23]). Thus the con-
ditions of Theorem 3.10 are satisfied. The functions �¥� are I��C�LK M ��O P RTO]�
and thus in W M¡ �e��� . ¦

The next proposition describes how the calculation can be achieved for radial basis
functions, in particular those from Definition 2.6. We set § � �Y(¨���©( since thenª �«��� r §"U��Y(¨� p I���
*� � p � , cf. (26). Note that the first term of (26) is at least of order¬ ��#¨� for #o®( .
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Proposition 4.11 ([7]) Let � be given by ���������
	������������������������� Let ����������	� ����� �"!#� be a sufficiently smooth radial basis function. Define
� $

and
� ! by

� $ ��%&�'	 (
%
)) % � ��%&� for %�*,+-�� !.��%&�'	 / $0211 0 �3$ ��%&� for %�*,+-�+ for %4	5+-�

Then, the matrix elements 687�9 of the interpolation matrix : in Definition 3.1 are
given by

6;7"9 	 � !.����� 7=< �>9?�@�A��� 7=< �>9B���C��� 7 ���A���>9 < � 7 ���C���C9.���< �3$ ����� 7=< �>9?�@�A�D�C��� 7 �����C���C98����� (26)

The approximant E and its orbital derivative are given by

EB�����F	 GH9JI $BK 9-���>9 < �L���C���C98��� �M$ ����� < �C9?�@���
EONP�����F	 GH9JI $ K 9RQ � !.����� < �>9S�@�A��� < �C9&�����������A���>9 < �L���C���C9.���< �3$ ����� < �>9S�@�A��TR�������"TR���C9.���VU-�

Table 4.2 shows that the necessary functions
�=$

and
� ! can explicity be computed

in case of the Wendland functions and their simple form.�RW@XY$ �PZ@%8� �\[AX !8�PZ�%&�� ��%&� � ( < Z@%&� [ ]_^ ` Z@%ba (@c � ( < Z@%&�ed]f^Yg.h �PZ@%8� ! a (ji Z@%ba g c�M$ ��%&� <bk +.Z ! � ( < Z@%&� W] < h.l Z ! � ( < Z@%&�em]_^ ( a h Z@% c� !.��%&� l +.Z W $0 � ( < Z@%&� !] ( l i +.Z [ � ( < Z@%&� [ ]
� m X W �PZ@%8�� ��%&� � ( < Z@%&�en] ^Yg k �PZ@%8� W a k h �PZ@%&� ! a i Z@%=a (@c�M$ ��%&� <bk.k Z ! � ( < Z�%&��o] ^ ( l �PZ@%&� ! aqprZ@%ba (@c� !.��%&� h k i Z [ � ( < Z@%&�ed]f^Yl Z@%=a (@c

Table 1: The functions
�f$

and
� ! for the Wendland functions

�MW@XY$ �PZ�%&� , �\[AX !;�PZ@%&�
and

� m X W �PZ@%8� . Note, that these are the Wendland functions of Definition 2.6 up to a
constant.
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Corollary 4.12 Denote by � the smoothness index of the compactly supported
functions from Definition 2.6.
Let ������ if � is odd or ���	� if � is even. Set 
������������������� and ������
 � .
Consider the dynamical system defined by the ordinary differential equation !" �# � " � , where #%$'&)( ��*,+.-�*,+/� . Let "10�$ *,+ be an exponentially asymptotically
stable equilibrium. Let # be bounded in 23� "40 � and denote by 5 � $76'8� �92:� "10 �;-�*<�
and 5 � $76 8� �923� "=0 �/>@? "=0BA -�*<� the Lyapunov functions of Theorem 4.8.

1. The reconstruction C � of the Lyapunov function 5 � with respect to the oper-
ator DFEG� " �H�JILK3EG� " �;- # � " ��M and a set NPORQTSU�V? "W$ 2:� "X0 �ZY=5 � � " �\[]^A >H? "=0BA , ] �`_ , satisfies

a Ccb �Fd 5eb�
agf^h\ikjml � a Ccb � ��n agf^h@iojml [ &)prqtsvuwx a 5 �

a;y{z}| ~���|
u��o� ww ikj=l�� (27)

2. Let ���T? "�$ 23� "10 �/>@? "10BA Y p � " ���'_ A be a non-characteristic hypersur-
face and set Q���? "�$ 2:� "X0 �,>Z? "=0BA Y�5 � � " �3[ ] and p � " ����_ A where] ��_ is large enough such that ? "7$ 23� " 0 �4>H? " 0 A Y�5 � � " �F� ]^A�� ����� .
The reconstruction C � of 5 � with respect to the boundary value problemDFEG� " �7��ILK�E�� " �;- # � " ��M , EG� " �7��_����{� " � for � and the sets of data
sites N ��� Q and N � � � satisfies

a C b � � " � d 5 b� � " � a f h ikj=l [ &Zp qts uwx u}�
j a 5 � a;y�z�|�~���|

u��k� ww ikjml - (28)

a C � � " � d 5 � � " � agf h ik��l [ &Zprq¡ Huwx w �
� a 5 � a;y{z}| ~���|

u��o� ww iojml�� (29)

PROOF: Apply Corollaries 3.6, 3.11, and 3.12, respectively with ¢£�T� . ¤
The method described in this paper has already been used in [6, 7, 8]. However, the
approximation orders derived in those papers were based on Taylor approximation
of first order and hence the results in those papers were significantly worse than the
results of Corollary 4.12.
The theorems and corollaries of this section ensure that the approximation of the
Lyapunov functions 5 � and 5 � produces functions C � , C � , respectively, with nega-
tive orbital derivatives in Q if the data sites are dense enough. For the remaining
neighborhood of the equilibrium "40 we use a local Lyapunov function, cf. Lemma
4.6. We can combine the approximated function C and the local Lyapunov function¥ to a new Lyapunov function ¦C such that ¦C b � " ��§`_ holds for all "�$ Q�>¨? "X0�A and
such that level sets of C are level sets of ¦C .
However, since Theorem 4.5 requires a sublevel set of C within the region whereC b � " �Z§T_ we need information about the level sets of the approximants C . Here,
we make use of the estimate for C � on � , cf. (29). The following theorem shows
that we can cover each compact subset ¦© of the basin of attraction by a sublevel
set of C and thus the approximation method finds every compact subset of the basin
of attraction provided that the sets Q and � are chosen appropriately and the data
sites are dense enough.
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Theorem 4.13 ([7])

1. Let �� be a compact set with ����� � �� � �� �
	�� ���� . Let ��� be an ap-
proximation of � � as in Corollary 4.12 with �����
����� 	�� � � ����� � � ��� �!#"%$ ���� " , where !�&(' is large enough and )* is small enough.

Then there is a +,�.- with ��/� ���0�1�2�3� � � ���%�(+ " .
2. Let �� be a compact set with ���4� � ��5� ��5�6	 � �7��� . Let �98 be an approxi-

mation of �:8 as in Corollary 4.12 with �2�;���<� 	�� ����� $ ���7� " �=�:8 � ���>�! and ) � ���@? '#" , where !A&B' is large enough and )7*DC and )=*FE are small
enough. Let GB�H���.� 	 � � � �I�3) � ���J� '#" be a neighborhood of � � .
Then there is a +,�.- with ��/� GLK1���0�1�2�3�98 � ���%�L+ " .

The proof of 2. compares level sets of � 8 with level sets of � 8 using the estimate
(29) on M and (28) along solutions. For 1. we can derive an estimate near �N� since� � is defined and smooth at � � ; then we use the estimate (27) along solutions.

4.3 Example

As an example we consider the dynamical system given byOQP� � RI�,RTSVUXW<�YPU � RIUZW �8 � 8 U[W<�7Y
and denote the right-hand side by \ � �^]_U=� . The system has an asymptotically stable
equilibrium at

� ' ] ' � with Jacobian` \ � ' ] ' �%�ba R4c R@S' RXc1dfe
For a local Lyapunov function, cf. Lemma 4.6, we need the unique solution g of
the matrix equation

` \ � ' ] ' �ihDgLWLg ` \ � ' ] ' �D�jRlk:]
which is given by g2�nm �8 R �8R �8 Y8fo e
The basin of attraction

	�� ' ] ' � is bounded by an unstable periodic orbit which we
have calculated numerically. We approximate the function �F� satisfying �Zp� � �^]_U=�q�Rl� 8 RfU 8 . For the data sites, we use a hexagonal grid of the formrtsuwv � c3] ' � h Wyx m cS ]{z |S o h�}~ e
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Then, the mesh norm is ����� . Since we have to avoid singular points we must
exclude the origin. We use three different grids with parameters �����	��
� , �������
�� , and ��������
�� and two different Wendland functions as radial basis functions������� � �"!$# % �'&)(*�+( � � with

& �,�.-0/ and 12�,�435/ , cf. Figure 1 and 2. We calculate
the maximal error on the grid��
� 6798 � �03*� �;:=< 1?> �� 3A@ /�CB : < > /� 3A@ /�DB :�EF 

These grid points are inbetween the grid points of the smallest grid above. By our
error analysis the errors G$!$# H and GI!$# � H should behave likeGI!I# � HGJ!$# HLK � �0� � !$M �;NO�� � � !$M �;NO� �P� !$M �;NO� 3
cf. (27), which is approximately reflected in our numerical results, see Table 2.1 / � ��
�� ��
�� ��
� GJQSR T$-0GIQSR � GJQSR � -0GJQSR � � !IM �;NO�� ��
�UVUVWV� ��
��XWY�Z� ��
�JU��[� �0
�\0�.\Y� �4
�]V]V\V� �4
�UV�VUY�/ �0
�J/0�.U ��
��X�VWV] ��
�^�0�Z� �4
�WV]��JW �A
_�.\VW0� ]4
�WV]VWV\
Table 2: The approximation error G H � (a`Ib � �����dcfe�b� ���g�I( � for different Wendland
functions �h!^i � # ! and different grids with mesh norm � for the example discussed
in this section. The ratio of the errors G H is compared to the theoretical bound� !$M �;NO� of Corollary 4.12, (27).
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Figure 1: The grid jlk (black
<

), the basin of attraction bounded by the black
periodic orbit and the set m ��� 3on �qpsr �2t ` b ��� 3on � �u�4v (grey) with the approxima-
tion
`

of the function
e

where
e b ��� 3on � � cq� � c n � with the Wendland function� T # � � �.-0/ (*�h( � � and the grid distance � where left: �	�w��
�� , middle: �x�w��
�� ,

right: �y�z��
� .
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Figure 2: The grid ��� (black � ), the basin of attraction bounded by the black
periodic orbit and the set �����
	�������������������
	�������! (grey) with the approxima-
tion � of the function " where " � ���#	��$��&%�� � %'� � with the Wendland function(*),+ - �/.�021435�63 �  and the grid distance 7 where left: 78�9�;:=< , middle: 7&�9�;:>. ,
right: 7?�@�;:BA .
For the basin of attraction, however, the level sets of � are also important. Even
if the set where �C� is negative is large, a subset of the basin of attraction is only
given by a sublevel set of � within this region. For one example we have calculated
such a sublevel set and have compared it to the sublevel set of the local Lyapunov
function, see Figure 3. If the function D is bounded in the basin of attraction then
one can cover each given compact set in EF���HG� with a sublevel set of � where the
data sites are dense enough, see Theorem 4.13.
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Figure 3: Left: The local Lyapunov function IJ���JK�&�MLONP� : level set I � ���JK�&�
(grey) and a sublevel set �Q�R�S� � �TIU���MWVX�;:>1�YZ which is a subset of the basin
of attraction. Middle: The calculated Lyapunov function � ( [��\1 , 7]�^�;:BA ):
level set � � ���JW�_� (grey) and a sublevel set �Q�@�`� � �M�����MaVb%c�;:>d� which is
a subset of the basin of attraction. Right: Comparison of the subsets obtained by
the local Lyapunov function I (black small), the calculated Lyapunov function �
(black large) and the whole basin of attraction (grey).
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