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Abstract

In this paper, we derive error estimates for generalized interpolation, in
particular collocation, in Sobolev spaces. We employ our estimates to collo-
cation problems using radial basis functions and extend and improve previ-
ously known results for dliptic problems. Finally, we use meshless colloca
tion to approximate Lyapunov functions for dynamical systems.
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1 Introduction

Meshless collocation methods for the numerical solution of partial differential
equations have recently become more and more popular. They provide a greater
flexibility when it comes to adaptivity and time-dependent changes of the underly-
ing region.

Radial basis functions or, more generally, (conditionally) positive definite kernels
are one of the main stream methods in the field of meshless collocation. There
are, in principle, two different approaches to collocation using radial basis func-
tions. The unsymmetric approach by Kansa ([12, 11]) has the advantage that less
derivatives have to be formed but has the drawback of an unsymmetric collocation
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matrix, which can even be singular ([10]). Despite this drawback unsymmetric
collocation has been used frequently and successfully in several applications.

In this paper, however, we will concentrate on symmetric collocation methods
based on radia basis functions, as they have been introduced in the context of
generalized interpolation in [24, 14] and used for €lliptic problemsin [2, 3, 5, 4].
Radia basis functions, in general, are a powerful tool for reconstruction processes
from scattered data (see for example [1, 22]).

In this paper, we study ageneral linear partial differential equation of the form

Lu = fonQ, D
where Q2 isadomainin R™ and L isalinear differential operator of the form
Lu(z) = Z co(z)D%u(x), 2
la|<m

where the coeffi cients have a certain smoothness ¢, € C?(Q, R), i.e. the deriva-
tives of order 8 with | 3] < o exist and are continuous on €.

Moreover, we consider boundary value problems, where additionally to (1), u is
required to satisfy the following boundary condition

u(z) = F(z)forz € o0. (3)

The numerica solution of such boundary value problems by collocation using ra
dial basis functions has been studied by several authors. First error estimates have
been given in [5, 4]. However, despite following a rather general approach, the
authors of those papers show that the problems are well-posed and provide error
estimates only for differential operators with constant coefficients c,. A general-
ization to non-constant coeffi cients without zeros including also a more thorough
discussion of the boundary estimates can be found in [22]. However, in that book
the approximation orders are, to a certain extent, not optimal. Moreover, the re-
striction to nonzero coeffi cients is not suffi cient for our applications in dynamical
systems.

Itisthe goal of this paper to investigate well-posedness of the collocation problem
for the differential operator (2) with non-constant coeffi cients and to state error
estimates with optimal orders in Sobolev spaces. To this end wewill put the setting
inthe general framework of generalized interpolation in reproducing kernel Hilbert
spaces and then use a recent result [16] on error estimates in Sobolev spaces for
arbitrary scattered data reconstruction methods.

Next, we will apply the general estimates to derive error estimates in Sobolev
spacesfor eliptic partial differential equations. Another major and new application
will be the approximation of Lyapunov functions in dynamica systems. Here, the
differential operator is given by the orbital derivative of afunction u with respect
to the ordinary differential equation z = g(z), i.e. by

Lu(z) == (Vu(z),g(z)) = Y _ g;(z)dju(=).
j=1
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This operator L is afi rst-order differential operator of the form (2) with ¢, (z) =
gj(z). The approximation of the orbita derivative for Lyapunov functions has
been studied in [7, 6, 8]. However, the approximation orders of those results can
be improved signifi cantly with the results of this paper.

This paper is organized as follows: in the rest of this section we will introduce
notation which is necessary throughout the paper. Section 2 deals with generalized
interpolation and is mainly a collection of known results, which will be helpful in
this paper. In Section 3 we investigate collocation by radial basis functions, derive
our new estimates and apply these results to eliptic problems. The fi nal section
deals with applications to dynamica systems. In particular, we describe a method
to calculate Lyapunov functions and thus to calculate the basin of attraction of an
equilibrium.

1.1 Notation

We will need to work with avariety of Sobolev spaces. Let 2 C R™ be adomain.
For k € Np, and 1 < p < oo, we defi nethe Sobolev spaces W7 (Q2) to be all u with
distributional derivatives D%u € L,(f2), || < k. Associated with these spaces
are the (semi-)norms

1/p 1/p
lulwg o) = (Z |Da“’£p<m> and [|ull g () = (Z Da“'i(ﬂ)) :

|la|=k lal<k
The case p = oo is defi ned in the obvious way:

|ulwe ) = Sup, D%l Lo () @ [ullz, @) = sup [1D%u]| Lo (@)
al=k al<

We also need fractional order Sobolev spaces. Let1 < p < oo andletT =k + s
with &k € Ny, and 0 < s < 1. We defi ne the fractional order Sobolev spaces
W (€2) to be al u for which the norms below are fi nite:

1/p
|D°‘ “u(y)?
\u|W§+S(Q) = ( // y||n+p5 dxdy ,

1/p
lullgeey = (Il +|u\Wk+S(m) .

Here, || - ||2 denotes the Euclidean distance on R™.

Let X := {z1,...,zn} be afinite, discrete subset of 2, which we now assume
to be bounded. There are two quantities that we associate with X: the separation
radius and the mesh norm or fill distance. Respectively, these are given by

1
= — mi P — h =5 —
ox =5 I}QIICIII% zill2, hxo: sup 1}1& |z — zjll2-



Thefi rst is half the smallest distance between pointsin X, the second measures the
maximum distance a point in 2 can be from any point in X . Frequently, when itis
clear from the context, what the set 2 (or X) is, we will drop subscripts and write
hx or h. Other notation will be introduced along the way.

2 Generalized Interpolation

2.1 Reproducing Kernel Hilbert Spaces

Let H C C(2) be aHilbert space of functions f :  — R and let H* beits dud.
We consider a generalized interpolation problem of the following form:

Definition 2.1 Given N linearly independent functionals Aq,..., Ay € H* and
N function values f1,...,fnv € R, a generalized interpolant is a function s €
H satisfying X\j(s) = f;, 1 < j < N. The norm-minimal interpolant is the
interpolant that minimizes in addition the norm of the Hilbert space, i.e. s* isthe
norm-minimal interpolant if it is the solution of

min{||s|z : Aj(s) = f;,1 <j < N} 4

It is well known that the norm-minimal generalized interpolant is a linear combi-
nation of the Riesz representer of the functionals and that the coeffi cients can be
computed by solving alinear system. Such problems can best be solved in repro-
ducing kernel Hilbert spaces.

Definition 2.2 A reproducing kernel Hilbert space H is a Hilbert space of func-
tions f : 2 — R, which hasa unique kernel @ : 2 x Q — R, satisfying

1. ®(-,z) € Hforal z € Q,
2. f(z)=(f,2(,z))g foralzeQandal f € H.

Here, the Riesz representer of afunctional A € H* issimply given by applying it
to one argument of the kernel, i.e. by AY®(-,y).

Lemma 2.3 ([22, Theorem 16.1]) If H isareproducing kernel Hilbert space then
the solution s* of (4) is given by

N
-3 o
where o € RY isthe solution of the linear system

Aprgpa = f

with Ay a = (AAL®(z,y)) and f = (f;).
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Note that the Matrix Aj ¢ = (a;;) isaGramian matrix because of

and hence positive semi-defi nite. In the last equation we have used the fact that the
Riesz representer of afunctional A isgiven by AY®(-,y). Since the functionals are
supposed to be linearly independent the matrix is even positive defi nite.
Looking at point evaluations \; (f) = dz; (f) = f(z;) aone, showsthat the kernel
of areproducing kernel Hilbert space is positive definite in the sense that al the
matrices

(@(zi,7))1<i,j<N

are positive defi nite, provided that point evaluation functionals are linearly inde-
pendent.

Now, it is easy to see that the kernel of a reproducing kernel Hilbert space is
uniquely determined. On the other hand, also the Hilbert space is uniquely deter-
mined by the kernel. Moreover, every positive defi nite kernel generates a unique
Hilbert space to whichiit is the reproducing kernel. This can smply be achieved by
completing the pre-Hilbert space

Fp(Q) = span{®(-,z) : z € Q}
with respect to the inner product defi ned by

((I)('a 37)7 CI)(-,y)) = (I)(.’L‘,y).

More details about this fact and the construction of such native function spaces can
be found in [22]. Here, the only thing that mattersis that two different kernels can
generate the same function Hilbert space H but with different, but equivalent inner
products.

In such asituation we will say that both kernels are reproducing kernels of H, thus
relaxing Defi nition 2.2.

Moreover, it will be helpful to consider kernels defi ned on al R* instead of only
) C R™. Such kernels are often translation-invariant meaning ®(z,y) = ®(x—vy)
and often even radial meaning ®(z,y) = ®(||z — yl|2).

This will be very useful when it comes to Sobolev spaces. Remember, that the
Sobolev embedding theorem states that W (R™) can be embedded into C'(R™)
provided that 7 > n/2. Hence, in this situation W] (R™) is a reproducing ker-
nel Hilbert space. Unfortunately, the reproducing kernel involves some modifi ed
Bessel functions of the third kind.

However, it is well known that other reproducing kernels of 17 (R™) can be char-
acterized by their Fourier transform

~

B(w) = (27)" / (z)e " .
To be more precise, the following result holds:
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Lemma 2.4 ([22, Corollary 10.13]) Let 7 > n/2. Suppose the Fourier transform
of an integrable function @ : R™ — R satisfies

a1+ [w]3) 7 < Bw) <er(1+ w37,  weR, ©)

with two constants co > ¢; > 0. Then, the kernel @ is also a reproducing kernel of
W7 (R") and the inner product defined by

P —

_ [ fwie),
(fag) T Rn 6(&)) d

is equivalent to the usual inner product on WJ (R™).

The following observation will be of use. It follows straight-forward from the
Fourier inversion theorem.

Remark 2.5 If ® € L;(R") satisfies (5) with 7 > m + n/2, then & € C?™(R").

The most prominent examples of kernels satisfying (5) are the Wendland functions
([20, 21]). They are positive defi nite and radia functions with compact support. On
their support they can be represented by univariate polynomials. They are defi ned
by the following recursion with respect to the parameter k&, cf. also Table 4.2.

Defi nition 2.6 (Wendland functions) LetZ € N, k € N,. We define by recursion
Yeo(r) = (1-m) @)

1
and i (r) = / e (2) dit @)

for r € RS where (z); = max{z,0}.

We fi x the parameter ¢ depending on the space dimension n and the smoothness
parameter k. Then we have the following properties for the function ®(z) =
ek (c||z||2) with scaling parameter ¢ > 0.

Proposition 2.7 ([20,21]) Let k € Nand ¢ := 2] + k + 1. Let ®(z) :=
e (cl|z]|2) with ¢ > 0. Then

1. 4pg(cr) is a polynomial of degree |2 | + 3k + 1 for r € [0, 1].

2. & € C¥* (R, R), where C2* denotes the functions with compact support,
which are 2k times continuously differentiable.

3. The Fourier transform & is an analytic function. It satisfies the decay condi-
tion 5) with7 =k + (n + 1) /2.



Note that these functions generate integer order Sobolev spaces in odd space di-
mensions, while for even space dimensions the order isinteger plus a half.
Though most kernels, which generate Sobolev spaces, are radia, there exist aso
kernels, which are not even trandation invariant, cf. [18, 17]. Our results will hold
regardless whether the kernels are trandation invariant or not.

We end this section by citing ageneral convergence result from [16] in itsimproved
form (see the remarksin [15]).

Theorem 2.8 Let 2 C R™ be a bounded domain with a Lipschitz continuous
boundary, satisfying an interior cone condition. Let 1 < p < 00,1 < ¢ < 00, and
let m € Ny and 7 € R satisfying 7] > m +n/pifp > 1,0r 7] > m+nif
p = 1. Also, let X C 2 be a discrete set with suffi ciently small mesh norm h. If
u € Wy () satisfi esu|X = 0, then

ulwym (o) < ChT_m_MUp_l/q)*\U|W;(Q), (8

where (z)+ = max{z,0}.

3 Partial Differential Equations

3.1 General PDE operators

It is now time to look at specifi ¢ collocation problems. We start with the partial
differential equation (1), i.e. we want to solve

Lu(z) :== Z co(z)D%u(x) = f(x)

la|<m

numerically on a bounded region 2 C R"™. Following the general approach of the
previous section, we defi ne functionals

Aj(f) := 0g; o L(f) = (Lf)(z;)

with scattered points X = {z1,...,zx} C Q. Hence, employing a suffi ciently
smooth kernel @ : Q x 2 — R results in the approximating function

N
s = Z ak(émk © L)y(I)(,y)’ (9)
k=1
and the interpolation conditions become
f(zj) = (z; 0 L)*u(z) = (05, o L)*s(z)
N
= Y ax(0s; 0 L)*(8n, 0 L)*®(, y).
k=1
We summarize the interpolation problem.
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Defi nition 3.1 (Interpolation problem, operator) Let X = {x,...,zn} bea
set of pairwise distinct pointsin @ € R* andu : Q@ — R. Let L be alinear
differential operator.

The interpolation matrix A = (a;x);k=1,....n iSQiven by

The reconstruction s of u with respect to the set X and the operator L isgiven by

s() = ) ak(by, 0 L)!®(z,y),
k=1

where o isthe solution of Aa = f = (f;) with f; = (Jz; o L)"u(z) = f(z;).

According to Lemma 2.3, the generalized interpolation matrix is positive definite,
provided that the involved functionals are linearly independent.

Defi nition 3.2 (Singular pointsof L) Thepoint z € R* iscalled a singular point
of Lifdg oL =0,i.e co(z) =0foral|al <m.

Proposition 3.3 Suppose & : R® — R is a reproducing kernel of W7 (R™) with
T > m + n/2. Let L be alinear differential operator of degree m. Let X =
{z1,...,z N} beaset of pairwise distinct points, which are no singular points of
L. Then, the functionals A; = d; o L arelinearly independent over W7 (R").

PROOF: First of all note that, according to Remark 2.5, (10) is well defined for
reproducing kernels of W3 (R™) even with 7 > m+n/2. Moreover, the functionals
are indeed in the dual space to Wy (R").

Next, suppose that

N
Z dph =0 (11)
k=1

on WJ (R™) with certain coefficients d,, . .., dn.

Then, we choose a flat bump function ¢ € Cg°(R™), i.e. a nonnegative, com-
pactly supported function with support B(0, 1) which is non-vanishing and satis-
fies g(r) = 1on B(0,1/2). Fix1 < j < N. Since g; is not a singular point of L,
there exists a 8 € Nj with minimal |3| < m such that cg(z;) # 0. Employing the
separation radius ¢x, the function

g;(z) = éw — 2;)%g((x — z1)/ax)

then satisfies g, (xx) = 0 for all |a| < m and z, # z;. Furthermore, we have
D%gj(z;) =0if o # B and Dﬂgj(.’L‘j) = 1. Hence, (11) gives in particular

N

N
0="> dixelg) = > D drcalzr)Dgj(xr) = djcs(w)),
k=1

af<m k=1



which impliesd; = 0. Since j was chosen arbitrarily, this shows that the function-
asarelinearly independent. d

This proposition isageneralization of the resultsin [4], where only constant coeffi -
cients have been alowed and of the resultsin [22], where also variable coeffi cients
without zeros were treated.

Note aso that the reproducing kernel Hilbert space does not have to be a Sobolev

space at all. It isonly necessary that the Hilbert space contains bump functions of

the described form. Hence, the results remain true, if, for example, function spaces

associated to Gaussians or (inverse) multiquadrics are considered.

Next weturn to error estimates. We need asimple auxiliary result.

Lemma3.4 Fixr € Rwithk = [7] > n/2 + m, where m is the order of the
differential operator L. Suppose that the coeffi cients ¢, of the differential oper-
ator L belong to Wk ™+1(Q). Then, L is a bounded operator from WJ(Q2) to
W3 ™), i.e

||Lu||WZT—M(Q) < CH“HW;(Q)a u € W3 ().

PROOF: Take amulti-index o € Nj with |a| < k+ 1 — m. Then,

Dl = [ XX (9) 0w

|8 <my<a

< C YYD,

|B|<my<a
where we used the boundedness of the derivatives of the coeffi cients. This shows
that

1D ()] a0y < Ol ol

and hence
|Zullys-mgy < Clullwg)
||Lu||w2k+1—m(g) < C||u||W2k+1(Q)'

From this, the result for fractional order Sobolev spaces W (2) follows by inter-
polation theory. O

Theorem 3.5 Suppose @ is the reproducing kernel of WJ (R™) with k& := |7] >
m + n/2. Let Q C R" be a bounded domain satisfying an interior cone condition
and having a Lipschitz boundary. Let L be a linear differential operator of order
m with coeffi cients ¢, in WX -™+1(Q) Finally, let s be the generalized interpolant
tou € W7 () from Defi nition 3.1. If X C Q has suffi ciently small mesh norm
hx,thenfor 1 < p < oo, the error estimate

1Zu — Ls| 1) < Ch ™ "7Vl yr o

is satisfi ed.



ProOF: Notethat u € W3 (©2) C C™(R"™) by assumption, whiles € C™(R") by
Remark 2.5. Hence, application of L isfeasible.
Since Lu|X = Ls|X by defi nition, we can apply Theorem 2.8 to derive

—m—n(l/2—1
|Lu— Ls|l ) < Chy ™ "2 VP |y — Ls||yyrom g
< Ch;(_m_n(l/Q_l/p)+ llu — 5||W2T(Q),

where we have also used Lemma 3.4.

Next, we follow the ideas in [16]. Our assumptions on the region 2 allow us to
extend the function v € W3 (Q) to afunction Eu € W3 (R™). Moreover, since
X C Q and Eu|Q2 = u|Q, the generalized interpolant s = s,, t0 u coincides with
the generalized interpolant s g, to Eu on 2. Finally, the Sobolev space norm on
W3 (R") is equivalent to the norm induced by the kernel ® on WJ (R") (Lemma
2.4) and the generalized interpolant is norm-minimal (Lemma 2.3). Thisall gives

le = slwz@) = 1Bu—spullws@) < 1Bu = spallwg@n
< C|lBullw; gy < Cllullwg ),

and this establishes the stated error estimate. O

The most important choices of p = 2 and p = oo yield

IN

|| Lu — LSHLz(Q)

ILu— Ls|lr @ < CRY ™ ™lullwgq)-

Chy ™ |lullwy @)

As a consequence, using the compactly supported functions from Defi nition 2.6,
wehavetoset 7 = k+(n+1)/2, where k isthe smoothness index of the compactly
supported functions, i.e ® = 1y (c|| - [|2) € C?(R™). Note that this k is different
from the £ in Theorem 3.5. As a matter of fact the & in that theorem is given by
7] =k+ [(n+1)/2].

Corollary 3.6 Denote by & the smoothness index of the compactly supported func-
tions from Defi nition 2.6. Let k > m —% if nisoddor k£ > m if n iseven. Let

_ n+l
ca € Wo ™ gipnose w € WEFHD/2(Q). Then, employing the basis
functions from Defi nition 2.6 yields

k—m+1

||Lu—LS||LOQ(Q) < Chy 2||u||W2k+(n+l)/2(Q).

3.2 Boundary Value Problems

The collocation problem of the previous section will aready be useful in its form
in our application to dynamica systems,; however, also boundary value problems

10



will occur, cf. Section 4. For other applications like solving elliptic PDEs it is even
crucial to incorporate also boundary values.

In order to solve a boundary value problem of the form (2), (3), we have two linear
operators L and L° = id, the values of which are given on €, 8, respectively. The
ansatz for the approximating function s reflects this. We choose two sets of points,
X1 :=A{z1,--.,zn} C Qand Xo := {zN4t1,-.-, 2N} C 00 and define the
functionals by

/\j:{%-OL, for1<j <N, 12)

bz; 0 L0 for N+1<j<N+ M.

The mixed ansatz for the approximant s of the function w is then given by

N+M

s() = ) opX®(z,y)
k=1
N+M

N
= Y ar(0n o L)!®(z,y) + Y olds, 0 LOB(z,y), (13)
k=1 k=N+1

where we will assume that L° = id. The coefficient vector o € RY+M js deter-
mined by the interpolation conditions

(0g; o L)(s) = (bg;0L)(u) = flzj), 1<j<N (14)
(0; 0 L%)(s) = (04; 0L°)(u) = F(z;), N+1<j< N+M. (15

Plugging the ansatz (13) into both (14) and (15) one obtains

N
(558]' o L)(’U,) = Zak(éwj © L)w(dwk o L)yq)(x’y)
k=1
N+M
+ Z Oék((sxj © L)z((szk 0 Lo)y(b(way)
k=N+1
for1 <j < Nand
N
(6, 0 L0 (u) = > ag(dy; 0 L°)" (8, © L)V®(x,y)
k=1
N+M
+ Z ak(éwj o Lo)w(éwk © Lo)yq)(xay)
k=N+1

forN+1<j< N+ M.
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Thisis equivalent to the following system of linear equations

Aa = B with A := ( ‘é,T ZO ) € RIVEM)x(N+M) (16)
For the defi nition of the matrices cf. the following defi nition, where we summarize
the mixed interpolation problem.

Defi nition 3.7 (Mixed interpolation problem) Let X; = {z1,...,zx} C Q2 and
Xo == {zN+t1,---, TN} € O be two sets of pairwise distinct points and let
u:  — R bethe solution of (2), (3).

The interpolation matrix A from (16) has sub-matrices A = (a;;) € RV*N, O =
(cij) € RV*M and A° = (af;) € RM>*M with elements

aij = (6 0L)" (65, 0 L)!®(z,y)
Cig-N = (8g; 0 L) (6z, 0 L°)V®(z,y)
G _NenN = (6wkoL)“(5MoL°)y<1>(x y).

for1 <4, < N,N+1<k,£< N+ M. Thereconstruction s of u with respect
to the sets X; and X, and the operators L and L° is given by

N N+M
= Zak((swk o L)y(ﬁ(l‘,’y) + Z Oék;((swk o Lo)y¢($ay)a
k=1 k=N+1

where o € RN+M sthe solution of Aae = 8 with 8; = f(z;) for 1 < j < N and
Bj = F(zj) for N +1<j <N+ M, respectively.

Asin the case of one operator, it is easy to show that the functionals A, thistime
defi ned by (12) are linearly independent.

Proposition 3.8 Suppose & : R® — R is a reproducing kernel of W7 (R™) with
T > m+ n/2. Let L be alinear differential operator of degree m. Let X =
{z1,...,zy} C Qand X3 = {zN41,-..,ZN+0} C O be two sets of pairwise
distinct points such that X; contains no singular point of L. Then, the functionals
A:{Al, . >\N+M}VV|th)\ —(5$ oL, 1<3<Nand)\ = 0y, forN+1<
j<N+ M arelinearly mdependent over W] (R™).

Next we turn to error estimates. To this end we have to make certain further as-
sumptions on the boundary.

We will assume that the bounded region © C R™ has a C*»*-boundary 952, where
T=k+swithk € Ny and s € [0,1). Thismeansin particular, that 02 isan — 1
dimensional C**-sub-manifold of R™. It also meansthat Q2 is Lipschitz continuous
and satisfi es the cone condition. For details, we refer the reader to [23].

We will represent the boundary 99 by afi nite atlas consisting of C*+*-diffeomor-
phisms with a dightly abuse of terminology. To be more precise, we assume that
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o0l C UleVj, where V; C R" are open sets. Moreover, the set V; are images of
C*k»-diffeomorphism
pj - B — V}',

where B = B(0,1) denotes the unit bal in R*~!. Finally, suppose {w,} is a
partition of unity with respect to {V;}. Then, the Sobolev norms on 0Q2 can be
defi ned via

K
||u||fzyg(ag) = 231 [ (uw;) o (ij;f/VZﬁ‘(B)'
]:

Itiswell known that this norm isindependent of the chosen atlas {V;, ¢, } but this
is of lessimportance here, since we will assume that the atlasis fi xed. For us, the
next also well known result will play acrucial role.

Lemma3.9 Suppose Q C R” is a bounded region with a C*+*-boundary 09.
Then, therestriction of u € WJ (Q) with 7 = k + s to 9Q iswell defi ned, belongs

to Wy ~/%(89), and satisfi es

||u||W2T_1/2(3Q) < ||U||W27(Q)-

Moreover, we now have two different mesh norms, h x, o for the domain part and
hx,,aq for the boundary part. Using the atlas {V;, ¢, }, we simply defi ne the | atter
to be

hx,.00 = A hr;.B
with T; = o' (X; N V;) C B. Asmentioned before, we will assume the atlas
fi xed and hence do not have to care about the dependence of hy, an on the atlas.

Theorem 3.10 Suppose @ isthe reproducing kernel of W7 (R™) withk := [7] >

m +n/2. Let  C R" be a bounded domain having a C'**-boundary. Let L be a

linear differential operator of order m with coeffi cients ¢, in W.-™+1(Q) Finally,

let s be the generalized interpolant to u € W4 (2) from Defi nition 3.7. If the data
sets have suffi ciently small mesh normsthen for 1 < p < oo, the error estimates

T—m—n(l/2—1
ILu — Ll < ChY, o ™27 2% uflwg o) (17)
7—1/2—(n—-1)(1/2—-1
lu—sll,@0 < ChYHa " D72 uly e (18)
are satisfi ed.

PROOF: Estimate (17) follows as in Theorem 3.5. For the second estimate, note
that the functions u; = ((u — s)w;) o ¢; belong to W;*I/Q(B) and vanish on Tj.
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Hence, using the defi nition of the Sobolev norm on 92 and Theorem 2.8 yields

K
||U_3||I]ip(ag) = ZHUJ'HL(B)
(1—1/2—(n—1)(1/2—1/p)
< thp o ||uy||”; YR,
(T 1/2—(n=1)(1/2—1/p)+)
S Chl))(Q o0 " P Hu 3||p T 1/2(69)
< Ch;})((; 1/2—(n—1)(1/2— l/p)+)||u_3||P "

for 1 < p < oo and the case p = oc is treated in the same fashion. Finaly,
since s isanorm-minimal interpolant, the norm in the last expression can again be
bounded by the norm of w. O

The two most important estimates for the boundary part are hence

lu = sl < ChXQaQ ullws @),
T—1/2
lu = slliy0) < CRY, dallullvg @)-
The proof of Theorem 3.10 shows, that the following aternative version of Theo-

rem 3.10 isalso true.

Corollary 3.11 SupposeT" C 092 isa part of the boundary satisfying
L
U (V; N o9Q). (19)

This means, that the first L charts {V, (,0] _, are exclusive for T', or that, for
1<ji<LV;n(0Q2\T) = 0. Suppose further that the boundary collocation
points X5 are chosen only onT", whiletheinterior points are still chosen in €2, then
estimate (17) remains valid and (18) becomes

lu = slly ) < Chi Y2 DD (20)
where hXQ,F = Maxi<;<L th,B with Tj defi ned as before.

As amatter of fact, neither condition (19) nor the fact that Xo C IT" are necessary
to derive (20). But if (19) is not satisfi ed, the fi |l distance hx, r might be larger
than necessary if X5 isonly chosen from I'. On the other hand, if X5 is dense on
al of 09, than, of course, (18) implies (20).

Considering again the compactly supported functions ® = k(|| - ||2), i.€. choos-
ingT =k + (n+1)/2 givesthistime

14



Corollary 312 Let k > m — 1/2 if nisodd or k& > m if n is even. Let
k—m+1+] "3 |

Ca € Weo . Suppose u € WET™T/2(Q). Then, employing the ba-
sis functions from Defi n|t|on 2.6 yidds

ILu— Lol i) < OR G llullyprcnrnra gy, (22)

lu=sliwen) < CHiLgallully e g (22)

A similar statement holds also for T C 912, cf. Corollary 3.11.

3.3 Elliptic PDEs

We now consider the following elliptic operator of second order in a bounded do-
main 2 C R™ with asuffi ciently smooth boundary

Lu(z) = Z aij(x)0; ju(zx +Zb +c(z)u(z)  (23)

where a, b and ¢ are bounded, a;;(z) = aj;(z) (Symmetry) and c(z) < 0 holds for
al z € Q. Moreover, let L be strictly dliptic, i.e. thereisaconstant A > 0 such
that

)‘Hg“Q < Z azy fzfj

1,j=1

foral z € Qand ¢ € R*. Then, if u € C°(Q) N C?(Q) isthe solution of

Lu = finQ
u = FondQ,

it enjoys the following estimate (see [9, Theorem 3.7])

C
4] Loo () < N1 F |l Lo (0) + XHfHLoo(Q)a (24)
where the constant C' depends on the diameter of Q2 and on [[b]| ..., () /-

Coroallary 3.13 Assumethat the solution u belongsto W3 (2) with | 7] > 2+n/2.
Then, the error between u and its collocation approximation s can be bounded by

2—n/2 2
lu=slrw@ < C (B + 150 lullws )
< O lullw o)

where hX = max{th,Q, th,aQ}.
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PrROOF: Using Theorem 3.10 and (24) gives
lu—sllze@ < llu—slr.ee + CllLu — Ls||L
< O (R + W) lullwyco)-
O

Note that this result unfortunately means that we have to choose a higher data
density in the interior than on the boundary.
The result for the compactly supported functionsis

k—3/2 k—1/2
e = sl < © (W5 3° + Wi lullyseconra gy

In the case of constant coeffi cients, i.e. ¢j(x) = a;j, bi(z) = b; and ¢(z) = c for
al x € Q, this result was abtained in [4] using a Transformation Theorem. Our
result, however, also holds for non-constant coeffi cients and is mainly a smple
application of Theorem 3.10.

4 Dynamical Systems

4.1 A Short Introduction
In the theory of dynamical systems given by an ordinary differential equation

. dx
i =

= E = g(.’I)),

where z(t) € R™, oneisinterested, among other things, in the construction of Lya
punov functions. The defi nition goes back to Lyapunov, cf. [13]. These Lyapunov
functions are atool to determine the basin of attraction of equilibria or other invari-
ant attracting sets. The main characteristic of aLyapunov function V € C'*(R*, R)
isthat its orbital derivative V'(z), i.e. the derivative along solutions of the differ-

ential equation, is negative. The orbital derivative is given by
V() =LV(z) = g:(2)0:V (z)
i=1
and defi nes thus afi rst-order differential operator L of the form (2).

It is well known that there exists a specia Lyapunov function, which satisfi es the
linear partial differential equation of fi rst order

n
LV(z) = V'(z) = ) g:(2)8V (z) = —|lw — oll3 = f (=),
i=1
which is of the form (1). We approximate this solution by s and thus obtain a
function s with negative orbital derivative itself, i.e. a Lyapunov function. We will

now explain the method in more detail.
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Consider the ordinary differential equation

T = g(.T), (25)

whereg € C7(R",R"), o > 1, and z(t) € R™. We search for solutions z(t),
t > 0 of the initial value problem (25), z(0) = ¢. We denote these solutions
dso by S;¢ := z(t). Since g isat least C'!, we have existence and uniqueness of
solutions of thisinitial value problem locally in time.

Since one cannot determine the solutions of (25) in generd, dynamical systems
theory is interested in the qualitative long-time behavior of solutions. Therefore,
one studies simple solutions such as equilibria, i.e. solutions which are constant in
time.

Defi nition 4.1 iy € R" is called an equilibrium for (25) if g(xg) = 0. Then
Syxg = zg for al ¢ > 0, i.e. the constant function z(t) = z isa solution of (25).

The concept of stability describes the behavior of solutions near the equilibrium
xo. Stability can be analyzed using the linearization of g at x.

Proposition 4.2 Let zy € R™ be an equilibrium for (25). If all eigenvalues of
the Jacobian Dg(z() have negative real part, then z is asymptotically stable, i.e.
stable and attractive, which is defi ned as follows:

e Stability: for each e > 0 thereisad > 0 suchthat ¢ € B(zy, §) impliesthat
Si¢ existsfor all ¢ > 0 and that Sy € B(xg,¢) for all ¢ > 0.

e Attractivity: thereisa ¢’ > 0 suchthat £ € B(zg, ¢') impliesthat S;¢ exists
for all ¢ > 0 and that lim;_, o, S:¢ = .

For asymptotically stable equilibria 2y we can defi ne the basin of attraction A(x),
which is the set of al initial conditions, for which the solution tends to zy as
t — oo. The set B(zg,d"), cf. the defi nition of attractivity, is a subset of A(xp).
However, since the basin of attraction is a globa object in contrast to the local
character of the asymptotic stability, its determination cannot be obtained by lin-
earization.

Defi nition 4.3 Let iy € R™ be an asymptotically stable equilibrium for (25). Then
we defi ne the basin of attraction as

A(.To) = {f eR" | th& Sié = .’L'()}.

Notethat A(z() # @ and A(zg) isopen.
A method to determine subsets of the basin of attraction isthe method of Lyapunov
functions. The main characteristic of a Lyapunov function V € C*(R", R) isthat
its orbital derivative V'(z), i.e. the derivative along solutions of (25), is negative.
The orbital derivative can be calculated by the chain rule:

d n

gV (@) =(VV(z(t),2(t)) = D (05V)(x(1))g;(=(2))-

=1
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Defi nition 4.4 Givenafunction V € C*(R™, R) itsorbital derivative with respect
to (25) is defi ned as

V/(z) == (VV(2),9(z)) = Y _ 8;V(z)g;(x).
j=1

Notethat we do not need to know the solution of (25) to calculate the orbital deriva
tive. Moreover, the orbital derivative is a linear differential operator of fi rst order
of the form (2):

LV(z) =V'(z) = g:(2)0;V ().
=1

Here, the singular points, i.e. those points where (§, o L) = 0, are simply the
equilibrium points, i.e. those points satisfying g(z) = 0.

The following theorem explains the use of Lyapunov functions for the determina-
tion of the basin of attraction.

Theorem 45 Let s € C*(R®,R) and K C R™ be a compact set with neighbor-
hood B such that zo € K. Furthermore, let
1. K={ze€eB|s(z) <R}withanR e R, i.e. K isasublevel set of s.

2. §'(z) < 0foral z € K\ {z0}, i.e. s isdecreasing along solutions in
K\ {zo}.
Then K C A(xo)

Hence, aLyapunov function providesinformation on the basin of attraction through
its sublevel sets. However, it is not easy to fi nd a Lyapunov function for a genera
system (25). Although existence of severa types of Lyapunov functions is known,
their construction is not easy.

For linear differential equations, i.e. g(x) is linear, however, one can easily cal-
culate a Lyapunov function. For a nonlinear system we consider the linearized
system at the equilibrium point, namely & = Dg(zo)(z — o). Thisis alin-
ear system and, thus, one can easily calculate a Lyapunov function of the form
v(z) = (z — 20)T C(z — ), where the positive defi nite matrix C' is the unique
solution of the matrix equation Dg(z¢)" C + CDg(x¢) = —I, cf. [19]. The func-
tion v is not only a Lyapunov function for the linearized system, but also for the
nonlinear system in a neighborhood of z, for details cf. [7].

Lemma 4.6 (Local Lyapunov function) Denote by C' € R™*"™ the unique solu-
tion of the matrix equation Dg(zo)TC + CDg(zy) = —I and defi ne the local
Lyapunov function

v(z) = (2 — z0)TC(x — x0).

Then, there is a compact set K with a neighborhood B such that z € IO( . More-
over, v'(z) < 0 holdsfor all z € K \ {zo} and K = {z € B | v(z) < R} with
R>0.
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We return to Lyapunov functions which have negative orbital derivative for al z €
A(zo) \{zo}. Weconsider special Lyapunov functions satisfying certain equations
for their orbital derivatives. In the fi rst part of Theorem 4.8 p(z) = ||z — |3 isa
feasible candidate. For the second part we need

Defi nition 4.7 (Non-characteristic hypersurface) Let h € C°(R",R). The set
I' ¢ R" iscalled a non-characteristic hypersurface if

I is compact,
e h(z) =0holdsfor all z € T,
e W'(z) < 0holdsforall z €T, and

o for eachz € A(z¢) \ {zo} thereisatimef(z) € R suchthat Sp(,)z € T'.

An example for a non-characteristic hypersurface is a level set of the local Lya
punov function, cf. Lemma4.6.

Theorem 4.8 ([7])

1. Letp(z) € C7(R™, R) satisfy the following conditions:

(@ p(z) > 0for z # x,
(b) p(z) = O(||z — zo||5) withn > 0 for z — z,
(c) for al e > 0, p has a lower positive bound on R™ \ B.(z).

Then, there exists a Lyapunov function V; € C?(A(xzo),R) such that

LVi(z) = fi(z) := —p(z) for all z € A(xo).

2. Let ¢ > 0, let T" be a non-characteristic hypersurface, see Defi nition 4.7,
and F € C?(T,R). Then, thereis a Lyapunov function Vo € C7(A(xo) \
{zo},R) such that

LVa(z) = fo(z) = —cforall z € A(zo) \ {zo},
Vo(z) = F(z)foralzel.

4.2 Approximating Lyapunov Functions

Theorem 4.8 shows two possibilities to approximate Lyapunov functions. We can
use the fi rst part to approximate V| by solving the problem

Lsi(xz) = LVi(z) = —p(x), x € A(xg).-

Thisis an example of an operator problem of type (1) and our theory from Section
3.1 applies.
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On the other hand, the second part of Theorem 4.8 implies to solve the boundary
value problem

Lso(z) = fao(z) = —c, T € A(zo) \ {70},
so(z) = F(z), zel,

such that we can use our theory from Section 3.2.
However, in both cases the application of our error estimates has now a different
character. An error bound of the form

|LV (z) — Ls(z)| = |V'(z) — §'(z)| < ¢

leads to
s'(z) < V'(z) + e <0,

provided that e is suffi ciently small. Remember that V', as a Lyapunov function
satisfi es V'(z) < 0. Hence, in this case s isitself aLyapunov function.

However, for the specifi ¢ choices of Lyapunov functions from Theorem 4.8 we
have a problem if z is close to z. Inthefirst case, V/(z) = f1(z) = —p(z) and
p(z) — 0 asz — (. Hence, this estimate will not hold near z¢ and thus s may
be positive near x(. The same problem arises for the approximation s» of V5, since
V4 is not defi ned in ;. Fortunately, locally, it is easy to determine the basin of
atraction by linearization, cf. Lemma4.6.

Before we can apply the results of this paper to the calculation of Lyapunov func-
tions, we need some information about the level sets of Lyapunov functions. We
assume that ¢ is bounded in A(zy). This can easily be achieved by considering

the system & = h(z) := %. Note that ||2(z)|| < 3. This system has the
same equilibria and basins of attraction as the system (25), since h(z) is obtained
by multiplication of g(z) by apositive, scalar factor, i.e. the orbits of both systems

are the same, but the velocity is different.

Theorem 4.9 ([7]) Let z bean equilibriumof z = g(z), g € C°(R*,R"), 0 > 1
and let the maximal real part of all eigenvalues of Dg(x() be negative. Let g be
bounded in A(zo) andlet V =V}, i = 1, 2 be one of the functions of Theorem 4.8.
Then for all » > 0 theset {z € A(zo) \ {zo} | V(z) < r} U {zo} is compact.
Moreover, there is a C'?-diffeomor phism

¢ € Cl(S" ! {z € Alzo) | V(z) =1}),
where S* ! = {z € R | ||z||2 = 1}. For V5 we have lim,_, ., Va(1) = —oo.

In the second case V5, one fi rst has to link the function 14 to a local Lyapunov
function to obtain the above theorem. For details, see[7].

In order to apply the results of Section 3 to approximate the functions Vi, V5 of
Theorem 4.8, respectively, we have to choose a set 2 in an appropriate way. For
Vi weconsider theset Q := {z € A(zo) | Vi(z) < r}\ {zo}, which hasasmooth
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boundary. For Vo we choose Q := {z € A(zo) \ {zo} | Va(z) < rand h(z) > 0}

where h is the function defi ning the non-characteristic hypersurface, cf. Defi nition
4.7,andr > O islarge enough such that {z € A(zo) \{zo} | Vo(z) =r}nT = @.

This set © has a smooth boundary as well.

Theorem 4.10 Letk := [7| > 14+n/2. Consider the dynamical system defi ned by
the ordinary differential equation & = g(x), where g € C¥(R™,R"). Let 2y € R®
be an exponentially asymptotically stable equilibrium. Let g be bounded in A(z()
and denote by Vi € W7 (A(zo),R), Vo € Wi (A(zo) \ {zo},R) the Lyapunov
functions of Theorem 4.8.

1. Thereconstruction s; of the Lyapunov function 7 with respect to the oper-
ator Lu(z) = (Vu(z),g(z)) andaset X C Q := {z € A(zg) | Vi(z) <
r}\ {0}, r > 0, satisfi es

st = Vll g = lIsh +plloe o) < CRY ™ IVillwg @-

2. LetT' = {z € A(z) \ {zo} | h(z) = 0} be a non-characteristic hypersur-
faceand set Q = {z € A(zo) \ {zo} | Va(z) < rand h(z) > 0}, where
r > 0 islarge enough such that {z € A(zg) \ {zo} | Vo(z) =r}NT = 2.
The reconstruction s, of V5 with respect to the boundary value problem
Lu(z) = (Vu(z), g(z)), u(z) = 0 = F(z) for T and the data sites X; C Q
and Xy C T satisfi es

155(2) + €ll Lo ()

7—1-n/2
Oy "2 IVallwg (o),

Is5(2) = V3 (@)l £eo()

IN

[s2(z) = V(@) Loy = ls2(@) Loy < ChTX_z,nr/2||V2||w;(n)-

PrROOF: Notethat thedatasitesz;, 1 < j < N arenosingular points, i.e. g(z;) #
0 or equilibriain this case, since there are no equilibriain A(z¢) \ {zo}.

1. We apply Theorem 3.5 withm = 1. The set 2 is bounded and has a smooth
boundary by Theorem 4.9 and thus satisfi es the conditions of Theorem 3.5,
cf. [23]. Thefunctions ¢, are g; € C*(R",R) and thusin Wk ().

2. We apply Theorem 3.10 withm = 1. Thesets 2 and I' C 02 are bounded
and €2 has a smooth boundary by Theorem 4.9 (see also [23]). Thus the con-
ditions of Theorem 3.10 are satisfi ed. The functions ¢, are g; € C*¥(R™, R)
and thusin Wk (Q).

O

The next proposition describes how the calculation can be achieved for radial basis
functions, in particular those from Defi nition 2.6. We set ¢»(0) = 0 since then
ajj = —1(0)|lg(z;)||?, cf. (26). Note that thefi rst term of (26) isat least of order
O(r) forr — 0.
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Proposition 4.11 ([7]) Let L be given by Lu(z) = (Vu(z),g(z)). Let &(z) :=
¥(||z]|2) be asuffi ciently smooth radial basis function. Defi ne + and 15 by
1d
Pi(r) = ;%zp(r) for r > 0,

1d
_ =i (r) forr >0,
Yalr) = { 0" for r = 0.

Then, the matrix elements aj;, of the interpolation matrix A in Defi nition 3.1 are
given by

aje = Yol — zil){zj — 2k, 9(25))(z — 5, 9(zk))
—t1([lz; — 2k ) {g(z5), 9(zk))- (26)
The approximant s and its orbital derivative are given by

N
s() = Y arlmk — 2z, g9(zk))r (lz — zxl),

1

B
Il

%\
B

I
WE

k2w = 2]z = 2, 9(2) (@x — 7, g (1))

ES
Il

1

—pr (o — 2l (F (@), £ (2r))].

Table 4.2 shows that the necessary functions 1 and 1), can explicity be computed
in case of the Wendland functions and their simple form.

3,1(cr) Pa2(cr)
P(r) | L —cr)ilder +1] | (1 —cr)%[35(cr)? + 18cr + 3]
P1(r) | —20c*(1 —er)d —56¢2(1 — er)3.[1 + ber]
Po(r) | 60c3(1 —cr)2 1680ct (1 — cr)d

Ps5,3(cr)

P(r) | (1 —cr)8[32(cr)® + 25(cr)? + 8cr + 1]
(r) | —22¢2(1 — er)[16(cr)? + Ter + 1]

Pa(r) | 528¢*(1 — cr)8.[6cr + 1]

Table 1: The functions 1; and ), for the Wendland functions )3 1 (cr), 14.2(cr)
and 15 3(cr). Note, that these are the Wendland functions of Defi nition 2.6 up to a
constant.
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Corollary 4.12 Denote by k the smoothness index of the compactly supported
functions from Defi nition 2.6.

Letk > s ifnisoddor k > lifniseven. Setr =k + (n+1)/2ando = [7].
Consider the dynamical system defi ned by the ordinary differential equation z =
g(z), where g € C7(R*,R"). Let ;o € R" be an exponentially asymptotically
stable equilibrium. Let g be bounded in A(z() and denote by V; € W3 (A(xzo), R)
and Vo € WJ (A(zo) \ {z0}, R) the Lyapunov functions of Theorem 4.8.

1. The reconstruction s; of the Lyapunov function V; with respect to the oper-
ator Lu(z) = (Vu(z),g(z)) andaset X C Q := {z € A(zo) | Vi(z) <
r}\ {zo}, 7 > 0, satisfi es

k—1
151 = Villow() = 151 + Plliss(e) < Chix *IVillrroinreg). 27

2. LetT' = {z € A(zo) \ {zo} | h(z) = 0} be a non-characteristic hypersur-
faceand set Q = {z € A(=z) \ {zo} | Vo(z) < rand h(z) > 0} where
r > 0 islarge enough such that {z € A(zg) \ {zo} | Vo(z) =r}NT = 2.
The reconstruction sy of V5 with respect to the boundary value problem
Lu(z) = (Vu(x),g(z)), u(z) = 0 = F(z) for T' and the sets of data
sites X1 € Q and Xy C T satisfi es

k*l

I5(@) = V(@) < Chy,blVellysrcsnrzg.  (28)
k+3
[s2(z) — Va()|lL oy < ChX2,21‘||V2||W2k+(n+1)/2(9)- (29)
ProoF: Apply Corallaries 3.6, 3.11, and 3.12, respectively withm = 1. O

The method described in this paper has aready been used in [6, 7, 8]. However, the
approximation orders derived in those papers were based on Taylor approximation
of fi rst order and hence the results in those papers were signifi cantly worse than the
results of Corollary 4.12.

The theorems and corollaries of this section ensure that the approximation of the
Lyapunov functions V7 and V5, produces functions s, sq, respectively, with nega-
tive orbital derivatives in Q if the data sites are dense enough. For the remaining
neighborhood of the equilibrium zy we use alocal Lyapunov function, cf. Lemma
4.6. We can combine the approximated function s and the local Lyapunov function
v to anew Lyapunov function § such that §'(z) < 0 holdsfor al z € 2\ {z,} and
such that level setsof s are level sets of 3.

However, since Theorem 4.5 requires a sublevel set of s within the region where
s'(z) < 0 we need information about the level sets of the approximants s. Here,
we make use of the estimate for s, on T, cf. (29). The following theorem shows
that we can cover each compact subset K of the basin of attraction by a sublevel
set of s and thus the approximation method fi nds every compact subset of the basin
of attraction provided that the sets Q2 and T are chosen appropriately and the data
sites are dense enough.
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Theorem 4.13 ([7])

1. Let K be a compact set with zp € K € K C A(z). Let 51 be an ap-
proximation of V; asin Corollary 4.12 with Q := {z € A(zo) | Vi(z) <
r}\ {z0}, wherer > 0 islarge enough and h x issmall enough.

Thenthereisap € Rwith K C {z € Q| s1(z) < p}.

2. Let K be a compact set with zg € K ¢ K C A(x). Let s, be an approxi-
mation of V3 asin Corollary 4.12 with Q = {z € A(zo) \ {zo} | Va(z) <
r and h(z) > 0}, wherer > 0 islarge enough and hx, and hx, are small
enough. Let U = {z € A(zo) | h(z) < 0} beaneighborhood of zy.

Thenthereisap e Rwith K C U U {z € Q| sy(z) < p}.

The proof of 2. compares level sets of so with level sets of Vs using the estimate
(29) on I" and (28) along solutions. For 1. we can derive an estimate near = since
V1 isdefi ned and smooth at a; then we use the estimate (27) along solutions.

4.3 Example

As an example we consider the dynamical system given by
& = —z—2y+a3
gy = —y+sz’y+a°

and denote the right-hand side by g(z,y). The system has an asymptotically stable
equilibrium at (0, 0) with Jacobian

Dg(0,0) = ( _é :? )

For alocal Lyapunov function, cf. Lemma 4.6, we need the unique solution C' of
the matrix equation

Dg(0,0)"C + CDg(0,0) = —I,

(4 5)

The basin of attraction A(0, 0) is bounded by an unstable periodic orbit which we
have calculated numerically. We approximate thefunction V; satisfying V{ (z,y) =
—z? — y2. For the data sites, we use a hexagonal grid of the form

T
o [j(l,O)T+k (%?) ] .
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Then, the mesh norm is h = «. Since we have to avoid singular points we must
exclude the origin. We use three different grids with parameters «; = 0.1, ag =
0.2, and a3 = 0.4 and two different Wendland functions as radial basis functions
®(z) = g (c||z|]2) with c = 2/3 and k = 2, 3, cf. Figure 1 and 2. We calculate
the maximal error on the grid

T T
0.1 j(l,())T—I—k<%,?> +(g,§>

These grid points are inbetween the grid points of the smallest grid above. By our
error analysis the errors ey o, and e, o, should behave like

€k2a _ (20)k~1/2 _ ok—1/2

ek ~ (a)k—1/2 ’

cf. (27), which is approximately reflected in our numerical results, see Table 2.

kla| 0.4 0.2 0.1 60_4/60_2 60_2/60_1 Qk_1/2
2 0.8862 | 0.4641 | 0.1814 || 1.9094 2.5592 2.8284
3 1.1308 | 0.4265 | 0.1041 || 2.6516 4.0960 5.6569

Table 2: The approximation error e,, = ||s}(z) — V{(z)||2 for different Wendland
functions 1)y,2 & and different grids with mesh norm « for the example discussed
in this section. The ratio of the errors e, is compared to the theoretical bound
2k=1/2 of Corollary 4.12, (27).

Figure 1: The grid X (black +), the basin of attraction bounded by the black
periodic orbit and the set {(z,y) € R? | s'(x,y) = 0} (grey) with the approxima-
tion s of the function V where V'(z,y) = —z? — y? with the Wendland function
$4.2(2/3||z||2) and the grid distance o where left: o = 0.4, middle: o = 0.2,
right: a = 0.1.
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Figure 2: The grid X (black +), the basin of attraction bounded by the black
periodic orbit and the set {(z,y) € R? | s'(x,y) = 0} (grey) with the approxima-
tion s of the function V where V'(z,y) = —z? — y? with the Wendland function
5,3(2/3||z||2) and the grid distance o where left: o = 0.4, middle: o = 0.2,
right: « = 0.1.

For the basin of attraction, however, the level sets of s are also important. Even
if the set where s’ is negative is large, a subset of the basin of attraction is only
given by asublevel set of s within thisregion. For one example we have calculated
such a sublevel set and have compared it to the sublevel set of the local Lyapunov
function, see Figure 3. If the function ¢ is bounded in the basin of attraction then
one can cover each given compact set in A(zo) with asublevel set of s where the
data sites are dense enough, see Theorem 4.13.

15 15

15 -15

Figure 3: Left: The local Lyapunov function v(z) = z”Cz: level set v'(z) = 0
(grey) and asublevel set {z € R? | v(x) < 0.37} which is a subset of the basin
of attraction. Middle: The calculated Lyapunov function s (k = 3, a = 0.1):
level set s'(z) = 0 (grey) and asublevel set {z € R? | s(z) < —0.5} which is
a subset of the basin of attraction. Right: Comparison of the subsets obtained by
the local Lyapunov function v (black small), the calculated Lyapunov function s
(black large) and the whole basin of attraction (grey).
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