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0. Introduction

Abstract

Our investigations are motivated by the classical inverse scatter-
ing problems to reconstruct the shape of impenetrable obstacles
from far field measurements of scattered time-harmonic acoustic
or electromagnetic waves in the resonance region. These prob-
lems, which are nonlinear and exponentially ill-posed, can be
tackled quite successfully by iterative regularization methods, in
particular regularized Newton methods. We give, for the first
time, convergence and convergence rate results for such methods.
These results are also applicable to a number of exponentially ill-
posed problems in inverse heat conduction, satellite gradiometry,
and potential theory.

In the first part of this work we look at derivatives of the scat-
tered field with respect to the shape of the scattering obstacle. We
show that the field depends analytically on the shape of the ob-
stacle and give a characterization of derivatives of arbitrary order.
Based on these results we describe an efficient implementation of
the derivatives. In the second part, we first study regularization
theory for linear exponentially ill-posed problems. Then we look
at the speed of convergence of iterative regularization methods, in
particular regularized Newton methods in inverse obstacle scat-
tering. As a consequence of the severe ill-posedness, standard
Holder-type source conditions, which yield convergence rates in
form of fractional powers of the data noise level, are far too re-
strictive for inverse obstacle scattering problems. We introduce
a weaker type of source conditions that imply convergence rates
which are only logarithmic in the data noise level and show that
these conditions are natural in the sense that they are essentially
equivalent to smoothness and closeness conditions for the differ-
ence between the initial guess and the exact solution in terms of
Sobolev spaces. These results are confirmed in numerical experi-
ments.

Let us start with a brief description of the physical background that leads
to the mathematical formulation of direct and inverse scattering problems.



2 0. Introduction

We consider a compact set K C IR™, m € {2,3} describing the scattering
obstacle. The case m = 2 corresponds to scattering by long cylinders. It
is well known that the propagation of an acoustic wave in a homogeneous,
isotropic and inviscid fluid can approximately be described by a wvelocity
potential U(x,t) satisfying the wave equation
2

iza—U = AU.

c? ot?
Here c is the speed of sound, v = grad, U is the velocity field, and p = —%—(t]
is the pressure. For more information on the physical background leading to
this equation we refer, e.g., to Colton and Kress [CK97] or Werner [Wer61].

If U is time-harmonic, i.e.

U(z,t) = Re (u(z)e "), w>0

in complex notation, then the complex-valued space-dependent part u satis-
fies the Helmholtz equation

Au+rk?u=0 in R™\K. (0.1)

Here k = w/c is the wave number. Moreover, the total field u satisfies
some boundary condition at 0K depending on the physical properties of the
surface. E.g., for “sound-soft” obstacles the pressure p vanishes on 0K, so u
satisfies the Dirichlet boundary condition

u=0 on 0K. (0.2)

Similarly, for “sound-hard” obstacles the normal component (v,v) of the
velocity v vanishes, so we get the Neumann boundary condition

ou
5 =
(v denotes the exterior normal vector on 0K .) We will consider the situation
that u = u; + ug is composed of a known incident wave u;, typically a plane

wave u;(z) = ¢*4?) with direction d, |d| = 1, and a scattered wave u;. The
scattered field additionally satisfies the Sommerfeld radiation condition

0 ondK. (0.3)

m-1 [Ous
lim ™7 { au - mus} =0, r=|x|. (0.4)

T—0Q T

Physically, this condition means that energy is carried away from the scat-
terer, and mathematically it ensures uniqueness of the solution to the scat-
tering problem. It can be shown that (0.4) implies the asymptotic behavior

us(z) = ;Tﬁ {uoo (%) +0 (ﬁ) } 2| > 0o, (0.5)



A function which satisfies (0.1) and (0.4) is called a radiating solution to the
Helmholtz equation. The function uy : {z : |z| = 1} — C is called the far
field pattern or scattering amplitude. It is always an analytic function (cf.
[CK97)).

The direct scattering problem consists in finding ug as solution to the exte-
rior boundary value problem (0.1), (0.4) with one of the boundary conditions
(0.2) or (0.3), given u; and K. This problem is well understood. We are in-
terested in the nverse problem to find an approximation to K, given u; and
measurement data u’ of the exact far field pattern u,,. Here § denotes the
noise level, which is usually measured in the L?-norm, i.e. ||ud, — usl| < 4.
Let the set of admissible scatterers K be described by an open subset D(F)
of a Hilbert space X, e.g. a Sobolev space of parametrizations. Let us intro-
duce the operator F' : D(F) — L?(S™~!) that maps a description ¢ € D(F')
of some admissible scatterer K to to the corresponding far field pattern
Us € L2(S™1). Then the inverse scattering problem described above can
be formulated as a nonlinear operator equation

Fg)=u (0.6)

6 -
This problem is ill-posed in the sense that F~!: R(F) — D(F) (if it exists)
is not continuous for any reasonable norm in X. (Note that we are not free to
choose the norm in the image space since it has to describe the measurement
errors!) The ill-posedness follows from the fact that F' is locally compact (e.g.
from C! to L?, cf. [CK97, Theorem 5.9]). The fact that F' maps an arbitrary
g € D(F) to an analytic function u is an indication that (0.6) is severely
ill-posed. Another indication is that the singular values of F'[q] decay like
%, i.e. slightly faster than exponentially. This means that the data noise
error for the nth singular vector is amplified by a factor proportional to n!.
Therefore, the effects of data noise or computational errors will be disastrous
unless some regularization techniques are employed.

One class of methods (e.g. the Colton-Monk, Kirsch-Krefl, or AKR-
methods, cf. [CM85a, CM85b, KK87a, KK87b, AKR87, KKMZ88, CK97|)
consists in splitting the inverse scattering problem into the ill-posed, but
linear problem to reconstruct ug; from wu,, and the nonlinear, but usually
well-posed problem to find 0K from the boundary condition (0.2) or (0.3)
for the total field. An advantage of this class of methods is that costly eval-
uations of the operator F' and its derivatives are avoided.

Another class of methods has recently been introduced by Colton, Kirsch,
Potthast and others (cf. [CK96, Pot96a, CPP97, Kir98]). These methods do
not require any a-priori knowledge about the topology of the scatterer (e.g.
the number of connectivity components or the gender of the surfaces) or
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of the type of boundary condition. Therefore, these methods can be used
to provide a good initial guess for iterative methods. As an example we
briefly describe the method in [Kir98|. The starting point is the observation
that a point x € IR™ belongs to the interior of K if and only if the far
field pattern exp(—ik (-,x)) of the point source at = belongs to the range
of the operator A which maps a function on 0K to the far field pattern
of the solution to the corresponding boundary value problem. It is shown
that ran(A) = ran((F*F)i) where F is the integral operator with kernel
Ueo(Z, d). This gives a simple characterization of K by u(Z, d) which leads to
a numerical algorithm to reconstruct K approximately from u.(Z,d). Note
that this method requires far field data of incident waves for all directions d.

Finally, iterative regularization methods have been studied intensively
over the last years both in an abstract setting and for inverse scattering
as well as many other problems. These methods, in particular regularized
Newton methods, tend to yield more accurate reconstructions than the other
methods. (We refer to [Kre97] for a comparison with the first class of meth-
ods.) In all of these methods the operator F' has to be evaluated in each
iteration step, and usually also the Fréchet derivative F'[q] or its adjoint
F'[q]*. Some methods suggested by Hettlich and Rundell also use the second
Fréchet derivative F"'[q] of F.

Although iterative methods have been used successfully before, there has
been a lack of convergence results. It is the purpose of this work to pro-
vide such results, and in particular estimates on the speed of convergence.
According to a well-known result convergence of any regularization method
for an ill-posed problem can be arbitrarily slow without a-priori information
(cf. [EHNO96, Proposition 3.11.]). In standard regularization theory such a-
priori information are provided in form of Holder-type source conditions. For
nonlinear problems such conditions have the form

o —4q" = FFlg)w,  p>0,

where g is an initial guess and ¢ is the exact solution. Such conditions are far
too restrictive for exponentially ill-posed problems. Appropriate conditions
turn out to be of the form

%—q¢ =(hFTF) " w, p>0. (0.7)

For many linear and nonlinear exponentially ill-posed problems such so-called
logarithmic source conditions can be interpreted as smoothness conditions for
the initial error gy — ¢! in terms of Sobolev spaces.

We first study the convergence of standard regularization methods for
linear problems under logarithmic source conditions. Whereas Holder-type



2
source conditions imply convergence rates of the order O ((5 ﬁ), the best

possible order of convergence that can be obtained under logarithmic source
conditions is of the order O ((—1Ind)~?) which is much slower. We intro-
duce an a-posteriori parameter choice rule leading to asymptotically optimal
convergence. Moreover, we look at the influence of operator approximations
in such situations. Then we turn our attention to nonlinear problems and
show that under assumption (0.7), some condition restricting the degree of
nonlinearity of F', and under a closeness condition the iteratively regularized
GauB-Newton method converges of optimal order ||gf —¢%|| = O ((—1Ind)7P).
Here N denotes the stopping index, and ¢ is the final iterate. For exact
data, we get ||¢f — gu]| = O (n7P) as n — oo.

This thesis is divided into 5 chapters. The first chapter is concerned
with Fréchet derivatives of F'. We show that F' is analytic, even for rough
boundaries, and give a characterization of Fréchet derivatives of arbitrary or-
der. Chapter 2 is devoted to efficient numerical implementations of Fréchet
derivatives. In Chapter 3 we develop a regularization theory for linear prob-
lems under logarithmic source conditions and give some applications to in-
verse problems in heat conduction and satellite gradiometry. Chapter 4 is
concerned with nonlinear exponentially ill-posed problems with particular
emphasis on inverse scattering problems. Finally, in Chapter 5 we report on
numerical experiments which confirm our theoretical results.



1. Derivatives with respect to
the domain

In this chapter we look at the total field u as a function of the obstacle
K and describe derivatives of v with respect to K. These derivatives are
needed for iterative regularization methods for inverse scattering problems.
Therefore, over the last years a lot of effort has been spent to characterize and
to compute Fréchet derivatives of scattering problems (cf. [Het95, Het98, HR,
Kir93, Kre94, Kre95a, Kre95b, Mén96, Mén97, Pot94, Pot96b]). Here, we
present a new approach that combines techniques from [Kir93] and [Sim80)]
with some new ideas, and yields a simplification and improvement of existing
results. We show that u depends analytically on K even if K is rough.
Here domains are described by differentiable functions on a reference domain.
Moreover, we compute the boundary values of the derivatives of u of arbitrary
order on smooth parts of 0K.

We mention that analytic dependence of u on K has been used success-
fully to compute u numerically by Taylor or Padé approximation for do-
mains K that are close to some simple shape (cf. Gosh Roy et al. [RCW97,
RWCS98]). The results below provide a theoretical foundation for these
methods.

1.1. Dirichlet boundary conditions

1.1.1. The sound-soft scattering problem

Assume that K C R™, m € {2,3}, is compact and that °K := R™\K is
connected. We do not require any smoothness but closedness in the sound-
soft case. First, we define what is meant by a solution to the sound-soft
scattering problem for such general domains, and then establish existence
and uniqueness.

Choose R > 0 such that K C {z € R™ : |z| < R}, and set Qg := {z €
°K : |z| < R} and Sg := {# € R™ : || = R}. We introduce the Sobolev

6
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norm

1

2

ol = ( IRCEE dx) |
Qg

and define the Sobolev space W{ 5 (Q2r) to be the completion under the norm
|| - [|w: of the space of function v € C*°(Qg) that satisfy ||v||w1 < oo and
vanish in a neighborhood of K.

Problem 1.1. Let u; € C?*(IR™) be an incident field solving the Helmholz
equation Au; + k*u; = 0 in IR™. A function us € C?*(°K) is called a solution
to the sound-soft scattering problem for u; if (0.1) and (0.4) hold, and (0.2)
is satisfied in the sense that

U‘QR € W()l,aK(QR)'

To establish existence and uniqueness of a solution, we follow an approach
by Kress and Zinn. The problem is transformed to a variational problem
on the bounded domain g, and the radiation condition is incorporated as
a nonlocal boundary condition on Sg involving the Dirichlet-to-Neumann
map L : WY/2(Sg) — W~/2(Sg). L maps a function f € W/2(Sg) to the
Neumann boundary values g—j‘/’ |s,, of the radiating solution w to the Helmholtz
equation with Dirichlet boundary values f. For a different approach based
on the limiting absorption principle we refer to Taylor [Tay96, §9.12].

Lemma 1.1. (Variational formulation) Define the sesquilinear form S :
Wi ok (Qr) X Wy 95 (Qr) = C and the antilinear functional F € Wi 5 (Qr)'
as follows:

S(u,v) = {VuVv — *uv} da —/ Luvds, (1.1)

Qr SR

Flv) = /SR {‘zj - Lui} 7 ds. (1.2)

If u s a solution to the sound-soft scattering problem then the variational
equation

S(ulag,v) = F(v) for all v € Wy o1 (Qr) (1.3)

holds. Vice versa, if (1.8) is satisfied for some u € Wy 55 (r), then there
1s an extension of u from Qg to °K that solves the sound-soft scattering
problem.
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Proof. Let u be a solution to the sound-soft scattering problem. From the
definition of WO1 ok (S2g) it follows by an approximation argument that Green’s
formula in {z € R™ : |z| < R} holds for u and any v € W 5, (Qg) if we
extend v and v on K by 0. We obtain

0
{VuVs — k’uv} dz = / P rds.
Qg Sg OV
This implies (1.3) since 2| = %% 4 [(u|_ —u;). (Here and in the following,

the subscripts +, — refer to limits from the exterior and interior of Sg, rsp.)

Now assume that u € Wy 5 (Q2g) solves (1.3). Then, by standard interior
regularity results for elliptic boundary value problems, u € C?(Q2z) and Au-+
k*u = 0 in Qp. We extend us :== v —u; to {z € R™ : |z] > R} as a
radiating solution to the Helmholtz equation satisfying us|y = ug|_ on Sk.

By (1.3), u satisfies the Neumann condition 2| = Lu|_ + Qui _ Lu, iee.
% = Lug|_ = % + From the identical Cauchy data of ug on both sides
of Sg, we conclude that ug € C?(°K) and that (0.1) holds. |

We need the following properties of the Dirichlet-to-Neumann map on
SRI

Lemma 1.2. 1. There exists a compact linear operator L : W/2(Sg) —
W~12(Sg) such that
Re<(—L+I~/)w,w> >0 (1.4)
for w € W/2(Sg).
2. Im (Lw,w) < 0 for w € WY2(Sg) implies w = 0.

Proof. The proof for m = 3 is given in [CK97, p. 116ff.]. Here we only
consider the case m = 2, using a similar argument. Let v, (Rcost, Rsint) :=
€™ n € Z be the trigonometric monomials on S. Then it is easily seen by
separation of variables in polar coordinates that

HY (kR)

_ o i

Lw = E YnWnUn, Tn = "Jm
nez In| (’€ )

for w = ZnEZ wpv,. Here H|(nl|) is the Hankel function of the first kind of
order |n|. From the formula Hfll)l(t) = —%H,(zl)(t)—i-H,(ll_)l(t), n > 1, we obtain

(1)
In| H|n|_1(nR)
Tm=—F th—m——) n # 0,
R HY(kR)

In|
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and the asymptotic formula

HW(t) = M (1 +0 (%)) ., n—00 (1.5)

mitn

(cf. [CK97, (3.58)]) yields

fﬁ';tg)wf—u (1vo(p))> w0

n

We now define
H |(71|)—1 (kR)

Lv, =k
n 1
H|(n|)_1("ﬁR)

Up-

From [|wlffys(s,y = D onez (1 +7%)P[wnl?, p € R and (1.6), it follows that Lis
a norm limit of finite rank operators, and therefore compact. Moreover,

Re<( L+wa> Z\nHwn\2>0
nEZ
To show the second assertion, we need the formula
m (Lw, w) Z Im 7, |wy,|?
nezZ
with

|n| n|

K
m-y, = —————det
H)(wR) (R H)(kR) TmH] (kR)

In] In]

Re HY(kR) ImHY(kR) )

Here the determinant is the Wronskian of the Bessel differential equation,
which is 25 (cf. [CK97, p.65]). Thus Im~, > 0, and the assertion follows.
|

The following result is given in a similar form in [CK97, Theorem 5.7].

Theorem 1.3. The operator A : Wy 4 (Qr) = Wi 5k (Qr)" defined by the
sesquilinear form S,

S(u,v) = <AU7U>L2(QR) u,v € W()l,aK(QR)a (1.7)

18 bounded and boundedly invertible. Consequently, the sound-soft scattering
problem has the unique solution v = A'F.
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Proof. By virtue of (1.4), we have the Garding-type inequality

Re {S(w,w) + (K% + 1) (w, w) 20, + <L Trw, Tr w>L2(SR)} > ||w||%}V01,BK(QR)
with the trace operator Tr : Wy i (Qr) — W2(Sg). It follows from the
Lax-Milgram Theorem that the operator

A+ (K2 4+ 1)e+ T LTr : Wy o (Qr) = W3 o5 (Qr)’

has a bounded inverse. Since the embedding ¢ : Wy 5 (Qr) — Wy oi(Qr)’
and L are compact, A is a Fredholm operator of index 0. The proof is finished
if we can show that A is one-to-one.

Assume that Au = 0 for some u € Wy 55 (Qg). Then 0 = Im S(u,u) =
—Im (L Tru, Tru), and Lemma 1.2(2.) implies Tru = 0. Hence

{VUVT) — /{2u17} dx =0
Qr
for all v € W 55 (Qr). Now, it follows from well-known regularity results for
weak solutions to elliptic boundary value problems (cf., e.g., [Tay96]) that
u € C®°(Qr), Au+k?u = 0in Qg, and that u satisfies a classical homogeneous
Neumann boundary condition on Sg. Since u vanishing Cauchy data on Sk,
the Cauchy-Kovalevskaya Theorem implies that © = 0 on Qp. [ |

1.1.2. Analytic dependence on the domain

To investigate the dependence of the scattered field on the domain, we have
to describe domains in some appropriate way. This is done by differentiable
functions defined on the boundary 0K of some fixed reference domain. Dif-
ferentiabiliy of functions on general sets is defined as follows:

Definition 1.4. A function g : F' — IR defined on a subset F' C IR™ is called
continuously differentiable if there exists a continuous function ¢’ : F' — IR™
such that for all x € F'

lg(y) —g(@) —g'(x) - (y— )| =o(lz —y|) fory—wz,yeF (18

A vector valued function # : FF — IR™ is called continuously differentiable if
all its components are continuously differentiable.

For compact F, C!(F) is the space of all pairs g = (g, ¢') satisfying (1.8),
equipped with the norm -

lgllc ) == sup |g(z)] + sup |g'(z)].
zeF TEF
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Note that in general ¢’ is not uniquely determined by g. If, e.g., F' = 0K
is smooth, then the tangential component of ¢' is the surface gradient of g,
but the normal component is not uniquely determined by ¢g. To avoid this
non-uniqueness, an element of C'(9K) is defined as a pair (g, ¢').

For the following analysis, it is important to have C' extensions to IR™ of
C"! functions g on F' = 0K. If F is smooth, such extensions are rather simple
to define. For sets F that are merely closed, an extension operator from
CY(F) to C'(IR™) was first constructed by Whitney [Whi34] (cf. also [Ste70,
VI1:§2,84.7] for a nice exposition). The following theorem gives a variant of
this result with the additional requirement that the extension vanish outside
an n-neighborhood of F'.

Theorem 1.5. Let FF C IR™ be closed. Then, for any n > 0, there exists a
bounded linear operator

&, : CY(F) = C'(R™)
such that for all g € C*(F)

Eng)(z) = g(z), z€F, (1.9)
(&ng)(z) = 0, dist(z, F') > n. (1.10)

Proof. In the references cited above, an extension operator £ is given that
satisfies all requirements except (1.10). To additionally meet (1.10), we con-
struct a function o, € C*(R™) with a,(z) = 0 for dist(z,F) > n and
ay(xz) =1for z € F, and set

(€n9)(2) = a(2) - (E9)(w), &€ R™

An appropriate function o, can be defined with the regularized distance
function § € C*°(°F) given in [Ste70, Theorem VI,2]. This function satisfies

Cydist(z, F) < §(z) < Cydist(z, F) and

[Vé(z)] < Cs
for all z € “F and some constants C;,Cs, C3 > 0. We choose a function
Xn € C*(IR) such that 0 < x,; < 1, x,(¢) = 1 for 0 < ¢ < &% and x(t) = 0 for
t > Cin. Now, we extend ¢ continuously on F' by 0 and set a,(z) := x,(6(z)).
Then «, is continuous on R™, a,(z) = 1 for dist(z, F') < %, an(z) = 0 for
dist(z, F') > n, and

[Vay ()] = |x;,(0()) V()] < Csllx']loo

for % < dist(z, F) < n. |
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For a vector valued function § € C'(0K,IR™), we define £,0 component-
wise as (€,0,)i=1,..m-

Corollary 1.6. Forn > 0 andf € C*(0K,R™), ||8]| < ||&,1I71, the function
wg = 1+&0 : R™ — IR™ is a diffeomorphism. Consequently, ¢o(K) is
compact, and R™\py(K) is connected.

Proof. For any a € IR™, Banach’s fixed point theorem applied to the equation
z=a— &0 ()

yields a unique z € R™ with ¢y(z) = a. This shows that ¢, ' exists, and by
the Inverse Function Theorem it is continuously differentiable. [

For § € C'(0K,R™) sufficiently small and 1 > 0, let u[f] be the solution
to the weak sound-soft scattering problem for the obstacle py(K). Obviously,
u[@] only depends on #, but not on the derivative D6, so we write u[f] instead
of u[f)].

To have a fixed domain of definition we look at the functions

ulf] := u[f] o vy (1.11)

defined on Qg, with ¢g(z) := z+ (£,60)(x). In shape optimization the deriva-
tive of 4[f] with respect to  (the existence of which we are going to establish)
is called material derivative. By the chain rule and a change of variables
y = @y(z), the variational equation

Si)(ale], v) = / {a“i - Lui} sds (1.12)
Sk al/
holds for all v € Wy 5, (Qr) with the transformed sesquilinear form

So)(a,v) := {Vi (Dgy) ' (Dpy) "V — k*uv } det(Depy) dz

Qgr

— / Luvds.
Sr

Here, the superscript ¢t denotes the transposed matrix, and —¢ the inverse
of the transposed matrix. Recall the following definition of real analytic
functions (cf., e.g., [Die69, Nac69]):

(1.13)

Definition 1.7. Let X,Y be real Banach spaces. A mapping F' : X D
D(F) — Y is called analytic at z, if there exist k-linear, bounded, symmetric
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mappings F®[zy]: X x---x X = Y for all k € Ny and p > 0 such that for
all he X, ||h]| < p

Flzo+ h] = Zk, Wlzo](h,. .., h).

If F' is analytic at xg, then it is C* in a neighborhood of xy, and the
kth derivative at zo is F*®)[z(]. An equivalent definition of analyticity is that
there exists a complex differentiable local extension F' of F to the complexifi-
cations of X and Y. From this equivalence it easily follows that compositions
of analytic functions are again analytic.

In the following theorem, @[f] is naturally an element of the complex
Hilbert space W o (Qr) Whereas 6 is in the real Banach space C*(0K;R™).
Therefore, we must interpret WO1 ax(Q2r) as a real Hilbert space by intro-
ducing the scalar product Re (u, U)Wl( . We also interpret other complex
Banach spaces as real Banach spaces.

After these preliminaries we come to the key step in our analysis:

Proposition 1.8. The mapping
0 — alf)], C'(OK;R™) — Wy o5 (Qr)
1$ analytic at § = 0.

Proof. Since the determinant is a polynomial in the entries of the matrix,
0 — det(Dypy) = det(I + DE,0), C*(0K;R™) — C(Qg,R) is analytic. By
the Neumann series

o0

(Dgg) ™' = (I + DEB) ™ = (—DE,H)*
k=0

the mapping 0 — (Dyy) !, CHOK;R™) — C(Qg;IR™*™) is analytic at
6 = 0. Hence, the mapping 6 — (Dyy) *(Dypg) " det(Depyp) is the composi-
tion of analytic functions and a bounded 3-linear mapping, so it is analytic at
0 = 0, and we can expand it into a Taylor series converging in C(Qg; R™*™).
Because of uniform convergence we may interchange summation and integra-
tion in the integrals over Qp in the definition (1.13) of S[@]. This establishes
analyticity of the mapping

0 — S[4), C'(OK;R™) — Ses(Wo{aK(QR), WOI,BK(QR)) (1.14)

at § = 0. Here Ses(Wj 5 (), W 55 (Q2r)) is the space of sesquilinear forms
on W o5 () with norm [|Al| := supy, =1 |4 (x, v)|. Composing the map-
ping (1.14) with the canonical isometric isomorphism

I = Ses(Wy o (), Wy ok () = LWy o5 (), Wo 0 (Qr)'),
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we obtain analyticity of the mapping 6 — A[f] = I(S[f]).

Finally, note that the mapping inv : T — 77!, L(X,Y) D D(inv) —
L(Y,X) (X,Y Banach spaces) is analytic on its domain. This follows from
the Neumann series expansion

(T+A)" =TI +AT")' =T7") (AT
k=0

which holds for ||A]| < ||77!||7!. Since we have shown that
ulf] = (inv o A[f]) F
is a composition of analytic maps, the proof is complete. [ |

Actually, we are not interested in @[], but in u[f]. Note, however, that
we cannot speak of analyticity (or even differentiability) of 6 — u[f] in a
straightforward manner as the domain of definition of u[f] varies with 6.
Therefore, we consider the restriction u[f]|p to an arbitrary D CC °K (i.e.
D C °K compact and dist(D, K) > 0) with an arbitrary norm || - ||c:(py,
[ € IN. In other words, we establish analyticity of § — u[f] with respect to
all half norms of the locally convex space C*°(°K).

Theorem 1.9. For any D CC °K and any | € IN, the mapping
0~ uf]],, CYOK;R™) — C'D) (1.15)

is analytic at @ = 0, and all derivatives of u[0] satisfy (0.1) and (0.4). More-
over,

0 — us[f], CHOK,R™) — L*(S™1)
s analytic at § = 0.

Proof. Without restriction of generality, we assume that D = B, := {z : |z —
xo| < r} with g € °K and r > 0 such that dist(B,, K) > 0. (Any D CC °K
can be covered by finitely many such balls!) Choose n € (0, 5 dist(B;, K))
for the extension operator &,. and R such that B,;, C B(0,R). Then
ulf] = u[f] on B,y as pg(z) = x for z € B,,. Hence, by the previous
theorem, 0 — u[f][ . is analytic with respect to || - [[w1(s,,,). In Green’s
representation formula

ato) = [ {2 o) - un G as). ae
' (1.16)
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we may differentiate under the integral sign and apply Schwarz’s inequality
to obtain

ould]
D uff] < |57 - sup [ Dga(, )|
1D (6] 0,5, weromey S| PR
8@
+ |ute - sup || Dg H
W1/2(0Bryn) € B, W=1/2(0Br+y)

S C(O{, 77’ m) : ||u[0]||W1(Br+n)

for any multi-index «, with a finite constant C'(a,n, m). Thus, the linear
mapping u[f] — ulf]|s,, W' (B,+,) = CY(B,), given by (1.16), is bounded.
This implies analyticity of the mapping (1.15).

To see that derivatives of u[f] satisfy the Helmholtz equation, differentiate
(1.16) with respect to §. Finally, the assertions on the radiation condition
and the far field patterns follow from the formulae

_ 0%(z,y) _ dus[b](y)
wltle) = [ {5 - 20w ) | i) ana

N Oe ™Y us[0](y) _iksy
wuldl®) = Cu [ {uloin Tt - 2o as),

where |z| > R and 2 € S™ ! (cf. [CK97]). Recall that us[f] = u[f] —u;. m

1.1.3. Boundary values of the derivatives

In the previous section we have established existence of derivatives of u[f] of
arbitrary order in °X. Now, we show that these derivatives have continuous
extensions to smooth parts of the boundary 0K and we find expressions for
the boundary values. The last part is of particular practical and theoretical
interest as, together with Theorem 1.9, it gives a complete characterization
of the derivative for smooth boundaries and can be used for numerical im-

plementations.
Since a symmetric n-linear mapping is completely determined by its
diagonal values, it suffices to look at the functions u(™[](h,...,h) and

@™[@](h,...,h) which we simply denote by u™[0](h) and @™ [8](h), rsp.
If # = 0, we drop the argument [0]. Moreover, we use the notation

olw
V hl)w = E h Zlm (117)
Zla 711 1 ! E

for h',..., Kt € R™.
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Lemma 1.10. On °K, the formula

(n = n ; .
il )(ﬁ) = Z ( j ) V(J&,Q,...,sng) ul J)(h) (1.18)

=0
holds for h € C*(0K).

Proof. For zy € °K we choose 7 > 0 such that d := dist(B(zo,7), K) > 0.
(As opposed to the proof of Theorem 1.9, we do not assume n < d/2 as this
case is trivial here.) Choose a function @ € C*°(IR™), 0 < o < 1, such that
a =1 on B(zy,r) and o = 0 outside of B(xg,r + d/2). We consider the
mappings

o[(3)] et w o[(5)] (5]

Due to Theorem 1.9 and the choice of o, w is C™ on a neighborhood of
R™ x {0} € R™ x C'(0K) if w extended by 0 for x ¢ B(xzq,r + d/2). By
the chain rule, w is C'*° as well, and

I[P (4)

By the symmetry of the derivatives, it follows that

“(()-EG)((0) (1)

§=0

j times (n—j) times

at (z,0). If z € B(xzg,r), this is (1.18). Since z, was arbitrary, we have
proved the assertion. [

The left hand side of (1.18) vanishes on K since @™ € W5 ok (Qr)-
Formally, this gives the desired formula for u(™(h) in terms of lower order
Fréchet derivatives (cf. (1.19) below). To make this rigorous, we have to
establish regularity properties of the Fréchet derivatives. This is done by the
following standard regularity result:

Lemma 1.11. Assume that Qg is C**'-smooth (I € Ny) in 7y € 0K, i.e.
there exists a neighborhood G of xo in Qg with the following properties: There
exist orthogonal coordinates vy, . .., Ym related to x4, ...x, by an affinely lin-
ear transformation and a function ¢y € C'(W,), W, := {y e R™ ' : |¢/| < ¢},
€ > 0 such that

GNoQr =v(We) and G = {(¢', ym) € We X R : (y') < ym < ¥(y') + €}
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Let w be a solution to the Helmholtz equation in G\OQg, and assume that
w € WHU) with Trw € WHY2(U N 0Qg) for any compact U C G. Then
w € WH(U) for any compact U C G.

Proof. This is a special case of regularity theorems for more general elliptic
partial differential equations that can be found, e.g. in [GT77, RR92|. For a
discussion of other equivalent definitions of boundary regularity, we refer to
[W1082]. ]

Theorem 1.12. Assume that Qg is C*'-smooth in zy € 0K (I € Ny) and
that zy € G C Qg as in Lemma 1.11. Then, for h € C*(OK)NC(GNOK),
the derivatives u™ (h), n € {0,...,1} belong to W't="(U) for any compact
subset U C G, and the formula

n

() = =30 (1) W m )

j=1
holds for the trace operator on U N OK.

Proof. We prove the assertion by induction on n. For n =0, Tru = 0 holds
by definition, and Lemma 1.11 implies v € W' (U). Assume the assertion
is true for n — 1. Eq. (1.18) yields

n ~(n - n j n—j
u™(h) = 4™ (h) — Z < j ) V(JSnQ,---,fnh) u™ D (h)  on Q. (1.20)

=1

The induction hypothesis implies the sum on the right hand side has a trace
in Wn+1/2(U N 9K) for any compact U C G. Moreover, Tra(™(h) = 0
as @™ (h) € Wik, and (A + k*)u(h) = 0 by Theorem 1.9. Therefore,
Lemma 1.11 implies u™ (h) € W!="+3(U), and (1.19) holds for n. n

Remark 1.13. A numerical evaluation of Fréchet derivatives for irregular do-
mains, e.g. domains with corners or open arcs, still requires some additional
work since the boundary values of the derivatives have singularities at points
where 0K is not smooth. Therefore, numerical code to calculate u cannot
be used in a straightforward way to compute u'(h). Here the regularity of
i'(h), i.e. @'(h) € Wy 55 (Qr) can be useful (cf. Kress [Kre95a, Kre95b]). We
mention that using regularity results in [GT77, Chapters 6 and 8], it can be
shown that the total derivatives @™ (k) are continuous or even locally Holder
continuous up to the boundary under very general assumptions on K, and
that the boundary values in (1.19) are actually attained in the classical sense.
However, we do not go into details since we do not need these results here.
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1.2. Neumann boundary conditions

1.2.1. The sound-hard scattering problem

Let K C R™, be compact, °K := IR™\K connected, and assume that °K
has the cone property which is defined as follows:

Definition 1.14. Let x € R™ and B a ball with z ¢ B. Then
CB.={z+Ay—2):A€(0,1),y € B}

is called a finite cone with verter x.

An open domain 2 C IR™ has the cone property if there exists a finite
cone C such that each point z € 2 is the vertex of a finite cone C}, contained
in 2 and congruent to C.

Obviously, for R sufficiently large, °K has the cone property if and only
if Qr := {z € °K : |z| < R} has the cone property. If this is true, the
embedding W'(Qr) < L*(Qg) is compact (cf. [Ada75, Theorem 6.2]), and
this is what we actually need. Note that {2z has the cone property if, e.g.,
K is a polyhedron or an open arc.

Problem 1.2. Let u; € C*(IR™) be an incident field solving the Helmholtz
equation Au; + k?u; = 0 in R™. A function ug € C?(°K) is called a solution
to the sound-hard scattering problem for wu; if it satisfies the conditions (0.1)

and (0.4), and if u := u; + ug satisfies the boundary condition %‘aK =0in
the sense that v € W1(Qg) and
S(u,v) = F(v) (1.21)

for all v € W!(Qg) with F given by (1.2) and

S(u,v) ::/Q {Vu-Vv - k*ut} d:r—/s Luwds.
R

R

Of course, as in Lemma 1.1, if u € W'(Qg) is a solution to (1.21) then
us = u—1u; can be extended such that (0.1) and (0.4) are satisfied. Therefore,
we may consider a solution to (1.21) as a solution to the sound-hard scattering
problem. If the boundary is smooth, the condition = 0 is satisfied in
the sense of the trace operator.

The proof of the following existence and uniqueness theorem is analogous

to the proof of Theorem 1.3, and needs the compactness of the embedding
WI(QR) — L2(QR) (Cf [Het95])

2
v 10K
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Theorem 1.15. The operator A : W'(Qg) — W' (Qg)', defined implicitely
by

S(u,v) = (Au, v} 120 for all u,v € W(Qp), (1.22)

18 bounded and boundedly invertible. Consequently, the sound-hard scattering
problem has a unique solution w = A™'F for all incident waves u;.

1.2.2. Analytic dependence on the domain

We have the same setting as in §1.1.2.. To assure that the sound-hard scat-
tering problem has a solution for small variations of the domain K, we ad-
ditionally need the following lemma:

Lemma 1.16. Assume that Q@ C IR™ has the cone property. Then @y(S2)
has the cone property for small § € C*(IR™, IR™).

Proof. Assume that €2 has the cone property with reference cone Cf (m’T),

i.e. for any z € Q there exists a cone C2™™) C Q congruent to CZ™",
We show that 6(z) + CEZ™"=/? ¢ (pQ(CE(m”’”)) C y(2) for small §, which
implies that ¢;(€2) has the cone property with reference cone Cj’ (mr/2)  With-
out restriction of generality # = 0. Note that C2™") = Unseo,1) B(Am, Ar).
Hence, we have to show that 6(0) + B(Am, A%) C pg(B(Am, Ar)), or, equiv-
alently,

$(6(0) + B(Am, )\g)) C B(Am, \r) (1.23)

with 1) := (pg_l. For y € B(Am, A%), we have

1
\w(we(o» + [ Duleal0) + oy —
< ly—Am| + D% — Il

T T
< CHIDY=TI(m+ 7).

4 (6(0) +y) — Am|

We have Di o gy = (D)~ = 3222 (—D6) by the Inverse Function The-
orem and the Neumann series, so |[Dy — I]| < m —-1= %. Thus,

(1.23) holds for || DO|| < 5., which proves the assertion. |

Completely analogous to Proposition 1.8 and Theorem 1.9, we have the
following result:
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Theorem 1.17. For any D CC “K and any | € IN, the mappings

0 — alf], CHOK,R™) — W(Qpg)
0 — ulf]|,, C'(0K,R™) — CY(D)
0 — us[d), C'OK,R™) — L*(S™ 1)

are analytic at @ = 0. All derivatives of u[f] are radiating solutions to the
Helmholtz equation in °K.

1.2.3. Boundary values of the derivatives
We need the following regularity result:

Lemma 1.18. Let Qg be C'*ol-smooth in a ©o € OK with G as in Lemma
1.11. Moreover, let f € W=Y(U) and g € WY2(00 N U) for any compact
U C G, and assume that w € W'(Q) is a solution to the variational equation

{VUV@ — &Qu@} de = fudx + / guds
Qpr (21977

Qg

for all v € W(Q) with suppv C G. Then u € WHL(U) for all compact
UCd.

Proof. This follows from more general regularity theorems in [Nec67] or
[Wl082]. ]

The Fréchet derivatives u(™(h) have the following Neumann boundary
values on smooth parts of 0K

Theorem 1.19. Let 0Q be C bl -smooth in o € 0K with G as in Lemma
1.11, and let h € CY(OK) N CYG N OK). Then the derivatives have the
reqularity

a™(h) e WH(U)  ne{0,1,...}, (1.24)
u™(h) e W (U)  nedo,...,1} (1.25)

for any compact subset U C G, and the functions u'™(h) and satisfy the
boundary condition

n

TrV, u®™(h) =) ( ’; > TV, u ) (h) —

j=1
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with v[0] = (DyphDypg)~" det(Dyg)v[0]. Here Tr is the trace operator on
UNOK, and the notation V ... is defined in (1.17).

Proof. Recall that S[f] is given by

SO (w,v) = / {VwM[8]Vv + wN|[f]v} dx —/ Lwvds

Qr Sr
with the matrix-valued function M[0] = (DgyDyg)~" det(Dyg) and the
scalar function N[f] := —x?det(Dypg) which both depend analytically on

0. Differentiating (1.12) n times yields

{(Vi™Vs - *aM5} dz =

Qg

- Z ( n ) {V'&(”_j)M(j)VT) + ﬂ(”_j)N(j)ﬁ} dz
1 N7/ e
for v € W'(Qg) with suppv C G. We have assumed that R is sufficiently
large such that G N Sgp = 0 and dropped the argument (h) of the Fréchet
derivatives. We proceed by induction on n to prove (1.24):

For n = 0, the right hand side of the last equation is 0, so the assertion
follows from Lemma 1.18. Assume that (1.24) holds for all Fréchet derivatives
up to order n — 1. The extension operator can be chosen such that £,h €
CHY(G) (cf. [Ste70]). Since all entries of all derivatives of M[f] at § = 0
are polynomials in entries of DE,h, we have M*) € C!{(G,IR™*™) for all
k € IN, and analogously, N*) € C'(G, R). Therefore, an application of Gauf’
divergence theorem in G and the relation ((MW)'Va™=9 v) = V) a9
yield

{Vﬁ/(n)V@ _ /{)2’&/(”)6} d.fC = — Z ( n > / Tr {Vly(j) ﬂ(n_J)} TI"D ds
GNOK

Qr j=1 J

_ Z ( 7; ) {V(MD)wa=9) 4 ar=D N0 g dg.
=1 2z

(1.27)

Now (1.24) for n follows from Lemma 1.18, the induction hypothesis, and
the trace theorem.
(1.25) now follows from (1.18) and (1.24) by induction on n. (1.24) and
(1.27) imply
v, a™ = — ( " ) Tr Vi @™ 7).
; j )

Plugging (1.18) into this equation gives (1.26). |
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1.3. Other forms of the boundary values of
the derivatives

In this section we derive alternative forms of the boundary values of the
Fréchet derivatives derived in Theorems 1.12 and 1.19. These alternative
expressions are better suited for numerical implementations although in most
cases they look more complicated. For Dirichlet boundary conditions and
m € {2,3} we have

Tru'(h) = —TrVu-h = —g—:j(h, v) (1.28)

since the tangential part of Vu vanishes due to the boundary condition. If
Problem 1.1 is solved by an integral equation method as discussed in Chapter
2, then % arises as solution of an integral equation. Therefore, the right hand
side of (1.28) can easily be evaluated.

Corresponding transformations for higher derivatives and other boundary
conditions involve some elementary differential geometry that is provided
below. The aim is to express the right hand sides of (1.19) and (1.26) in
terms of the Cauchy data of the total field, i.e. u and g—g using essentially
only the following operations:

e tangential derivatives
e Dirichlet-to-Neumann or Neumann-to-Dirichlet maps

Using boundary integral equations Dirichlet-to-Neumann and Neumann-to-
Dirichlet maps are straightforward to implement. Computation of tangential
derivatives requires some care since numerical differentiation is unstable. In
Chapter 2 we describe a stable and efficient algorithm to calculate tangential
derivatives for m = 2.

Tools from differential geometry: Let ' C IR® be a C%-smooth part of a
surface, v : I' — IR?® a unit length normal vector, and z : R? D W —T' a C*-

parametrization such that the vectors z ;(w) := 2% are linearly independent
and that
. z1 X x2
CAR R

For 2y € T let P, X = X — v(x0) (X, v(2¢)), X € Ty,JR* ~ R? denote the
orthogonal projection onto the tangent space T,,I' of I' at zy.
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With the convention to sum over equal subscripts and superscripts, the
inner product of tangent vectors X = X'z; and Y = Y’z ; induced by the
inner product of IR? is given by

(X,Y)=X"Y7g; with g;;:=(z;,2;).

We set g := det(g;;) and denote by (¢”) the inverse matrix of (g;;).
If ¢ :[0,1] — T is a smooth curve on I' with ¢(0) = =z, we define the
derivative of v in the direction ¢’(0) by V(o) v(zo) := (v 0 ¢)'(0). Since

d
0= %\(1/ o c)(t)||2t:0 =2 (v(zo), (v 0 ¢)(0)),
the Weingarten map Ly, : T,,,I' = T,,T" is well defined by
L, X = Vxuv. (1.29)

It is easily seen that L,, is symmetric, i.e. (L, X,Y) = (X, L,,Y) for all
X,Y € T, I'. The eigenvalues k1, ko of L, are called principal curvatures of
I at 5. The mean curvature H(xy) and the Gaussian curvature G(zy) of I
at z, are defined by *

1
H(zg) := 5(/{1 + kg) and G(zg) := Kike,

i.e. H(zg) =4 Tr Ly, and G(zo) = det Ly,.
We frequently work with the coordinates

(W', ws) = z(w') + wsv(z(w')) w' = (wy,we) € W, |ws| <€
in the tubular neighborhood U (T") := Z(W x (—¢,¢)) of T.

Lemma 1.20. % is locally injective for sufficiently small |ws|, and the metric
tensor g := det(DZ*Dz) is given by

§(w) = g(w') (1 + 2ws H(w') + wiG(w'"))’. (1.30)
Proof. Tt follows from definition (1.29) that 2 (w) = (I 4 w3 L)) Dz (w').
With this relation, it is easily seen that V := span{v(z(w'))} = ran(;—&) and

!There are different sign conventions for the Weingarten map. Therefore, some of the
formulae below appear with a different sign in front of H in the literature ([Mar68, SW]).
We have defined L such that a sphere with outward pointing normal vector has positive
mean curvature H.
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the tangent space V- = ran(2%) are invariant subspaces of DZ(w)Dz*(w)

and that

det(DzDz*|,,) = det(I 4+ w3L)? det(Dz*Dx).

Since DZDz*|y = |v(xz(w'))[*> = 1 and since the eigenvalues of I + wsL are
1 4+ wsk;, © = 1,2, this gives (1.30). The inverse function theorem implies
that Z is injective in a neighborhood of w if §(w) # 0 which holds for small
|’U)3‘. |

We sometimes silently extend scalar or vector valued functions X defined
on I' to U(T) by

X (Z(w'ws)) :== X (z(w")). (1.31)

We now derive some relations between differential operators defined on
[' and the corresponding operators in U (T"). In the following, Latin indices

run over 1,...,m— 1 and Greek indices over 1,...,m. We use the notations
0, = 72—
M owy,

The surface gradient (Grad ¢)(zo) € Ty,I' of a scalar function of I' is
defined by its action on tangential vectors ¢/(0) where ¢ : [0,1] — ' is a
smooth curve with ¢(0) = zo:

(Grad ¢(z), ¢'(0)) := (¢ 0 ¢)'(0)
In local coordinates Grad ¢ can be computed by the formula
Grad ¢ = gjkaj:r,k,
and if ¢ € C(U,(T)) then
Grad ¢ = Pgrad ¢ onI'.
The surface divergence of a tangential vector field X = X'z ; is defined by
Div(X) := g~ /29 (gl/QXi).

It can be shown that this definition is independent of the choice of coordi-
nates. For Y = Y#i , € CY(U.(T),IR?), it follows from (1.30) that

divy|, = 570,(3°7")]
=g7'%0;(g'?Y") + 05Y* — 2HY?|,
= DivPY + 95 (Y,v) + 2H (Y, v) | ..

(1.32)
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The Laplace-Beltrami operator on I is defined by Ar¢ := Div Grad ¢. From
our previous calculations it follows that Ar is related to the Laplace operator
A = divgrad in U, (T") by

A¢|, = Div P grad ¢ + 05 (grad ¢, v) + 2H (grad ¢,v) |,

; (1.33)
= Arg + 03¢ + 2H59| ..
Finally, we note that the identity
V(Qf,g) U = Vf Vg U — vaf u. (134)

holds for f € C'(¢K,R™), g € C(°K,R™) with Vé,g) u defined by (1.17).
With these tools we can prove the following results:

Proposition 1.21. Under the assumptions of Theorem 1.12 with m = 3 and
n = 2 the following formula holds:

ou'(h) ou

Tru'(h) = —2h" =5 = + (2Vpn h* + 2H (R”)? — (LPh, Ph))a (1.35)
Proof. The formula of Theorem 1.12 is
u"(h) = =2V ' (h) — Vi, ) u. (1.36)

Here and in the rest of this proof, we omit the trace operator. Due to the
decomposition h = h¥v 4+ Ph and (1.28), the first term satisfies

ou'(h) ou
-2 '(h) = —2RY ——~ + 2 hY —
and the second term can be decomposed into
Vi U= = Vi) U= 2V pny U — Vipnph) U- (1.37)

Since d3v = 0 (cf. (1.31)), we have V;, ,, u = d3u. It follows from (1.33), the
boundary condition, and the Helmholtz equation that

o OU
V(%zuu’huy) u = _H(h )25.
To find an expression for the second term in (1.37), we first note that
v 14 au
Vi 0y 1 = (on (1), V) = (Vo (0°9), ) o
Ju ou
== (Vph hy + hu <Vph v, I/)) % = (Vph hu) e

ov
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as 0 = Vpp, (v,v) = 2(Vpyv,v). Together with (1.34) this yields

,ou o Ou
Véuy,m)u = Vph <h o ) (Vphh )81/

For zy € T let ¢ : [0,1] — T be a C?-curve with ¢(0) = xy and ¢/(0) = Ph(z)-
Then

d
72 (Vule(), ¢ ) |

Vi opeto (o) + o 0) (v(e(0)), (0)).
Differentiating the equation 0 = (v(c(t)), ¢'(t)) yields
); ¢

(v(c(0)), ¢"(0)) = = ((v 0 ¢)'(0),¢'(0)) = — (Lc'(0), ¢(0)) -
Therefore,

0 = (uoc)'(0) =

@
ov’

Putting everything together gives the assertion. [

V(2Ph,Ph) u = (LPh,Ph)

Remark 1.22. We consider the case m = 2. A smooth planar curve c :
0,1] — IR? has only one curvature H. If ¢ is parametrized by the arc-length,
i |c'| = 1, then ¢" = —Hv. The Weingarten map L simply becomes a
multiplication by H. The formulae (1.30), (1.32), and (1.33) have to be
replaced by

g(wy,wy) = g(wl)(1+w2H(w1)) (1.38)
divY|. = DivPY 4+ & (Y,v) + H(Y,v)|, (1.39)
Adl. = Arg+ o+ Hdg).. (1.40)

Actually, both Div and Grad essentially reduce to the arc-length derivative
%(C(t)) = (foce)(t). If 7:=((t) then

df
ds

df

Div(fr) = and Grad f = 5T

Therefore, (1.35) becomes

ou'(h) dh” ou
" _ v T v\2 T\2
(k) = —2h'— = + <2h —— + H(W) — H() ) - (1.41)

with hA™ := (h, 7).
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Remark 1.23. The non-diagonal values of the second derivative can be re-
covered from the diagonal values by

2UII(h1, hg) = U,”(h,l =+ hg) — u"(hl) — U”(hg).

In case of (1.41) this gives the formula

! !
u”(hla h?) = hlf 8ua(h2) - h/g aua(hl)
. du (1.42)
+ (h{ "2 by S+ Hhg Hh{h;) -

which corresponds to a result by Hettlich and Rundell [HR, Theorem 6.1].

Proposition 1.24. Under the assumptions of Theorem 1.19 with m = 3 and
n =1 the following formula holds:

ou'(h)

o (Grad b, Grad u) + h*(Ar + £*)u (1.43)
Proof. The formula from Theorem 1.19 is
ou'(h .
Q) = (), V)

= W'V U= Vipp,yu— (7'(h), Vu) .
(1.33), (0.1) and (0.3) yield
_V(?J,I/) u = AFU + KZQUI.
From (1.34), ¢ = 0, and the definition (1.29) we obtain

ou
_V(gPh,u) u = —vPh % + VVPhU u = VL(Ph) Uu.

By the differentiation formula (A=")[0](h) = —A~'[0] A’[0](h)A~![0] we have
70)(h) = —(Dh)'v — (Dh)v + (det Diog) [0](R)v.
If h is extended according to (1.31) near I, then (Dh)v = d3h = 0. Therefore,

—(7'[0](h), Vu) = {(v,(Dh)Vu) = (v, Vg, h)
= (v, Vo, Ph) + (v, Vg, (h"V)) .

Applying Vg, to (Ph,v) =0 yields
(Vou Ph,v) = — (Ph, Vigy ) = — (Ph, LVu) = — (LPh, Vi),
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and applying Vg, to (v,v) =1 gives
(v, Vgy (R'v)) = Vg, B + B” (v, Vg, v) = (Vh", Vu).
We have proved that
— (¢ (h), Vu) = (Grad ¥ — LPh, Vu).
Putting everything together gives the assertion. [

(1.43) is also valid for m = 2 with almost the same proof.

1.4. On the null-space of the first derivatives

Lemma 1.25. Let K be a C? smooth, sound-soft scatterer, and u; an inci-
dent field that does not satisfy the radiation condition (0.4). Then

ul (h)=0<= h-v=0. (1.44)
Proof. If h-v =0, then v'(h)|ox = —2% (h-v) = 0, and hence ul,(h) = 0 by
the uniqueness of the exterior Dirichlet problem.

Assume that u/_ (h) = 0. Then, by Rellich’s lemma (cf., e.g., [CK97,
Lemma 2.11]), v/(k) = 0 in °K, so in particular 2% (h - v) = 0 on dK.
Assume that (h-v)(zg) # 0 for some zq € K. Then, by continuity, h-v # 0
on some open neighborhood of x5 on 0K, hence g—fj = 0 on this neighborhood.
As ulsx = 0, Holmgren’s uniqueness theorem (cf., e.g., [RR92]) applies and
yields u = 0 on °K. This contradicts the fact that u; does not satisfy the
radiation condition, so our assumption (h - v)(zg) # 0 was false. |

For sound-hard obstacles the above argument cannot be applied. In fact,
the following example from [Hoh98] shows that (1.44) does not hold for gen-
eral u;.

Assume that K C IR? is the unit disk, £ € IN, and u;(r,t) = J.(kr)els
in polar coordinates. Note that due to the integral representation of Bessel
functions (cf., e.g., [Kre89, (18.22)]), u; is a superposition of plane waves:

il'i]

ui(z) = gy

27
/ elrl@d@) gire d(p) := (— cos p, —sin ).
0

We readily compute
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For h = v, the boundary condition (1.43) yields

ou'(h) u
81/ == ﬁ 4+ K'u = 0
Hence ul _(h) =0 for h = v.
It is not known whether or not (1.44) holds for the sound-hard scattering
problem if u; is a plane wave.

1.5. Relation to other results

The idea to use the variational formulations (1.3) and (1.21) in order to
establish differentiability of the scattered field has been introduced by Kirsch
[Kir93] and Hettlich [Het95, Het98]. They considered the special case of the
first derivative for smooth domains. In some sense the proofs are organized
in reverse order as compared to ours. The function @'(h) is introduced by
@' (h) := u'(h) + Vu - h (cf. (1.18)) where u'(h) is defined as the radiating
solution to the Helmholtz equation that has the boundary values u'(h) =
—Vu - h on OK. In order to show that u'(h) is the Fréchet derivative of u,
the variational equation

S'(h)(u, v) = =S(@'(h),v)

is established by explicit computation of S’'(h) and repeated application of
Green’s and Gauf}’ formulae. This approach becomes rather complicated for
Neumann boundary conditions and especially for higher derivatives (cf. [HR]
where the boundary values of the second derivative with Dirichlet boundary
conditions are computed).

In the literature on domain derivatives (cf., e.g., [Sim80, SZ92]), variations
of the domain are usually defined by diffeomorphisms between domains, in-
stead of starting with differentiable functions on the boundary and extending
these functions to the entire domain. The latter approach has the advantage
that one can choose the support of the extended functions, i.e. the domain
where the diffeomorphism differs from identity, arbitrarily small. This, to-
gether with the ellipticity of the differential equation, makes it possible to
obtain higher order Fréchet derivatives in higher norms arbitrarily close to
the boundary (Theorem 1.9) and to derive eq. (1.18) in all of °K. If (1.18)
was available only up to some fixed distance to the boundary, this would not
have any implications for the boundary values of the derivatives.

A different approach based on boundary integral operators has been in-
troduced by Potthast [Pot94, Pot96b]. It is shown for C?-smooth boundaries
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that the scattered field depends C'* on the boundary with respect to the
C?-norm. The derivation of the boundary conditions has been simplified in
[HS98]. The integral equation approach has the interesting feature that it
yields an alternative implementable formula for the derivative of the scattered
field that does not contain its boundary values (cf. Moench [M&n96, M6n97]).
However, as discussed in [Hoh98], the numerical method described here is
more efficient. A disadvantage of the integral equation approach consists in
the high regularity assumptions for the boundary. Moreover, although the
boundary values of the second derivative for Dirichlet boundary conditions
can be derived quite easily with the methods in [HS98|, general formulas as
in Theorems 1.12 and 1.19, which comes out naturally from our approach,
seem hard to reach.



2. Numerical computation of
Fréchet derivatives

We have seen in Chapter 1 that Fréchet derivatives of solutions to scattering
problems are characterized by the same type of boundary value problem as
the solutions itself, and we have determined the boundary values. There-
fore, the derivatives can be computed by solving boundary value problems
of the same type as that of the solution. The boundary values of the Fréchet
derivatives involve the unknown Cauchy data which are solutions of certain
integral equations. For Dirichlet boundary conditions this has been used in
[Kre94] to compute the first Fréchet derivative. For other boundary condi-
tions and higher order derivatives the main difficulty is to compute tangential
derivatives of the unknown Cauchy data which are given as an approximate
solution of an integral equation. We describe an approach where the approx-
imate solution is a trigonometric polynomial, that thus differentiation can be
carried out exactly. Moreover, we provide an error analysis in Sobolev spaces
that justifies this differentiation. Finally, we compare our method of com-
puting tangential derivatives to a different approach suggested by Schwab
and Wendland.

2.1. Boundary integral equations

In this section we briefly describe the integral equation approaches that is
used in the following to solve acoustic obstacle scattering problems. We
assume the reader to be familiar with the basic concepts of integral equation
methods and refer to [CK83, CK97, Kre89] for introductory texts.

As opposed to our more general theoretical investigations in Chapter 1,
we now additionally assume that m = 2, that the scatterer K is connected,
and that 0K is at least C2-smooth.

Let us start with the sound soft scattering problem (0.1), (0.4) with clas-
sical boundary condition u|sx = 0 where u € C?(*K)NC(<K). We describe
two methods to solve this problem, and both are used in Section 2.5.. The

31
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first starts from the mixed layer potential ansatz

_ 0®(z,y) . c
w@) = [ B e ettt we k(2

with density ¢ € C(0K) and a real coupling parameter n # 0. Here
i
(e,y) = gHy (slr —yl).  z#y, (2:2)

is the fundamental solution to the Helmholtz equation in IR?, and Hél) is
the Hankel function of the first kind of order 0. The ansatz (2.1) avoids the
non-uniqueness of the interior Neumann problem for certain wave numbers
k which poses a problem for the double layer potential ansatz n = 0.

By the jump relations, ug given by (2.1) solves the Dirichlet problem (0.1),
(0.4) with boundary condition ug|gx = f, f € C(0K), if the density ¢ solves
the integral equation

0+ Dy —inSp =2f (2.3)

on 0K. Here the single layer potential operator S and the double layer
potential D are defined by

(Se)() = 2 /a B, )e(0) ds(),

. 00(z,vy)
Do)e) = 2 [ Zdow) as)
It can be shown that the operators S, D : C(0K) — C(0K) are compact, and
that the homogeneous equation (2.3) only has the solution ¢ = 0. Hence, by
Riesz theory, (2.3) has a unique solution for all right hand sides f € C(0K).
In addition to the mixed layer potential ansatz, we also need a Green’s
ansatz which yields % as solution of an integral equation that is adjoint to

(2.3) (cf. [Kre94]). We start from Green’s representation formula

_ 00(z,y) _ us(y) . se e
w@) = [ {u et - 2oyt as).  wex

and add the formula

_ . 0(z,y) B 0u; (y) . ) e
°T /61( {ul(y) ) o ,y)} ds(y), € °K

which is Green’s Second Theorem in K for ®(z,-) and u;. This yields

_ " 0®(z,y) Ou(y) . . e ©
w) = [ ol - Ty} as),  ce k@
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and for v = 0 on 0K this reduces to

u(zr) + /BK ag(yy)é(x,y) ds(y) = u;(z), z € °K.

Letting = tend to 0K and taking the normal derivative in this equation yields

1 _0u 1 ~Ou Oy
555—11,1 and §(I+D)$— 81/’

rsp. Here the normal derivative of the single layer potential

) =2 [ Do) dsty),

7]

is adjoint to D with respect to the bilinear system (1, p2) = [, @192 ds.
Now, by linear combination, we obtain the integral equation

’ . au_ aui

— 2inu; (2.5)

announced above.

Now, we turn to the problem (0.1), (0.4) with Neumann boundary con-
dition % = g where the boundary data are in the Holder space C%*(0K),
0 < a < 1. Here the ansatz (2.1) leads to the integral equation

Ty —inD'p +inp = 2¢ (2.6)
with the normal derivative of the double layer potential defined by

T =2 [ o) ast)

It can be shown that (2.6) has a unique solution ¢ € CH*(9K) for all right
hand sides g € C**(0K), and we briefly sketch how this can be accomplished
with help of the Riesz-Fredholm theory as presented in [Kre89, Chapter 5.
The operator T is bounded from C**(0K) to C**(0K), and —inD' +inl is
compact in these function spaces. By the identities ST = —I+D? and T'S =
—I+ D", the operator S : C%*(0K) — C“*(dK) is a regularizer of A := T —
inD'+inl. Moreover, the adjoint with respect to the bilinear systems defined
by (p1,02) = [y5 Prp2dsis A’ =T —inD' +inl € L(C"*(0K),C**(0K)).
We have ind A =ind A +ind S =ind AS = 0 as S = S'. Hence, existence of
a solution to (2.6) follows from uniqueness, and uniqueness can be shown by
standard arguments.
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Finally, we also describe Green’s ansatz for the sound hard scattering
problem. With 2% = 0 on 9K, (2.4) reduces to

0d(z,y) o .
/M T(y)u(y) ds(y) — u(z) = —uy(z), € K.

and taking the boundary values and the normal derivative yields

1 1 Ou;
—(D—-INu=—u; and =-Tu=-— u’
2 2 ov
rsp. Thus we arrive at the integral equation
. . 0u; .
(T —inD +inl)u = —2 5 + 2inu;, (2.7)
v

which is adjoint to (2.6).

2.2. Discretization of the boundary integral
equations

After parameterizing the boundary curve by a smooth, 2r-periodic function
z, the boundary integral equations (2.3) and (2.6) can be transformed to in-
tegral equations for 27-periodic functions. Whereas (2.3) is of the standard
form ”I4+compact”, the numerical solution of (2.6) poses some problems due
to the singular integral operator 7. We are going to adopt a method that
has originally been developed by Kress and Sloan [KS93] to solve an integral
equation of the first kind. After splitting off the singularities in the ker-
nels, the integral operators are replaced by quadrature operators based on
trigonometric interpolation. Thus, in the case of integral equations of the
second kind, our method is similar to Nystrém’s method, and, in fact, the fi-
nite dimensional systems for both methods coincide. However, to obtain the
approximate solution from the nodal values, we do not use Nystrom inter-
polation, but trigonometric interpolation. This will be important in Section
2.5. as it allows exact differentiation of the approximate solutions. In Section
2.3. we justify this differentiation by providing an error analysis in Sobolev
spaces of arbitrary order, extending results in [KS93|. For a different analy-
sis of (2.6) in a Holder space setting, we refer to Kress [Kre95c] and Hohage
[Hoh98]. Our presentation follows a paper by Hohage and Schormann [HS98]
where the method has been applied to a system of integral equations arising
in a transmission problem.
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Parametrization. With a slight abuse of notation, we denote boundary in-
tegral operators and their parametrized versions by the same letters. It turns
out that adjoint boundary integral operators lead to adjoint parametrized op-
erators if we incorporate an additional factor |2'(¢)|. E.g., our parametrized
version of the single layer potential operator is

i 27

(SO =3 | H(clz(t) = 2D @I (e dr, ¢ € [0,21)
Here ¢(t) = ¢(2(¢)), and |2'(7)| d7 corresponds to the arc-length element ds.
Note that S is self-adjoint due to the additional factor |2/(¢)|.

Let us now describe how the singularities of the kernels of are split off.
All of the (parametrized) boundary integral operators S, D, D', T can be
decomposed into components of the following form:

(B(k)Y)(t) = /0 "kt 7)In (4sm2t;T> Y(r)dr,  (2.8a)
BO© = [ ke (2.8b)

T—1

(Tod)(t) = % /O " oot Ll (r)ar (2.8¢)

In case of the Laplace equation (x = 0) for the unit circle, By (5-) corresponds
to the single layer potential operator, and 7} to the normal derivative of the
double layer potential. The trigonometric monomials

1

a(r) = Eei”, leZ (2.9)

are eigenfunctions of the operators By (5) and T with eigenvalues

1 —|I|71 [#0
B1(%)6[ = { | l] “ I i 0 (2.10)
Toeg = —MQ, le”. (211)

It can be shown that for general wave numbers k£ > 0 there exist kernel
functions such that the decompositions

S = Bi(ksy) + Ba(ksp),
D = Bi(kpa)+ Ba(kpya),
D' = By (k'D',l) + BQ(kDI,Q), (2.120
T = Ty+ Bi(kry) + Ba(kry). (2.12d
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hold. All kernel functions are periodic in both variables and (roughly) as
smooth as the parametrization. For more information on the kernel func-
tions and explicit formulae, we refer to [CK97] and [Kre95c|. Now, the
parametrized versions of (2.3) and (2.6) can be written as

¥+ Bi(kD)Y + Bo (kY)Y = f, (2.13)
Top + By (kY)Y + Bo(ky) + in|2'|v = §, (2.14)

rsp. Here kP := kpij + inksy, K} (t,7) = (kr; — inkp ;) (t,7) (7 = 1,2),
Y(t) = oz, f:=22]-(foz), and g :=2[2'| - (g0 2).

Approximation. Now, we approximate the operators introduced in (2.8a),
(2.8b) by quadrature operators based on trigonometric interpolation. Recall
that with n € IN the interpolation problem for the equidistant points

T

t‘gn) ::jh’ jzo’-._’Qn_l’ h:: -, (215)
n

with respect to the subspace T,, of trigonometric polynomials of the form

n n—1

v(t) = Z a; cos It + Z by sin It (2.16)

=0 =1

is uniquely solvable and defines an interpolation operator P, : C([0,27]) —
T,,. With the Lagrange functions

n—1
n ]‘ n n
Lg. )(t) =5 (1 +2 Z cosm(t — t; )) + cosn(t — t; ))) , (2.17)
m=1
the operator P, can be written as
2n—1
(P () = Y ()L (@), (218)
§=0

We introduce the quadrature operators

(Bin(B)0)(t) = /0 " (4sin2

t—T1

) Py (k(t, ) () dr,
(Bon(B)0)(t) = / " Py (k(t, ) (7) dr,

and approximate (2.13) and (2.14) by

Tothn + PuBi(kY )¥n + PuBa(ky )¢n + Pu(inl2 1) = Pug, (2:20)
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rsp. An important property of these equations is that any solution automati-
cally belongs to 7;, = ran(F,). This is obvious for (2.19). By virtue of (2.11),
it is also true for (2.20).

Finite dimensional system. To arrive at a finite dimensional system
equivalent to (2.19) and (2.20), rsp., we need the formulae

2w
. t_'T n n
/0 In (4sm2 ) (Pa)(r)dr = 3 RP(@w),
=0
2 - 2n—1
| @omar = TY w)
0 Ly
Tt ) )
o [ cot——(Ba)(Ndr = 3 T (Bv(t")
7=0
with quadrature weights
o e 1 T
R](-n) (t) = —— ) -cos m(t — tg-")) — 5 cos n(t — t;n)),
m=1
™y . LN y Lo
Got) = ——chosm(t—tj )—§cosn( —t;)
m=1

which can be derived from (2.10), (2.11), and (2.18). Evaluating (2.19) and
(2.20) at the points tl("), we obtain the following systems of linear equations

2n—1

n n n n n n n n
bult) +Z{R (R, 47) + TR () a (87)

=f(t§"), 1=0,....2n—1 (2.21)
2n—1
(n) r,(n n n n n n n
(TP E) + RO a6 + TR, 60 } )
§=0
+inlZ (M) [ (™) = g(&™),  1=0,....2n—1. (2.22)
Since the trl%onometrlc polynomials 9, are uniquely determined by the nodal
values 1, ( t( (2.21) is equivalent to (2.19), and (2.22) to (2.20).

2.3. A convergence analysis in Sobolev spaces

In this section we provide an error analysis for the method introduced in
Section 2.2.. In the following, let H? = HY([0, 27]) be the Sobolev space of
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index ¢ € IR of periodic functions v : [0,27] — C, equipped with the norm

1/2
Il = (Za + 1Y) (4, 1) |2) |

lez

We consider the following setup. Let L be a linear operator satisfying
Le; = ey, leZ

for the trigonometric monomials defined in (2.9), and assume that there are
constants # € IR and 0 < 75 < 7 such that the eigenvalues ¢; € C satisfy
¢ =c_;and

YA+ <|afP <m+3)? lez. (2.23)

Then L is a bounded and boundedly invertible operator from H? to H?#
for all ¢ € IR, and the spaces 7; of trigonometric polynomials introduced in
Section 2.2. are invariant under L. Moreover, we consider an operator

A€ L(H™™ HIP) (2.24)
with some o > 0. Assume that the equation
L+ Ay =f (2.25)

has only the trivial solution ¢ = 0 for f = 0. Then, by Riesz theory and
the compactness of the embedding H? — H?~*, (2.25) has a unique solution
W € H? for all f € HI7P.

The equations (2.13) and (2.14) fit into this abstract framework as follows:
In case of (2.13) we have L = I, 8 =0, and A = B;(k})+ B2(k3). For (2.14)
we choose L = Ty — By, 8 = 1. The operator (Bot)(t) := (2m)~* OZW@Z)dT
is introduced to meet (2.23) for [ = 0 (cf. (2.11)). Then Ay = By(kY)y +
By (kY + 3=)1 + in|2'[tp. In our general setting, the approximations (2.19)
and (2.20) to (2.13) and (2.14), rsp., are described by

The following convergence result has been established in [KS93]. Al-
though we state it with slightly different quantifiers in order to make it more
easily and generally applicable in the following, the proof remains almost the
same, so we do not repeat it here.
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Theorem 2.1. Let the numbers r,p € R satisfy max{«a, 8} < r < p and
p > max{a, B} + %, and assume that (2.24) holds for all q € [r,p]. Moreover,
let A, be a sequence of operators approximating A such that for all q € [r, p]
there exists a constant ¢ > 0 such that

(A = An)¥llg—5 < ch” [Y]lp-a (2.27)

for all € T,. Then, for sufficiently large n and for all f € HP~P, there
exists a unique solution u,, € T,, to (2.26) satisfying the error estimate

1 = nllg < ch? Il (2.28)
for all g € [r,p] and some constant ¢ independent of f and n.

We want to apply this convergence theorem to (2.19) and (2.20) with the
specifications 7 = 1 and « € (0, 3). It remains to verify the conditions (2.24)
and (2.27). A crucial tool will be the following estimate on the trigonometric
interpolation error

[1Pnth = Pllg < k3]l (2.29)

which holds for all v € H?, 0 < ¢ < p, p > 1, and some constant ¢ indepen-
dent of 1 and n (cf. [KS93, Theorem 2.1]).
An immediate consequence of (2.29) is

1Pa(inl2'[9) = inl2 [Yllg1 < kP 2lI2 |9 llp1 < kP |9 [lp—a

for z € CP~' and p > 2, i.e. this part of A, in (2.20) does satisfy the condition
(2.27). Obviously the multiplication operator ¢ — in|z'|¢) also satisfies the
condition (2.24). Moreover, it has already been shown in [KS93] that the
operators By (k) and By, (k) satisty (2.24) and (2.27) for smooth k. Thus,
it remains to consider the operators Bi(k) and Bj,(k). In the following
proposition we only consider the case § = 0 since this obviously implies the
case § =1 needed for (2.14), (2.20).

Proposition 2.2. Let k € CP([0,27]?), p € IN, be periodic in both variables
and 0 < a < 1. Then, for all q € [, p|, the operators Bi(k) and Bi,(k) :
H™* — HY are bounded, and the asymptotic estimate

1B1(k)t — Bin(k)llg < ch” ?|¢]lp-a (2.30)

holds for all g € [1,p], ¥ € T, with some constant ¢ independent of 1 and n.



40 2. Numerical computation of Fréchet derivatives

Proof. We first consider ¢ € {1,2,...,p} and compute the gth derivative of
By (k) for ¢ € C*°([0,2x]). Substituting 7 = 7+t and using periodicity, we
obtain

de d4 27 ) — ~ ~ ~
L (Bi(k)¥)(t) = %/O In (4 sin g) k(t, 7 + ) (7 + 1) dF

- [ (a0 3) Gt owte o)

by a standard corollary to Lebesgue’s dominated convergence theorem. Ap-
plying the product rule and substituting back yields
d4
dta

(By(k))(t) =
> ( g ) / " (4 sin’ ) e (k7o) dr

v=0

Proceeding as above and using

0 0
5 Palk(t, ) = Pu( 55kt ).

which follows immediately from the Lagrange representation of P, (k(t, -)v),
we find

@Bk~ Bua(b)) (1)
- Z: ( ! ) /027r In (4sin2 ! 5 T) aa:;vu (1-r) (%k(t, .)¢) () dr.

Hence, by (2.10), we obtain

%(Bl(k)@b — By, (k)Y)(t) = < Z ) 3 yid o (B)e?)

v=0 lez

with the Fourier coefficients

)= (s (1= 1) (ke 06) )

Here interchanging summation and integration is justified by Lebesgue’s
dominated convergence theorem and uniform convergence of the Fourier se-
ries of C!'-functions. Under the given restrictions on s,q and o the estimate




2.3. A convergence analysis in Sobolev spaces 41

(2.29) implies that

20 ()] =

(1 .P) (;;ku,)w>H

0”
St )

< Y llp-a-

q—«

< chP 4

p—a

It follows by the Cauchy-Schwarz inequality and the fact that >, , 77 (1 +
1?)* < oo for o < 5 that

2

d?
dte

(Bi(k)Y — Bia(k)1)(2)

s(z( )z“” (o)

v=0 leZ v=0 leZ

q q—v
S| o (T

Integrating this inequality over [0, 27] yields

2 2T
SC/
q 0

+

2
< c(Bllp-a) -

2
+

d?

H&ww—Bme Za

Bi(k)y — Bin(k)¥)(t)

2
) a
¢ (BP9l -a)”

Hence we have established (2.30) for ¢ € [1,p] "IN and ¢ € C*. This result
can now be extended to all ¢ € HP~® by approximation and to all ¢ € [1, p|
by interpolation.

For ¢ = p the estimate (2.30) implies boundedness of B(k) — By, (k) :
HP~* — HP. Boundedness of By (k), Bi,(k) : H"* — HY for ¢ € [a,p] is
shown analogously. [

(Bi(k)Y — Bin(k))(¢)

We have shown that all assumptions of Theorem 2.1 are satisfied for
the integral equations (2.13), (2.14) and their discretized versions (2.19) and
(2.20) if the parametrization z of the boundary is sufficiently smooth. There-
fore the error estimate (2.28) holds. In particular derivatives zb,({/) of the ap-
proximate solutions converge to derivatives ©*) of the exact solution, and
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these derivatives can easily be computed by an FFT algorithm (cf. p. 118)
since v, is a trigonometric polynomial.

2.4. The method of Schwab and Wendland

A different method to compute derivatives of a solution ¢ to an integral
equation

A = f

has been suggested by Schwab and Wendland and is described for integral
equations on closed surfaces in [SW] and for closed curves in [SSW96]. We
will consider the latter case. If A is a pseudodifferential operator on a closed
curve, the following commutators with the arc-length derivative 0, are well
defined

Ay =4, Ay = 0sA3+41) — Ag)0s-

The essential point is that these commutators are again integral operators of
the same order as A, and the kernels can be computed explicitly. For some
boundary integral operators for the Helmholtz equations such commutators
have been expressed in terms of other commonly used boundary integral
operators by Kirsch [Kir84, Kir89b.

An induction argument shows that

k

O Ay = Z (’;) AgjydE=Dy, k € IN.

j=0
This leads to the following triangular system of equations to compute 8%
Ay = f
L[k
Adkp = OFf - ( .)A<j)8§‘j¢, k=1,2,...,1
=1

Note that only the operator A has to be inverted.

We mention that this method has actually been devised for quite a dif-
ferent purpose, namely to evaluate potentials near the boundary in integral
equation methods for partial differential equations. A straightforward evalu-
ation of the potential operators does not yield satisfactory results due to the
singularity of the kernels. Much better results are obtained by a Taylor ex-
pansion on the boundary. The higher order normal derivatives needed there
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can be expressed in terms of tangential derivatives, and to compute those
the above method was needed.

We would like to compare the merits of both approaches to compute
tangential derivatives. The method described in Sections 2.2. and 2.3. has
the advantage that it can easily be implemented and yields highly accurate
results for smooth data. The additional work to obtain tangential deriva-
tives amounts to computing derivatives of trigonometric polynomials. For
the method of Schwab and Wendland on the other hand, matrices for the
commutators have to be implemented and computed, and the right hand side
has to be differentiated.

The method of Schwab and Wendland has the advantage that it is more
generally applicable. In particular, it can be used for three-dimensional prob-
lems although no numerical examples have been reported for this case, yet.
It is claimed that the method can also be applied to piecewise analytic curves
with corners, but to our knowledge the details still have to be carried out.

2.5. A numerical example

Our numerical example is concerned with the computation of the first Fréchet
derivative with Neumann boundary conditions. The parametrized version of
the integral equation (2.7) is

Tou + By (kY Yu + Bo(ky u + in|2'|u = w (2.31)

with k;\l’t(t, 7) =k} (7,1), (j =1,2) and w := —2/2'| (%4 — inw;). If (2.22) is
written as My = g, then (2.31) leads to the transposed system

My, =w (2.32)

since both R§-n) (tl(n)) and Tj(n) (tl(n)) only depend on |j —I| and n. Note that to
solve both (2.22) and (2.32) only one LR-decomposition has to be computed.
Let us summarize our algorithm:

1. Solve (2.32) to find an approximate solution u, to (2.31).

2. Evaluate the first and second derivatives of the trigonometric polyno-
mial u,, (cf. p. 118) and compute the right hand side of (1.43).

3. Compute the function u'(h) with a potential ansatz, i.e. solve (2.22)
with the right hand side calculated in step 2. Use the LR-decomposition
from step 1.
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If in the context of a Newton method the operator has to be evaluated as
well as the derivative, u, can be used to compute us and uy without much

2. Numerical computation of Fréchet derivatives

additional effort (cf. (2.4)).
Ezxample 2.3. The function

describes a bean-shaped domain in IR*>. We choose x = 1, d = (0,1) and

h(t) =

and —d for different values of the discretization level n (Table 2.1). Fast

sin 3t ( .
S

z(t) :

cost
int

B 1+09cost+0.1sint

1+0.75cost

convergence is clearly exhibited.

cost
sint

, and calculate the function u/_(h) at the points d

n  Rewvx(d) Im v (d) Re voo(—d) Im vy (—d)

16 -0.200933478 0.0585250333 -0.0158538563 -0.090990894

32 -0.190544511 0.0796748362 -0.0107629556 -0.147480089

64 -0.190623075 0.0794935566 -0.0108395810 -0.147031877

128 -0.190623075 0.0794935572 -0.0108395803 -0.147031878

256 -0.190623075 0.0794935572 -0.0108395803 -0.147031878
Table 2.1: Convergence of the numerical approximations to the Fréchet

derivative v, = ul_(h) for Neumann boundary conditions



3. Regularization of Linear
Exponentially Ill-Posed
Problems

The accuracy of approximate solutions to ill-posed problems depends on the
degree of ill-posedness of the problem. Inverse obstacle scattering problems
are severely of more precisely exponentially ill-posed. The classical theory of
ill-posed problems which deals with error estimates for approximate solutions
given a certain data noise level is only applicable to mildly ill-posed problems.
Therefore, there is a need to extend this theory to exponentially ill-posed
problems. It turns out that even the linear case has not been investigated
sufficiently. Therefore, we first look at convergence rates of regularization
methods for linear exponentially ill-posed problems and apply these results to
inverse problems in heat conduction and satellite gradiometry. The nonlinear
case, which is important for inverse scattering problems, is treated in the next
chapter.

3.1. Introduction

In this section we review some basic notions of linear regularization theory
following the monograph by Engl, Hanke, Neubauer [EHN96]. Let us consider
a linear ill-posed operator equation

Tx =y, y € ran(T) (3.1)

where T' : X — Y is a bounded linear operator between Hilbert spaces X
and Y. (3.1) is called ill-posed in the sense of Hadamard if 7" does not have
a bounded inverse T-! : Y — X defined on all of Y, i.e. if a solution to (3.1)
does not exist for all y € Y, or if it fails to be unique, or if it does not depend
continuously on the data y. Of these three undesirable properties, the last
one is the hardest to deal with, so we are mainly interested in this case. If T
is compact and dimran(7") = oo, the degree of ill-posedness is characterized
by the rate of decay of the singular values o, of T. If 1/0,, = O (n®) for some

45
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a >0, (3.1) is called mildly ill-posed, otherwise it is called severely ill-posed.
If 1/0, = O (exp(n®)) for some a > 0, (3.1) is called exponentially ill-posed.

We want to find an approximation to the best approximate solution
ot =TTy

of (3.1) defined by the Moore-Penrose inverse 7T of T. Recall that T :
ran(T) + ran(7T)* — X is given by 77Tz = z for x € N(T)* and TTy = 0
for y € ran(T)+, and that 2’ has minimum norm among all solutions to
the minimization problem ||Tz — y|| = min! with z € X. Of course, if T is
injective and has dense range, then T coincides with the ordinary inverse
T~ on its domain ran(7T).

A direct evaluation of the unbounded operator T! would cause serious
stability problems, especially if the available data y° are perturbed by noise,
which is always the case in practice. We assume that some estimate on the
noise level § is known, i.e.

Iy’ =yl <. (3.2)

To obtain stable solutions to (3.1), we approximate the unbounded op-
erator 7T by a family of continuous reqularization operators Ry : Y — X,
parametrized by some reqularization parameter o € R™.

Definition 3.1. A family R, : Y — X of bounded linear operators together
with some parameter choice rule

a:{(6,9°) € R" x Y :3ycran(T) |y’ —y|| <6} = R*
is called a (linear) regularization method for T if
iiir(l) Roy =Tty for all y € ran(T) (3.3)
and if the regularized solutions z° := Ra((g,yé)y& converge to the best approx-
imate solution ! for all y € ran(T') in the following (worst case) sense:
sup{[|z® —z|| : ||y° —y|| <6} =0 asd—0 (3.4)

If o depends only on the noise level §, we call it an a-prior: parameter choice
rule, otherwise an a-posterior: parameter choice rule.

All regularization operators that we consider here can be written in the
form

Ry = go(T*T)T* (3.5)
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ga()‘) Ta()‘)
Tikhonov 1 @
A+« A+«
iterated A+ a) — o o l
Tikhonov VAUV
AA+ ) Ata
TSVD AL A>a 0, \>a«
0, A<« 1, A<«
Landweber k-1 _
iteration (1=A) (1—N)*
§=0

Table 3.1: Spectral characterization of the regularization methods in Exam-
ple 3.2

with some function g, satisfying

lim ga(V) = 1 (3.6)
for all A € o(T*T)\{0}. Then
2t — 24 = ro(T*T)a! (3.7)
with
ra(A) == 1= Aga(M) (3.8)

and z, := R,y. The formulae (3.5) and (3.7) have to be understood in
the sense of the functional calculus. The reader not familiar with spectral
theory may find an introduction in [EHN96]| and a more detailed treatment
in [HS71].

Table 3.1 lists the functions g, and r, for some well known regularization
methods. A brief description follows:

Example 3.2. 1. ( Tikhonov regularization) For a > 0, z? is the unique
solution to the operator equation

T*Tzd + ozl = T*y’
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or, equivalently, to the unique minimizer of the Tikhonov functional

Tz —°|I* + o]

. ( Iterated Tikhonov regularization of order | € IN) For a > 0 the ap-

proximate solution z° = xi,l can be computed by the recursive formula
*p1,.6 § _ w0 s -
TTay, +ar,, =Ty +arg,; 4, i1=1,...,N

and x‘sa,o = (. Since the same operator has to be inverted in all iteration
steps, the computation of x‘sa,z-, 1 > 2, does not require much additional
work.

. ( Truncated Singular Value Decomposition, TSVD) If T is compact,

and {(on, vn, wy) : n € IN} is a singular system for 7" then
1
‘/Ei = Z U_n< Jawn>vna
n:op>o

a > 0. Usually, this method is only effective, if the singular values
and functions of 7" are known explicitly since a numerical SVD is too
expensive.

. ( Landweber iteration) Landweber iteration is defined by the recursion

formula
=1y, —T(—Tz_,), keN (3.9)

and z§ = 0. We assume that [|7]| < 1. (Otherwise, we change the
inner product in Y to w(-,-) with some scaling parameter 0 < w <
|IT|| 2, and replace T* by wT* in (3.9), correspondingly.) In order to
treat Landweber iteration within the framework described above, we
set = (k+1)"1

The following theorem implies that all these methods are regularization

methods. Although this result is standard, we give a sketch of the proof since
it is quite instructive and since parts of it are used later on.

Theorem 3.3. Assume that the functions g, 7o : o(T*T) — R are piece-
wise continuous and satisfy (3.6), (3.8), and

) < &

ra(A)] < g (3.11)

IN
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for some constants Cy,Cr. > 0 and all A € o(T*T), o > 0. Then the opera-
tors Ry, defined by (3.5) together with the a-priori parameter choice strategy
a(6) = § are regularization methods in the sense of Definition 3.1.

Proof. (3.10) implies that the operators R, are bounded. By virtue of (3.6)
and (3.7) we have

7117+
ot =zl = [ P dlER (312
0
with
. 1, A=0
Nmra(A) = { 0 Aeo(TTN0} - (3.13)

Here {E)} is the spectral family of 7*T', and we assume the convention that
it is continuous from the left. In order to establish (3.3), we apply Lebesgue’s
dominated convergence theorem to the integral in (3.12) and use z' € N(T)*
and (3.11).

To prove (3.4) we split the total error into an approzimation error and a
propagated data noise error:

lz" — 2ol < I = all + [l#a — 23] (3.14)

Using (3.10) and (3.11), it can be shown that

lgo(T"T)T7|* < — (3.15)

with C' = (C, - sup, |Aga(N))/2 < \/C,(1 + C,). Therefore, the propagated
data noise error can be estimated by

Jea =24 < €= = OVA.

Now (3.4) follows from (3.3), (3.14), and (3.15). ]

Unfortunately, it can be shown that for ill-posed problems (in the sense
that 7! is unbounded) the convergence (3.4) can be arbitrarily slow (cf., e.g.,
[EHN96, Proposition 3.11]). However, faster convergence and estimates on
the convergence rates can be shown for certain zf € X that satisfy a so-called
source condition. This means that there is some function f € C(o(T*T))
with £(0) = 0 and a “source” w € X such that ' has a representation

ot = (T Tw,  Jwl| <p. (3.16)
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As T is usually smoothing, (3.16) can be seen as an abstract smoothness
condition. The behavior of f near 0 determines how much smoothness of
z' is required compared to the smoothing properties of 7*T. The faster f
tends to 0, the more smoothness is implied by (3.16). The most commonly
used choice is f(A) = M with some p > 0, leading to a so-called Hélder-type
source condition

zt = (T*T) w, lw]|| < p. (3.17)

Whereas conditions of the form (3.17) have natural interpretations for many
mildly ill-posed problems, they are far too restrictive for most exponentially
ill-posed problems. (3.17) often implies that 2! in an analytic function in
such situations. As we will see, an appropriate choice of f for exponentially
ill-posed problems is

[ (=InA)7P,  0< A<exp(-1)
fr(A) = { 0 =0 (3.18)
with p > 0, i.e.
ot = [ Tw,  wll < p. (3.19a)

We call (3.19) a logarithmic source condition. In order to avoid the singularity
of f, at A =1, we always assume in this context that the norm in Y is scaled
such that

|77 = |IT]]” < exp(~1). (3.19b)

Of course, scaling the norm of Y has the same effect as scaling the operator
T. The reason for choosing the value exp(—1) in (3.19) will become clear in
Corollary 3.9.

In Section 3.7., we give some examples of important problems where (3.19)
is equivalent to a smoothness condition in terms of Sobolev spaces.

3.2. Optimality

Assume we want to solve (3.1), we have noisy data satisfying (3.2) and the
a-priori information that the exact solution satisfies a source condition, i.e.
that o' belongs to the source set

My, = {f(T"T)w:w € X A fJul| < p}.

In this section we address the question: What is the best possible general
error estimate for any approzimation to x' that can be obtained from this
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information? After answering this question, we define several degrees of
optimality of regularization methods depending on how close the worst case
error is to the best possible error estimate. Then, in the following sections, we
determine the degree of optimality of commonly used regularization methods
under logarithmic source conditions.

To rephrase the question above, let us assume that R : ¥ — X is an
arbitrary mapping to approximately recover z' from y°. We do not assume
here that R is of the form of Definition 3.1 or that it is even continuous.
Then the worst case error for R under the a-priori information 2t € M fp 8

Agr(6,M;,,T) := sup{||Ry’ — z'|| : ' € M}, A || Tz’ —°|| < 5}

The best possible error bound is defined as the infimum over all mappings
R:Y — X:

A(é, Mﬂp, T) = 1I}lzf AR(é, Mﬂp, T)

It turns out that the infimum is actually attained. The basic tool to construct
such an optimal mapping is the “Melkman-Micchelli formula”

sup{[|z| : z € Z, [|zllo < 1, |l2]ly < 1}

Qoin sup{|lz] - 2 € Z, (1 = t)ll=llo + tll=lly < 1}
(cf. [MM80]), which holds for Hilbert-space semi-norms || - ||, || - |0, and || - ||1

on a vector space Z. Moreover, A is equal to the modulus of continuity of T’
defined by

w(d, My,,T) :=sup{||z|| : € My, A ||Tz|| < 6}.
Theorem 3.4. The formula
A((S’ Mf,Pﬂ T) = Ap- (5’ Mf,/)’ T) = w(5, Mf,p; T)

holds. Here R* maps y° € Y to the unique minimizer 2%, of the generalized
Tikhonov functional

1Tz —3°|I* + ol /(T°T) x|

over ran(f(T*T)). (The superscript T denotes the Moore-Penrose inverse.)
. . . 2 . .

The reqularization parameter is a = 1%::?;_2 where t is chosen according to

(8.20) such that

sup{[[f(T*T)w| : w € X, p~ |Jwl| < 1,6 |THT* T)w|| < 1} =
sup{[|lf (T*T)wl| : w € X, tp *|lwl® + (1 = )0 *|TF(T*T)wl* < 1}.



52 3. Regularization of Linear Exponentially Ill-Posed Problems

Proof. The theorem is already contained in the paper by Melkman and Mic-
chelli [MM80, Theorem 3.1]. A proof for f(A) = M, which has a straightfor-
ward generalization to other functions f, is given in [Lou89, Theorems 3.4.1,
4.2.7]. |

An estimate on w(d, My ,,T) has been given by Mair [Mai94] and Taut-
enhahn [Tau98]. We improve these results by computing the exact values
of w(d, My,,,T) instead of estimates that are sharp for certain values of §/p
accumulating at 0.

Lemma 3.5. (Jensen’s inequality) Assume that ¢ € C([e, B]) with o, § €
R U {+o0} is convezx, and let p be a finite, positive Borel measure on some
space E which will always be a finite interval in the following. Then

[xdp _ [doxdu
(i) <7 (321

holds for all x € L'(p) with o < x < 8 a.e. du. (The right hand side may
be infinite if « = —o0 or B = 00.)

Proof. W.l.o.g. we may assume that [du =1. Let M := [ xdp and s € R

such that ¢(M) + s(€ — M) < ¢(&) for all £ € [a,b]. s exists because ¢ is

convex, and s = ¢'(M) if ¢ is differentiable at M. It follows that
d(M)+s(x—M)<pox  ae. dpu.

An integration du yields (3.21). ]

For the special case ¢(t) = t*, p > 1, inequality (3.21) is

fons (e (J)

with ¢ = z%' From this form, we easily obtain Holder’s inequality

s ([ v ()

for positive Borel measures p on E, a € LP(f1), and b € L%(j1) by setting
= |bjoi and x = |allb| 7.
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Proposition 3.6. Let (3.16) hold, and assume that f € C([0,7]), 7 > || T,
is strictly monotonically increasing with f(0) = 0. Moreover, assume that the
function ¢ : [0, f(7)%] — [0,7f(7)?] defined by

o) =& (f- 1)) (3.22)
15 convex. Then the stability estimate
T 2
Jale < o (151, (3.23)
holds. Consequently, for § < p\/7f(7),
w(d, My, T) < p\/ ¢~ (6%/p?). (3.24)

Proof. By linearity, we may assume that p = 1. Let {E,} be the spectral
family of 7*T. Then (3.21) and (3.22) yield

¢<I|xll2> _ qb(f(ff(A)2<11||EAwII2)

[[w]]? Jo dllExw|]?
Jo #(f(V)?) d||Exw|”
- Jo dllExwlf?
Jo M) d[Eyw|®
[[wl|?

Il
]

By the convexity of ¢, the fact that ¢(0) = 0, and ||w|| < 1, this estimate
implies

¢(ll1*) < | Tz|]*. (3.25)

Since f is strictly increasing, so are f-f, (f-f)~', ¢, and ¢~'. Hence, applying
¢! to (3.25) yields (3.23). (3.24) follows from (3.23) and the definition. m

Remark 3.7. If x is an eigenvector of T*T, i.e. T*Tx = Az, then equality
holds in (3.23). Since z = f(A\)w and

IT2|]” = ||(T*T) x| = |[VAf (\w]]?,
we have to show that

F? =67 (AF(V)).
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After substituting £ = f()\)? and applying ¢, this is (3.22). This straight-
forward calculation may serve as a motivation for the definition (3.22) of ¢.

Moreover, we see that equality holds in (3.24) if (§/p)? is an eigenvalue of
T*T f(T*T)>.

For the usual choice f(A) = M, u > 0, we have ¢(§) = § i . Obviously,
the assumptions of Proposition 3.6 are satisfied, and we obtain the following
classical result, which is usually proved by interpolation. Proposition 3.6
may often serve as a substitute for interpolation when working with general
sources conditions.

Corollary 3.8. (3.17) implies
lall < | T 745
Moreover,
(8, Myup, T) < pot 7405
The case f = f, (cf. (3.18)) has been considered by Mair [Mai94].

Corollary 3.9. The assumptions of Proposition 3.6 are satisfied for f =
fp, and the inverses of the corresponding functions ¢, have the asymptotic
behavior

Vo = fp(A) (1 +0(1)), A—0. (3.26)

Consequently,

Tal?y
lafl < fp< p )(1+ ) (3.27)
(6, My, T) < pf, (82/6%) (140 (1). (3.28)

Proof. By (3.19b), we have 7 = exp(—1). It is obvious that f, is continuous
on [0,7] and strictly monotonically increasing. ¢ : [0,1] — [0,exp(—1)] is
given by

(€) = € exp(—€77).
From

£

" — ex 1/2p
#'(6) = exp(—€) S

(2p—1+¢7)
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ﬁ{f(fz(TDT)) p

2
W(BM; ,.T)

S ulki(ul) 5

Figure 3.1: Illustration of Theorem 3.10

it is easily seen that ¢”(£) > 0 for £ € [0,1], i.e. ¢ is is convex.
To prove the estimate on /¢ 1()), first note that £ = ¢1()\) implies

In\=Ing— & .
Therefore,

¢ = (Iné—In)\)™>

B _ Ing\ ™
= (=In))~ (1 - m)

IS L
’ Ing—¢ %

Since limg_,g lng_hgifl/% = 0 and limy_, & = limy_,0 ¢~ (\) = 0, the assertion
follows. u

Now, we compute the exact values of the modulus of continuity.

Theorem 3.10. Let the assumptions of Proposition 3.6 hold. Define the
function ¢ : [0, f(7)?] — [0,7f(7)?] by

R} § € a(f*(TT))
¢(§) == { é:r%éqg(gf) + 63_56_— o(&y), else
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where

£}

¢ = sup{€ € o(fHT"T)) :Nf <
1§ > &}

& = f{€ € o(fA(T"T))

Then

(8, My, T) = p7) 5/ ?) (3.29)

for & < pl|TIf(ITI*), and w(8, My,p, T) = pf(ITI*) for 6 > plTIF(ITI).

Proof. It § > p||T||f(IT||?), then ||Tz|| < d holds for all z € My ,, so we have
w(d, My, T) = sup{||z| : x € My, }. ) )

Let us now prove (3.29). Since ¢ is convex, increasing, ¢(0) = 0, and ¢ =
¢ on o(f2(T*T)) (note that ¢ is the greatest function with these properties!),
the proof of Proposition 3.6 is also valid with ¢ replaced by ¢. This yields
“< in (3.29).

It remains to prove “>” in (3.29). We assume that 62/p? is not in
o(T*T f(T*T)?). For 6*/p* € o(T*T f(T*T)?), the proof is similar to the one
below, but simpler. The special case that §?/p? is an eigenvalue has been
treated in Remark 3.7. The idea of this part of the proof is to construct a se-
quence {z,} C M;,, with | Tz,|| < & such that lim, e ||z,]|> = p>¢~"(6%/p?).

Define ¢ := ¢ 1(62/p?), £+ as in the theorem, and A\, Ay, A_ by & =
f(N)? and &4 = f(A+)?. Equivalently, A, = inf{\ € o(T*T) : X > A}
since f2(o(T*T)) = o(f*(T*T)) by the spectral mapping theorem. Hence,
Ay € o(T*T) due to the closedness of the spectrum. Analogously, we have
A € o(T*T). Therefore, denoting the spectral family of T*T by {FE,},
we can choose w," € ran(E)\++% — FE,,) and w, € ran(E)_ — E/\__%) with
lw ]l = |lw, || = p for all n € IN. Define 2 := f(T*T)wE. From ||[TxE|? =
J X0V d|Byw]? we find

1 2
AdOnre < el < (s s ()

1 1)? ~
(A_——)f(x_—g) P < el < AfOL)0

n

This implies ||[TxX]|2 — A+ f(A+)?p? as n — oo, and analogously, it can be
shown that ||z£]|> — f(A$)?p? = £4p?. Since

ran(E, —FE, 1)l ran(E)\H_% —E\,),

n
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we have (w,,w!) = (z;,z}) = (Tz,, Tz} ) = 0 for all n. Define o :=

1/2 1/2
<§+—_£_> and 3 := (%) . Then, with ¢, = ||aTz, + STz}, we

52

= Tz, |* + BTz |I”
"2 (A FOL)? + BN (L)) 22
= (a%0(s-) + B0(&4)) p°
= G)p =0
We now set w, := min(1,/6,)(aw, + Bw;), and z,, := f(T*T)w,. Note that

Tn € My, as ||lwy|| = min(1,6/8,)p < p, and that ||Tz,|| = min(1,5/6,)d, <
0. Hence,

w(d,p,T)* = SungllmnIIQZ lim (min(1,0/6,))* (0’ ||z, [I* + 8[|z [I°)
ne n—,oo

= P (@2FA)?+ B2 F(\)?)
P’ + )
= =97 (6*/p)

This theorem has obvious implications for the source conditions (3.17)
and (3.19) that we do not state explicitly. It completes the answer to the
question raised at the beginning of this section. We end this section with a
discussion of optimality of regularization methods.

Definition 3.11. Let R, be a regularization method for (3.1) with param-
eter choice rule o = «(6,%%), and let the assumptions of Proposition 3.6 be
satisfied. Convergence on the source sets My , is said to be

e optimal if
Ap, (6, My, T) < py/¢7" (6%/p?)
e asymptotically optimal if

Ap, (0, My, T) = p/E T (/%) (140 (1)), 60

e of optimal order if there is a constant C' > 1 such that

Aro (0, My,p, T) < Cp\/ ¢~ (82/p?)

for §/p sufficiently small.



o8 3. Regularization of Linear Exponentially Ill-Posed Problems

Obviously, optimality implies asymptotic optimality, and asymptotic op-
timality implies order optimality.

Note that we have followed the convention to define optimality over the
estimate p\/¢~1 (62/p?) on A(6, My,,, T') given in (3.24), although there exists
a method described in Theorem 3.4 that is optimal in the strict sense that
Apg« = A. The term “optimal” is justified in the sense that p/¢~1 (§2/p?) is
the best-possible estimate on A(d, M, ,, T) independent of T. Another reason
for this choice of terminology is that the parameter choice rule needed in the
method R* in Theorem 3.4 is very hard to implement in general. On the other
hand, Vainikko [Vai86] has constructed parameter choice rules for a class of
regularization methods that are much easier to implement and lead to optimal
convergence in the sense of Definition 3.11 (cf. also [Lou89]). A similar
analysis for more general source conditions has been given by Tautenhahn
[Tau98|. The concept of asymptotic optimality has been introduced as a
substitute for optimality for iterative methods.

However, all these methods require exact knowledge of a source set My ,
that contains the solution. In the simplest cases this may correspond to know-
ing the exact smoothness of the true solution and its size in a corresponding
Sobolev-norm. Such information is usually not available in practice. There-
fore, a lot of work has been done to develop a-posteriori parameter choice
rules that yield at least order-optimal convergence for Holder-type source
conditions and do not require knowledge of the smoothness parameter p in
(3.17) (see [EHNO96] and the references therein).

In Section 3.3. we will see that the simple a-priori parameter choice rule
a ~ § leads to order-optimal convergence rates on the logarithmic source sets
My, , for all p, p > 0. In Section 3.5. we prove that even asymptotically opti-
mal convergence rates can be obtained without knowledge of the parameters
p and p in (3.19).

3.3. A-priori parameter choice rules

We start with the following simple estimates of the approximation error and
its image under 7" which is indispensable for the analysis in the following
sections.

Proposition 3.12. Assume that z' satisfies (3.19). If

FrN)ra(N)] < C1fp(a) (3.30)
holds for a, A € [0,exp(—1)] with a constant Cy depending only on p, then

lza = 2"l < Cifp(a)p. (3.31)
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If

VALWIra()] < Cvafy(a) (3.32)
with Cy depending only on p, then

1Tz — Ta'|| < Cov/af,(a)p. (3-33)

Proof. (3.31) follows from z, — xt = ro(T*T) f,(T*T)w and the isometry of
the functional calculus. The proof of (3.33) is analogous and uses the identity
|T2|| = ||(T*T)'/?2|| which holds for all z € X. u

For Holder-type source conditions, the condition corresponding to (3.30)
and (3.32) is

NMra(N)] < Cyak. (3.34)

In the next lemma we show that (3.34) implies (3.30) and (3.32). There-
fore, Proposition 3.12 applies to most commonly used regularization methods.
This generalizes and simplifies corresponding results in [Hoh97] for Tikhonov
regularization and in [DES98| for Landweber iteration.

Lemma 3.13. 1. (3.34) for any p > 0 and (3.11) imply (3.30) for all
p > 0.

2. (3.34) for any u > 1/2 and (3.11) imply (3.32) for all p > 0.

3. For all regularization methods in Example 3.2, (3.34) and (3.11) are
satisfied for p < 1. Hence (8.30) and (3.32) hold for all p > 0.

Proof. We make the substitution ¢ = a/X and write 7(}, g) := rg(A) with
q € [0,1/(eM)]. Then (3.30), (3.32), and (3.34) transform to

fhg) < clgp(fs), (3.35)
F(Aq) < sz/&J;’r’p((q;)), (3.36)
F(Aq) < Csg", (3.37)

rsp. Suppose, that (3.37) and (3.11) hold for some g > 0. Then there exists
a constant C' > 0 depending on p such that for 0 < ¢ <land 0 < A< 1/e
the estimate

f(Aaq) < CgQMSC(—lnq_{_l)_P

Ing _p_ fp(gN)
< C(m“) R AOY
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holds. For 1 < ¢ < 1/(e)), (3.11) implies that

fr(V) -G

This proves the first assertion, and the second is shown analogously.

Tikhonov iter. Tikhonov TSVD Landweber

0, ¢g<1

L g1 (1— N0

PN s ()

It is easily seen that the functions 7 listed in the table above satisfy (3.37),
and hence (3.34). (For Landweber iteration, this follows from (1 — \)Y/* <
1/e; we have set ¢ = 1/(kA).) This proves the last assertion and finishes the
proof. [

We now obtain the main result of this section.

Theorem 3.14. Assume that (3.10), (3.11), and (3.30) hold, and that z!
satisfies a source condition (3.19) for some p > 0. Then the regularized
solutions Roy’ with () = ’y%, v > 0, and R, given by (8.5) satisfy the
order-optimal estimate

=" = 25l < Cof,(6%/p%)

for §/p sufficiently small with a constant C depending on p,~y, and the regu-
larization method.

Proof. If v6/p < exp(—1) and §/p < y2, we have

0
2" =25l < ll2" = zall + |20 = zall < Cipfy(a) + C—=

Va

0 0 52
Cipfy (7—) +Cpy| — < Cpfy (—2) :
p \/ VP p

with a generic constant C since f,(vd/p) = 2°(—Ind%/p? + Iny2)" <
2% £, (6%/p%). =

Note that order-optimal convergence also holds for the choice o = ¢, but
with a constant depending on p. For Tikhonov regularization this has been
observed by Mair [Mai94]. This result is remarkable as for Holder-type source
conditions (3.17) it is not possible to obtain order-optimal convergence rates
by an a-priori parameter choice rule without knowledge of the smoothness
parameter u.

IN
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3.4. A converse result

The following theorem states that the source condition (3.19) is not only
sufficient for the rate (3.31) in Proposition 3.12, but also almost necessary.

Theorem 3.15. Assume that (3.6), (3.10), and (3.11) hold. Then the esti-
mate

l2" = zall = O (fy(e)), @0 (3.38)
for some q > 0 implies that (3.19) holds for all 0 < p < q.

Proof. The proof is modeled after the proofs of Lemma 4.12. and Proposition

4.13. in [EHN96]. We use (3.10) to obtain the lower bound
c,h_ 1
ra(M) 2 1= Nga(V)| 21— =22 > 2

for A € [0, 52-]. Then, by (3.12), we have

a
120,

a/2C,
let — 2ol > / ra()2d]| Exat |
0

1 a/2C’g fi2 1 12
> Z/ d||Exz'||” = Z||Ea/2cg$ I,
0

and (3.38) implies

Bl = O (fo(2C46)) = O (fue)), € \0. (3.39)
This and a partial integration yield

T2+
/ L2 AES? = HUTIP)?N"1” — fo(e) | Bt |”

I+ gy,
+/ T(—ln)\)Qp’lﬂE,\xTH?dA

IN

T+ g
c+ / P mayredy)

A=(|T?

b 2p—2
= 1+ L (—mn>2
( p_q( )T

A=¢
for some constant C' > 0. As p < ¢, we have

1712+
/ L) 2Bl < oo,
0

and this implies (3.19). |
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3.5. An a-posteriori rule leading to asymp-
totically optimal convergence

Even though we have seen in Section 3.3. that the simple a-priori parameter
choice rule a = ¢ leads to order-optimal convergence rates under logarithmic
source conditions, we recommend to use an a-posteriori stopping rule as de-
scribed in this section which leads to asymptotically optimal error estimates
for most regularization methods. Since convergence for logarithmic source
conditions is so slow, it is important to have at least constants of reasonable
size in the asymptotic behavior of the error. This is illustrated by the fact
that in order to reduce the error in the approximate solution for p = p =1
by a factor 10, the noise level § in the data has to be replaced by §'°! Note
that the constant (' in the estimates in Section 3.3. deteriorates for large p.

We suggest to chose o = «(6,%°) such that the following conditions are
satisfied:

|17T2° — 4°|| < 26 max(—Ind,1) (3.40a)
a < exp(—1) (3.40b)
a <exp(—1) = 3o € [a,20] |T2, — y°|| > 26 max(—1nd,1) (3.40c)

An alternative to (3.40c) is
5 b~ O
a<exp(—1) = ||Tz, —v°|| > 5(5 max(—1nd, 1) (3.40d)

Obviously, these parameter choice rules are related to the well-known
discrepancy principle.

The next lemma shows that for most regularization methods a parameter
« satisfying (3.40a)-(3.40c) exists and can be found by a simple algorithm.

Lemma 3.16. Assume that (3.2), (3.6), and (3.11) with C, = 1 hold and
that 6 > 0. If (c,) is some sequence of positive numbers converging mono-
tonically decreasing to 0 with g = exp(—1) and an/any1 < 2, then the
algorithm

n:=0
while || 729 —¢°|| > 26 max(—In4, 1)
n:=n+1

terminates after a finite number N of steps and yields a number a = ay
satisfying (3.40a)-(3.40c) with o/ = ay_1 if N > 0.
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Proof. Obviously, it suffices to prove that
lim || Tzl — o°|| < 2.
a—0
Note that the identity
Y’ — Ty = (I = Tgs(T"T)T")y’ = rs(TT")y’ (3.41)

holds for all § > 0 since gg(T*T)T* = T*gs(TT*) (cf. [EHN96, eq. (2.43)]).
As in the proof of Theorem 3.3, Lebesgue’s dominated convergence the-
orem and (3.13) yield

Jim T2, = oI = | Py

where Pyr+) is the orthogonal projection on N(T*) = ran(T)". Since y €
ran(T"), we have

[Py’ Il = |1 Py (y° = )l < 6.
This completes the proof. [

For iterative methods, a natural choice of «a, is a,, = exp(—1)/(n + 1)
where n is the iteration number. In case of continuous regularization, a pa-
rameter « satisfying (3.40a)-(3.40c) can be found by a simple bisection algo-
rithm, i.e a;, = exp(—1)-27". For Tikhonov regularization faster convergence
is achieved by a Newton method applied to the function 1/a + || T2 — 3|
(cf. [EHNO96, Proposition 9.8]). Here (3.40d) is more appropriate.

Theorem 3.17. Assume that the functions ro and g, satisfy (3.6), (3.10),
(3.11) with C, = 1, and (3.32), that o = «(6,°) is chosen such that (3.40a),
(3.40b), and either (3.40c) or (3.40d) hold, and that x' satisfies a logarithmic
source condition (3.19). Then the asymptotically optimal estimate

lze — 21| < pfp(62/0%)(1 +0 (1))
holds for § — 0.

Proof. W.l.o.g we may assume that 6 < exp(—1). Then max(—1Ind,1) =
—Ind. We treat the approximation error ||z' — z,|| and the propagated data,
noise error ||z — 2% || separately.

1.) To get an estimate on the approzimation error, we apply Proposition
3.6 to 7o(T*T)z" = fo(T*T)ro(T*T)w and obtain

|2 — 3o < p\/¢;1 <M> (3.42)

2
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since ||ro(T*T)w|| < Crl|w|| < p. (3.40a) and the estimate

Ity = Tza) = (4° = Tap)l| = lra(TT*)(y = )| <6, (3.43)
which follows from (3.2), (3.41), and ||7o(TT*)|| = C, = 1, imply
ly — Tzo|| < (1 — 21Ind)é. (3.44)

Plugging this into (3.42) and using (3.26) we obtain the upper bound

1 —21n4d)262
|2t — zq] < ,0\/%_1 (%)

2

= ohy (@m0,

Since

i (0-mr) =i (14 2 )

= f,(6%/p*)(1 + 0 (1)),
we have

2" = zall < pf,p(6°/0%)(1 + 0 (1))
2.) To estimate the propagated data noise error, let us first assume that
a < exp(—1). Then, by (3.40c) and (3.43),
1T = yll > | Tae —y°l| = 6 > 6(~1n0)
holds. This together with (3.33) yields
5(~ 1) < |Txe — yll < CopValfy(a) < Copr(Va?)  (3.45)

where x,(A) := A f,(A). Obviously, (3.45) also holds for o = exp(—1) if ¢ is
sufficiently small. (3.15), (3.45), and the monotonicity of x, imply

) ) 0

§

To — Zo|| < C—F= <V20— < V20

Iee =l < CU5 <V = VO G e/ (Can)

where C is a generic constant. A very similar calculation gives the same
result with (3.40d) instead of (3.40c). With the asymptotic formula for x,*
shown in the following lemma and a computation similar to (3.5.) we obtain

PR) 10 0) = phl/) 0 (1),

Combining this with the result of the first part of the proof gives the assertion.
|

e — 2| = Co(=In8)~! (—ln
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The proof of the next lemma uses the same technique as the proof of
Corollary 3.9 (see also [Tau98]).

Lemma 3.18. The inverse of the function x,(A) := A(—InAX)™P has the
asymptotic behavior

GHE) = E(-mEP(1+0(1),  €—0.

Proof. Note that x, is strictly monotonically increasing and that x,(A) — 0
as A "0, so X;l exists, and limg » X];l(f) =0.If A= lel(f), then

GO = (M
A

= &(—In f)pxp()\)(— In xp(:\))p
~ g mep ()

—In)

In(—InA)\ ?
= f(=mep (14 p 2BV
§(—1ng) ( +P——1 )
Since lim;_,o t~'Int = 0, this implies the assertion. |

If 26 max(—Ind,1) in (3.40a) and (3.40c) is replaced by 76 with some
constant 7 > C,. > 1, then at least order-optimal convergence can be shown.

3.6. Operator approximations

In this section we consider the situation that we want to solve an operator
equation

F(z) =y, y € ran(F)
with an injective, not necessarily linear operator F' : X D D(F) — Y that
is given only approximately by a linear operator 7}, € L(X,Y), h > 0 such
that
|1 F'(z) — Thz|| < hllz| (3.46)

holds for all z € X. Let 2T € D(F) be the exact solution, y := F(z') the
exact data and y° € Y the measurement data satisfying (3.2). Moreover, we
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assume that there exists a linear operator T € L(X,Y), e.g. T = F'[z'] such
that

IT =Tl <h (3.47)

and that ' satisfies a logarithmic source condition (3.19) with 7.
The error in the operator 7 may be due to one or a combination of the
following sources:

e A physical process which is described exactly by an (unknown) operator
F' is modeled approximately by a computable linear operator 7},. Our

analysis includes the important case that small nonlinearity effects are
neglected in the mathematical model.

e =T € L(X,Y) is approximated numerically by some operator T}.
e For numerical computations finite dimensional subspaces X,, C X and
Y, C Y are needed, and F' =T is replaced by Q,1T P, where P, : X —

X, and ), : Y — Y, are projections.

e T} is an integral operator with a kernel computed from measurement
data.

In order to prove convergence rates under logarithmic source conditions
with noisy operators, we need an analogue to the estimate

e =54 < s =S|I (3.48)

which holds for positive, bounded, linear operators S, 5, and 0 < p < 1 (cf.,
e.g., [EHNO6, §5.2]). This is provided by the following lemma:

Lemma 3.19. Letp > 0 and S, S positive linear operators in a Hilbert space

X with C := \/||S|| + ||S]| < 1. Then the estimate

m ~ ~ .
115(8) = LS < (1S = Sl + HL(VCW IS = S|
holds. Consequently, if ||S — S|| is sufficiently small, then

1£,(8) = £ <25, (115 = 311) . (3.49)
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Proof. Choose n € INg such that 0 < p < n + 1. Then the identity
AP = C(p.n) / P (T 4+ Ay dt, (3.50)
0

sin p n!

T (1=p)2=p)---(n—p)
holds for any (unbounded) self-adjoint linear operator A with o(A) C [og, 00),
oo > 0 (cf. [KZPS76, §14]). By the spectral mapping theorem, (3.50) in
particular holds for A = —InS|x,. Here X' := N(S)*, and S(X') = X'
since S is self-adjoint. For fixed ¢ > 0, we have monotonically decreasing
convergence of the functions

1— e\ ! t—InN)™1, o< A<|9
(57 —{8

C(p,n) :=

as p N\ 0. (To see this, note that z — % is monotonically decreasing for
z € R.) By Dini’s theorem, convergence is uniform in A. Hence it follows
from the isometry of the functional calculus that

1
||(t[ + ;(I - S‘X’,u))—n—l — (t[ - ln S|X,)—n—1||

VANl
<t+ 1-A ) —(t—In )"
n

O

= sup
AEO’(Slxl)

From this and the identity

()

=0

(with uniform convergence for 0 < A < ||S|| < 1), we obtain the representa-
tion

1 1 —n—1
(tI —InSx)™"" = lim (t“ Y —S|X,“>
Iz jz

n+1l o0 . 7
1 .
Ctim ()T () (Y s
N0 t/,L+1 im0 n t/,[,—|—1

Convergence occurs in the operator norm. Plugging the last equation into
(3.50) yields the identity

fp( ) (p7 )

00 n+l o0 . J
/ "7 lim ( a ) (”ﬂ ) (L) Skig b dt
0 IAN) tu+1 — n tu+1

<
I
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for z € X' = N(S)". Since this formula is trivially valid for z € N(S), it
holds for all x € X. Subtracting the corresponding formula for S, we obtain

the estimate
} .

15,(S) = fo(S)II < Clp,n) x
We first estimate the terms with pj < 1 on the right hand side, using (3.48):

n+1l oo . J
/wthm ( P ) E:(n+9>( 1 )‘SW
0 N0 tu+1 s n tu+1
0 1 n+1 Z n+j 1 j‘
4 \tp+1 — n tn+1
I<u

n+1 00 . J
1% n+j 1 &N
(w+¢) Z;( n )(m+1>”5 d

~ —n—1
1—[[S = S]"
= |t+——
M

Y Q—mw SM_A.

To estimate ||S# — S#|| for pj > 1, we choose M = 2™, m € N, such that
2 < 4 < 1. It can be seen by induction on m that

IS¥ = S| < (IS + 1S IS = S]I-

_ QK

S _ Sw'

Hence, by (3.48),
”5'_'§“a

Tl - §] < 15 - 5% <
and we get

@) = () G
< (ut ) () (%) Vis-
(

n+1 1 —n—1
) ( ve ) 15— 3]
tn+1 tn+1

S e) IRV T

_ QK
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Putting both estimates together finally gives

- _ o0 P dt
T15(8) = 5(S)1 < Clo,m) ( e

* t"P dt ~
+ S-S
| vV ||)

= f,(I8 = SI) + £(C)\/1IS = S].

We immediately obtain the following convergence result with an a-prior:
parameter choice rule.

Proposition 3.20. Assume that the conditions (3.2), (3.10), (3.11), (3.19),
(3.30), (3.46), and (3.47) are satisfied. Then the reqularized solutions

2O = g (TrTy)T7y° (3.51)

satisfy the error estimate
o+ h||xT||)
7\/5 .
In particular, for the choice « = h + §/p the estimate

25" = a'll < Cofy((h+6/p)%)
holds for h+ 6/ p sufficiently small.
Proof. With z! := g, (T;T,)T;y we have

2" = 29" < lra(TrTh)at] + lga(Tr T) Th That — 23|
< NralTETI - 1o (T T w = fo(TRTh)w]|
Hra(TrTn) o (T Th)wll + 192 (T Ta) T |l - | Taat — o).

On the right hand side of this inequality, the first term is bounded by Cpf,(h)
due to (3.11), (3.49) and the estimate

le?h — ot < C (pfp(h) T pfy(a) +

2
IT5 T =TT < W Ta (Th = DI + I(T5 = THTI < Sh < h. (3.52)
The second term is bounded by C)pf,(«) due to (3.30). Finally, we have
1 Tha’ = Il < N\ = FN] + lly = »°ll < Rl + 36, (3.53)

due to (3.2) and (3.46), so by (3.15) the last term can be estimated by
Ca~2(§ + h||z'||). This gives the assertion. |
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We now consider a modification of an a-posterior: parameter choice rule
suggested by Plato and Vainikko [PV90]. Let @ : Y — ran(7}) be the
orthogonal projection on ran(7}). We choose the regularization parameter «

such that that following conditions are satisfied:

| Thal® — Quy’|| < 26 max(—1Ind, 1) or a=h (3.54a)
h <a<exp(—1) (3.54b)
do/ € [ov, 20 :
a<ep(=l) = p ik Do ) > 2max(— g, 1) C24)
We also consider the following alternative to (3.54c):
3
a <exp(=1) = |Thag" - Quy’ll > S6max(—nd,1). (3.54d)

Under the assumptions of Lemma 3.16 it can be shown that the algorithm

n =0, o = exp(—1)

while (|| T,z%" — Qpy’|| > 20 max(—1nd,1) and o, # h)
n:=n+1
if (ap <) a:=h

else a:=a,

terminates after a finite number N of steps and yields a number a = ay
satisfying (3.54a)-(3.54c) with o/ = a1 if N > 0.

To prove convergence rates with this parameter choice rule we need the
following lemma.

Lemma 3.21. For operators T,T, € L(X,Y) with ||T||,||Tn]] < exp(—1)
and ||T — Ty|| < h the estimate

T f,(T*T) = Tu fp (T3 Tw) | < CVR
holds for some constant C' > 0.

Proof. We use the polar decomposition T = T|T|. Here |T| := (T*T)"/? is
self-adjoint and 7" is a partial isometry (cf., e.g., [Mur90]). Analogously, we
have T}, = Ty|Ty|. By the triangle inequality, ||7,]| = 1 (if 7, # 0), and
£ (T = [l fplloooz12) < T we obtain

IT£,(T"T) = Tafy (T Tu)ll = IT|T | £5(IT 1) = Tl Tl £, (1)

< @ =TT TP+ NTl - N1 LT = Tal £ (10 )]
< NTIT] = TalTalll + N To (1Tl = 1T+ T 1T = |Tal (1 Ta )]
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By assumption, the first term on the right hand side of this inequality is
bounded by k, and h < v/h since h < 1. To estimate the second term, we
use (3.48) and obtain

™
ST = 1Tl | < \IT'T =TT < VA

To estimate the last term, we proceed as in the proof of Lemma 3.19 with
S :=T*T and S := T;T}, to establish the estimate

1512 £5(S) = S2f,(S)]l < C(p,m) %

/ t”—Plim< H ) Z<n+3)< 1 ) )S
0 wNO \ T+ 1 , n tu+1

Jj=0

wit+y _ SfﬂH%H dt.

Ifuj—i—% <1, we have

™ ~ . ~ . ~
2 <|ls = S8I#y/lIs = 3l < ¢4/l - S|

with O = ||S|| + [|S|| < 2exp(—1) due to (3.48). If uj + L > 1, we choose
M e {2,2%,2%, ...} such that < %1/2 <1 to get

il
4

Quits _ GHits

pi+1/2 M—1 pi+1/2

~ -1 ~
< [ISM = SMMET < oy W g g

< VG IS - 81 < T\ IS - 8.

Proceeding as in the proof of Lemma 3.19, we obtain the desired estimate

TS 15(8) = 81 () < S (/).

QHits _ GHits

This finishes the proof. [

Theorem 3.22. Assume that the functions r, and g, satisfy (3.6), (3.10),
(8.11) with C, = 1, (8.34) with u = 1/2, and (3.82), that z' satisfies a
logarithmic source condition (8.19), that (3.46) and (3.47) hold, and that
a = a6, h,y°) is chosen such that (3.54a), (3.54b), and either (3.54c) or
(8.54d) are satisfied. Then the estimate

bt — alll < Cofy(h) + pfy (VR +6/0)) (1+0(1).  (3.55)

holds for v/h + d/p sufficiently small with a constant C' depending only on p
and the regqularization method.
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Proof. Again, we assume w.l.o.g. that 6 < exp(—1). As in the proof of
Proposition 3.20 we get the estimate

5+ hl|zt|
Ja

2" — 29" < 20, (h) + | (T3 Th)ra (T Th)wl + C (3.56)

1.) If & = 7, then the second term in (3.56) is bounded by C)pf,(n) due to
(3.30) which is a sufficient estimate. Let us assume that the other alternative
in (3.54a) holds true. Proposition 3.6 with w replaced by r,(T;T})w yields

o (T o) re (T Th)w|| < p\/¢;1 <||Thra(T,jTh)fp(T,;Th)w||2

p2 JBEED

From C, =1, (3.19), (3.47), (3.53) and Lemma 3.21 we obtain

1 Tara(TyTn) fo(Tr Th)w — Qu(y’ — Thad)||

1o (T T3) (Tu fo (Th Th)w — Quy’) |

170 (TR T - |Qn (Th fo(Ti Tn)w — o) |

1T fp (T Th)w — 3|

1T fp(TrTh)w — T fp(T*Tw|| + [T — Tpa!|| + | Tha’ — o
CVhp + 2h||zt|| + 6 < CVhp + 6.

(VANRRVANE VAN VAN

Together with (3.54a) we obtain
| Thra (T, Tn) fo(Ti Th)wl| < (1 = 2108)8 + CVhp.
Plugging this into (3.57) yields

1o (Tr T)ra( Ty Ta)wll = pfy (VR +6/p)?) (1 +0(1))

after a computation similar to (3.5.).

2.) We first assume that (3.54c) holds and show that the last term in
(3.56) is O (fp+1(62) + fp(h)). If /o > 8§/ fp41(9) this follows immediately
from (3.54b). Hence, we may assume that /o < §/f,+1(6). Then, for §
sufficiently small, we obtain from (3.54c) that

Ira (T T)Thatl > Mo (ThT3) Quy’ll = 1Qu(y° — Thah)l]
> |Qny’ = Tator ull — 6 = Rl
>

§(—2Ind — 1) — Az
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—-1/2

Multiplying this inequality by (o) and using Proposition 3.19, (3.32),

(3.34) with x4 =1/2, and (3.54b) yields

Lmstoy < %anhT:)Thx*n+%Hw*ll
< Tllm A(TWT)Th (fo(T*T) = fo (T3 Th)w)|
fnra (TWT)TLf, (T T + V3R]

< Ch(Wp+ fla)o-+ VRa].

Now we use our assumption on « to show that f,(a/) < f,(6%)(1 + o (1))
(cf. (3.5.)) and divide by the last inequality by (—Iné? — 1). This yields
§/va < V20/vVa! = O (f41(6?)) and gives the desired estimate on the last
term in (3.56). The proof with (3.54d) instead of (3.54c) is very similar. m

3.7. Applications

We now give some examples of important inverse problems where the theory
developed in this chapter is applicable.

3.7.1. Backwards Heat Equation

Problem 3.1. Let Q C IR™ be a smooth (not necessarily bounded) domain,
and let u: Q x (0,7) — IR satisfy the heat equation

g—fz “Au inQx(09) (3.58)

and the initial condition
u(-,0) = f (3.59)

for some f € L*(2). If 2 # IR™, we additionally impose one of the boundary
conditions

u=0  on dQ x (0,%] (3.60)

or

ou
3 0  ondQ x (0,2 (3.61)
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The problem is to identify the initial values f from measurements of the final
values

g = u(-1).

To analyze this problem, let us first collect some facts about unbounded
operators in Hilbert spaces. Recall that a linear operator A: X D D(A) —» X
is self-adjoint if it is symmetric, i.e. (Az,y) = (z, Ay) for all z,y € D(A) and
if D(A) = D(A4*), D(A*) :={z € X : 3z € XVy € D(4) (z, Ay) = (z,y)}.
For unbounded operators the latter condition is usually much harder to check
than the former. However, the spectral theorem only holds for self-adjoint,
not for symmetric operators. It can be shown (but the proofs are not easy!)
that the Laplace operator A is self-adjoint on either of the domains

D(A) = {v € H*(Q) : v =0 on 00}, (3.62)

and
o _
ov
(cf. [Tay96, §8.2]). Of course, the boundary conditions have to be understood
in the sense of the trace operator. For Q = IR™, A is self-adjoint on the
domain D(A) = H*(IR™).

We interpret (3.58) as an ordinary differential equation for the vector-
valued function ¢t — u(-,t), [0,7] — L*(Q) with initial condition (3.59) and
require that

D(A) = {v e H*(Q): 0 on 00} (3.63)

u(-t) €D(A),  0<t<f (3.64)

With (3.62) or (3.63), this takes care of the boundary condition (3.60) or
(3.61), rsp., and (3.58) makes sense as an ODE. The solution is easily found
to be

u(-,t) = exp(tA)f, t €10,1]

(cf. [RR92] or [Paz83]). We interpret this formula in the sense of the func-
tional calculus for unbounded self-adjoint operators. Note that (3.64) is
satisfied since A <0 and sup,, |Aexp(tA)| < oo for ¢ > 0.

We can now formulate Problem 3.1 as an operator equation of the form
(3.1) with X =Y = L?(Q) and T = Ty given by

1 _
TBH = — exp(tA)

Je

The scaling factor 1/4/e has been introduced to meet (3.19b).
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Proposition 3.23. For Problem 3.1, condition 3.19 has the interpretation
ran ( f,(TiuTon) ) = D((1 = A)).

Proof. We have
1 _ _
fp(T]zHTBH) = (fp e} g exp 2t> (A) = (I — 2tA)7p

Since there are constants ¢, C' > 0 such that ¢(1+ )P < (1+2t\)? < C(1+A)P
for all A > 0, it follows that

D((I _ A)p) - {v e L2(9) - /000(1 + N2 d||Eyw|? < oo}
= {v € L*(Q) : /000(1 +2tA\)* d||Eyvl|? < oo}

- ’D((I - zfA)P) = ran ( fp(TgHTBH)).
Here { £} is the spectral family of the positive, self-adjoint operator —A. =

Remark 3.24. If Q =1R™, then
D((I — AP) = H*(Q). (3.65)

With boundary conditions the situation becomes more complicated. Neu-
bauer [Neu88| has shown that (3.65) cannot hold if 2 is bounded (and under
weak additional assumptions, (3.65) cannot hold even if I — A is replaced by
some other self-adjoint, densely defined, strictly positive operator).

For p € IN, we have

D((I—A)p) ={ve H?(Q) : A%y =0o0n 0 for g=0,1,...,p— 1}

in case of Dirichlet boundary conditions and

q
D((I—A)p> :{UEHQP(Q):%zOon@Qforq:O,l,...,p—l}

14

in case of Neumann boundary conditions.
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3.7.2. An inverse problem in satellite gradiometry
Problem 3.2. Let u satisfy the Laplace equation
Au=0 in {r € R™"": || > 1}.

For m = 2, u describes the gravitational potential of the earth in a spherical
framework when the radius of the earth has been normalized to 1. The
behavior of u at infinity is described by

u(@)| =0 (j«['"™),  |z| - o0
The problem is to determine the potential
f=1ulgn
at the surface S™ := {z € R™" : |z| = 1} of the earth from satellite
measurements of
0%u

= 3.2
or? | pgm

g (r=1z|)

at RS™ = {z € R™" : |z| = R}, R > 1. Here —Vu describes the gravita-

tional force and —62—3 the rate of change of the gravitational force in radial
ar g g

direction.

Let v be the solution to the interior Laplace equation with Dirichlet
boundary values f. With r» = |z| and £ = z/|z|, v is given by the Pois-
son formula

o(rd) = v(@,r) = L2 /S /(9) ds(y) (3.66)

Yen m ‘Ti_mm-ﬂv

where v,,, = 27(™*V/2 /T ((m+1)/2) is the surface area of S™. An elementary
calculation using the formula

72 m+10 1
=23 3 + T—2A5m (3.67)

A

(cf. (1.33)) yields
u(z,r) =r' ™u(z, ;)

Thus, we may formulate Problem 3.2 as a first kind integral equation of the
form (3.1) with T = Tgg : L2(S™) — L?(S™) given by

wan@ == [ S {wr Ao i am,

Y Jgm ORZ |R—13 — g|m+1
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Here the scaling constant ¢ is chosen such that (3.19b) is fulfilled. Note that
Tsc has an infinitely smooth kernel and thus maps L?(S™) to C*(S™). This
indicates that Problem 3.2 is severely ill-posed. The next proposition shows
that again logarithmic sources conditions are smoothness conditions in terms
of Sobolev spaces.

Proposition 3.25. For Problem 3.2, condition (3.19) has the interpretation
ran ( f,(T§eTsa) ) = HP(S™).

Proof. In analogy to the analysis in §3.7.1. we interpret the Laplace equation
with formula (3.67) for the Laplacian as a second order ODE in r with an
initial condition at » = 1. We obtain two solutions, one defined for r > 1,
the other one for 0 < r < 1:

u(,r) = e R () = DA,

B 1/2
2
This implies

2 — m
%ru/(.”]") — (_Ll —_ A) <_mT—+—1 —_ A> T_%_Af,

1.e.

m—1 m+1

2 2
TS*GTSG = X(A); X(/\) = 02 (_T _ /\) <_T _ )\) Rf(m+3)72)\.

An easy calculation shows that

o
Fr(x(N)

where Z() is bounded for A € [, 00) D o(A). It follows that

= (=) = RV +2(0)

ran (fp(TS*GTSG)) = ran ((fp o X)(A)) = D((ln R*)AP + E(A))
= D(AP) = HP(S™).
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3.7.3. Sideways Heat Equation
Problem 3.3. Let u : [0,1] x R — C satisfy the heat equation

u(t, ) = uge(t, ).

The interval [0, 1] represents some heat conducting medium (e.g. the wall of
a furnace) where one side (z = 0) is accessible and the other one is not. We
assume the accessible side to be insulated, i.e.

u;(0,t) =0, teR.

The problem is to determine the temperature at the inaccessible side

9= u(la )
from measurements of the temperature at the accessible side
f=u(0,-).

We make a Fourier transform in the time variable, i.e. we consider

(Fu)(z,w) = \/% /Z e Wty (z,t) dt.

Under appropriate smoothness assumptions we have
Fge = (Fu)zg and Fuy = iwFu.
Hence, Fu is characterized by the equations

(fu)zczc = i(AJj:’U,,
(‘FU'):E(O’ ) =0,
(Fu)(1,-) =FFf.

These equations are easily solved explicitly. We get

cosh Viwz
F W)= ———
(Fu)(@,w) cosh V/iw

with Viw = /% +i,/%. Therefore, we describe Problem 3.3 by an operator
equation (3.1) with X =Y = L?(IR) and

(Ff)w)

Ts := F~'¢(cosh Viw) ™' F. (3.68)

Here c(cosh viw)™! denotes a multiplication operator, and we have intro-
duced a scaling constant ¢ := exp(—1/2) inf,, | cosh Viiw| > 0 to meet (3.19b).
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Proposition 3.26. For Problem 3.2, condition (3.19) has the interpretation
ran ( f,(TguTou) ) = H"*(R).

Proof. If A: X — X is some self-adjoint operator and W : Y — X a unitary
operator, then the functional calculus of A and W *AW are related by

fOWVTTAW) = W F(A)W. (3.69)
(To see this, note that {W'E\W} is the spectral family of W tAW if
{E\} is the spectral family of A.) With W = F and A = T¢,Tsu =
F~'¢?| cosh /iw|"2F, this implies

1
fo(c?| cosh v/iw|~2)

[w [w
| cosh V/iw|* = sinh? 5+ cos’ 5

—Inc?| cosh Viw| ™2 ~ (1 + w?)/*

ran (fp(TS*HTSH)) = {gp € L*(R) : Fo € LQ(]R)} :

From

it is easily seen that

and
1
fo((?| cosh Viw|)~2)
in the sense that the left hand side is bounded from above and below by

constant multiples of the right hand side with positive constants independent
of w. Hence,

~ (14 w?)P/

ran (fp(TS*HTSH)) ={pel’(R): (1+ WP Fyp € L*(R)} = HP2(IR).
]

Remark 3.27. From (3.68), (3.69), and D = F 'wF, D := 14 it follows
that

Tty Tsy = c?| cosh ViD|™2.



4. Iterative regularization of
nonlinear exponentially
ill-posed problems

In the last few years quite a number of iterative regularization methods for
nonlinear ill-posed problems have been suggested. After giving a definition
of the term iterative regularization method, we describe some typical ex-
amples of this class of methods and review some convergence results. Due
to fast convergence, regularized Newton methods are particularly attractive.
Convergence rates for nonlinear exponentially ill-posed problems have first
been shown in [Hoh97] for the iteratively regularized GauB-Newton method
(IRGNM), and in [DES98] for Landweber iteration. Here we suggest a gen-
eralization of the IRGNM where iterated Tikhonov regularization is used
to solve the linearized problem and give a convergence rates analysis under
logarithmic source conditions. In the next chapter we will see that this gen-
eralization of the IRGNM yields better numerical results. Finally, we apply
the abstract theory to an inverse potential and to inverse obstacle problems,
and we show that the logarithmic source conditions are essentially equivalent
to smoothness conditions in Sobolev spaces.

4.1. Introduction to iterative regularization
methods

We consider the following abstract setting: Let X and Y be Hilbert spaces,
and F' : X D D(F) — Y a nonlinear operator that is continuously Fréchet
differentiable on its domain D(F'). We want to solve the operator equation

F(z) =y. (4.1)

Let z' be an exact solution, i.e. F(z) =y. We assume that only noisy data
y° are available satisfying

ly’ =yl <6 (4.2)

80



4.1. Introduction to iterative regularization methods 81

Landweber iteration Levenberg-Marquardt algorithm
0.8 2 T T
error

0.6 1.5
0.4 L
0.2 step 0.5 1

| | | | 0 | |

0 100 200 300 400 500 0 5 10

Figure 4.1: Semiconvergence; 10% data noise error

with some known noise level .

Definition 4.1. An iterative method z0,, = ®(z),...,2¢,7°) together

with a stopping rule N (6,%°) is called an iterative reqularization method for F
if for all ' € D(F), y := F(a), all y° satisfying (4.2) and all initial guesses
xo sufficiently close to z' the following conditions hold:

e 1 is well defined for n = 1,..., N(6,%°), and N(6,4°) < oo for § > 0.

e For exact data (6§ = 0) either N = N(6,94°) < oo and 2% = z' or
N = oo and ||z, — z'|| = 0 for n — oo.

e The following regularization property holds:

||y6sllylﬁ<5 ||x§V(5,y‘s) — || =0, 0 = 0. (43)

The choice of the stopping index is a very important issue for iterative
regularization methods since typically the approximations deteriorate quite
rapidly for noisy data after a certain number of iterations (cf. Fig. 4.1). The
most well-known stopping rule is the discrepancy principle which consists in
stopping the iteration at the first index N = N(6,y°) for which

IF (zn) = y°ll < 76 (4.4)

with some fixed constant 7 > 1.

Landweber iteration Landweber iteration is defined by the formula
Tpy1 = Ty + pF'[zp]* (y° — F(z7)). (4.5)

 is a scaling parameter that has to be chosen such that |F'[z]|| < 1/u for
all z in a neighborhood of zf. Hanke, Neubauer, and Scherzer [HNS95] have
proved the following result:
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Theorem 4.2. If the nonlinearity condition
|1F(z) — F(z) — F'lz](z — 2)|| < nl|F(z) — F(z)| (4.6)

holds for all x,% in a neighborhood of xt and some n < %, then Landweber

iteration together with the discrepancy principle with ™ > 211:;"" 15 a reqular-
wzation method in the sense of Definition 4.1.
In [DES98] an estimate
|, =2 < C(lnn)™, <Ny’ (4.7)

and order optimal convergence rates have been shown under logarithmic
source conditions and the Newton- Mysovskii condition

|(F'[2] = Fla") P < Clla = 2", s € DF).  (48)

(For linear problems this follows from the theory presented in Chapter 3.)
Moreover, the estimate N = O ((—Ind)??/§?) for the number of iterations
has been derived. Unfortunately, it can be shown that the Newton-Mysovskii
condition is not satisfied for the applications considered in Section 4.4.. The
conditions (4.6) and (4.13), (4.18) below could neither be proven to be true
or false (cf. Section 4.5.).

Inexact Newton methods In inexact Newton methods, the linearized
equation

F'l20]h, + F(22) = o° (4.9)

is considered to compute an update h, = 20, —z2. As (4.9) typically inherits
the ill-posedness from the nonlinear problem, it has to be regularized. In
principle any regularization method discussed in Chapter 3 can be used to
find an approximate solution to (4.9). This leads to formulae of the form
) 0 * *( 0 )

where A, := F'[z%] and g,(\) = 1/,

For Tikhonov regularization we have g,(A\) = 1/(A + «,). Then the
updates h,, € X solve the minimization problems

|4k + F(z5) = °|I” + an||2]|* = min! (4.11)
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This is the Levenberg-Marquardt algorithm. A convergence analysis was given
by Hanke [Han97a] under the assumption that the regularization parameters
a,, are chosen such that

[ Anhn + F(a) = 3° || = pllF(a2) — | (4.12)

with some p < 1 and that the discrepancy principle (4.4) with 7 > 1/p is
used to stop the iteration.

Another possibility is to use iterative methods to find a regularized solu-
tion to (4.9). If the adjoint F'[z]* can be computed directly as for inverse
scattering problems (cf. Section 4.4.), these methods have the advantage
that a costly computation and inversion of the matrix for A, is avoided. A
particularly attractive choice of the inner iteration is the conjugate gradi-
ent method for the normal equation (CGNE) (cf. Fig. 4.2). This method
requires the fewest iterations among all semi-iterative methods if the discrep-
ancy principle

[Anhn + F(z3) = °|| < pllF(z3) — ]|

is used as stopping rule for the inner iteration (cf. [EHN96]). Since g, is a
polynomial which depends on the right hand side, the CGNE is a nonlinear
regularization method for linear problems. The Newton-CG method has
also been investigated by Hanke [Han97b]. He suggested to stop the outer
iteration by (4.4) with 7 > 2/p?.

Theorem 4.3. Let F' satisfy the nonlinearity condition
|1F(z) = F(z) — F'lz](z — 2)|| < cllz - z|||F(z) — F(2)]| (4.13)

for all z,% in a neighborhood of x*. Then the versions of the Levenberg-
Marquardt algorithm and the Newton-CG method described above are regu-
larization methods in the sense of Definition 4.1.

Rieder [Rie99] has proved convergence rates for inexact Newton methods
with linear regularization methods (e.g. Tikhonov regularization, Landweber
iteration or v-methods, but not CGNE) under Holder-type source conditions
with p > % and the nonlinearity condition

F'[z] = R(Z,x)F'[x] and I — R(Z,z)|| < Crl|lz—Z||.

Unfortunately, his techniques cannot be applied for weaker sources conditions

such as Holder-type source conditions with g < 1 or logarithmic source

2
conditions.
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InexactNewton(out : z;in : zg,°) Bakushinskii(out : z;in : 2, y°)
n=>0 n=>0
while ||y° — F(x,)| > 76 while ||y° — F(x,)| > 76
begin begin
CGNE(hy, 9’ — F(z,),0) CGNE(hy, y° — F(x,), 20 — 2)
Tpy1 = Tn + hy Tpy1 = Tn + hy
n=n+1 n=n+1
end end
T =2, T =2Tn

CGNE(out : h;in : z, hg)
k=0
ro =z — F'[x,]ho
di = so = F'[z,]"ro
repeat
Qk+1 = Fl[l“n]dlﬁ-l
a1 = |sel*/ gk ll®
b1 = hi + ap1di41
Tk+1 = Tk — Ok+1Gk+1
ka1 = F'[20] Te1a
Brr = llseal*/llsil?
di+1 = k41 + Brr1di
k=k+1
until (||rg|| < pl|z]| or & > kmax)
h = hy
Figure 4.2: Inexact Newton and Bakushinskii methods with CGNE as inner
iteration
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Second Degree methods Recently, Hettlich and Rundell [HR] have sug-
gested a class of methods that use the second derivative of the operator F'.
A predictor-corrector procedure is used to avoid solving quadratic equations.
The predictor h,, is computed by a formula similar to (4.10). Then, the
corrector h,, is obtained as a regularized solution of the linear equation

1 .
Aphy + 5F"[:c;i](hn, hy) = y° — F(z2).
The authors used Tikhonov regularization with constant regularization pa-
rameter in both the predictor and the corrector step. The following conver-
gence result was shown:

Theorem 4.4. The second degree method described above with the stopping
rule (4.4) is a regularization method in the sense of Definition 4.1 if (4.13)
holds, ||F'||, and ||F"|| are locally bounded, and if T and the regularization
parameter in the corrector step are chosen sufficiently large.

Numerical experiments reported in [HR] show that better reconstructions
are obtained in the first iteration steps, but the asymptotic behavior is the
same as that of the Levenberg-Marquardt algorithm.

Bakushinskii methods Another class of iterative regularization methods
is given by the recursion formula

iy = 20+ g4 AN AL (1 - F(@d) + An(ad —20)). (419)

If F is linear, then the terms F(z2) and A,z cancel out, and (4.14) reduces
to the linear regularization method described by g, provided with initial
guess xo. In this case the results from previous iterations are not used at
all. Unlike for inexact Newton methods, standard linear theory immediately
yields convergence results for method (4.14) in the linear case. (An exception
is the Levenberg-Marquardt algorithm with «,, = const which reduces to
Lardy’s method in the linear case. Convergence results for Lardy’s method
are well known.)

We will see in the next sections that the total error z° — z' for the itera-
tion (4.14) can be separated into components corresponding to the linearized
equation and components due to the nonlinearity of F'. Both error compo-
nents can be estimated separately which makes the iteration (4.14) easier to
analyze than (4.10).

The choice g,()\) := —L~ in (4.14) yields the iteratively reqularized Gaup-

agtA
Newton method (IRGNM) suggested by Bakushinskii [Bak92|. Bakushinskii
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provided a convergence rates analysis of this method for the Holder source
condition with ¢ = 1 and the condition that the regularization parameters
o, satisfy

Qi

lima,=0 and 1<

<7 (4.15)

for all n € INy with some v > 1. We will often work with the simple choice
an = apy " (4.16)

Using the substitution h = h + x° — 2 it is easily seen that the updates
hn, = 0, — a2 solve the minimization problems

Ak 4+ F(22) — 4°1|* + anl|h + 28 — 24> = min! (4.17)
The additional term 2 — z, compared to (4.11) has an additional reg-
ularizing effect since it prevents the iterates =2, from getting too far away
from the initial guess x;.

The following result was shown by Blaschke/Kaltenbacher, Neubauer and
Scherzer [BNS97|:

Theorem 4.5. The IRGNM with the discrepancy principle is a requlariza-
tion method under the nonlinearity condition

F'lz] = R(z,z)F'[z] + Q(z, 1)

Il = R(z,2)|| < Cr, ||Q,2)| < CollF'[z1)(z — z)|| (4.18)

for ||z — zf||, |z — 2f|| < E, E > 0.

Moreover, the authors of [BNS97] proved order optimal convergence rates
for Holder-type source conditions with 0 < p < 1/2. We will see below
that the IRGNM also converges of optimal order under logarithmic source
conditions and that

=5, — 'l < C'fp(am) (4.19)

for n < N(6,y°) with N(§,4°) = O (—1nd) in this case.
Another attractive choice for the function g, in (4.14) is

Lo (A ag) —al
gn()‘) T )\()\+Otn)l ’

l € N, (4.20)
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which corresponds to iterated Tikhonov regularization. The implementation
of one iteration step is similar to linear iterated Tikhonov regularization:

hy := solution to (4.17)
for(j=2,...,1)

, 4.21

hy o= argmin ey (| Auh + F(@) =y + anlli— b)Y
foH =+ hy

Note that the computation of hs, ..., h; is very cheap since the same matrix

has to be inverted as in the first inner step and since there is no further
operator evaluation. Roughly speaking, one gets the effect of almost [ Newton
steps for the cost of a little more than one. To our knowledge this method
has not been investigated previously. A convergence rates analysis under
logarithmic source conditions is given in Theorem 4.7 below.

Just as in (4.10) it is also possible to use an iterative method in (4.14).
In comparison to (4.10) this amounts to using zy — z’ instead of 0 as initial
guess for the inner iteration (cf. Fig. 4.2). The CGNE iteration in Fig. 4.2
can be replaced, e.g., by Landweber iteration or a v-method. A convergence
rates analysis of (4.14) with Landweber iteration was given by Blaschke/-
Kaltenbacher [Kal97], [Kal98] under Hélder-type source conditions.

4.2. A convergence theorem for operator per-
turbations and an a-priori rule

In this section we present a convergence result for the IRGNM with an a-priori
parameter choice rule. We assume that in the nth iteration step the operator
F is approximated numerically by an operator F(™ with D(F™) > D(F)
such that the estimate

IF™ (@) = Fa)l < folhn)hn (4.22a)

n

is satisfied for some error level h, > 0 (cf. 3.18). Moreover, we assume
that F(™ is Fréchet differentiable and that the derivative of F(™ at z is
approximated by an operator A;(c") such that

|A™ — F'[2]|| < hy (4.22b)
1AD — F™'[2]|| < by, (4.22¢)

for all  in a neighborhood of z!. Thus, writing A%n) for Agﬁ), we consider
the recursion formula

foH =z + gfl (A%")*A%")) Agn)* (y6 — @ (xg) + A,(z") (:va — x0)> (4.23)
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with gl given by (4.20).
We assume that the initial error satisfies the logarithmic source condition
v — ' = fp(F'la' T FlaNw,  lw] <p, (4.24a)
and that F' is scaled such that
IFT )P < exp(—1). (4.24b)

The total error e, := 2% — z' for Bakushinskii iterations (4.14) can be
decomposed into

enir = ra (SV) €0+ gn (S) A" (4° = F™(27) + AVen)

with 7,(\) := 1 — Agn()) and S := A™"AM™. Analogously, we use Sﬁ") =
Ag")*Agn) with AEL”) = A(ﬁ). From this identity and (4.24a) it follows easily
that e, 1 = e?PP + et 4 efay 4 ¢0PaP 4 el with

el = (S (S )w,
et = ga(SINAT (4" ),

= s ([ (a0 A9, ) enct).
= (S (£(S) — (S w

S (5= P00 + [ (A, = PO ) )
i = (ru(ST) = ra(S(™)) S(S{w.

Here e2PP is the linear approximation error, €2 is the propagated data noise

error, e involves the Taylor remainder, 2" describes the effects of the

operator approximations, and €2 the nonlinearity effect that A™ # Ag") in
general.

Lemma 4.6. Assume that g, is given by (4.20) and that for all T,x €
B(z',E) = {z : ||z — 2!|| < E} there exist linear operators R™(z,z) €
L(Y,Y) and Q™ (z,z) € L(X,Y) such that

A — ROV (3. ) A 4 Q) (%, ¢

1T — R™(z,2)|]| < Cr, Q™ (Z,2)|| < CollA(z — 2)|
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for all z,x € B(z', E) and that ||e,|| < E. Then the following estimates hold
for the error components defined above

”62131?1“ S lep(an)p (4.26&)
noi l

llendall <4/ a—n5 (4.26b)
opa l

€T 1l < 2fp(hn)p + 4/ — (fo(hn) + llenl]) 2n (4.26¢)
w < S (acn+ 2By ) 4™ 4.26d

lentall <4/~ r+ 5 ECq | [14; enll (4.26d)

c 14} en|]
lepall < 2° ((OR+1)CZ+ (51+CQ) CQ*T) folan)p  (4.26€)

and for their images under Agr")

1A < cav/anfpla)p (4.27a)
) _noi !
1 4{entill < (OR + 1+ CollAseally/ a—) 5 (4.27b)
) _Opa, 1 + C n
APl < (250 v + CollAell) 24,0 + (127¢)
n /1
+ (C'R'%I_FC’Q”A](L )en“ a_> (fp(hn)+ ||en||)hn
n) ta n l
1AM e || < <0R+1+(JQ||ASr >en||,/a—>- (4.27d)
3 n
JAen | < 2 ((Cr+ 1) van + Coll A{eal) - (4.27¢)
¢ 145 el
' ((CR +1)e + (5 +¢2)Cq /—an ) fo(am)p.

Proof. e (4.26a) and (4.27a) follow from Proposition 3.12.
e (4.26Db) is a consequence of the following inequality (cf. (3.15)):

* l
lgh(SE) ALl </ (428)
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e (4.26¢) follows from Lemma 3.19, ||7}||cc = 1, the assumptions (4.22),
and (4.28).

e (4.26d): By virtue of assumption (4.25) we have

/0 1 (4G = A%, ) en dtH

1
< / ||(R<”>(xg,xf)—R<n>(xf+ten,xT))A§”>en||dt
0

1
+ / Q™ (2, 21) — Q) (@t + ten, a))enl] dt
0
< (20R+§c e ||> |1A™e, ||
= 2 QIllIEn t nll-

This and (4.28) imply (4.26d).
e (4.26e): We use the decomposition
ol (S(n)) oy (S("))

= ol (S0 +aul) ™ (57 +anl) = (S +0ul)') (57 + aul)

i ( ) { M+ o, 1) ok ((Sﬁ"))j - (S,g”>)j) (5™ + anI)_l}.

J:

(=)

Due to (4.25), the identity

(S<"> (sn">>
{R“ ) (AP AT - (ADADTY T RO @ 2 | A
"(at, 2))A (“”)Jl (ST QY (a1, 1)

holds for j > 1. Together with Proposition 3.12, the elementary estimate

* 1
SO 4, 1)L A <
(557 + o) AL < 5

(4.29)

and (4.25) this yields
ok (S5 + anD)~ak 7 (S8 = (7)) (S + and) ™ £ (S

A(”) n
< ((CR + 1)z + (% + 02) CQ”]Li\/a—e“> folam)p.



4.2. A convergence theorem for operator perturbations and an a-priori rule 91

As Zé’:o ( ; ) = 2!, this gives (4.26e).

e (4.27b), (4.27d): Due to (4.25) and (4.28) we have

n * n l
AT gh(SS)AD || < Cr+ 1+ Coll A enlly —. (4.30)
With this inequality, (4.27b) and (4.27d) can be derived just as (4.26b) and
(4.26d).
e (4.27¢) follows from Lemma 3.19, (4.25), and (4.29) and (4.30).

e (4.27e): With the decomposition from (4.26e), (4.27e) follows from the
estimate

| (Rt 25) A0 + Q) (et 28)) x

x al (S5 + anl) "l (S = (SO ) (S + and) £y (S|

< ((Cr+1)an + CallA{enll) %
1AM e, |

X ((CR + 1)62 + <C_21 + CQ) CQ \/a_

) fp(an)P-

For other choices of g, in (4.14) the main difficulty is to prove estimates
corresponding to (4.26e) and (4.27¢).

Theorem 4.7. Let (4.1), (4.2), (4.22), (4.24), and (4.25) hold with

1 Jay
ho < 3 O‘T (4.31)

and Cr, Cq, v and p sufficiently small, and let oy = exp(—1). Then the
Gaup-Newton iterates 22, 0 < n < N given by (4.15) and (4.23) together
with the stopping rule

nani < 6 < nay (4.32)

where 0 is a sufficiently small constant, are well defined and satisfy the error
estimate

|z, — 2'| < Efy(an), 0<n<N. (4.33)

If § = 0, we set N = oo, and (4.33) holds for all n € IN. Conditions
specifying “sufficiently small” are given in the proof.
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Proof. We will use an induction argument to prove the estimates

0, < Cp  and (4.34a)
lenll < C(p,n)E (4.34b)
for 0 < n < N with 6, := A enll and
- - n- fp(an)y/an
n—1

C(p,n)=2""+ Z 217" £ ()
=0

under certain smallness assumptions. We have C(p,n) < 1 since f,(a,) <1

and lim sup,,_, 5{;%;’3 = 2 since for every ¢ > 1 there exists an N € IN such

that f,(c;) < ¢" 7 fy(a,) for all n > N and j < n— 1, so (4.34b) implies the
assertion.

To define Cy and to formulate the smallness assumptions we need some
preparations. First note that (4.31) implies the (crude) estimate

fo(ha) < 2% f (an) (4.35)

and that

4 < MYV anfp(a’n) with Tp = sup \/B
o<p<exp(-1) fp(B)

< o0

for 0 < n < N due to (4.32). (Actually, one could choose any power o
with 2 < v < 1in (4.32).) Moreover, (4.34b) implies ||e,|| < EC,f,(cw)

with C, := Z((’;:g < 0. Hence, if (4.34b) is true for some n, the sum of the

estimates (4.27) yields the inequality

n ~ 7 n c n
4 enall < av/anfy(an) +HAT enll + —= A enl?

with constants

a = cop+ (Cr+1)ypn++(Cr+1)2°
1
+(Cgr+1)(2° + EC,))—— + 2(Cgr + 1)%¢qp,
(Crt )+ BCy) 3+ 2(Crt 1erp
~ C
b = CoViyn+2"Co+ 7Q(2P + EC,) +
3

+(CR + 1) (QCR + 5ECQ> + 2l(CR + 1)(% -+ 202)CQp,

_ 3 c1
c = \/ZCQ (QCR + §ECQ> + QIC(% (5 + Cg) p-
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fo(an)

Since 7 (anst)

< C), and since f,(an) < 1, the recursive estimate
Ont1 < a+ b, + > (4.36)
with a = /70, (\/E/l —i—&), b = \/,—chg, and ¢ := \/’_yC’pg follows from

(4.22b) and (4.31).
Let ¢; and ¢, be the solutions to a + bt + ct? = t, i.e.

2a 1—b++/(1—-0)?—4ac
tl = y tg = .
1—-b++/(1—10)?— 4dac 2c
We set Cy := max(fy,t;). Before we start with the induction proof, note

that the sum of the estimates (4.26) together with (4.31), (4.35) and (4.34a)
yields

1 .
lentall < §||en|| + Cefplan) with (4.37)
3
Ce = cp+ 77\[5")/1, + 2p+1p + (203 + §CQE) \/ZCQ
-1 ! (&
+2P ,0+2 (CR+1)CQp+2 (5 +62> CQC@/).

We now prove (4.34) for 0 < n < N under the following closeness condi-
tions:

b+2vac< 1 (A)
0y < (B)
<t (©)

For n = 0, (4.34a) is true by the definition of Cp, and (4.34b) by virtue
of assumption (C) and (4.24a) since ||eo]| < p < Ce < £. Assume that (4.34)
is true for n = k, k < N. Then the assumptions of Lemma 4.6 are satisfied,
and therefore (4.36) is true for n = k. By virtue of assumption (A) we have
t1,ts € R and t; < 5. By the induction hypothesis (4.34a) either 0 < 6 < t;
or t; < 6 < 6y hold. In the first case, the non-negativity of a, b and ¢ implies

Op1 < a+ b0y + by < a+bty +ct] =ty

and in the second case we use assumption (B) and the fact the a+ (b— 1)t +
ct? < 0 for t; <t <ty to show that

Opr1 < a+ by + cr < 0 < .

Thus, in both cases (4.34a) is true for n = k+1. (4.34b) for n = k+1 follows
from assumption (4.34b) and (4.37) for n = k and assumption (C). |
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We used the assumption ag = exp(—1) in the previous theorem mainly to
avoid some technical difficulties. It could easily be replaced by the assump-
tion that g is sufficiently large. For hints how to choose oy in practice we
refer to p. 120.

Corollary 4.8. Under the assumptions of Theorem 4.7 the order optimal
convergence rate

e, — atl| < Ef, (%6) (4.38)

holds true.

Proof. (4.15) and (4.32) imply that n®* < nayii < 6. Now the assertion
follows from (4.33) and the monotonicity of f,. |

4.3. A convergence theorem for the discrep-
ancy principle

Theorem 4.9. Let (4.1), (4.2), (4.15), (4.18), and (4.24) hold with h, =0
and Cgr,Co,r and p sufficiently small. Then the Gauf-Newton iterates x°
given by (4.23) with | = 1 are well defined for 0 < n < N if the stopping
inder N = N(8,v°) is determined by the discrepancy principle

IF(zn) =y’ | <76 < [|[F(zp) =y, 0<n<N (4.39)

with a sufficiently large constant 7. The final iterates %, satisfy the order
optimal estimate

Iz =2l =0 (£), d—0 (4.40)
If the oy, are chosen according to (4.16), then N = QO (—1nJ).

Proof. 1.) Due to our assumptions h, = 0 and | = 1, we have e2P?P = (),
and the estimates (4.26e) and (4.27e) can be improved to

. —— JAsenl
el < 20l Az + (5 + ) Com L hlan)p
JAse] < ((Cr+1)van+ Callseall) -
—— JAsen
(2ealae + (5 + o) Col Sl fanis).
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From (4.18) and (4.39) we obtain
76 < ||F(zp) = Fah) +y =l

1
/ F'lxt + tegen dtH +0
0

<

/1 (R(xT + ten, o) F'[z'] + Q(zt + tey, xT))en dtH +9
0

1
< (15 Cut SllenlCo) sl +5,
and thus

o<

1 1
(14 Cnt glenliCe) el (1.1

T —

for 0 < n < N. This gives the estimates

cC
fewill < (e Crep 52 ) syfon) (1.42)
_ a = c
ienall < al A€l + Bl + el (0
a ~ c
el > a4l = BlAel - =l (@40

with constants
= 14+ (Cr+1)2Ck, a:=1—(Cr+1)2Ck
— @
= CQ ((CR+1) <C1+ 2) +CRCQ)p
14 Cgr+ %CQ>

[ TR

+(Ca+1) (QC’R + gCQE n

T—1
3 1+Cr+5C
¢ = CQ CQ(C—1+CQ)p+20R+—CQE+ u 2@ .
2 2 T—1
provided |le,|| < F and §,, = % < Cy. We have the recursive estimate

Oni1 < a-l—b@n—l-ch

with constants a := /7Cjycap, b := \/iCpI;, and ¢ := ,/yCyc. If the constants
s, t1,ta, and Cy are defined as in the proof of Theorem 4.7, a similar induction
argument shows that

0, < Cy and llenll < Efplan) (4.45)
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for 0 < n < N provided that

b+ 2vac < 1, (A)
By < ts, (B)
CCg E
e =
(01 + CRCQ) p+ CQ S Cp (C)

It follows from (4.41) and (4.45) that 6 < Cay_;. This gives the estimate
on N.

2.) In order to prove the convergence rate (4.40), in view of the second
statement in (4.45), we only have to show that ay = O (d). By (4.43) and
the first part of (4.45)

[Aseniill < allAse?R |l + (0 + cCo) || Atenl
holds for 0 < n < N. Since (C) implies cCe < CuFE, defining ¢ := b+ CyE,
it follows by induction that
[Arensall <@y (1A g™ * + [|Areoll ¢
k=0

By spectral theory, the inequality A|rx(A)[? < ¥2A|rg41(A)|? for A > 0 implies
that

| ArelS0 11 < vl Areria (4.46)
2 2
and A < (=I5 N () < (14 BEE) m (V) for 0 < A < 144
implies that

||A < (1 ”AT”2 )| A, e®PP
reoll < (14 B4 omagcomy.

Hence, under the additional assumption

gy <1 (D)

we obtain from the last three inequalities that

a A2
K 7+q(1+ 1)) e,

@

ienerll < (
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Now it follows from the lower estimate (4.44), assumption (C), a +a = 2,
(4.46) and the last inequality for n = N — 2 that

[Aenll = allAtey”|| = gllAten |

qya A2
> (Q — — ¢ (1 + %)) | Aiex” |l

1—gqy
a | A7 a
2 — —7q2<1+— A ¥l
( — 5 ) A

2
Furthermore, the inequality |ry_1(\)[2A > (H;ﬁ"’ﬁ) A implies

ON-—1
AP > ———— || Asep].
|| TCN ” = ||AT||2+O!0|| i 0“

Using (4.18) and (4.39) we get

76 > ||F(ay) = F(z") +y =l

1
> / F'[xT—i—teN]ethH—é
0
1
= / (R(xT + ten, o)) F'[z1] + Q(a' +teN,xT)>eN dtH )
0
1
> (1= Cu= JlenlCo ) senl

and thus

1 E
5 Z . 1 (1 — CR - §CQ> ||A]L6N||.

It follows from (D) that 1 > ¢ > Cr + %CQ. Thus, putting these estimates
together and imposing the additional assumption

a +q(1+”a*”><2 (E)

1 —gqy 0

we obtain the desired estimate
d > Cl|Aseo|an, (4.47)

where C' > 0 is a constant independent of § and y°. Since zo — 2t € N(A;)*+
due to (4.24a), this together with (4.45) proves the convergence rate (4.40)
under the smallness assumptions (A)-(E). |
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4.4. Applications

4.4.1. An inverse potential problem

In this section we consider the classical inverse problem to find the shape of a
homogeneous mass distribution from measurements of its gravitational field.
The same mathematical model describes the problem to find the shape of a
heat source from measurements of the heat flux. This problem has recently
been discussed in [Isa90a, Rin95, HR96].

In the simplest case, the direct problem is as follows: For a compact set
K C Qg, Qg := {z € R*: |z| < R}, find the normal derivative g := %LmR

of the solution u € C?(Qx\0K) N C*(Qg) to the boundary value problem
Au=xp in Qg\0K, u=0 on 0, (4.48)

where X is the characteristic function of K and v is the outer normal vector
on 0QNg. It is well known that the unique solution to this problem is given
by

u(x)z/KG(x,y) dy, (4.49)

/)

is Green’s function of Q2. The wnverse problem that we consider is to recon-
struct K from measurement data of g. We mention that given the Cauchy
data v| PR of any function v satisfying Av = xg, we can calcu-

where

1 1
G(z,y) := %ln|x—y|——7rln (E

%‘6913
late g = %| 9m by evaluating a Dirichlet-to-Neumann map for the Laplace
equation in Qg.

We restrict our attention to domains K C () that are starlike with
respect to the origin. Then the admissible boundaries can be described by
2m-periodic functions g,
sint

0K, = {z,(t) :t € R},  where  z,(t) :zq(t)(COSt). (4.50)
Define

D(Fp) :={q€ H*([0,27]) : 0 < ¢ < R}, 5> % (4.51)
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and let Fp : H*([0,27]) D D(Fp) — L*([0,27]) be the operator that maps a
function ¢ € D(Fp) to the solution g o (g,

[t cost ) (4.52)

Calt) = < Rsint

to problem (4.48) for the domain K,. Here H*([0,27]) denotes the Sobolev
space of periodic functions on [0 27] Wlth index s. Using polar coordinates,
(4.49) and the identity |z — sz\? |y‘2 > | — y|?, which holds for |z| = R, it
is readily seen that Fp(q) is given by

Fr(g)(t) = /K ang / /Q(S P(r,t—s)rdrds,  (4.53)

where

1 R? — r?
2nR R?2 + 12 — 2Rr cost

P(r,t) =

is the Poisson kernel. Thus we can restate our inverse problem as an operator
equation

Fp(q) = g.

It can be shown that the operator Fp is injective (cf. [Isa90al).

In order to derive Fréchet differentiability of Fp and to obtain charac-
terizations of the derivatives of Fp we could use the method described in
Chapter 1. However, we present a different approach which immediately
leads to a characterization of F§[g|* and to an efficient numerical implemen-
tation of Fh[g]. Moreover, we obtain differentiability not only with respect
to the C'-norm, but even with respect to the supremum norm.

Proposition 4.10. The operator Fp : H*([0,27]) D D(Fp) — L*([0,27]),
5> —, s Fréchet-differentiable, and the derivative is given by

(Folalh) (1) = / " Pla(s),t — 8)q(s)h(s) ds. (4.54)

Proof. We prove Fréchet-differentiability and (4.54) in the maximum norm.

This implies the assertion since || - || is stronger than | - || for s > 1

by Sobolev’s embedding theorem and since || - ||o is stronger than || - || 2.
With m := minge[o 2. ¢(t) and M := maxycp 2 ¢(t), choose € > 0 such that
0 <m—e<M+e<R. The function (r,s) — Z(P(r,s)r) is bounded by



100 4. Tterative regularization of nonlinear exponentially ill-posed problems

a constant C' > 0 on the compact set [ — €, M + €] x [0, 27]. Therefore, by
(4.53), (4.54) and the mean value theorem, the estimate

|Fp(q+ h)(t) — Fp(q )( ) — (FL[qlh)(t))|
s)+h(s)
/ / P(r,t —s)r — P(q(s),t - S)Q(S)) drds

< 2wc||h||§o-

holds for ||A|| < € and t € [0, 27]. This proves the assertion. |

In the following we will often need the operator N : H*([0,27]) —
H*(0K,) which maps a function h € H*([0,27]) to the normal component of

the perturbation field h(z,(t)) := h(t)(cost,sint) on K, i.e. Nh := <i~z, 1/>.

An easy calculation shows that NV is given by

q(t)h(?)
28]

Corollary 4.11. Assume that ¢ € D(Fp) N C?([0,27]) and h € H*([0, 27]),
and let u' be the unique solution to the transmission problem

(Nh)(z,(t)) = (4.55)

Au' =0 in Qp\0K,, (4.56a)
'] 50, = 0 (4.56b)
u'|, | =0, (4.56¢)
ou’ ou’

—| ——=—| =Nnh. 4.56d
ovly Ovl- ( )

Here u'| 4, %|+ denote the limit and the normal derivative from the exterior,
and u'| - %%Il— the limit and normal derivative from the interior of K,. Then
Filqlh is given by

ou'

Fllglh = —
P[Q] ay o0R o CR
where (g is defined in (4.52).
Proof. Proposition 4.10 implies that
ov
Fplglh = o(r

oV |aag
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with
v(z) = . G(z,y)(Nh)(y)ds(y), x € Qp.

We have to check that v satisfies the conditions (4.56). Then the uniqueness
of the transmission problem implies the assertion. Since A,G(z,y) = 0 for
z # y and G(z,y) = 0 for x € 0N, v satisfies (4.56a) and (4.56b), where
we use the boundedness of G(z,y) and its derivatives for |z —y| > € > 0 to
change the order of integration and differentiation. By the jump relations
for the single layer potential (cf., e.g., [CK83]) v satisfies (4.56¢) and (4.56d).
(Note that the potential generated by the second term in the definition of
G(z,y) is continuously differentiable in Qg.) [ ]

A straightforward argument using Holmgren’s uniqueness theorem on
00 g shows that F}[g| is injective (cf. [HR96]).

Corollary 4.12. The L*-adjoint F}[q]}. of Flq] is given by
(Fp[gl729)(t) = a(t)v(z4(t))

where v solves the Laplace equation Av = 0 in Qg and satisfies the boundary
condition v|ga, o Cr = g.

Proof. This follows from the formula
2w
(Fildl»0)0) = a(t) [ Plalt), s~ )g(s)ds
0

and v(z) = fOZW P(z,s —t)g(s) ds. u

The following formulae for Fp(q) and F}[g] can efficiently be evaluated
numerically.

Corollary 4.13. The follounng formulae hold:

B0 =g [ 0086+ Y iy (4.57)

2w 2w
: (/ q(s)?*2cos jsds cosjt—l—/ q(s)’?sin jsds sinjt)
0 0
[ — 1

(Fplah)(t) = 5= i a(s)h(s)ds +) i (4.58)

Jj=1

2w 2w
: (/ q(s)""'h(s) cos jsds cosjt—l—/ q(s)""'h(s) sin js ds sinjt) .
0 0
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Proof. P(r,t) has the Fourier expansion

1 r\ll 1 /NG /NG
- _ gt e ijt o —ijt _q
A7) - (S S G )

1 1 1 1
T oom (R—reit * R—reit E)
R(R—re "+ R —re") — (R? + 12 — 2Rr cost)
2nrR(R — reit)(R — re~#)

= P(r1).

with uniform convergence for |r| < rqo < R. We rearrange the terms on the
right hand side to obtain

1 1 o= /T
Plrpt—s)= —+4+ — (—) (cos' cos jt -+ sin js si 't).
(r s) 27rR+7er:1 7 j§cos jt + sin jssin j
Substituting this into (4.53) and (4.54) and using uniform convergence to
change the order of integration and summation yields the assertion. [

Having studied the operators Fp, F}[q], and F}[¢]* we now turn our at-
tention to the interpretation of logarithmic source conditions. We first show
that Holder-type sources conditions with v > % are not fulfilled in general
for the inverse potential problem even if gy — ¢ is very smooth, e.g. ana-
lytic. Assume that ¢ € ran((FbLlq']* Fi[¢'])?). Since ran((Fblq!]* Fi[¢'])?) =
ran(Fp[q']*) (cf. [EHN96, Proposition 2.18.]), there exists g € L2([0,27])
such that F3[qf]g = ¢. Defining v as in Corollary 4.12, we find that ¢(t) =
v(z4(t)) - ¢'(t). Hence ¢ € ran(F}[g']*) implies that the unique solution v to
the interior Dirichlet problem for K+ with v(z,:(t)) = ¢(t)/q'(t) can be ana-
lytically extended to €2r. This, however, is an extremely strong assumption.
The functions ¢(t) := In|z* — 2z, (¢)| - ¢'(¢) for example, with z* € Qp\ K,
are analytic, but due to the singularity at * the functions v(z) = In |2* — z|
cannot be analytically extended to Qg, and hence ¢ ¢ ran((F5[q']*Fhlq'])?).

In [HR96] it is shown that for all ¢ € D(Fp) N C?([0,27]) there exists
h € L*([0,2n]) such that Fb[g];.Fplglr2h = ¢. This, however, cannot serve
as a source condition for the IRGNM, since 0 ¢ D(Fp) and since it can be
seen from the proof that ||A|| explodes as ||g|| tends to 0.

Theorem 4.14. Let R > 1 and ¢ = 1. Then the operators
fo(Fpla]" Folq]) « H® — H**"
are bounded and boundedly invertible for all s,p > 0. Here H* := H*(|0, 27]).
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Proof. For convenience, we consider the complex extension of F,[g]. We use
the norm

£ =Y (1 +n?)° (/Ohf(t)e‘i"f dt>2,

nezZ

in X = H® (cf. [Kre89]). In order to meet the condition (4.24b), we choose
the norm ||f|ly = C, f027r |f(t)|*dt in Y with a sufficiently small scaling
constant Cy. With respect to these norms the adjoint of F}[g| is given by

Fylg]* = C35" Fplali: (4.59)
where j : H® — L? is the embedding operator. We show that the functions

on(t) == mei"t and Yn(t) : !

= e

V2T CoV 21
are singular functions of F{[g]. Obviously, the functions ¢, and 1), form
Hilbert bases of X and Y, rsp. Corollary 4.12 implies (Fpq]}.¢n)(t) =
vn(1,1), where v, (r,1) = & \l/ﬁ (}%)m\ e™ in polar coordinates. Therefore,
Filg|*¢y, is given by

int (4.60)

Fé[Q] wn = 052.7 F}ﬁ[Q]Lﬂljn = m] ¢n = 0n¥n

with o, := Cs%. The last equation follows from

-k . 1 +7L2 _%
<.7 wma(ﬂn>Hs = <¢m>](‘9n>L2 = %5m,n-

Moreover,

<FFI’ [C]](Pn, djm)Y = <(:0n7 Fﬁ[Q]*¢m>X = <(pn: O-m(Pm>X = Umfsn,m

holds for all m,n € Z, so Fh[qlon = 0nthn. This shows that {(on, ¥, on) :
n € Z} is a singular system of Fh[g]. Hence, the functional calculus is given
by

fr (F}I’ la]" Fe [q]) on = fo(00)en; (4.61)
and

fo(@2) = (2|n|In R — 2InC, + sln(1 + n?)) .
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Since we have chosen C, such that max,cz 02 = ||[Fp[q]||*> < exp(—1), an
elementary calculation shows that there exist constants ¢, C > 0 such that

cV1+n2<2n/InR—2InC; + sln(1 +n?) < CV1 + n2,

holds for all n € Z, and therefore

_p
2

< fylop) < cP(14n%)75

n

C™P(1 +n?)

This and equation (4.61) imply

1o (Folal Fpla)) i ioss < 77,
—~1
1o (Folal Fpla])  assssms < C7,

which proves the theorem. [

This theorem gives the following interpretation of the source condition
(4.24) for the inverse potential problem with ¢' representing the unit circle:
90 — q' = f,(Fblq'* Fp[g'])w for some w € H? is equivalent to the fact that
g — ¢' € H**P. Furthermore there are constants ¢, C' such that c||w||gs <
llgo = ¢'||zzs+» < C||w||gs, i-e. smallness of ||w]||gs corresponds to smallness

Of ||CI0 — qf||Hs+p.

4.4.2. Inverse sound-soft scattering problem

We consider the problem to reconstruct a sound-soft scatterer K from far
field measurements corresponding to one incident wave as described in the
introduction. Again, we assume that K is star-like with respect to the origin
and that 0K is described by a radial function ¢ as in (4.50). We define the

operator
Fp g uy
that maps a radial function ¢ in
D(Fp) :=={q€ Hy : ¢ > 0}

to the far field pattern uy, in Y = L% (S') corresponding to the scatterer K.

It is an open problem whether or not the operator Fp in this form is one-
to-one. According to a result by Schiffer (cf. [CK97]) a sound-soft obstacle is
uniquely determined by the far-field patterns of an infinite number of distinct
incident plane waves with the same wave number. Moreover, Colton and
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Sleeman ([CS83, CK97]) have shown that a sound-soft obstacle is uniquely
determined by the far-field pattern for one incident wave and the a-priori
information that the obstacle is contained in a ball of radius R < «y/k where
v is the first positive zero of the Bessel function J;. These results do not
require the information that the obstacle is star-shaped.

We have shown in Chapter 1 that the operator Fp, is differentiable if
the variations of the domain are measured by the norm ||z,||c1 (z, given by
(4.50)). Since

Izqller = llalle + 1Y/ @ + @*llco,

this is equivalent to differentiability with respect to the norm ||g||c1. By
Sobolev’s embedding theorem, the norms || - || s are stronger than || - ||¢: for
s > % Therefore, Theorem 1.12 is applicable for s > %, and the derivative
of Fyp is given by
, ou
Filglh = —Ap—Nh. (4.62)
ov
Here N : Hp([0,27]) — HE(OK,) is defined in (4.55), and Ap is the so-
lution operator for the exterior Dirichlet problem, i.e. Ap maps a function
f € H?(0K,) to the far field pattern vy, of the radiating solution v of the
Helmholtz equation with boundary condition U‘ oK, = f. As we have seen in
Section 2.1., Ap is given by

Ap =2F(I+ D —inS)™* (4.63)
with the far field operator

el
V8K Jak,

corresponding to the mixed layer potential.

Before we characterize the adjoint of F'[g], let us clarify the roles of the
different dual systems of complex Hilbert spaces. Recall from p. 13 that
we have to interpret complex Hilbert spaces as real Hilbert spaces since the
boundaries are described by elements of real spaces.

Ff(#) = ((v(y), —iki) — in) e @V f(y) ds(y) (4.64)

Remark 4.15. Let X and Y be complex Hilbert spaces with a involution ~

and inner products (-, )é( and (., -)g, rsp., and let T : X — Y be a linear
bounded operator. Moreover, let (f, g)*Y := (f, g}fé’y be the corresponding
bilinear forms and (f, g)ﬁ’y := Re (f, g)g’y the inner products of X and Y

as real Hilbert spaces. We denote the adjoint of 7" with respect to (-, )Y
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by 7", and the adjoint with respect to (-, -)g’y by T*. It follows immediately
from these definitions that

T'f=T"f,
and that the adjoints with respect to (-,-)a&’" and (-,-)2" coincide.

The following results can be found in [Kir89a] and [HHS95]. Our approach
has the advantage that there is an obvious analogous discrete version which
leads to the adjoint A% of the numerical approximation A, to F'[¢]] that is
described in Chapter 2 (cf. also Section 5.1.). For the performance of the
Newton-CG method it is advantageous to approximate F'[¢2]* by A% instead
of using any approximation to F'[¢°]*. Modifications for limited aperture
problems and near field data are obvious.

Proposition 4.16. 1. Let

;T
el

v (y) : e g(3)ds(2), yelR (4.65)

- V8K Js1

be the Herglotz wave function with kernel g € L?(S'). Then

g

o . 5
o= (5 il )| 4.
Frg (81/ 1771)])‘81( (4.66)

2. Let v9 be the total field for the incident wave v{ given by (4.65), i.e.
v9 = v94v! where v =0 on 0K, and v? satisfies (0.1) and (0.4). Then
the L%-adjoint of Ap is given by

()

Ap,29 = £ (4.67)
3.
. Oou o9
Fplgli29 = —q - Re (5 : E) 0 Zg- (4.68)

Proof. (4.66) is an immediate consequence of the definitions. As in (2.5), %—f

is given by

ov

ov? -
_ ' i g
=2(I + D" —inS) (8y 1nv1> )



4.4. Applications 107

Due to (4.63), Remark 4.15, and (4.66) we have

on? _
D2 = 2(I + (D —inS)*) ™' F* = 2(I + D' — inS) (8—12 — invig).
This gives (4.67). Finally, we have

2w hq
<Nh, f)Lé (6Kq) - Re/o m f O Zq ‘Z;| dt - <h, q- Ref O Zq>L]2R([0’27TD
q

for all h € L%([0,27]) and f € L4(0K,), so N*f = ¢q-Re f o z,. Hence,
(4.68) follows from (4.62) and (4.67). |

The intermediate results (4.66) and (4.67) have important consequences.
It follows form (4.67) that Ap has dense range (cf. [Kir89a]). It can also
be shown that the complex extension F'[g|¢ has dense range (cf. [KR94,
HHS95]), but F'[g] does not.

We now use (4.66) to show that Hélder-type source conditions are ex-
tremely restrictive for the sound-soft scattering problem. Assume first that
f € ran((F*F)2) = ran(F*), i.e. there exists g € L% (S?) such that F*g = f.
Then the unique solution to the interior Robin problem in K, with boundary
condition
ow .

5, ~imw= f onk,

coincides with v/. Hence, w can be analytically extended to IR? as a Herglotz
wave function. This, however, is an extremely strong condition, which is
not fulfilled for the analytic functions f(z) = ®(z,z*) with z* ¢ K,, for
example. (P is the fundamental solution defined in (2.2)). If ¢ € C*°([0, 27]),
it follows from Riesz theory and the mapping properties of the boundary
integral operators (cf. [Kir89b]) that I + D' — inS is a homeomorphism for
all Sobolev spaces H, (0K ,), and that 2% € C*®(9K,) (cf. (2.5)). Therefore,
the condition f € ran(F},[g]*) is about as restrictive as f € ran(F*).

Again, appropriate source conditions for the sound-soft scattering prob-
lem are of logarithmic type.

Theorem 4.17. Let r,s,p > 0, and consider the case of a circle, i.e. ¢ = .
Then the inclusions

Hg'™™™ C f,(ApAp)(He) C He'™
hold for all ¢ > 0, and the operators
fo(ApAp) : HE — HG™P,
(fp(ApAp)) ™" Hg'™™ — Hy,
are bounded. Here H, = H{(0K,).
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Proof. 1t follows from Remark 4.15 that the set of singular values of Ap
is the same with respect to the real and complex inner product and that
the multiplicity of the (-,-)p-singular values is twice as high as that of the
(-, -)C—singular values. Therefore, we may interpret H¢, and LZ(S') as com-
plex Hilbert spaces in the usual way for this proof. Moreover, by a simple
rescaling, we may assume w.l.o.g. that » = 1.

Let the norm in Y be given by ||f[|} = CZ? [, |f|*ds with a scaling
constant Cy > 0 such that (4.24b) is satisfied. We show that the functions

cost (1+nh)TE o, cost I S
¥n (( sin t )) T Te and  n sin ¢t N C’s\/ﬂe

(n € Z) are singular functions of F})[g]. It is well known that {¢, : n € Z}
and {1, : n € Z} are Hilbert bases of H&(0K,) and L% (S"), rsp. The
radiating solutions v, to the Helmholtz equation with Dirichlet boundary
values ¢, are given by

(1+n2) % H,J(kr)
Vor o H)(k)

n|

v (1, t) =

in polar coordinates where HT(,%) denotes the Hankel function of order m € INg
of the first kind. From the asymptotic behavior of the Hankel functions for
large arguments

2 H m us
HD(t) =/ =5 %) (1 +0 <—>> .t o, (4.70)

m € Ny, and (0.5) it follows that the far field patterns v, o of v, are given
by Vn,c0 = 0y, Where

1 2 i(_m_z).

7oA Vs T
Hyi(s) V7

on = Cy(1+n?)"%
Hence {(¢n, o ¥n, lon|) : n € Z} is a singular system of Ap, and f,(A5Ap)
is given by

fo(Ab Ap)pn = fp(lonl*)on. (4.71)

From the asymptotic formula 1.5) and from Stirling’s formula

n! = v2rn(n/e)*(1 + o(1)) (4.72)
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it can be seen that

C, NG e\
ol = ety ()" o () (e

for |n| — oo. An elementary calculation shows that for € > 0 there exist
constants C’', C' > 0 such that for all n € Z

—In|on2 < O+ slu(l+n?) —2/n| lng +In(|n|— 1) +

+2(|n| — 1) 1n|”|T_1 < C(1+n?)

1+e/p
2

Furthermore there exist constants Ny € IN and ¢’ > 0 such that for |n| > N
—Inlo, > > V1 +n?

holds. Since we have chosen C; such that —In |o,|*> > 1 for all n € Z, setting
s (A 2\—1 :
¢ :=min(¢, (1 + Ng) 2) we obtain

—In|o,|*> > V1 + n? forneZ.

From these estimates it follows that

ya
2

CP(1+n?) "2 < f,(|0a2) < cP(1+n2)" (4.73)

for n € Z. The second inequality together with 4.71 implies that f,(A}Ap)
maps Hg boundedly into Hg ' ?. The first inequality implies that Hg P C
fo(A5Ap)(HE) and that (f,(ApAp))~!: HaP™ — Hy is bounded. ]

Remark 4.18. The result of the previous theorem is simpler if we consider

the problem to reconstruct 0K from near field data u5| {lel=R) instead of the

far field data us. Let Ap be the operator that maps a function f to U‘{\z\:R}
where v is the radiating solution to the Helmholtz equation with boundary
values v|px, = f. We assume that R > 0 is sufficiently large such that
K C Bg(0). Then, under the assumptions of Theorem 4.17, we have

H&s:ﬂ = fp(AD*AD)(Hqu)a

and f,(Ap Ap) : Hi — H:'™ is bounded and boundedly invertible. The
proof is analogous to that of Theorem 4.17. The singular values of Ap are
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and have the asymptotic behavior

lon| = Cs(1 + n2)_%R_|”| <1 +0 <i>) , In| — oo

|
due to (1.5).

In order to interpret the source condition (4.24) for the sound-soft scat-
tering problem, we are actually interested in Fj)[q] for general ¢ € D(Fp)
instead of Ap const- Although we do not know a singular system of Fj)[q] even
for ¢ = const, we will show that the singular values of F)[q] and Ap cons: have
the same asymptotic behavior. These estimates are based on the fact that
the singular values (numbered in decreasing order with multiplicity) obey

on(ABC) < | Allon(B)|IC]|  and

oon(B + B) < o,(B) + an(é)
if A: X; - Xy and C : X3 — X, are bounded linear operators, and B, B:
Xy — X3 are compact linear operators between Hilbert spaces X, Xo, X3
and X, (cf., e.g., [MV92]).

We first consider the operator Ap, for general ¢ € D(Fp). If ¢1 < ¢o,
q1,q2 € D(Fp), let Uy sy, = HE(OK ) — HE(OK,,) be the operator that
maps a function f € Hg (0K ,,) to Uy g, f := v|ok,, Where v is the radiating
solution to the Helmholtz equation with boundary values v = f on 0K,. It
is easy to show that U,,_,,, is bounded and that Ap g, = Apg,Ug —g,- For
g € D(Fp) choose 1, R € IR such that 0 < r < ¢ < R. Then

Un(AD,T) = Un(AD,qUT—NJ)SUH(AD,q)”UT—NJ” and

0n(Apg) = 0n(Ap,rUssr) < 00(Ap r)||Us=rlls
SO
1
=00 (Ap) < 0n(Anyg) < |Ussrllon(Ap,r)
1 Ur =54l

for all n € IN. Hence,

Un(fp(AE,qAD,q)) ~ Un(fp(Aik),rAD,r)) ~ Un(fp(AT),RAD,R))-
Now we turn our attention to the operator M := —%“N : Hf, ([0, 27]) —
H¢(0K,). The complex extension Mg : HE([0,27]) — HE&(0K,) of M is
bounded and boundedly invertible if ¢ and % are s times continuously dif-

ferentiable and if % does not have zeros. In this case the operator F},[¢]¢ :=
Ap Mg satisfies the estimates

on(Fp[gle) = on(ApMe) < [[Mc|lon(Ap),
on(Ap) = on(FplaleMc") < [|Mc " [lon(Fp[gle),
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i.e. the singular values of F}[g]¢ and Ap have the same asymptotic behavior.
From F][q]ch = F}[q](Reh) + iF][g](Im k) we conclude that

oo (Fplale) < on(Fplal) + on(iFpla]) = 20 (Fp[q)).-

Moreover, since F})[g] is a restriction of F},[g]¢, we obtain

on(Fplg]) < on(Fpldle)-

Therefore, the singular values o,,(F},[g]) also satisfy (4.73) with different con-
stants ¢ and C.
If q describes the unit circle, it can be seen from the representation

ou cost 2 imein(tho)
v sint Cim < Hy(k)

ne—

with d = (costg,sinto)” and H') = (—=1)"H" (cf. [KR94]), that Mg :
H¢(]0,27]) — HE(OK ) is indeed a homeomorphism at least for sufficiently
small &.

In summary, (4.24) with F' = Fp, is a closeness condition in a (s + p+ €)-
“Sobolev space” with respect to some unknown basis functions.

4.4.3. Inverse sound-hard scattering problem

In this subsection we discuss the source condition (4.24) for the sound-
hard scattering problem. We define Fy to be the operator that maps ¢ €
H; ([0,27]) to the far field pattern uo, that corresponds to the sound-hard
scatterer K, described by (4.50).

Although it is not known if the operator Fy in this form is one-to-one,
it has been shown by Isakov ([Isa90b], cf. also [CK97]) that a sound-hard
obstacle is uniquely determined by the far-field patterns of an infinite number
of distinct incident plane waves. In fact, as noted in [Kir98|, these data also
determine the boundary condition.

By Theorem 1.17 and the remarks in Subsection 4.4.2., Fy is Fréchet
differentiable for s > 2. The derivative can be written as

Fllglh = AyBN (4.74)

where N is defined in (4.55), B : Hj — Hg ™' is given by

4y e
Bf = I (fds> + Kk uf,
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and Ay : HE '(0K,) — L%(S") maps a function ¢ € HE '(0K,) to the far
field pattern v, of the radiating solution v to the Helmholtz equation with
Neumann boundary values % = ¢ on 0K,. We have seen in Section 2.1., Ay
can be written as

Ax =2F(T —inD' +inI)™!

with the far field operator F defined in (4.64).
For the following results we refer to [Kir89a] and [Het96].

Proposition 4.19. 1. Let v9 be the total field for the incident wave v
given by (4.65), i.e. v9 =vd +v! where 32 =0 on OK and v{ satisfies
(0.1) and (0.4). Then

A;I,ng = _ﬁ (475)
2. The L*-adjoint of F%[q] is given by
ou dvd  —— —
F{[q]*9 = q - Re (_u Y U9> 0 Zg. (4.76)
s
Proof. As in (2.7) we have
_ oY _
—v9 =2(T —inD +inl)™! (i — invf) .
ov
On the other hand, using Remark 4.15, (4.66), and (4.74), we get
Ay = 2((T—inD+inl)™") Fy

g
_ ol — gD +inD)t [ _ig? ).
nD' +in oy 1
d d

This gives (4.75). Since the adjoint of the arc-length derivative - is —,

the adjoint of B is given by B*f = —4L 4 4 2y f, and we already know from

the proof of Proposition 4.16 that N*f = ¢ - Re f o z,. Hence, (4.76) follows
from (4.74) and (4.75). |

Let us now turn to logarithmic source conditions.
Theorem 4.20. Let ¢ =r and r,s,p > 0. Then the inclusions
H™P C f(ARAN)(HE) € H'™P (4.77)
hold for all ¢ > 0, and the operators
fo(AxAN) : HE — HG'P,
(fp(ANAN)) ™ He'™' — He
are bounded. Here H{, := H{ (0K).
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Proof. As in the proof of Theorem 4.17 we may interpret H¢ and L% (S') as
complex Hilbert spaces in the usual way and assume that » = 1. Recall the
definition of the scaling constant C and the Hilbert bases (4.69). The radi-

ating solution to the Helmholtz equation satisfying the Neumann boundary
condition %L,j = @, 18

s (1)
1 -3 H,'(kr) .
Un(’f',t): ( +TL) A | ‘( )emt

Vam K,H(I)I(K,)

In

in polar coordinates. It follows from (4.70) and (0.5) that the far field pat-
terns v, oo = An¢y, of v, are given by v, o, = 05y, Where

This implies that a singular system of Ay is given by {(¢pn, 12U, lonl) -
n € Z}. Hence the operator f,(AyAx) can be written as in (4.71). The
identity H'(t) = HO, (1) = 2H (1), n > 1,¢ > 0, (1.5), and (4.72) yield
the asymptotic formula

n|
1 _s_1 [ ke
o = Copelal =4 (5] (L+o),  Inl = o

and hence
C? 2|n|
_ 2 _( _p2s i
In |oy,| ( In p +(23+1)ln|n|+2\n\ln(l€e)) (1—!—0(1))

for |n| — oo. For all € > 0 there exist constants ¢,C > 0 and Ny € IN such
that

1+e/p

eV1+n2< —Injo,> <C(1+n?) "z In| > Np. (4.78)

Due to the definition of Cs we have —1In |0,|? > 1 for all n € Z. Therefore,
after possibly redefining ¢ and C, (4.78) holds for all n € Z, and we obtain

CP(1+n°)""2 < f(lon]) <cP1+n2)"%, nezZ. (4.79)

The first inequality and (4.71) imply the first inclusion in (4.77) and the
mapping properties of f,(A%Ax))™", and the second inequality accounts for
the second inclusion in (4.77) and the mapping properties of f,(AxAx). ®
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Remark 4.21. As for the sound-soft case, the situation is a little simpler for
reconstructions from near field data. Let Ax be the operator that maps
a function f € H*(0K,) to v‘{‘w‘:R} where v is the radiating solution to

the Helmholtz equation with Neumann boundary values %erq = f. Then,
under the assumptions of Theorem 4.20, the operator

fp(AN*AN) : Hqu — H(]s:—kp

is bounded and boundedly invertible.

By Theorem 4.20, (4.24) with Ay instead of F}[q] is a closeness condition
with respect to the usual Sobolev norm || - || gs+p+e. By arguments similar to
those in Subsection 4.4.2. it can be shown that under additional assumptions
the singular values of f,(FY[¢]*FY) have the same asymptotic behavior as the
singular values of f,(AX .onstAN const) (cf. [Hoh98]).

4.5. Remarks on the nonlinearity condition

Unfortunately, none of the nonlinearity conditions in Section 4.1. could be
proved for an inverse scattering problem or the inverse potential problem,
yet. Hence no complete convergence proof is available at this time.

An important example to have in mind is the case of concentric circles.
For simplicity let us consider the inverse potential problem with R = 1
and s = 0. If r is the constant function with values 0 < r < 1, then
FL[r] : L*(]0,27]) — L?([0, 27]) is the self-adjoint operator which multiplies
the Ith Fourier mode by 7!l. Hence, F§[r*] = FL[r]* for A > 0. This shows
that for F' = Fp, x = r and 2! = 72 neither the Newton- Mysovskii condition
(4.8) nor the conditions F'[z] = R(z,z")F'[z!] or F'[z] = F'[2T|R(z,2T) are
satisfied for a bounded operator R(x,z') (cf. [HNS95], [Kal97]). Note that
even though Fj[r?] = Fp[r]* is infinitely more smoothing than F}[r], the
corresponding operators in (4.24) only differ by a constant:

Fo(Fplr®]) = 27 f, (Fp[r]).

Note that for ill-posed problems the estimate (4.6) on the Taylor remain-
der is a much stronger condition than the simple estimate C||z — Z||* since
|F(x) — F(Z)|| may be much smaller than ||z — Z||?. For a discussion of the
relationships between the different nonlinearity conditions we refer to [HS94],
[HHS95] and [DES98].

We do not have much hope that either (4.6) or (4.18) can be shown for in-
verse scattering problems. However, the main idea in the convergence proofs
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Figure 4.3: Error components for the IRGNM

in Sections 4.2. and 4.3. is the splitting of the total error into several com-
ponents which can be analyzed separately. Using (4.18) is only one possible
way to estimate the nonlinearity terms. One may try to find other estimates
of these terms that use specific properties of inverse scattering problems.

Fig. 4.3 shows a plot of the error terms in our analysis. We used the
operator Fy with 6 = 0.0001 and a bean-shaped curve defined on p. 121.
With the discrepancy principle with 7 = 2 the iteration would have been
stopped after N = 18 iterations. It is encouraging that the nonlinearity
terms e!® and el are clearly smaller than the approximation error PP for
n<N.



5. Numerical results

In this final chapter we report on some numerical experiments illustrating the
theoretical results of the previous chapters. We compare the performance
of different iterative regularization methods for inverse obstacle scattering
problems and study the rates of convergence of the IRGNM. Finally, we look
at some modifications of the standard situation which are important from a
practical point of view and make reconstructions more difficult.

5.1. Implementation and comparison

The implementation of the operators Fp, F1, and Fy, their derivatives and
the adjoints of these derivatives has been described in Chapter 2 and Sec-
tion 4.4.. Here we focus on the implementation of iterative regularization
methods.

We have designed a general C++-class library for iterative regularization
methods that has been used in all our numerical experiments. In our imple-
mentation we have used the FFT-Code from [FJ99], and the Bessel functions
from http://www.netlib.org/cephes.

Implementation of Landweber iteration and Newton methods with
inner iteration. It turns out that it is quite important to work with the
right function spaces for numerical realizations just as well as for theoretical
investigation. Recall that we have established Fréchet differentiability of
the scattering problem solution operators F;, and Fy with respect to the
|| - ||ci-norm and differentiability of the potential problem solution Fp with
respect to the || - ||o-norm. Since we need a Hilbert space structure, we have
chosen X = H*([0,2n]) with s > 1.5 for F, and Fx and s > 0.5 for Fp.
For the choice X = L?([0,27]) the reconstructions of obstacles are typically
either unstable or less accurate. For the Levenberg-Marquardt algorithm and
similar methods we observed serious stability problems for more than about
15 degrees of freedom with X = L?([0,27]). Even for Landweber iteration,
which is the most stable of the regularization methods considered here, the
iterates are perturbed by oscillations in many cases (cf. Fig. 5.1). For

116
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both Landweber iteration and the Newton-CG method the reconstructions
are almost always significantly better for X = H*([0,27]), s > 1.5 than for
X = L?([0,27]).

In all the experiments reported here we chose s = 1.6 for Fp and Fy
and s = 0.6 for Fp. The choices s = 1,2,3 also work well in many cases.
However, our choice of s seems to be a good compromise between stability
and smallness of the initial error.

To implement Landweber iteration and Newton methods with inner it-
erations in H*([0,27]) we represent periodic functions on [0,27] by their
weighted Fourier coefficients. Consider real or complex trigonometric poly-
nomials of the form

Qo

~ Ver

We will comment on this choice of spaces, which is slightly different from

(2.16), in a moment. The coefficients a; and b; can be computed from the

vector p = /T (p( SC"))) of values at the grid points £\ := T with
= 0.2n-1

time complexity O (nlnn) as follows: The Fast Fourier Transform (FFT)

yields a vector ¢ = (¢;)o.2n—1 such that

p(t)

V21

1 n—1
+ /7 Z(aj cos jt + b; sin jt) + &(cos nt +sinnt). (5.1
j=1

2n—1

1
: 4(n)
;= — c;expl(1gt .
p; \/%;07 p(ijty )

As exp(ijti™) = exp(i(j — 2n)t™) and sin(nt{™) = 0 for all j, k € Ny, the
coefficients a; and b; are given by

ap = Cp, ap = Cp,

1 i )
aj = —=(¢j + con—j), bj=—F(cj—com—y), j=1...n—1

V2 V2

Since FFT is a unitary mapping, it follows that

n n—1
I = [ = la;” + > 16> = lIpll7a- (5.2)
j=0 j=1

Moreover, the real 2n x 2n-matrix O defined by

OP = (a'Oa a, bla <oy Qp—1, bn—l; an)

is orthogonal.
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The property (5.2) distinguishes general trigonometric polynomials of the
form (5.1) from trigonometric polynomials of the form (2.16). (Of course,
the polynomials (2.16) have the property (5.2) with respect to a shifted set
of grid points.) Since sin ntfcn) = 0, it can be seen that the choice (5.1) leads
to the same finite dimensional systems (2.21) and (2.22) as (2.16). Whereas
the property (5.2) is desirable in the present context of representing norms
and scalar products, the simpler form (2.16) was more convenient in Chapter
2.

Introducing the diagonal matrix

D, = diag(((1+[(j+ 1)/2]2)5/2)0..27171)
= diag(1,2%, 27, (L4 (n— 17)°, (14 )

(with [z] := sup{n € Z : n < z} for x € R) and B := D;0O, we can write
the Sobolev norm of p as

Ipllzs = |Bsp-

Let F'[g]r2h be a discrete approximation to the Fréchet derivative F'[g|h
for one of the operators Fp, Fp or Fy with b = /% (h( ™))). To get an
implementation in the Sobolev space H*([0, 27]), we represent h by the vector
B;h. Then the Fréchet derivative is given by F'[g];2B;! and its adjoint by
B;'F'(q]%,. E.g., if ¢; is the trigonometric interpolation polynomial with
nodal values \/ggj, then the discrete form of Landweber iteration is given
by

¢, =q,+ B B Flgl(y’ — Flgy), 5=0,1,2,....
This algorithm can be seen as a special case of regularization with differential
operators which is described for linear problems in [EHN96]. Yet another
way to look at it is to regard B;'B,* = O*D,?0 as an implementation
of the adjoint j* : L?([0,27]) — H*([0,27]) of the inclusion mapping j :
H*([0,27]) < L3([0, 27]).

The implementation of the application of the matrix O and its adjoint
can also be used for trigonometric differentiation which is needed to evaluate
the Fréchet derivative of the operator Fy.

The performance of Landweber iteration depends critically on the choice
of the scaling parameter u. To facilitate the choice of this parameter, we
used the scaled Landweber iteration

b 6 M o 81%(, 8 )
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In this form the iteration is scaling invariant, i.e. the iterates remain un-
changed if the operator F' and the data u’, are replaced by A\F and some
Ml for A € C\{0} (cf. [DES98]). The parameter ji has to be chosen such
that fi|| F'[q]|| < ||F'[go]]| for all ¢ in a ball around ¢' containing go. In all our
experiments we used i = 0.8, and the results did not improve significantly
for other values of ji. We approximated ||F”[qgo]||*> = || F”[qo]* F”[q0]|| by a few
iterations of the power method z,.1 := ||z—1n||F, [90]* F'[q0]zn with a random
start vector zo. Typically, after a few steps we had ||z,|| ~ ||[F'[g]||>. An
alternative way to estimate || F"[go]||* is to use the Lanczos methods (cf., e.g.,
[PaiT2]).

For the Newton-CG method we chose p = 0.8 and a maximum number
of kmax = 200 inner iterations. The latter restriction was rarely active. We
would like to mention that it is essential for the performance of the Newton-
CG method that the adjoints F'[¢2]* are computed with respect to the same
scalar products that are used to compute the coefficients a and [, in the
algorithm . Moreover, we recommend to use A as discrete approximation

to F'[¢’]*, if possible (cf. p. 106).

Implementation of the Levenberg-Marquardt algorithm and the
generalized IRGNM. To implement the Levenberg-Marquardt algorithm
and the generalized IRGNM we used the variational formulations (4.11) and
(4.21). This leads to linear least-squares problems for block systems of the

form
(3)-(2)

Here A and v correspond to the term ||[F'[¢’]h + F(q}) — ul.||?>, B and w
correspond to the terms ay,||h + ¢ — go||*> or ay||h||?, rsp., and h is the
coefficient vector of the update h(t) = Z;.V:XO_I hm;(t). mj € X are some
basis functions, and B is some (not necessarily Nx x Nx) matrix such that
B'B is the Gram matrix ((n;, ) 5 ). Note that |Bh|* = ||h[%.

For the scattering problems we approximated the norm in Y = L?(S')
by the trapezoidal rule

2Ny —1 l

2 Ni N o COSN—
I~y D If@P = ( i T )

Ny
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This leads to the matrix entries

T ~ m o
Aug =\ N Re(F'lgnln;)(21),  va = N Re(ug, — F(gn)) (1),

T ) . T .
Agiy1 = \/ Ny Im(F'[g)]m;) (&), var1 = ”N—y Im(ul, — F(q)))(d:)

(0 <l <=2Ny —1,0 < j < Nx —1). For the potential problem we used
the formula || f||2, = 2mag + 7 Y0 (aF + b?) for f(t) = ao + Yo (as cos It +
by sin [t).

In all the experiments reported here we have chosen trigonometric mono-
mials as basis functions 7; : n9(t) := 1, nek—1(t) := cos kt, and 1o (t) := sin kt
for £k € IN. Then B is a diagonal matrix with diagonal entries

o 2wy,
Boo = v2man  Bog-12k-1 = Bokor = V 2 (14 k%72,

For the IRGNM w; is the weighted /th Fourier coefficient of ¢y — g5, and for
the Levenberg-Marquardt algorithm w = 0. We have also experimented with
more localized basis functions (cf. [Hoh96]) which work better for small N
if properly chosen. However, if N is sufficiently large (about Nx > 30), the
results are almost the same.

The discretization errors of this implementation are discussed in Section
5.3.

Choice of the regularization parameters. The regularization parame-
ter o, in each step of the Levenberg-Marquardt algorithm and the IRGNM
can either be chosen by an a-priori rule like (4.16) or by an a-posteriori rule
such as (4.12). Numerical experiments show that both methods yield similar
results (cf. Fig. 5.3).

The rule (4.12) has the advantage that only one parameter p has to be
chosen whereas in (4.16) there are two free parameters oy and . Moreover,
a good choice of aq is quite different for different problems, whereas, e.g.,
p = 0.8 and v = 1.5! work well for a wide range of problems. Therefore, we
suggest to determine ag by (4.12) when using (4.16). This was done in all
the experiments reported here.

For test purposes we used a simple bisection algorithm to find an approx-
imate solution oy, to (4.12). A more efficient implementation using a Newton
method in 1/a,, and a bidiagonalization procedure is described in [EHNOG6,
Chap. 9].
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Inverse crimes. Since for many direct problems neither explicit solutions
nor measurement data are available, synthetic data have to be produced to
test numerical algorithms for the inverse problems. If these synthetic data
are obtained by the same method that is used in the algorithm for the inverse
problem, one often obtains unrealistically good results, especially if the exact
solution is chosen from the approximating subspace. The reason is that the
errors produced by the direct solver match exactly the errors in the synthetic
data, and therefore the problem is reduced to the simple inversion of a finite
dimensional system. Such a procedure is often called an nverse crime.

To make our tests reliable, we took the following precautions against
inverse crimes. We made sure that our exact solution was never in the finite-
dimensional approximating subspace. For inverse scattering problems we
used a different ansatz and a different number of grid points on the boundary
to produce synthetic data. Similarly, we used a much higher number of grid
points to compute synthetic data for the potential problem.

Choice of parameters. If nothing else is said we always used 2Ny = 64
collocation points for the far field pattern, 2N, = 128 grid points, and the
wave number k = 1 in our experiments with inverse scattering problems.

For the potential problem we used 2Ny + 1 = 129 Fourier coefficients,
2N, = 128 grid points, and a radius R = 2.

To recover the radial function ¢! we started from the unit circle go(t) = 1
and used Nx = 64 trigonometric basis functions. As mentioned above, the
distance between curves was measured in the Sobolev norm || - ||gs with
s = 1.6 for scattering problems and s = 0.6 for the potential problem.

As test examples we chose the bean-shaped curve ¢, the peanut-shaped
curve gp, the rounded rectangle g, the star-shaped curve g5, and the kite-
shaped curve 2z, which are defined by

1+0.9cost+ 0.1sint

t =

%) 1+0.75cost

%(t) = \/ cos?t + 0.26sin’(t + 0.5),
2 10\ 01

() = ((cost)w + (g sint) ) :

qs(t) = 0,6+0,261'4“)5(3?5—2)-0-0.4sint’

t) = cost + 0.26 cos 2¢ — 0.65
“ o 1.5sint '
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Comparison for exact data. From the convergence plots in Fig. 5.5 and
from the pictures in Fig. 5.6 it is clear that Landweber iteration is by far the
slowest method. It turns out that (4.7) describes the convergence behavior
correctly even though the Newton- Mysovskii condition under which it was
derived is not satisfied. This can be seen in Fig. 5.2: the plot of In ||z’ — ||
over In(—Inn) is almost linear. It follows from (4.7), (4.16) and (4.33) that
the number of Landweber steps that is necessary to achieve the accuracy
of n IRGNM steps increases exponentially with n! Nevertheless, one can
obtain quite accurate reconstructions with Landweber iteration after very
many iterations (cf. Fig. 5.7). Let us mention again that this is not true
for s = 0, i.e. X = L*([0,27]). In this case the reconstructions are usually
contaminated by oscillations after a certain number of iterations even for
exact data (cf. Fig. 5.1).

The Newton-CG method makes remarkably good progress in the begin-
ning in reducing low frequency components of the error. It is much faster
than Landweber iteration, but the asymptotic speed of convergence is clearly
slower than that of the Levenberg-Marquardt algorithm and the IRGNM.

The Levenberg-Marquardt algorithm and the IRGNM are quite similar
if the regularization parameters «,, are chosen the same way. Usually, the
Levenberg-Marquardt algorithm gives better results at the beginning whereas
the IRGNM is better in the long run (cf. Fig. 5.5). Moreover, as discussed
after (4.17), the IRGNM is more stable than the Levenberg-Marquardt al-
gorithm. This is exhibited in Fig. 5.4 where we used only 2N, = 64 grid
points instead of our default value 2N, = 128. The reconstructions of the
Levenberg-Marquardt algorithm explode before those of the IRGNM, and
the error at the time before divergence takes place is larger. Because of this
increased stability and because of the more complete convergence analysis,
we prefer the IRGNM over the Levenberg-Marquardt algorithm.

The generalized IRGNM introduced in Section 4.1. is clearly the fastest
of all the methods discussed here. After 60 iterations in the first plot of Fig.
5.5 and after 33 iterations in the second plot the residual was about as small
as the computational errors and the iteration diverged.

For the sound-hard scattering problem with our standard choice of pa-
rameters 50 iteration steps took 14.4 seconds for Landweber iteration, 22.3
seconds for the Newton-CG method, 28.9 seconds for the IRGNM, and 29.1
seconds for the generalized IRGNM with [ = 3 inner iteration on an SGI
R10000 machine. For the potential problem the corresponding computation
times were 1.15, 10.0, 9.3 and 9.4 seconds. The difference between Landweber
iteration and Newton methods is much more pronounced for the potential
problem since no matrix has to be inverted to evaluate the solution operator.
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Comparison for noisy data. Let us now look at the performance of it-
erative regularization methods in the presence of data noise errors. Here we
have always worked with pseudo-random noise (cf. §5.4.2.). Moreover, we
have used the discrepancy principle (4.4) with 7 = 1.2 to stop the iteration.
Although this choice of 7 is not yet supported by theory for nonlinear prob-
lems, the iteration was terminated before divergence in all our experiments,
and the results were better than with larger values of 7.

Fig. 5.7 and 5.8 show that all things considered the results of different
methods are of similar quality for noisy data. This holds true in particular for
Landweber iteration and the generalized IRGNM. The Newton-CG method
yields more accurate results in some cases (as in Fig. 5.7c), 10% noise) at
the cost of stability (cf. Fig. 5.7b), 1% noise and Fig. 5.8). In Fig. 5.8 the
results obtained with the generalized IRGNM (I = 3) are slightly better than
the results obtained with the standard IRGNM (I = 1).

Although the results of different methods are similar, the computation
times to achieve these results are quite different. Whereas Landweber iter-
ation needs 10000 and more iterations until the stopping criterion (4.4) is
satisfied for 1% noise, Newton methods need no more than 30 iterations. For
noise levels of 1 to 10% usually the Newton-CG method was fastest in our
test examples, followed by the generalized IRGNM.

L andweber iteration Newton-CG method

original —— original ——
L2-norm, 100 its --------- L2-norm, 100 its ---------
Hs-norm, 100 its === Hs-norm, 100 its -

Figure 5.1: Stability of regularization methods with L?-norm versus H*-norm
in X; F=1Fp;¢'(t) =q(t+2);6=0
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Figure 5.2: Speed of convergence of Landweber iteration; F' = Fyy; d = (1,0);
tT=ag.6=0
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a-priori - a-priori
a-posterior] --------- . a-posteriori ---------

Figure 5.3: Levenberg-Marquardt algorithm with a-priori and a-posteriori
choice of a,; F = Fy; d = (1,0); ¢ =qv; 6 = 0; p=0.75
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1000 ¢ T
- Hs-error

Lev.-Marquardt
IRGNM  =------=

100 ¢

- '
........

0 5 10 15 20 25 30 35 40 45 50

Figure 5.4: Comparison of stability of Levenberg-Marquardt algorithm and
IRGNM; F = Fp; ¢f = ¢, 6 = 0; N, = 32 instead of default N, = 64
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10 T T T T
Hs-error
LN
01 ¢
0.01 +
0.001
Landweber ———
Newton-CG ———
0.0001 ¢ Lev.-Marquardt ——— A
IRGNM
1e-05 ! L I i step
0 20 40 60 80 100
F =Fp; ¢' = ¢
Hs_af'rl'or T T T T T T T
10 —\\\ i
\
Landweber ———
Newton-CG ———
Lev.-Marquardt ———
IRGNM ———
1 1 1 1 1 1 1 1 Sw
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F = Fp; 26 = & d = (1,0)

Figure 5.5: Comparison of convergence plots for different methods with exact

data
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original
Landweber, 500 its
Newton-CG, 50 its

IRGNM, 50 its
F = Fp
a)  ¢'(t)=¢(+2)
6=0
origind ——
Landweber, 500 its
Newton-CG, 100 its
IRGNM, 100 its
F = FD
b) qJr =(gs
0= N
origind ——
L andweber, 500 its ——
Newton-CG, 50 its ———
IRGNM, 50 its ——
F = FN
©)  zg =
6=0

Figure 5.6: Comparison of methods for exact data
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1% noise

original
Landweber, 123 its
Newton-CG, 5 its
IRGNM, 17 its

original ——
Landweber,19274 its
Newton-CG, 11 its
IRGNM, 30its

original

Landweber, 9643 its
Newton-CG, 12 its
IRGNM, 20 its

5. Numerical results

10% noise

original
Landweber, 11 its
Newton-CG, 1it
IRGNM, 9its

original ——
Landweber, 155 its
Newton-CG, 1 it ——
IRGNM, 19 its

original
Landweber, 181 its
Newton-CG, 6 its
IRGNM, 11 its

a) F=Fp, ¢'(t) = ¢:(t +2)
b) F = Fy, zzzzk

C)F:FNaqTZQS

Figure 5.7: Comparison of methods for noisy data
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1% noise; best out of 10
origindl ——

Newton-CG, 11its
IRGNM, 21its

10% noise; best out of 10

origind ——
Newton-CG, 3its
IRGNM, 13its

1% noise; worst out of 10

origindl ——
Newton-CG, 10 its
IRGNM, 21its

10% noise; worst out of 10

origind ——
Newton-CG, 4its
IRGNM, 12its

129

Figure 5.8: Comparison of Newton-CG method, IRGNM and generalized
IRGNM with [ = 3 for noisy data; F' = Fp; z,t = 2
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5.2. Convergence rates for the IRGNM

In this section we describe numerical experiments that verify the theoretical
results from Sections 4.2. and 4.3.. (4.16) and (4.33) imply the estimate

-n

In||g, —q'l|gs < ln((ﬁ'(—lnfye

) 7) <In(C'(nlny)™?)
= (InC'—plnlnvy) —plnn

for exact data. Hence we expect a plot of In||g, — ¢'||zs over Inn to be
asymptotically close to a straight line. Similarly, for noisy data we have

In {|qn 5,68y — ¢'| <In(C(=1né)™?) =InC — pln(—Iné).

due to (4.38) and (4.40), and therefore, we expect a plot of In||gx (6, ul,) —
q'||zs over In(—In§) to be asymptotically linear. These predictions are con-
firmed in Fig. 5.9, 5.10, and 5.11.

Moreover, according to our theoretical results the parameter p in the
source condition (4.24) corresponds to the negative slopes of the asymptotic
straight lines in Fig. 5.9, 5.10, and 5.11, and that p is related to the smooth-
ness of ¢' — gp. In order to test these predictions, we constructed curves
¢" with exactly known smoothness as follows: Let f % g denote the convo-
lution of 2m-periodic functions f, g, ie. (f *g)(t) == [7_f(s)g(t — s) ds,
and let fl™ := f ... % f be the m-fold convolution of f. We define
fa as the 2m-periodic extension of the characteristic function of the inter-
val [—a,a). It can be shown by induction that f™ € C™2([0,2x]) for
m > 2 and a < 7/m and that the m-th derivative of fI™ is piecewise con-
stant, i.e. fi™ ¢ C™=1(]|0,27]). Hence Sobolev’s embedding lemma implies
i ¢ H?([0,2n]) for p > m — ;. On the other hand, calculating the Fourier
coefficients of f, explicitly and using the fact that the Fourier coefficients of
f * g are given by products of the Fourier coefficients of f and g, it can be
shown that fI™ € H?([0,2n]) for p <m — 1.

We chose the test curves gp, =1+ ¢ fim] with a = % and c such that
qm)(0) = %. These curves describe local perturbations of the unit circle which
look almost identical, but have different smoothness (cf. Fig 5.9). As usual
we used the unit circle ¢ = 1 as initial guess.

From the results in Section 4.4. we expect that p ~ sup{p' : qpm — @ €
H**"'} =m—0.5—s. In Tab. 5.1 we listed the slopes of the linear regression
lines for plots corresponding of In||g, — ¢f|| over Inn (n = 20,...60) and for
plots of In ||gnx (6, ul,) — ¢t||zs over In(—1nd) (1078 < § < 5-10~*). Whereas
in the first case (0 = 0) the slope are quite close the predicted values, in the
second case (6 > 0) the slopes are a bit smaller than expected. However, it
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is clearly exhibited that more smoothness leads to faster convergence, and
the results are of the expected order.

CcC2 ——
C3 —
C4 ——
01
" Hs-error C2 —
: c3 ——
0.01 |
0.001 |
0.0001 :
L aep
1e_05 1 1 1 1 1 1
30 40 50 60 70 80 90 100

Figure 5.9: Speed of convergence for perturbations of the unit circle; F' = Fp;
0=0



132 5. Numerical results
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01 r 25 L i
0k 20 + .
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-01 ) 10 -
02 In(-In(noise level)) c noise |evel
16 18 2 22 24 le06 1e-05 0.0001 0.001 0.01

Figure 5.10: Convergence rates for the generalized IRGNM with discrepancy
principle; F = Fp; d = (1,0); ¢' = ¢

0.2

0 In(Hs-error) 60 L_stopping index
-0.2 + 50 -
-04 r 40
06 |
08 | 30 r
1k 20
ii ", In(In(noise level)) 10 . . noise level
. 2 2122232425262728 1e-07 1e-06 1e-050.0001 0.001 0.01

Figure 5.11: Convergence rates for the IRGNM with discrepancy principle;
F=Fnd=(1,0);¢" =g
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¢t sup{p:¢' € H*?} 6=0 6>0

F=F qep 0.5 -0.47 -0.83
s = qa 1.5 -1.28  -2.22
qa 2.5 -2.09 -3.75
g5 35 -3.14  -5.78
qe) 4.5 -4.33  -5.97

¢t sup{p:¢f € H¥**?} §=0 §>0

F:FN

g — qap 0.5 -04 -0.9
q[5] 1.5 -1.8 2.7
e 25 24 -3.3

Table 5.1: slopes of the regression lines for exact data convergence plots
(n =20...60) and for convergence rates plots (1078 < § < 5-107%)
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5.3. Adapting the discretization parameters
during the iteration

Let us first identify the operators F(™ and A((I") in Section 4.2. for our im-
plementations of the scattering problems. (The potential problem is treated
analogously.) Let Fy, : D(F) — L%(S') and Ay, : H([0,27]) — L3,(SY)
be the approximations to F' and F'[q] with 2N, grid points as described in
Chapter 2. Here either F' = Fy, or F' = Fy. Let Py, be the orthogonal pro-
jection onto span{n; : j = 0,...,2Nx}. Moreover, let QNY be the trigono-
metric interpolation operator on S' with respect to the 2Ny equidistant
interpolation points a?l(NY) = (cos 3=, sin #T-), 1 = 0,...,2Ny — 1 analogous
to the operator P, in (2.18). Then the operator

Qo £ 1= /O (Re £12) +iy/ Qe (Im )2)

satisfies

2Ny —1

||QNYf||%2=NiY 3 1Quy F(E)))?
=0

since the trapezoidal rule with 2Ny grid points is exact for trigonometric
polynomials of degree < Ny. Therefore, we may interpret collocating at the
points i‘l(NY) and then taking the discrete /2-norm as applying the operator
(n~, and then integrating exactly. Hence, our approximations to F' and A,
are

F(g) = QuywPrmle)  and
At(ln) = QNY(”)A(LNQ(”)PNX(”)'

The approximation errors can be estimated by the triangle inequality as
follows:

IF™(q) — F(q)|
A — F[q]]|

1(@ny — I)I?NQ(Q)II + | Ew, (¢) = F()l|
(@ny = 1) Agny Prvx|
+HIAg v, Py = DIl + | Aq, — F'ld]l

<
<

Here we have omitted the argument (n) of the discretization indices Ny, Nx,
and Ny. If f: S* — R is an analytic function, the trigonometric interpola-
tion error satisfies

I(7 = Qnx) flloe = O (exp(~sNx))
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where s corresponds to the width of the strip in the complex plane to which
the periodic function ¢ — f(cost,sint) can be extended analytically (cf.
[Kre89, Theorem 11.5]). Consequently,

I = @nx ) fllzz = O (exp(=(sNx)/2)) -

It can be shown that the periodic functions corresponding to far field patterns
can be analytically extended to the entire plane, i.e. the previous estimate
holds for any s > 0 if f is a far field pattern. The size of the other error
terms depends on the smoothness of ¢q. If ¢ is analytic, it can be shown
that ||FN9 (¢9) — F(q)|| and ||Aq’Ng — F'[q]|| decay exponentially (cf. [Kre89,
Kre95¢c, Hoh98]). Since Py, is a trigonometric projection operator, the term
||Aq,Ng (I — Pyl =||(I - PNx)fl;’NgH also decays exponentially due to the
characterization of AZ} Ny in Propositions 4.16 and 4.19. Since our computed
iterates ¢° are trigonometric polynomials and hence analytic, this suggests
that the discretization indices Ny(n), Nx(n) and Ny (n) should be chosen of
the form a + bn with constants a,b > 0 such that (4.22a) and (4.22c) are
satisfied with an error level h, = O (exp(—n)). A rigorous analysis would
have to take into account that although the iterates ¢} are analytic, they
converge to a function ¢' which is not necessarily analytic, so the width
of the strip to which functions can be analytically extended may decrease
during the iteration. Such an analysis could take place in Banach spaces of
holomorphic functions as introduced in [Kre89, Exercise 12.4.].

In a numerical experiment, we compared the numerical performance of
the IRGNM with Ny(n) = Nx(n) = Ny(n) =4+ n and Ny(n) = Nx(n) =
Ny (n) = 64 over the first 60 iterations. The computation time of the adap-
tive version is only about a third of the version with fixed discretization
parameters whereas the results are almost identical (cf. Fig. 5.12 and Tab.
5.2). Speed-ups of similar order were observed by Ramlau for an adaptive
version of Landweber iteration ([Ram99]).
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Hs-error fi)ged —_—

Figure 5.12: Convergence with adaptive choice of discretization parameters;
F = Fxeum; d= (1,0), qu = @b

fixed adaptive
set-up + decomposition of ieq. matrix = 47.3% 15.0%  (46.3%)
evaluation of F(™)(q) 08% 0.2%  (0.5%)
evaluation of A 41.0% 14.2%  (43.7%)
solution of (5.3) 10.6%  2.5%  (7.5%)
rest 0.4%  0.6% (2.0%)
total 100.0% 32.5% (100.0%)

Table 5.2: Computation times with fixed and adaptive choice of discretization
parameters
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5.4. Miscellaneous

5.4.1. Convergence rates with limited aperture

In many practical situations measurements of the scattered field are not
available at all directions, but only at a limited range of angles. Therefore, it
is interesting to study how such a lack of information influences the quality
of the reconstructions. For test purposes we chose a bean-shaped sound-hard
scatterer with one incident plane wave of direction d = (0, 1) and considered
far field data in a range of angles centered around the backscattering direction
(0,—1). In different experiments the size of this range of angles was 27
(full far field data), m, 0.47, and 0.27. In all these experiments we used
the same number of data points. Although convergence of the IRGNM is
considerably slower for limited-aperture data, one still gets reasonably good
reconstructions even for an aperture of only 36 degrees (cf. Fig 5.13).

5.4.2. Random and systematic data errors

In this subsection we look at the influence of the type of the data error on the
quality of the reconstructions. In many application the measurement data
are contaminated not only by random (e.g. Gaussian distributed) errors,
but also by large systematic errors due to experimental design or inaccurate
mathematical models.

To simulate random measurement errors, we added a computer-generated
pseudo-random number to the synthetic data u.(Z;) for each Z;. In Fig.
5.14a) and b) we plotted the best and the worst reconstructions out of 50
experiments with pseudo-random noise. In each case we used the IRGNM
stopped according to the discrepancy principle with 7 = 1.2. The relative
error level was roughly 5%. In Fig. 5.14c) and d) we simulated some simple
types of systematic errors. In c¢) u’, was given by (1 + 6)us and d) we
had v’ = (1 + X{#:>01@)Uoc Where X(z,>0y is the characteristic function of
{.’26512@220}.

These experiments show that reconstructions are usually considerably
worse for systematic than for random data errors. This is also true for ex-
periments with various other types of systematic errors that are not reported
here, e.g. a large error in a single measurement point or perturbations by
trigonometric monomials. Nevertheless, taking into account the severe ill-
posedness of the problem, the reconstructions are quite good even for sys-
tematic data errors.
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5.4.3. Reconstructions with more than one obstacle

In this subsection we consider the reconstruction of scatterers which con-
sist of several components. Each component may have a different boundary
condition. In Fig. 5.15 we chose a sound-hard “bean”, rotated by 2 and dis-
placed by (—1.5,1.5), a sound-soft “peanut”, rotated by —1 and displaced by
(1.5,—1.5), and a sound-hard “rounded rectangle”, rotated by 0.5 and dis-
placed by (0,2). Moreover, we used 8 equidistant incident waves with x = 1
and no artificial noise. We used an adaptive choice of the discretization pa-
rameters as in Section 5.3.. Again, the reconstruction with the IRGNM is
the best, followed by that of the Newton-CG method and that of Landweber
iteration.

> | Hs-error 100%

Figure 5.13: Convergence with limited aperture; F = Fy; d = (0,1); ¢' = ¢
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Figure 5.14: Reconstructions with random and systematic data errors; F' =
Fp; zgt = 2
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Figure 5.15: Reconstructions with several domains; § = 0
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5.5. Summary

Let us briefly summarize the main results of this chapter. A comparison of
iterative regularization methods for inverse scattering problems with exact
data shows that the generalized IRGNM introduced in Section 4.1. is the
fastest method followed by the standard IRGNM, the Levenberg-Marquardt
algorithm, the Newton-CG method and Landweber iteration. The quality of
reconstructions with noisy data is similar with all these methods. For noise
levels of 1 to 10% the Newton-CG method is usually the fastest, but other
methods are more stable.

The estimates on the speed of convergence of the generalized IRGNM
derived in Chapter 4 are confirmed in numerical experiments. The results
clearly show that the speed of convergence depends on the smoothness of
the difference between the exact solution and the initial guess and that the
experimental convergence rates are close to the predicted rates.

Although the quality of the reconstructions is impaired considerably if
measurement data are available only for a limited range of angles or if they
are perturbed by systematic errors, Newton-type methods still yield stable
and reasonably good results in these situations. Computation times can be
reduced to about a third if the direct solution operator and its derivative are
approximated only coarsely as long as the iterates are still far away from the
solution. Finally, we have also obtained good reconstructions with more than
one scattering obstacle provided the number of obstacles and a sufficiently
good initial guess are known. Such an initial guess could be provided by
sampling methods as described in [CK96, Pot96a, CPP97, Kir98|.
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