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Abstract

We discuss the use of nonlocal impedance conditions within the use
of boundary integral equations for the solution of direct and inverse
obstacle scattering problems for penetrable obstacles with constant
index of refraction. In the first part, for the classical transmission
problem we present an approach that leads to a two-by-two system
of nonlinear integral equations in the spirit of the method initiated
by Kress and Rundell in 2005 rather than the three-by-three system
arising from the traditional boundary integral equation approach to
the transmission conditions. In the second part we survey on recent
work of Cakoni and Kress from 2017 on the use of boundary inte-
gral equations for the characterization and numerical computation of
transmission eigenvalues. In particular, we modify and simplify the
analysis by the use of a nonlocal rather than a local impedance con-
dition as in the 2017 paper.

1 Introduction

Scattering from a sound-soft or a sound-hard obstacle provides the two basic
classical scattering problems for time-harmonic acoustic waves. Assume an
impenetrable obstacle described by a bounded domain D ∈ R3 with a con-
nected C2 smooth boundary ∂D and an incident field given by the plane wave
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U i(x, t) = Re ei(k x·d−ωt) where k = ω/c is the wave number, ω the frequency,
c the speed of sound, and

d ∈ S2 := {x ∈ R3 : |x| = 1}

the direction of propagation. Then, setting ui(x) := eik x·d, the two basic
problems are to find the total field u = ui + us ∈ H1

loc(R3 \ D̄) as a solution
to the Helmholtz equation

∆u+ k2u = 0 in R3 \ D̄ (1.1)

such that the scattered wave us satisfies the Sommerfeld radiation condition

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0, r = |x|, (1.2)

uniformly for all directions. Solutions to the Helmholtz equation satisfy-
ing the Sommerfeld radiation condition are called radiating solutions. The
boundary conditions are given by the homogeneous Dirichlet condition

u = 0 on ∂D (1.3)

in the sound-soft case and the homogeneous Neumann condition

∂u

∂ν
= 0 on ∂D (1.4)

in the sound-hard case, with ν the unit normal to ∂D directed into R3 \D.
After renaming the unknown functions the two scattering problems are

special cases of the following exterior Dirichlet and Neumann boundary value
problems: Find a radiating solution v ∈ H1

loc(R3 \ D̄) to the Helmholtz
equation satisfying

v = f on ∂D (1.5)

or
∂v

∂ν
= g on ∂D (1.6)

with given f ∈ H
1
2 (∂D) for the Dirichlet case and g ∈ H−

1
2 (∂D) for the

Neumann case, respectively.
In addition to these two standard boundary conditions, so called impedance

boundary conditions were introduced mainly to model scattering problems for
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penetrable obstacles approximately by scattering problems for impenetrable
obstacles. The classical impedance condition, also known as Leontovich con-
dition, is given by

∂u

∂ν
+ iλu = 0 on ∂D (1.7)

where λ ∈ C(∂D) is a given complex valued function with non-negative real
part. The generalized impedance boundary condition is described by

∂u

∂ν
+ i (λu−Div µGradu) = 0 on ∂D, (1.8)

where Grad and Div denote the surface gradient and surface divergence on
∂D and µ ∈ C1(∂D) and λ ∈ C(∂D) are given complex valued functions
with non-negative real parts. As compared with the Leontovich condition,
the wider class of impedance conditions (1.8) can provide more accurate
models, for example, for imperfectly conducting or coated obstacles.

The above impedance conditions (1.7) and (1.8) are local conditions
whereas in this survey we want to discuss nonlocal impedance conditions
of the form

Au+B
∂u

∂ν
= 0 on ∂D (1.9)

for solutions u to the Helmholtz equation defined either in R3 \ D̄ or in
D. Here, at least one of the two operators A and B will contain integral
operators, or more general pseudo differential operators defined in Sobolev
trace spaces on ∂D. These nonlocal impedance conditions have no immediate
physical interpretation and only serve as an analytic tool for the investigation
of mathematical problems related to direct and inverse obstacle scattering.

The plan of the paper is as follows. We begin in Section 2 by indicating
that the classical suggestion by Panich [24] to overcome the non-uniqueness
issue of the single-layer potential approach for solving the exterior Neumann
problem (1.6) can be interpreted as an application of a nonlocal impedance
condition for the interior domain D. In the following Section 3 we illus-
trate the use of the same type of interior impedance problem to formulate
a solution method for the scattering problem from a penetrable scatterer
D with constant refractive index by one single boundary integral equation
for one unknown instead of the classical approach with two equations for
two unknowns. Complemented by a far field equation, in the spirit of the
method proposed by Kress and Rundell [17], this new integral equation cre-
ates a system of two nonlinear equations for solving the inverse scattering
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problem to determine the shape of the scatterer from a known far field pat-
tern. A couple of numerical examples is presented as proof of concept for this
method. This is then followed in Section 4 by a brief description of the same
idea for scattering from an extended source with constant density. The final
Section 5 reviews recent work of Cakoni and Kress [5] employing boundary
integral equations and using impedance conditions for the characterization
and numerical computation for transmission eigenvalues for penetrable ob-
stacles with constant refractive index. This research was motivated by the
work of Cossonnière and Haddar [9] who presented a two-by-two system of
integral equations based on Green’s representation theorem for the interior
transmission problem whereas in [5] again a single boundary integral equa-
tion was derived. In the present, we eliminate some negligence within the
presentation in [5] and simplify the analysis by the use of a nonlocal rather
than a local impedance condition. Although, except the numerical examples,
our presentation will be in R3, we note that all our results remain valid in
R2 with some slight modifications.

2 An early occurrence in history

Following the notation of [8, Section 3.1], in terms of the fundamental solution

Φk(x, y) :=
1

4π

eik|x−y|

|x− y|
, x 6= y,

to the Helmholtz equation in R3 we introduce the classical boundary integral
operators given by the single- and double-layer operators

(Skϕ)(x) := 2

∫
∂D

Φk(x, y)ϕ(y) ds(y) (2.1)

and

(Kkϕ)(x) := 2

∫
∂D

∂Φk(x, y)

∂ν(y)
ϕ(y) ds(y) (2.2)

and the corresponding normal derivative operators

(K ′kϕ)(x) := 2

∫
∂D

∂Φk(x, y)

∂ν(x)
ϕ(y) ds(y) (2.3)

and

(Tkϕ)(x) := 2
∂

∂ν(x)

∫
∂D

∂Φk(x, y)

∂ν(y)
ϕ(y) ds(y) (2.4)
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for x ∈ ∂D. For convenience of the reader we present the basic properties
of acoustic single- and double-layer potentials in the contemporary Sobolev
space setting. The single-layer potential

u(x) =

∫
∂D

Φk(x, y)ϕ(y) ds(y), x ∈ R3 \ ∂D, (2.5)

with density ϕ ∈ H− 1
2 (∂D) defines a bounded operator from H−

1
2 (∂D) into

both H1(D) and H1
loc(R3 \ D̄) with boundary traces given by the jump rela-

tions

u± =
1

2
Sϕ and

∂u±
∂ν

=
1

2
K ′ϕ∓ 1

2
ϕ. (2.6)

Here, by subscripts + and − we distinguish the traces taken in H1
loc(R3 \ D̄)

and H1(D), respectively. The double-layer potential

u(x) =

∫
∂D

∂Φk(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ R3 \ ∂D, (2.7)

with density ϕ ∈ H
1
2 (∂D) defines a bounded operator from H

1
2 (∂D) into

both H1(D) and H1
loc(R3 \ D̄) with boundary traces given by the jump rela-

tions

u± =
1

2
Kϕ± 1

2
ϕ and

∂u±
∂ν

=
1

2
T ′ϕ. (2.8)

In analogy to Laplace’s equation, the classical solution approach to the
exterior Dirichlet problem (1.5) via boundary integral equations is to seek
the solution u in the form of a double-layer potential (2.7) in R3 \ D̄ The
Dirichlet condition (1.5) is satisfied provided the density ϕ solves the integral
equation of the second kind ϕ+Kkϕ = 2f . It can be shown that this equation
is uniquely solvable both in C(∂D), assuming f ∈ C(∂D), and in H

1
2 (∂D)

provided k2 is not a Neumann eigenvalue for the negative Laplacian in the
interior domain D. This failure of the double-layer approach at the interior
eigenvalues can be remedied by replacing (2.7) through a combined double-
and single-layer potential of the form

u(x) =

∫
∂D

{
∂Φk(x, y)

∂ν(y)
− iΦk(x, y)

}
ϕ(y) ds(y), x ∈ R3 \ D̄. (2.9)

For the details of the analysis we refer the reader to [8, Section 3.2].
Analogously, the approach to the exterior Neumann problem (1.6) via a

single-layer approach fails when k2 is a Dirichlet eigenvalue for the negative
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Laplacian in D. However, here the attempt to remedy this via the com-
bined potential approach faces analytical and numerical challenges since the
resulting integral equation

iϕ− iK ′kϕ+ Tkϕ = 2g

contains the hypersingular operator Tk for the normal derivative of the double-
layer potential. To obtain an integral equation that can be handled by using
only the Riesz theory for compact operators, in 1965 Panich [24] suggested
to include a smoothing operator in (2.9) and replace it by

u(x) =

∫
∂D

{
Φk(x, y)ϕ(y)+i

∂Φk(x, y)

∂ν(y)
(S2

0ϕ)(y)

}
ds(y), x ∈ R3\D̄, (2.10)

where S0 denotes the single-layer operator (2.1) in the potential theoretic
limit case k = 0. For the resulting integral equation

ϕ−K ′kϕ− iTkS2
0ϕ = −2g (2.11)

the Riesz theory is applicable both in C(∂D) and H
1
2 (∂D) since TkS

2
0 is

compact. We note that in the 1960s when Panich made the above suggestion
the boundary integral equations where discussed only in the classical func-
tion spaces of continuous and Hölder continuous functions and not yet in the
contemporary Sobolev trace spaces. Injectivity for the operator on the left
hand side of (2.11) follows from the fact that, for a solution ϕ of the homo-
geneous form of the equation (2.11), with the aid of the potential theoretic
jump relations the function u defined by (2.10) in the interior domain D can
be seen to satisfy the nonlocal impedance condition

u+ iS2
0

∂u

∂ν
= 0 on ∂D. (2.12)

By Green’s integral theorem and the self-adjointness of S0, from (2.12) we
have that ∫

D

{
| gradu|2 − k2|u|2

}
dx = i

∫
∂D

∣∣∣∣S0
∂u

∂ν

∣∣∣∣2 ds.
The positive definiteness of S0 now implies that ∂νu = 0 on ∂D whence u = 0
in D follows and consequently ϕ = 0 by the jump relations. For details again
we refer to [8, Section 3.2].
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We conclude this section by noting that in (2.12) we may replace S0 by
any positive definite pseudo differential operator of order -1. For example,
using diagonal operators in terms of an orthogonal system (such as spherical
harmonics) can create computational advantages as compared with the full
matrix operator obtained by discretizing S0.

3 Scattering by a penetrable obstacle

Modeling scattering by a penetrable obstacle D with constant density ρD
and speed of sound cD differing from the density ρ and speed of sound c in
the surrounding background medium R3\D̄ leads to a transmission problem.
Here, in addition to the superposition u = ui + us of the incoming wave ui

and the scattered wave us in R3 \ D̄ satisfying the Helmholtz equation with
wave number k = ω/c, we also have a transmitted wave v in D satisfying the
Helmholtz equation with wave number kD = ω/cD 6= k. The continuity of
the pressure and of the normal velocity across the interface ∂D leads to the
transmission conditions

u = v,
1

ρ

∂u

∂ν
=

1

ρD

∂v

∂ν
on ∂D. (3.1)

For the sake of simplicity, we only consider the case where ρD = ρ. The
extension of the following analysis to the case ρD 6= ρ is straightforward.
We also want to allow absorption, i.e., complex wave numbers kD with non-
negative real and imaginary part. For an incident field ui = 0, by Green’s
integral theorem we find that

Im

∫
∂D

us
∂ūs

∂ν
ds = Im

∫
∂D

v
∂v̄

∂ν
ds = 2 Re kD Im kD

∫
D

|v|2 dx ≥ 0.

By Theorem 2.13 in [8], as consequence of Rellich’s lemma, it follows that
us = 0 in R3 \ D̄, that is, we have uniqueness for the solution.

Usually this transmission problem is reduced to a two-by-two system of
boundary integral equations over the interface ∂D for a pair of unknowns, see
among others [7, 16]. This can be done either by the direct method combin-
ing the Calderón projectors for the domains D and R3 \ D̄ or by a potential
approach in the indirect method. For a survey on methods for solving the
transmission problem using only a single integral equation over ∂D we refer
to [15]. As an addition to the selection of available single integral equations
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for the transmission problem, in the present paper we will reduce the trans-
mission problem to a scattering problem in R3\D̄ with a nonlocal impedance
boundary condition in terms of the Dirichlet-to-Neumann operator for the
domain D which then can be solved via one integral equation.

We assume that k2
D is not a Dirichlet eigenvalue for −∆ in the domain

D. Then the Dirichlet-to-Neumann operator

AkD : H
1
2 (∂D)→ H−

1
2 (∂D)

is well defined by the mapping taking f ∈ H 1
2 (∂D) into the normal derivative

AkDf := ∂νv of the unique solution v ∈ H1(D) of ∆v + k2
Dv = 0 satisfying

the Dirichlet condition v = f on ∂D. From the single-layer approach for the
interior Dirichlet problem we note the representation

AkD = (I +K ′kD)S−1
kD
. (3.2)

Then, for ρD = ρ, the transmission problem (3.1) can be seen to be equiv-
alent to the scattering problem for u = ui + us in R3 \ D̄ with the nonlocal
impedance condition

∂us

∂ν
− AkDus = −∂u

i

∂ν
+ AkDu

i on ∂D. (3.3)

Once we have determined the scattered wave us in R3 \ D̄ from (3.3), the
transmitted wave v in D can be obtained via Green’s representation theorem
from its Cauchy data v = u and ∂νv = AkDv = AkDu = ∂νu on ∂D.

The single-layer potential

us(x) =

∫
∂D

Φk(x, y)ϕ(y) ds(y), x ∈ R3 \ D̄, (3.4)

satisfies the boundary condition (3.3) provided the density ϕ ∈ H−
1
2 (∂D)

solves the equation

−ϕ+K ′kϕ− AkDSkϕ = −2
∂ui

∂ν
+ 2AkDu

i. (3.5)

From the uniqueness for the solution of the transmission problem and con-
sequently also for the solution of its equivalent reformulation (3.3) one can
deduce that for a solution ϕ of the homogeneous form of (3.5) the corre-
sponding potential (3.4) vanishes us = 0 in R3 \ D̄. Taking the boundary
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trace it follows that Skϕ = 0. If we assume that in addition to k2
D also k2 is

not a Dirichlet eigenvalue for −∆ in D we have injectivity of Sk and therefore
ϕ = 0. Therefore the operator −I +K ′k − AkDSk is injective.

With the aid of (3.2) we rewrite

−I +K ′k − AkDSk = −I +K ′k − I −K ′kD − AkD(Sk − SkD).

Since Sk−SkD : H−
1
2 (∂D)→ H

1
2 (∂D) is compact (see [8, Lemma 5.37]) and

the Dirichlet to Neumann operator is bounded from H
1
2 (∂D) into H−

1
2 (∂D)

in addition to K ′k, K
′
kD

: H−
1
2 (∂D) → H−

1
2 (∂D) also AkD(Sk − SkD) :

H−
1
2 (∂D) → H−

1
2 (∂D) is compact. Thus, finally, the Riesz theory applies

to equation (3.5) and we can summarize in the following theorem.

Theorem 3.1 Under the assumption that both k2 and k2
D are not Dirichlet

eigenvalues for the negative Laplacian in D the equation (3.5) is uniquely
solvable.

To avoid the restriction on kD, instead of using the Dirichlet-to-Neumann
operator, we propose to work with the Robin-to-Neumann operator

RkD : H
1
2 (∂D)→ H−

1
2 (∂D)

defined by the mapping taking f ∈ H
1
2 (∂D) into the normal derivative

RkDf = ∂νv of the unique solution v ∈ H1(D) of ∆v + k2
Dv = 0 satisfy-

ing the Robin condition

v + i
∂v

∂ν
= f on ∂D. (3.6)

Uniqueness for the solution follows analogously to that for (2.12) by applying
Green’s integral theorem to v and v̄ and taking the imaginary part. From
the single-layer approach for the solution of (3.6) we observe that

RkD = (I +K ′kD)[SkD + i(I +K ′kD)]−1. (3.7)

The corresponding nonlocal impedance condition now becomes

∂us

∂ν
−RkD

[
us + i

∂us

∂ν

]
= −∂u

i

∂ν
+RkD

[
ui + i

∂ui

∂ν

]
on ∂D. (3.8)
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For all wave numbers k and kD we are allowing, this impedance problem can
be dealt with via a uniquely solvable integral equation as derived from the
combined single- and double-layer approach (2.9). We omit working out the
details.

The Sommerfeld radiation condition is equivalent to the asymptotic be-
havior

us(x) =
eik |x|

|x|

{
u∞(x̂) +O

(
1

|x|

)}
, |x| → ∞, (3.9)

uniformly for all directions x̂ = x/|x| where the function u∞ defined on the
unit sphere S2 is known as the far field pattern of us. One of the main inverse
obstacle scattering problems is to determine the shape of the scatterer D from
the far field pattern u∞ on S2 for one or several incident plane waves.

Some fifteen years ago in [17] a class of Newton type iterations for obsta-
cle scattering problems was initiated which starts from a boundary integral
equation approach for the solution of the forward scattering problem. To-
gether with a corresponding representation of the far field pattern a system
of two nonlinear integral equations for the unknown boundary ∂D and a
density function on the boundary as a sort of slip variable can be derived.
For the above approach to the transmission problem this equation has the
form

S∞ϕ = u∞ (3.10)

with the known far field pattern u∞ and the operator S∞ : H−
1
2 (∂D) →

L2(S2) given by

(S∞ϕ)(x̂) :=
1

4π

∫
∂D

e−ik x̂·yϕ(y) ds(y), x̂ ∈ S2, (3.11)

describing the far field pattern of the single-layer potential (3.4). Then the
basis of the inverse method under consideration can be cast into the following
theorem.

Theorem 3.2 For a given incident field ui and a given far field pattern u∞,
assume that the boundary ∂D and the density ϕ satisfy the system (3.5) and
(3.10). Then ∂D solves the inverse scattering problem.

These two equations are nonlinear with respect to the boundary and ill-
posed. Following [17] we suggest to solve them by simultaneous linearization
with respect to both unknowns ϕ and ∂D and iteration, i.e., by Newton
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iterations that require regularization because of the ill-posedness. We note
that the derivatives of the operators in (3.5) and (3.10) can be written down
explicitly in terms of boundary integral operators which offers computational
advantages. For an overview and survey on this idea we refer to Section 5.4
in [8] and to [10].

To conclude this section, we proceed with a couple of numerical examples
in two dimensions as proof of concept. For a brief description we assume that
the boundary curve ∂D is given by a regular 2π periodic parameterization

∂D = {z(t) : 0 ≤ t ≤ 2π}

and we redefine the operators S,K ′ : H−
1
2 [0, 2π]× C2[0, 2π]→ H

1
2 [0, 2π] by

S(ψ, z)(t) :=
i

2

∫ 2π

0

H
(1)
0 (k|z(t)− z(τ)|)ψ(τ) dτ

and

K ′(ψ, z)(t) :=

∫ 2π

0

ik

2

[z′(t)]⊥ · [z(τ)− z(t)]

|z(t)− z(τ)|
H

(1)
1 (k|z(t)− z(τ)|)ψ(τ)dτ

for t ∈ [0, 2π] as well as S∞ : H−
1
2 [0, 2π]× C2[0, 2π]→ L2(S1) given by

S∞(ψ, z)(x̂) :=
ei
π
4

√
8πk

∫ 2π

0

e−ik x̂·z(τ)ψ(τ) dτ, x̂ ∈ S1,

in their parameterized form. Here, H
(1)
0 and H

(1)
1 are the Hankel functions of

order zero and one and of the first kind and we have indicated the dependence
of the operators on ∂D with parameterization z and we used the fundamental
solution to the Helmholtz equation Φ(x, y) = i

4
H

(1)
0 (k|x− y|) in R2. For any

vector a = (a1, a2) we denote a⊥ := (a2,−a1), that is, a⊥ is obtained by
rotating a clockwise by 90 degrees.

Now, setting ψ := |z′|ϕ ◦ z and multiplying the first equation by |z′|, the
parameterized form of the system (3.5) and (3.10) becomes

ψ −K ′k(ψ, z) + (I +K ′kD)S−1
kD
Sk(ψ, z) = g(z) (3.12)

and
S∞(ψ, z) = u∞ (3.13)
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where

g(z) := 2[z′]⊥ · gradui ◦ z − 2(I +K ′kD)S−1
kD

(ui ◦ z, z). (3.14)

This system needs to be solved for ψ and z and we do this via linearization.
Given an approximation for (ψ, z) we solve the linearized equations

η −K ′k(η, z) + (I +K ′kD)S−1
kD
Sk(η, z)

−dzK ′k(ψ, z; ζ) + dz[(I +K ′kD)S−1
kD
Sk](ψ, z; ζ)− dzg(z; ζ)

= g(z)− ψ +K ′k(ψ, z)− (I +K ′kD)S−1
kD
Sk(ψ, z)

(3.15)

and
S∞(η, z) + dzS∞(ψ, z; ζ) = u∞ − S∞(ψ, z) (3.16)

for (η, ζ) and update (ψ, z) into (ψ+η, z+ζ). These equations contain Fréchet
derivatives of Sk, K

′
k and S∞ with respect to z acting as linear operators on

ζ. These are obtained by differentiating the kernels with respect to z and for
an explicit presentation we refer the reader, for example, to [19] where this
inverse scattering method is applied to the inverse scattering problem with
the local Leontovich impedance condition (1.7). Basic differentiation rules
imply

dz[(I+K ′kD)S−1
kD

](ψ, z; ζ) = dzK
′
k(S

−1
kD
ψ, z; ζ)−(I+K ′kD)S−1

kD
dzSkD(S−1

kD
ψ, z; ζ)

and, for plane wave incidence ui(x) = eik x·d, we have

dzg(z; ζ) = 2ui ◦ z
{
ik[ζ ′]⊥ · d− k2d · [z′]⊥ d · ζ

}
−2ikui ◦ z(I +K ′kD)S−1

kD
(ui ◦ z, z) d · ζ

−2dz[(I +K ′kD)S−1
kD

](ui ◦ z, z; ζ).

For finitely many incident fields ui1, . . . , u
i
M and corresponding far field

patterns u∞,1, . . . , u∞,M , one iteration step of our algorithmis is as follows:
Given an approximation z for the parameterization of the boundary ∂D and
ψ1, . . . , ψm for the densities, after defining gm analogously to (3.14) in terms

12



of uim, we solve the linearized system

ηm −K ′k(ηm, z) + (I +K ′kD)S−1
kD
Sk(ηm, z)

−dzK ′k(ψm, z; ζ) + dz[(I +K ′kD)S−1
kD
Sk](ψm, z; ζ)− dzgm(z; ζ)

= gm(z)− ψ +K ′k(ψm, z)− (I +K ′kD)S−1
kD
Sk(ψm, z)

(3.17)

and
S∞(ηm, z) + dzS∞(ψm, z; ζ) = u∞,m − S∞(ψm, z) (3.18)

where m = 1, . . . ,M . We solve the system (3.17)–(3.18) of 2M equations for
the M + 1 unknowns ηm and ζ and update ψm into ψm+ηm and z into z+ ζ.
For the initial step of the iteration only an initial guess for the shape z is
required. The initial densities ψm then can be obtained by solving (3.12).

For the numerical implementation we need to discretize the boundary in-
tegral operators Sk and K ′k and their Fréchet derivatives. All four operators
have weakly singular kernels with logarithmic singularities. For their numeri-
cal approximation by weighted trigonometric interpolation quadratures with
spectral convergence we refer to [8].

In our numerical examples we use parameterizations of the form

z(t) = r(t)(cos t, sin t), 0 ≤ t ≤ 2π, (3.19)

with a non-negative function r representing the radial distance of ∂D from
the origin and approximate r by trigonometric polynomials of degree J . We
collocate the two equations (3.12) and (3.13), each at 2n equidistant collo-
cation points, the first equation at the points tj = jπ/n, j = 1, . . . , 2n, and
the second equation at the points (cos tj, sin tj) ∈ S1. The resulting linear
system for the 2J + 1 Fourier coefficients and the 2n (or 2nM if we use M
incident waves) nodal values of the density function ψ is solved in the least
squares sense, penalized via Tikhonov regularization. As experienced in the
application of regularized Newton iterations for related problems, it is advan-
tageous to use an Hp Sobolev penalty term for the shape rather than an L2

penalty in the Tikhonov regularization for some small p ∈ N. For the density
function just L2 regularization suffices. Thus, in our Tikhonov functional we
added the penalty term αζ‖ζ‖2

Hp + αη‖η‖2
L2 with regularization parameters

αζ and αη to the square of the L2 residual for the linear system (3.15) and
(3.16).
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As pointed out already, the following two numerical examples are in-
tended as proof of concept and not as presentation of an already fully devel-
oped method. In particular, the regularization parameters and the number
of iterations were chosen by trial and error instead of, for example, a discrep-
ancy principle. To avoid committing an inverse crime the synthetic far field
data were obtained by solving the two-by-two system of integral equations
presented in [16].
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Figure 3.1: Reconstruction of the peanut (3.20) for exact data (left) and 5%
noise (right).

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 reconstructed
exact
initial guess

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 reconstructed
exact
initial guess

Figure 3.2: Reconstruction of the apple (3.21) for exact data (left) and 5%
noise (right).

As boundary curves we considered a peanut-shaped obstacle with para-
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metric representation

z(t) =
√

cos2 t+ 0.25 sin2 t (cos t, sin t) (3.20)

and an apple-shaped obstacle with parametric representation

z(t) =
0.5 + 0.4 cos t+ 0.1 sin 2t

1 + 0.7 cos t
(cos t, sin t). (3.21)

The wave numbers were k = 1 and kD = 2+3i for both cases. The number of
quadrature points was 2n = 64. The degree of the trigonometric polynomials
was chosen as J = 6 for exact data and J = 4 for perturbed data. The
regularization parameter for an H2 regularization for the shape was 0.1×0.9m

for the m-th iteration step for exact data and 0.9m for perturbed data. The
L2 regularization parameter for the density was 10−10 for exact data and 10−7

for perturbed data. The iteration was stopped after 20 iterations for exact
data and 12 iterations for perturbed data, For the perturbed data, random
noise was added point wise with relative error in the L2 norm. The iterations
were started with an initial guess given by a circle of radius 0.6 centered at
the origin. For the peanut we used one incident wave with d = (1, 0) and for
the apple two incident waves with d = (±1, 0).

In the figures the exact ∂D is given as dotted (magenta), the reconstruc-
tion as full (red) and the initial guess as dashed (blue) curve. They compare
well with the reconstructions in [1] which were also obtained by the Kress-
Rundell approach, but based on a two-by-two system for the transmission
problem and with two incident waves for the peanut and four incident waves
for the apple.

4 A source problem

We proceed by considering scattering from an extended source described by
an L2 function F with support in D̄. Given a plane wave ui(x) = eik x·d as
incident field, the problem is to find the total field u = ui+us ∈ H1

loc(R3 \ D̄)
as a solution to the inhomogeneous Helmholtz equation

∆u+ k2u = −F in R3 (4.1)

such that the scattered wave us satisfies the Sommerfeld radiation condition.
Uniqueness of the solution follows from the observation that the difference
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of two solutions is an entire solution to the Helmholtz equation satisfying
the radiation condition. Following similar ideas as in the previous section,
we present a solution method by transforming this problem equivalently to
a scattering problem in R3 \ D̄ with a nonlocal impedance condition on ∂D.

The volume potential

u0(x) :=

∫
D

Φ(x, y)F (y) dy, x ∈ R3 (4.2)

defines a solution of (4.1) and belongs to H2
loc(R3 \ D̄) (see[8]). Therefore the

solution of the scattering problem also belongs to H2
loc(R3 \ D̄) (see[8]) and

consequently both the trace and the normal derivative trace on both sides of
∂D coincide.

We assume that k2 is not a Dirichlet eigenvalue for −∆ in the domain
D and make use of the Dirichlet-to-Neumann operator Ak : H

1
2 (∂D) →

H−
1
2 (∂D) for D from the previous section, now with the wave number k.

For a solution u of (4.1) the function u − u0 in D satisfies the Helmholtz
equation and

∂(u− u0)

∂ν
= Ak(u− u0)|∂D on ∂D.

Therefore, in view of the continuity of the trace and the normal derivative
across ∂D, the scattering problem from a source can equivalently be sepa-
rated into two parts. First we solve solve the scattering problem for u in
R3 \ D̄ with the nonlocal impedance condition

∂u

∂ν
− Aku =

∂u0

∂ν
− Aku0 on ∂D. (4.3)

Then, knowing u on ∂D we solve for a solution to the Helmholtz equation v
in D with Dirichlet values v = u−u0 on ∂D and set u := u0 + v in D. Again
we seek the scattered wave us in the form of the single-layer potential (3.4)
and the boundary condition

∂us

∂ν
− Aus =

∂u0

∂ν
− ∂ui

∂ν
− A(u0 − ui) on ∂D

leads to an integral equation analogous to (3.5). As in the previous section
the restriction on k2 not a Dirichlet eigenvalue for D can be avoided by the
use of a Robin-to-Neumann operator for D.

16



We note that instead of u0 given by the volume potential (4.2) one can
use any special solution to (4.1). In particular, when F = 1 is constant in D
a simple alternative is given by

u0(x) := − 1

k2
, x ∈ D.

In this particular case, the analogue of the two integral equations of the
previous section can be employed for the solution of the inverse problem to
determine D from the far field pattern u∞ of the scattered wave. For the
limiting case of a related problem for the Laplace case this method has been
successfully implemented in two dimension by Kress and Rundell [18].

5 Transmission eigenvalues

Deviating for a couple of paragraphs from the theme of obstacle scattering,
we consider the case of an inhomogeneous medium with space dependent
refractive index n. We assume that n is real valued and nonnegative and
that the contrast m := 1 − n has support given by our obstacle domain D̄
and is continuous in D̄. Then, for an incident plane wave ui(x) = eik x·d, the
simplest inhomogeneous medium scattering problem is to find the total field
u ∈ H1

loc(R3) such that u = ui + us fulfills

∆u+ k2nu = 0 in R3 (5.1)

and us satisfies the Sommerfeld radiation condition (1.2).
A complex number k is called a transmission eigenvalue if there exist

nontrivial functions v, w ∈ L2
∆(D) := {u ∈ L2(D) : ∆u ∈ L2(D)} such that

w − v ∈ H2(D) and

∆v + k2v = 0, ∆w + k2nw = 0 in D (5.2)

and

v = w,
∂v

∂ν
=
∂w

∂ν
on ∂D. (5.3)

Here, the differential equations in (5.2) have to be understood in the dis-
tributional sense. In view of the the transmission condition (5.3) the space
H2(D) of functions u with vanishing trace u|∂D and normal trace ∂νu|∂D is
the natural solution space for the difference v − w. Then from

∆v −∆w = k2(w − v)− k2mw
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we observe that we must demand v, w ∈ L2
∆(D). We endow L2

∆(D) with the
norm

‖u‖2
L2

∆(D) := ‖u‖2
L2(D) + ‖∆u‖2

L2(D).

This transmission eigenvalue problem was introduced by Kirsch [11] in
1986 in connection with the completeness of the far field patterns {u∞(·, d) :
d ∈ S2} in L2(S2) for scattering of plane waves from an inhomogeneous
medium. In particular, this set of far field patterns is not complete if k is a
transmission eigenvalue.

The transmission eigenvalues can be seen as an extension of the idea of
resonant frequencies for impenetrable obstacles to the case of penetrable me-
dia and are related to non-scattering frequencies. If k is a real transmission
eigenvalue and the corresponding eigenfunction v can be extended outside D
as an entire solution to the Helmholtz equation, then if the extended field is
used as incident field the corresponding scattered wave is identically zero, i.e.,
this field does not scatter at the wave number k. Therefore it is not surpris-
ing that certain methods for the solution of the inverse scattering problem
for inhomogeneous media such as the linear sampling method and the factor-
ization method fail when k is a transmission eigenvalue. This inconvenient
property explains why for a long time transmission eigenvalues were viewed
as something to avoid and therefore left aside. It lasted 20 years after their
introduction before Päivärinta and Sylvester [23] proved the existence of real
transmission eigenvalues for the general case.

Together with his co-workers Armin Lechleiter [13, 21, 22], to whom this
survey is dedicated, has given a promising characterization of the smallest
real transmission eigenvalue k0 in terms of the behavior of the eigenvalues
of the far field operator F in the vicinity of their accumulation point zero
when k approaches k0. The far field operator is just the integral operator
with the far field pattern u∞(x̂, d) (for observation directions x̂ and incident
directions d) as kernel and is related to the scattering operator. This inter-
esting relation between transmission eigenvalues and the eigenvalues of the
far field operator is known as inside-outside duality for the far field opera-
tor and, together with monotonicity properties of transmission eigenvalues,
might open up possibilities for designing a target signature for scatterers.

Here, following work of Cossonnière and Haddar [9] and Cakoni and
Kress [5], we want to illustrate how boundary integral equations can be used
to characterize and numerically compute transmission eigenvalues in the case
were n is constant in D. We need to adjust the spaces in which we must in-
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vestigate the boundary integral operators since we have to search for the
eigenfunctions v, w in L2

∆(D). This implies that their trace and their normal

derivative on the boundary belong to H−
1
2 (∂D) and H−

3
2 (∂D), respectively,

and are defined by duality. Motivated by Green’s integral theorem∫
∂D

u
∂w

∂ν
ds =

∫
D

(u∆w − w∆u) dx

for u,w ∈ H2(D) with w = 0 on ∂D, for τ ∈ H 1
2 (∂D) we define the duality

pairing

〈u, τ〉
H− 1

2 (∂D),H
1
2 (∂D)

:=

∫
D

(u∆w − w∆u) dx (5.4)

where w ∈ H2(D) is biharmonic in D such that w = 0 and ∂νw = τ on
∂D. However, we note that he right hand side of (5.4) has the same value
for all w ∈ H2(D) with boundary traces w = 0 and ∂νw = τ on ∂D. The
well-posedness of the biharmonic Dirichlet problem (see, among others, [3])
implies

‖w‖H2(D) ≤ c‖τ‖
H

1
2 (∂D)

with some positive constant c independent of τ . Consequently∣∣∣〈u, τ〉
H− 1

2 (∂D),H
1
2 (∂D)

∣∣∣ ≤ C‖u‖L2
∆(D)‖τ‖H 1

2 (D)
(5.5)

for all τ ∈ H 1
2 (∂D) and some positive constant C. Thus for each u ∈ H2(D)

by (5.4) we have defined a bounded linear functional γu with

‖γu‖
H− 1

2 (∂D)
≤ C‖u‖L2

∆(D), (5.6)

that means γ : H2(D)→ H−
1
2 (∂D) is a bounded operator. By denseness we

can extend γ as a bounded operator γ : L2
∆(D)→ H−

1
2 (∂D).

Analogously, for u ∈ L2
∆(D) the normal trace ∂νu ∈ H−

3
2 (∂D) is defined

by duality using the identity〈
∂u

∂ν
, τ

〉
H− 3

2 (∂D),H
3
2 (∂D)

:= −
∫
D

(u∆w − w∆u) dx (5.7)

where w ∈ H2(D) is such that w = τ and ∂νw = 0 on ∂D. Then we also
have ∥∥∥∥∂u∂ν

∥∥∥∥
H− 3

2 (∂D)

≤ C‖u‖L2
∆(D) (5.8)
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for some positive constant C.
For convenience we introduce the wave number for the refracting case by

kn :=
√
n k.

As in the direct boundary integral equation approach to the classical trans-
mission problem of Section 3, Cossonnière and Haddar combined the Calderón
projectors for the wave numbers k and kn in the domain D. From Green’s
representation theorem and the potential theoretic jump relations it follows
that for a solution v ∈ L2

∆(D) to ∆v + k2v = 0 we have that(
v

∂νv

)
=

(
−Kk Sk

−Tk K ′k

)(
v

∂νv

)
. (5.9)

The validity of this Calderón equation for v ∈ L2
∆(D) can be justified from

the classical spaces by denseness arguments. We now combine (5.9) with the
corresponding equation for w to observe that if k is a transmission eigenvalue
then the operator Ak defined by

Ak :=

(
−Kk +Kkn Sk − Skn
−Tk + Tkn K ′k −K ′kn

)

has a nontrivial kernel in H−
1
2 (∂D) × H−

3
2 (∂D), that is, the transmission

eigenvalue k is an eigenvalue of Ak considered as a nonlinear and analytic
operator in k.

The main result of Cossonnière and Haddar [9] for this two-by-two system
now can be stated as the following theorem.

Theorem 5.1 The operator

(|k|2 − |kn|2)A(i|k|) : H−
1
2 (∂D)×H−

3
2 (∂D)→ H

1
2 (∂D)×H

3
2 (∂D)

is coercive and the operator

A(k) +
k2 − k2

n

|k|2 − |kn|2
A(i|k|) : H−

1
2 (∂D)×H−

3
2 (∂D)→ H

1
2 (∂D)×H

3
2 (∂D)

is compact.
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The main tools for its proof are Green’s integral theorem for the coerci-
tivity and an elaborate analysis of the mapping properties of the difference
of the boundary integral operators for k and kn. In particular, this result
implies that the analytic Fredholm theory can be used to deduce the discrete-
ness of transmission eigenvalues, a result that had been established some 30
years ago by Colton, Kirsch and Päivärinta [6] and Rynne and Sleeman [25]
by different concepts.

The above boundary integral equation formulation of Cossonnière and
Haddar was used by Kleefeld [14] for actual computations of transmission
eigenvalues with the aid of the attractive new algorithm for solving nonlinear
eigenvalue problems for large sized matrices that are analytic with respect
to the eigenvalue parameter as proposed by Beyn [2]. We note that exterior
transmission eigenvalues in R3 \ D̄ are also eigenvalues of Ak which has to be
taken into account in the numerical implementation in an appropriate way.
Before Kleefeld’s work, in the literature, the majority of numerical methods
were based on finite element methods applied after a transformation of the
transmission eigenvalue problem to a generalized eigenvalue problem for a
fourth order partial differential equation.

As for the classical transmission problem as discussed in Section 3, one
can also try to base the transmission eigenvalue problem on only one inte-
gral equation via the Dirichlet-to-Neumann operator for the domain D. This
idea was pursued by Cakoni and Kress [5]. Assuming that k and kn are not
Dirichlet eigenvalues of −∆ in the domain D, we have that k is a transmis-
sion eigenvalue if and only if the kernel of the operator Ak − Akn given by
the difference of the Dirichlet-to-Neumann operators for the wave numbers k
and kn is nontrivial. To avoid the annoying restriction on the wave numbers
instead of using the Dirichlet-to-Neumann operator, Cakoni and Kress [5]
originally worked with the Robin-to-Neumann operator defined by the Leon-
tovich impedance condition (1.7). However, later it was discovered that the
related analysis can be simplified by replacing (1.7) by a nonlocal impedance
condition analogous to (2.12). For this, taking into account that we require
L2

∆(D) solutions in the analysis of the transmission eigenvalues, we redefine
the Robin-to-Neumann operator by

Rk : H−
1
2 (∂D)→ H−

3
2 (∂D)

as the mapping taking f ∈ H− 1
2 (∂D) into the normal derivative Rkf = ∂νu

of the unique solution u ∈ L2
∆(D) of ∆u + k2u = 0 satisfying the nonlocal
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impedance boundary condition

u+ iP 3 ∂u

∂ν
= f on ∂D. (5.10)

Here P is a positive definite pseudo-differential operator of order −1.
The first task is to establish the well-posedness of this boundary value

problem in the required space L2
∆(D). One of our main tools in the sub-

sequent analysis is the following regularity result for the Poisson equation.
To avoid tedious adjustments of the regularity assumptions on ∂D related
to the order of the respective Sobolev trace spaces for each of the following
statements, for the remainder of our paper we assume that ∂D is C∞ smooth.

Lemma 5.2 Let F ∈ Hm(D) and g ∈ Hm+ 3
2 (∂D). Then the unique solution

v ∈ L2
∆(D) of ∆v = F in D and v = g on ∂D belongs to Hm+2(D) and

the mapping taking (F, g) into v is bounded from Hm(D)×Hm+ 3
2 (∂D) into

Hm+2(D) for m = 0, 1, . . .

Proof. By Theorem 1.3 in [26, p. 305]) the unique solution v ∈ H1
0 (D) of

∆v = F for F ∈ Hm(D) belongs to Hm+2(D) and the mapping taking F
into v is bounded from Hm(D) into Hm+2(D) for m = 0, 1, . . . .

First we show that this result can be extended to solutions v ∈ L2
∆(D)

that vanish on ∂D in the sense of the H−
1
2 (∂D) trace. For this we observe

from the definition (5.4) that for any harmonic function v ∈ L2(D) with
vanishing trace on the boundary ∂D we have that

∫
D
v∆wdx = 0 for all

w ∈ H2(D) with w = 0 on ∂D. Inserting the solution w ∈ H1
0 (D) of ∆w = v

which by the above automatically belongs to H2(D) yields v = 0 in D. For

a solution v ∈ L2
∆(D) of ∆v = F for F ∈ L2(D) with vanishing H−

1
2 (∂D)

trace on ∂D we denote by ṽ the solution of ∆ṽ = F in H1
0 (D) and apply

the just established uniqueness result for the difference v − ṽ to obtain that
v = ṽ ∈ H1

0 (D).
The statement of the lemma now follows from the observation that the

unique solution w ∈ H1(D) of the Laplace equation ∆w = 0 satisfying w = g

on ∂D for g ∈ Hm+ 3
2 (∂D) is in Hm+2(D) and that the mapping taking g into

w is bounded from Hm+ 3
2 (∂D) into Hm+2(D) as can be observed from the

single-layer boundary integral equation approach and the mapping proper-
ties of the the single-layer potential. �
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Now we establish uniqueness for a solution u ∈ L2
∆(D) to (5.10). From

f = 0 and the assumptions on P we observe that u has boundary trace in
H

3
2 (∂D). Hence by Lemma 5.2 we have u ∈ H2(D) and uniqueness for all k

with positive real and nonnegative imaginary part now follows analogously
to that for (2.12).

In order to represent the Robin-to-Neumann operator we introduce the
single-layer potential Sk defined by

(Skψ) (x) := 2

∫
∂D

ψ(y)Φk(x, y) ds(y), x ∈ R3 \ ∂D.

In particular, it is known that the operator Sk : H−
3
2 (∂D) → L2(D), its

restriction Sk : H−
3
2 (∂D) → H−

1
2 (∂D) and the normal derivative operator

K ′k : H−
3
2 (∂D) → H−

3
2 (∂D) all are bounded (see [12, 20]). Further, the

jump relations for the single-layer potential can be extended to the case of
H−

3
2 (∂D) densities. and, if k is not a Dirichlet eigenvalue of −∆ for D then

Sk : H−
3
2 (∂D)→ H−

1
2 (∂D) is an isomorphism.

The single-layer potential with density ϕ ∈ H− 3
2 (∂D) satisfies (5.10) pro-

vided ϕ satisfies the equation

Akϕ = f (5.11)

where
Ak := Sk + iP 3(I +K ′k). (5.12)

From uniqueness both for the interior problem (5.10) in D and for the exte-
rior Dirichlet problem together with the jump relations for the single-layer
potential it can be deduced that Ak has a trivial kernel in H−

3
2 (∂D) for all

k with positive real part and nonnegative imaginary part. After picking a
wave number k0 such that k2

0 is not a Dirichlet eigenvalue for −∆ in D we
write Ak = Sk0 + Bk where Bk := Sk − Sk0 + iP 3(I + K ′k). Then Sk0 :

H−
3
2 (∂D) → H−

1
2 (∂D) is an isomorphism and Bk : H−

3
2 (∂D) → H−

1
2 (∂D)

is compact since the difference Sk − Sk0 is bounded from H−
3
2 (∂D) into

H
1
2 (∂D) (see [8, Lemma 5.37]) and P 3(I + K ′k) is bounded from H−

3
2 (∂D)

into H
3
2 (∂D) because of our assumption on P . Therefore, by the Riesz theory

Ak : H−
3
2 (∂D)→ H−

1
2 (∂D) is an isomorphism and we can write

Rk = (I +K ′k)A
−1
k . (5.13)
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Hence, we finally can state that k is a transmission eigenvalue if and only if
the operator

M(k) := Rk −Rkn (5.14)

has a nontrivial kernel in H−
1
2 (∂D).

We note that if for positive κ we define

Ãκ := Siκ + P 3(I +K ′iκ) (5.15)

then analogous to the above it can shown that Ãκ : H−
3
2 (∂D) → H−

1
2 (∂D)

is an isomorphism and R̃κ = (I+K ′iκ)Ã
−1
κ represents the Robin-to-Neumann

operator for ∆u− κ2u = 0 in D with boundary condition

u+ P 3 ∂u

∂ν
= f on ∂D (5.16)

for a given f ∈ H−
1
2 (∂D). Setting κn := κ

√
n, we also have that iκ is a

transmission eigenvalue if and only if the operator

M̃(κ) := R̃κ − R̃κn (5.17)

has a nontrivial kernel in H−
1
2 (∂D).

We now want to show that

M(k) = (I +K ′k)A
−1
k − (I +K ′kn)A−1

kn
: H−

1
2 (∂D)→ H

1
2 (∂D)

is a Fredholm operator of index zero. Our analysis is based on the properties
of the difference of the single-layer potentials

u := SkA−1
k ϕ− SknA−1

kn
ϕ (5.18)

for ϕ ∈ H− 1
2 (∂D) for which we expect M(k) = ∂νu. We collect these prop-

erties in the following lemma.

Lemma 5.3 For ϕ ∈ H− 1
2 (∂D) define u by (5.18). Then u ∈ H2(D) and

∆u ∈ L2
∆(D) with the mappings ϕ 7→ u bounded from H−

1
2 (∂D) into H2(D)

and ϕ 7→ ∆u bounded from H−
1
2 (∂D) into L2

∆(D) such that

‖∆u‖L2
∆(D) ≤ C̃‖u‖L2

∆(D) (5.19)
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for some positive constant C̃ independent of ϕ. Further we have the differ-
ential equation

(∆ + k2)(∆ + k2
n)u = 0 in D (5.20)

and the boundary conditions

u+ iP 3 ∂u

∂ν
= 0 and ∆u+ iP 3 ∂∆u

∂ν
= (k2

n − k2)ϕ on ∂D. (5.21)

Proof. From
∆u = −k2SkA−1

k ϕ+ k2
nSknA−1

kn
ϕ (5.22)

we observe that u is in L2
∆(D) with the mapping ϕ → u bounded from

H−
1
2 (∂D) into L2

∆(D). The differential equation (5.20) is obvious and via
∆∆u = −(k2 +k2

n)∆u−k2k2
nu it implies that ∆u in L2

∆(D) with the estimate

(5.19) and that the mapping ϕ→ ∆u is bounded from H−
1
2 (∂D) into L2

∆(D).
Furthermore we have

[SkA−1
k ϕ]|∂D + iP 3 ∂

∂ν
SkA−1

k ϕ = [Sk + iP 3(I +K ′k)]A
−1
k ϕ = ϕ. (5.23)

Subtracting from this the corresponding equation for the wave number kn
the first of the boundary conditions (5.21) follows. Multiplying (5.23) by k2

and subtracting the corresponding equation for the wave number kn in view
of (5.22) we obtain the second of the boundary conditions (5.21).

Since ϕ 7→ u is bounded fromH−
1
2 (∂D) into L2

∆(D) we have that ϕ 7→ ∂νu

is bounded from H−
1
2 (∂D) to H−

3
2 (∂D) and our assumption on the operator

P ensures that the mapping ϕ → P 3∂νu is bounded from H−
1
2 (∂D) into

H
3
2 (∂D). Now, the first boundary condition in (5.21) and Lemma 5.2 for

m = 0 imply that ϕ 7→ u is bounded from H−
1
2 (∂D) into H2(D). �

Analogously, for κ > 0 the statement of this lemma carries over to

v := SiκÃ−1
κ ϕ− SiκnÃ−1

κnϕ (5.24)

with (5.20) and (5.21) replaced by

(∆− κ2)(∆− κ2
n)v = 0 in D (5.25)

and

v + P 3 ∂v

∂ν
= 0 and ∆v + P 3 ∂∆v

∂ν
= (κ2 − κ2

n)ϕ on ∂D. (5.26)
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Corollary 5.4 The linear operators M(k), M̃(κ) : H−
1
2 (∂D) → H

1
2 (∂D)

are bounded.

Proof. The statement is obtained by taking the normal traces of the mappings
ϕ 7→ u and ϕ 7→ v. �

Theorem 5.5 Let κ > 0. Then

(κ2 − κ2
n)M̃(κ) : H−

1
2 (∂D)→ H

1
2 (∂D)

is coercive.

Proof. For v ∈ H2(D) with ∆v ∈ L2
∆(D), using Green’s integral theorem, we

can transform∫
D

v̄(∆− κ2)(∆− κ2
n)v dx

−
∫
D

[
|∆v|2 + (κ2 + κ2

n)| grad v|2 + κ2κ2
n|v|2

]
dx

=

∫
D

(v̄∆∆v −∆v̄∆v) dx− (κ2 + κ2
n)

∫
D

(v̄∆v + | grad v|2) dx

=

∫
∂D

(
v̄
∂∆v

∂ν
−∆v

∂v̄

∂ν

)
ds− (κ2 + κ2

n)

∫
∂D

v̄
∂v

∂ν
ds

(5.27)

where the integrals over ∂D containing ∆v and ∂ν∆v are to be understood
in the sense of the dualities (5.4) and (5.7). In this expression the second
domain integral is equivalent to the ‖ · ‖H2 norm as can be seen with the aid
of Green’s representation formula, that is,∫

D

[
|∆v|2 + (κ2 + κ2

n)| grad v|2 + κ2κ2
n|v|2

]
dx ≥ c‖v‖2

H2(D) (5.28)

for all v ∈ H2(D) and some constant c > 0.

Now, for ϕ ∈ H−
1
2 (∂D) we consider v as defined by (5.24). From the

boundary conditions (5.26) and the self adjointness of P we observe that∫
∂D

(
v̄
∂∆v

∂ν
−∆v

∂v̄

∂ν

)
ds = −(κ2 − κ2

n)

∫
∂D

ϕ
∂v̄

∂ν
ds (5.29)
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Then (5.25), (5.27), and (5.29) imply∫
D

[
|∆v|2 + (κ2 + κ2

n)| grad v|2 + κ2κ2
n|v|2

]
dx

= (κ2 − κ2
n)

∫
∂D

ϕ
∂v̄

∂ν
ds− (κ2 + κ2

n)

∫
∂D

P
3
2
∂v

∂ν
P

3
2
∂v̄

∂ν
ds.

Inserting ∂νv = M̃(κ)ϕ and using the positive definiteness of P and the
estimate (5.28) we obtain

(κ2 − κ2
n)

∫
∂D

ϕM̃(κ)ϕds ≥ c̃ ‖v‖2
H2(D) (5.30)

for some constant c̃ > 0. From the boundary condition (5.26), the bounded-
ness of P , the trace estimates (5.6) and (5.8), applied to ∆u, and the estimate
(5.19) we can conclude that

‖ϕ‖2

H− 1
2 (∂D)

≤ C‖∆v‖L2
∆(D) ≤ CC̃‖v‖L2

∆(D) ≤ c‖v‖2
H2(D)

for some positive constant c. Inserting this estimate into (5.30) finishes the
proof. �

Theorem 5.6 The operator

M(k) +
k2 − k2

n

|k|2 − |kn|2
M̃(|k|) : H−

1
2 (∂D)→ H

1
2 (∂D)

is compact.

Proof. For ϕ ∈ H− 1
2 (∂D) we consider u defined by (5.18) and v defined by

(5.24) for κ = |k| and let

U := u+
k2 − k2

n

|k|2 − |kn|2
v. (5.31)

From (5.21) and (5.26) we can deduce the boundary conditions

U = −P 3 ∂U

∂ν
+ (1− i)P 3 ∂u

∂ν
(5.32)
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and

∆U = −P 3 ∂∆U

∂ν
+ (1− i)P 3 ∂∆u

∂ν
(5.33)

on ∂D. (We note that the coefficient in the definition of U in (5.31) is chosen
such that we obtain (5.33).) Since the mappings ϕ 7→ U and ϕ 7→ u are

bounded from H−
1
2 (∂D) into H2(D), in view of our assumption on P , the

right hand side g1 of (5.32) is in H
7
2 (∂D) with the mapping ϕ 7→ g1 bounded

from H−
1
2 (∂D) into H

7
2 (∂D). Because the mappings ϕ 7→ U and ϕ 7→ u also

are bounded from H−
1
2 (∂D) into L2

∆(D) The right hand side g2 of (5.33) is

in H
3
2 (∂D) with the mapping ϕ 7→ g2 bounded from H−

1
2 (∂D) into H

3
2 (∂D).

Furthermore, it is straightforward to check that

∆∆U = F (u, v)

where
F (u, v) := −k2k2

nu− (k2 + k2
n)∆u

− k2 − k2
n

|k|2 − |kn|2
[
|k|2|kn|2v − (|k|2 + |kn|2)∆v

]
belongs to L2(D) with the mapping ϕ → F bounded from H−

1
2 (∂D) to

L2(D).
Now, we can use Lemma 5.2 again. Applying it first for ∆U we obtain

that ∆U ∈ H2(D) with the mapping ϕ 7→ ∆U bounded from H−
1
2 (∂D)

into H2(D). Applying the lemma then for U shows that U ∈ H4(D) with

the mapping ϕ 7→ U bounded from H−
1
2 (∂D) into H4(D). Therefore, the

mapping ϕ 7→ ∂νU is bounded from H−
1
2 (∂D) into H

5
2 (∂D). Now, in view

of
∂U

∂ν
= M(k) +

k2 − k2
n

|k|2 − |kn|2
M̃(|k|)

the statement of the theorem follows from the compact embedding ofH
5
2 (∂D)

into H
1
2 (∂D). �

Noting that M(k) is analytic in k since the kernels of Sk and K ′k are
analytic in k, now Theorems 5.5 and 5.6 imply the following final result.
From this, in particular, we can again reestablish the discreteness of the set
of transmission eigenvalues for the special case of a constant refractive index
and the finite multiplicity of the transmission eigenvalues.
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Theorem 5.7 M(k) : H−
1
2 (∂D) → H

1
2 (∂D) is a Fredholm operator with

index zero and analytic in {k ∈ C : Re k > 0 and Im k ≥ 0}.

Cakoni and Kress [5] also used their boundary integral equation for-
mulation for actual computations of transmission eigenvalues with the aid
Beyn’s [2] algorithm mentioned above. Comparing the computational costs
for Beyn’s algorithm as applied to Cossonnière and Haddar’s two-by-two sys-
tem it can be shown that the approach presented here reduces the costs by
about 50 percent. For details of the implementation and numerical results we
refer to [5] and for a very recent extension of this approach to the Maxwell
equations including numerical results for transmission eigenvalues in three
dimensions we refer the reader to [4].
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