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Abstract

We present an essay on the mathematical development of inverse
scattering theory for time-harmonic waves during the past fifty years
together with some personal memories of our participation in these
events.

1 Introduction

The purpose of this paper is to discuss some of the highlights of the mathe-
matical theory of inverse scattering since 1970. However, we must first issue
a caveat to the reader. Our aim is not to provide an overview of all of
the developments of inverse scattering theory in the past fifty years. Such
a task would require a book not a paper. Instead, we have adopted a far
narrower goal of writing about those areas of inverse scattering theory that
we have either been involved in ourselves or that are closely related to our
research interests. In particular, we will focus on the mathematical theory of
the inverse scattering problem for acoustic and electromagnetic waves with
the basic themes of nonlinearity and ill–posedness holding center stage. Al-
though these themes have been the main focus of our research efforts, we
believe that it is also true that these two topics are in fact central to the
entire field of inverse scattering as it has developed over the past fifty years.
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This rather bold statement is a reflection of our view that scattering theory,
and in particular inverse scattering theory, should not only be viewed as an
area of applied mathematics but also as a branch of mathematical analysis
where theorems and their proofs play a central role.

Having assigned such modest goals, we hasten to further mention that we
have no intention of discussing all the main results in a given area of interest.
This paper it not intended to be an inclusive survey. We also have made no
effort to present the weakest regularity assumptions on the domain and the
material properties of the scatterer.

In our view, the mathematical theory of inverse scattering theory began
in the 1970s and has continued on to the present. There has been amazing
progress with numerous successes both theoretically and numerically. We
hope that our brief survey will capture the enthusiasm that we both have
for the field as well as encouraging newcomers to find out more about a
fascinating area of applied mathematics.

2 Uniqueness in inverse obstacle scattering

Scattering theory is concerned with the effects that obstacles and inhomo-
geneities have on the propagation of waves and in particular time-harmonic
waves. For reasons of brevity, we focus our attention on the case of acoustic
waves and only give passing references to the case of electromagnetic waves.
Throughout the paper we will consider scattering objects within a homoge-
neous background that are described by a bounded domain D ⊂ R3 with a
connected C2 boundary ∂D and can be either impenetrable or penetrable,
i.e, an obstacle or an inhomogeneity.

Although our presentation of inverse scattering will be in R3, all our
results remain valid in R2 unless otherwise stated.

Given a plane wave ui(x) = eik x·d propagating in the direction d ∈ S2 :=
{x ∈ R3 : |x| = 1}, the simplest obstacle scattering problem is to find the
total field u ∈ H1

loc(R3 \ D̄) such that u = ui + us satisfies the Helmholtz
equation

∆u+ k2u = 0 in R3 \ D̄ (2.1)

with positive wave number k, the boundary condition

u = 0 on ∂D, (2.2)
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and the Sommerfeld radiation condition

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0, r = |x|, (2.3)

uniformly for all directions. The solution u ∈ H1
loc(R3\D̄) is to be interpreted

in the variational sense. The homogeneous Dirichlet boundary condition
(2.2) corresponds to a sound-soft obstacle. Boundary conditions other than
(2.2) are, for example, the homogeneous Neumann or sound-hard boundary
condition or the impedance boundary condition

∂u

∂ν
+ ikλu = 0 on ∂D

where ν is the unit outward normal to ∂D and λ is a given non-negative
continuous function.

The equation (2.1) carries the name of Helmholtz (1821–1894) for his
contributions to mathematical acoustics. The radiation condition (2.3) was
introduced by Sommerfeld in 1912 to characterize an outward energy flux.
It is equivalent to the asymptotic behavior

us(x) =
eik|x|

|x|
u∞(x̂, d) +O

(
1

|x|2

)
, |x| → ∞,

uniformly for all directions x̂ = x/|x| and where u∞ is defined for x̂, d ∈ S2

and is called the far field pattern of us. Solutions to the Helmholtz equation
satisfying (2.3) are called radiating.

Uniqueness of a solution to the obstacle scattering problem is a conse-
quence of the following fundamental lemma which is due to Rellich (1943)
and Vekua (1943) and is known as Rellich’s lemma.

Lemma 2.1 Any radiating solution us ∈ H1
loc(R3\D̄) to the Helmholtz equa-

tion with far field pattern u∞ = 0 vanishes identically in R3 \ D̄.

Existence of a solution was first established by Vekua, Weyl and Müller
in the 1950s via a double-layer boundary integral equation approach and the
non-uniqueness deficiency of the latter were remedied independently by Leis,
Brakhage and Panich in the 1960s. For references we refer the reader to our
monographs [22, 23].

Given the incident field ui(x) = eik x·d, the basic inverse obstacle scattering
problem is to determine D from a knowledge of the far field pattern u∞(x̂, d)
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for some observation directions x̂ and some incident directions d on S2 and a
fixed wave number k. The history of inverse obstacle scattering theory starts
with the following uniqueness result due to Schiffer.

Theorem 2.2 Assume that D1 and D2 are two sound-soft scatterers such
that their far field patterns coincide for all x̂, d ∈ S2 and one fixed wave
number k. Then D1 = D2.

Proof. Assume that D1 6= D2. By Rellich’s lemma, for each incident wave ui

the scattered waves us1 and us2 for the obstacles D1 and D2 coincide in the
unbounded component G of the complement of D1 ∪ D2. Without loss of
generality, one can assume that D∗ := (R3 \G) \ D̄2 is nonempty. Then us2 is
defined in D∗, and the total wave u = ui+us2 satisfies the Helmholtz equation
in D∗ and the homogeneous boundary condition u = 0 on ∂D∗. Hence, u is
a Dirichlet eigenfunction of −∆ in the domain D∗ with eigenvalue k2. The
proof is now completed by showing that the total fields for distinct incident
plane waves are linearly independent, and this contradicts the fact that for a
fixed eigenvalue the Dirichlet eigenspace of −∆ in H1

0 (D∗) has finite dimen-
sion. �

Schiffer’s uniqueness result was obtained around 1960 and was never pub-
lished by Schiffer himself. It appeared as a private communication in the
monograph by Lax and Philipps [66]. This is notable since nowadays in a
time of permanent evaluation and competition for grants nobody would want
to give away such a valuable result as a private communication. Noting that
the proof presented in [66] contains a slight technical fault since the fact
that the complement of D1 ∪ D2 might be disconnected was overlooked, it
is comforting to observe that even eminent authors can have errors in their
books.

A challenging open problem is to determine whether uniqueness with
one incident plane wave at one single wave number is guaranteed. So far,
only under additional geometric assumptions on the size or the shape of the
scatterer uniqueness for one incident plane wave has been established.

Using the strong monotonicity property of the Dirichlet eigenvalues of
−∆, extending Schiffer’s ideas in 1983 Colton and Sleeman [27] showed that
a sound-soft scatterer is uniquely determined by the far field pattern for one
incident wave under the a priori assumption that it is contained in a ball of
radius R such that kR < π. Note that the smallest eigenvalue for the unit
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ball is given by the smallest zero π of the spherical Bessel function j0 and
that this is a simple eigenvalue. Hence, exploiting the fact that the wave
functions are complex valued with linearly independent real and imaginary
parts, in 2005 Gintides [31] improved this bound to kR < 4.49 where 4.49 . . .
is the smallest positive zero of the spherical Bessel function j1. (In the two
dimensional case, the two bounds have to be replaced by the smallest zeros of
the Bessel functions J0 and J1, respectively.) We note that for other than the
Dirichlet boundary condition there is no analogue to the results in [27, 31]
since there is no monotonicity property for the eigenvalues of −∆ for other
boundary conditions.

In 1997 Liu [68] showed that a sound-soft ball is uniquely determined by
the far field pattern for one incident plane wave. A simpler proof of this result
than the one in [68] can be found in [23]. Starting in 2003 in a series of papers
by Alessandrini, Cheng, Liu, Rondi and Yamamoto [1, 18, 69, 70] it was
established that one incident plane wave is sufficient to uniquely determine a
sound-soft polyhedron. Both the results for the ball and the polyhedron have
analogs for other boundary conditions and also for electromagnetic waves.

The finiteness of the dimension of the eigenspaces for eigenvalues of −∆
for the Neumann or impedance boundary condition requires the boundary of
the intersection D∗ from the proof of Theorem 2.2 to be sufficiently smooth
which, in general, is not the case. Therefore, there does not exist an imme-
diate extension of Schiffer’s approach to other boundary conditions.

Assuming that two different scatterers have the same far field patterns for
all incident directions, in 1990 Isakov [46] obtained a contradiction by consid-
ering a sequence of solutions with a singularity moving towards a boundary
point of one scatterer that is not contained in the other scatterer. He used
weak solutions and the proofs are technically involved. During a hike in the
Dolomites, on a long downhill walk from Rifugio Treviso to Passo Cereda,
in 1993 Kirsch and Kress [57] realized that these proofs can be simplified
by using classical solutions rather than weak solutions and by obtaining the
contradiction by considering point wise limits of the singular solutions rather
than limits of L2 norms. Later on it was also observed that simultaneously
both the shape ∂D and the boundary condition of the scatterer are uniquely
determined by the far field pattern for infinitely many incident plane waves.
For boundary conditions of the form Bu = 0 on ∂D, where Bu = u for a
sound-soft scatterer and Bu = ∂u/∂ν + ikλu for the impedance boundary
condition one can state the following theorem. For its proof and for later use
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throughout the remainder of the paper we introduce the notation

Φ(x, y) :=
1

4π

eik|x−y|

|x− y|
, x 6= y, (2.4)

for the fundamental solution of the Helmholtz equation in three dimensions.

Theorem 2.3 Let two scatterers D1 and D2 with boundary conditions B1

and B2 have the same far field patterns for all x̂, d ∈ S2 and one fixed wave
number k. Then D1 = D2 and B1 = B2.

Proof. In addition to scattering of plane waves, we also need to consider
scattering of point sources Φ(· , z) with source location z in R3 \ D̄. Using
Rellich’s lemma and the mixed reciprocity relation

4πws∞(−d, z) = us(z, d), z ∈ R3 \ D̄, d ∈ S2, (2.5)

which, for scattering of a point source located at z, connects the far field pat-
tern w∞ of the scattered wave in observation direction −d with the scattered
wave us for plane wave incidence in direction d evaluated at z (see Theorem
3.16 in [23]), we can deduce that ws1(x, z) = ws2(x, z) for all x, z ∈ G. Here,
assuming D1 6= D2, G is defined as in the proof of Theorem 2.2 and w1 and
w2 are the scattered waves for point source incidence for the obstacles D1

and D2, respectively. Now a contradiction can be obtained choosing x ∈ ∂G
such that x ∈ ∂D1 and x 6∈ ∂D2 and a sequence zn ∈ G such that zn → x
as n→∞. The use of the mixed reciprocity principle in this proof was sug-
gested in 2001 by Potthast [83] whereas in [57] an approximation argument
was used. �

The idea of the proof for Theorem 2.3 has been applied to different bound-
ary conditions and also to the Maxwell equations for electromagnetic waves.

3 Solution of the inverse obstacle problem

As previously mentioned, the main features of the inverse scattering problem
that make its investigation challenging are its nonlinearity and ill-posedness.
In the case of obstacle scattering it is nonlinear since the solution to the scat-
tering problem depends nonlinearly on the boundary of the scatterer and it
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is ill-posed since the corresponding solution operator is extremely smooth-
ing, i.e., in functional analytic terms the operator mapping the boundary of
the scatterer onto the far field pattern of the scattered wave is compact. In
particular, due to the ill-posedness, given a measured far field pattern u∞
the question of existence of a solution to the inverse problem is the wrong
question to ask since, due to errors in the data, in general no solution will
exist for the given data. Assuming that the given far field data u∞ is close
to the correct far field of some scatterer D the appropriate task is to design
stable methods for finding an approximation for ∂D from the perturbed data
u∞.

For testing the accuracy of numerical algorithms of the forward obstacle
scattering problem it is straightforward to set up tests using explicit solu-
tions, for example, by considering point sources located in the interior of the
scatterer. However, there are no closed form solutions of the direct scatter-
ing problem available for plane wave incidence. Therefore numerical tests of
approximate methods for the inverse problem usually rely on synthetic far
field data obtained by numerically solving the forward scattering problem.
In this context, in the late 1980s and early 1990s, when a lively development
of inverse algorithms started, it was noted that in order to avoid trivial in-
versions of finite dimensional problems, for reliably testing the performance
of an inverse problem solver it is crucial that the synthetic data are obtained
by a forward algorithm which has no connection to the inverse algorithm
under consideration. For numerical tests violating this requirement the term
inverse crimes was created and, to our knowledge, appeared for the first time
in printing in 1993 in the first edition of our monograph [23].

3.1 Early attempts and decomposition methods

The first attempts to solve the inverse obstacle problem dealt with the non-
linearity issue by linearizing the problem with the aid of the physical optics
approximation. For a convex sound-soft scatterer D for large wave numbers
k, by Huygens’ formula the far field pattern in the backscattering direction
is approximately given by

u∞(−d, d) ≈ − 1

4π

∫
ν(y)·d<0

∂

∂ν(y)
e2ik d·y ds(y), d ∈ S2,
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and from that Bojarski [10] in 1967 derived the identity∫
R3

χ(y)e2ik d·y dy =
π

k2

{
u∞(−d, d) + u∞(d,−d)

}
, d ∈ S2, (3.1)

where χ denotes the characteristic function of D. Hence, in principle, the
inverse obstacle scattering problem with backscattering data for all incident
directions and all positive wave numbers is reduced to an inversion of the
Fourier transform. However, there are two drawbacks to this approach.
Firstly, since the physical optics approximation is valid only for large wave
numbers, in practice one has to invert the Fourier transform with incomplete
data which leads to uniqueness ambiguities and to severe ill-posedness. Sec-
ondly, the physical optics approximation will not work at all in situations
where far field data are available only for frequencies in the resonance region
when the wave length is comparable to the size of the scatterer. For these
reasons in our further discussion we concentrate our attention to solutions of
the full nonlinear inverse obstacle scattering problem.

The earliest attempts to treat the inverse scattering problem without
linearizing were made by Imbriale and Mittra [45] in 1970 and were based
on expansions of the scattered wave with respect to radiating spherical wave
functions and analytic continuation with only little attention being given to
issues of stabilization. The basic idea of the approach is to expand the given
far field pattern in a Fourier series

u∞(x̂) =
∞∑
n=0

n∑
m=−n

amn Y
m
n (x̂) (3.2)

where Y m
n is a spherical harmonic of order n. Then the scattered wave is

given by

us(x) = k

∞∑
n=0

in+1

n∑
m=−n

amn h
(1)
n (k|x|)Y m

n

(
x

|x|

)
(3.3)

where h
(1)
n is a spherical Hankel function order n and this series converges

outside the smallest ball centered at the origin that contains the unknown
scatterer (see [23, Theorem 2.17]). Now if we assume a convex sound-soft
scatterer D, computing the total field u(Rx̂) = ui(Rx̂) + us(Rx̂) for succes-
sively decreasing values of the radius R and testing whether it becomes zero
for some x̂ ∈ S2 we can, in principle, determine at least one point on ∂D.
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In order to obtain further points of ∂D we move to another origin of co-
ordinates and redo the expansions with respect to the new origin to capture
more boundary points. This procedure is continued until enough points are
determined. However, this approach is time consuming, not very systematic
and difficult to be kept stable.

In principle, the Impriale–Mittra approach belongs to a group of methods
that are called decomposition methods. The main idea of these methods is to
break up the inverse obstacle scattering problem into two parts: the first part
deals with the ill-posedness by constructing the scattered wave from its far
field pattern and the second part deals with the nonlinearity by determining
the unknown boundary of the scatterer as the location where the boundary
condition for the total field is satisfied. However, these methods face the
difficulty that in the first step the domain of definition of the scattered wave is
not known. Hence, mathematically satisfying formulations of decomposition
methods need to combine both parts into an optimization reformulation of
the inverse scattering problem.

A prime example for a decomposition method was proposed in 1986 by
Kirsch and Kress [56]. Assuming a priori that enough information is available
to place a closed surface Γ inside the unknown scatterer D, the scattered wave
is approximated by a single-layer potential

us(x) :=

∫
Γ

Φ(x, y)ϕ(y) ds(y). (3.4)

The density ϕ ∈ L2(Γ) is obtained by solving the ill-posed integral equation
of the first kind

1

4π

∫
Γ

e−ik x̂·yϕ(y) ds(y) = u∞(x̂), x̂ ∈ S2, (3.5)

via Tikhonov regularization. If we denote the integral operator on the left
hand side of (3.5) by S∞, the Tikhonov solution corresponds to minimizing
the Tikhonov functional

‖S∞ϕ− u∞‖2
L2(S2) + α‖ϕ‖2

L2(Γ) (3.6)

with a positive regularization parameter α. The unknown boundary ∂D
is then determined by requiring (3.4) to satisfy the sound-soft boundary
condition in a least squares sense, i.e., by minimizing the defect

‖ui + Sϕ‖2
L2(Λ) (3.7)
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over some suitable class of admissible surfaces Λ where S is the single-layer
potential operator defined by the right hand side of (3.4). To turn this ap-
proach into a stable regularization procedure for the ill-posed inverse obstacle
scattering problem it has to be recast into a simultaneous minimization of a
weighted sum of the two functionals (3.6) and (3.7).

This method has been extended to other boundary conditions and suc-
cessfully tested numerically both in two and three dimensions by a large
number of researchers. Its extension to the case of the electromagnetic in-
verse obstacle problem with the perfect conductor boundary condition was
carried out in 1987 by Blöhbaum [9], a joint PhD student of the authors.

In principle, one can replace the approximation (3.4) of the scattered
field us by any other convenient approximation. For example, in 1987 An-
gell, Kleinman, and Roach [2] suggested using an expansion with respect to
radiating spherical wave functions, i.e., by a series of the form (3.3), and in
this way sort of revisited the approach of Imbriale and Mittra to give it a
more solid basis.

In 1996, Potthast [81] developed a method that eventually was denoted
as the point source method and which mimics the uniqueness proof of Theo-
rem 2.3 by letting point sources tend to the boundary and by approximating
the far field patterns for point source incidence through the far field patterns
for plane wave incidence. In view of the mixed reciprocity relation (2.5),
Potthast’s point source method may be viewed as another alternative for
approximating the scattered wave.

Although the decomposition methods described above have been revived
through more recent papers and extensions to related inverse scattering prob-
lems, they are less popular than the iterative methods described in the next
section since the latter in general yield more accurate reconstructions. How-
ever, they will keep their importance as instructive examples for the idea of
separating the ill-posedness and the nonlinearity in inverse scattering and
related areas.

3.2 Iterative methods

The solution to the direct scattering problem with a fixed incident wave ui

defines an operator
F : ∂D 7→ u∞
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that maps the boundary ∂D of the scatterer D onto the far field pattern u∞
of the scattered wave. In terms of this operator, given a far field pattern u∞,
the inverse problem consists in solving the nonlinear and ill-posed equation

F(∂D) = u∞ (3.8)

for the unknown boundary ∂D. Hence, one can try one of the regularized
Newton iterations such as the Levenberg–Marquardt algorithm or iteratively
regularized Gauss–Newton iterations that have been developed and analyzed
since the 1980s for the approximate solution of nonlinear and ill-posed op-
erator equations. Of course, these methods also can be understood as an
optimization approach for the minimization of a penalized norm of the resid-
ual in (3.8).

For the application of these methods, the Fréchet derivative of F is re-
quired and for that we need to select a suitable domain for a proper definition
of F . Restricting ourselves to scatterers with boundaries that are diffeomor-
phic to the unit sphere, let X be the space of C2 functions p : S2 → R3 such
that p : S2 → p(S2) is a diffeomorphism. Then we may view X as an open
subset of the Banach space C2(S2;R3) and identify boundary surfaces ∂D
from Y := {p(S2) : p ∈ X} with their parameterization p. In this setting,
the operator F can be understood as an operator from X into L2(S2) and
can be shown to be compact (see [23, Theorem 5.9]), i.e., the equation (3.8)
is ill-posed.

Using a variational approach to characterize the solution of the direct
scattering problem, in 1993 Kirsch [51] rigorously established Fréchet differ-
entiability of F with the derivative at ∂D in the direction h given by

F ′∂Dh = v∞

where v∞ denotes the far field pattern of the radiating solution v to the
Helmholtz equation in R3 \ D̄ satisfying the boundary condition

v = −ν · h ∂u
∂ν

on ∂D (3.9)

and u is the solution to the scattering problem (2.1)–(2.3). In particular,
Fréchet differentiability means that

lim
h→0

1

‖h‖C2(∂D)

‖F(∂Dh)−F(∂D)−F ′∂Dh‖L2(S2) = 0

11



with the perturbed boundary ∂Dh := {x+h(x) : x ∈ ∂D} being well defined
for sufficiently small h. A hand waving proof for the boundary condition
(3.9) is obtained by formally differentiating the boundary condition (2.2)
with respect to h. As always the case for compact nonlinear operators, the
Fréchet derivative F ′∂D turns out to inherit the compactness from F . There-
fore, the Newton equations are linear ill-posed equations and the classical
Newton–Kantorovitch convergence theory does not apply. In order to ap-
ply regularized Newton iterations injectivity of F ′∂D is important. From the
boundary condition (3.9) with the aid of Rellich’s lemma and Holmgren’s
uniqueness theorem (see [23, Theorem 2.3]) we observe injectivity of F ′∂D
provided we confine the perturbations to the normal direction, i.e., to per-
turbations of the form h = q ν with a scalar function q.

A year later in 1994, Potthast [80] was also able to arrive at (3.9) via
the traditional boundary integral equation approach for the solution of the
direct scattering problem. In particular Potthast established the Fréchet dif-
ferentiability of the single- and double-layer boundary integral operators with
respect to the boundary ∂D and that the derivatives are obtained by taking
the Fréchet derivatives of their kernels with respect to ∂D. In doing this
he observed that the type of singularity of the kernels and their derivatives
remains the same. In 1980 Roger [85] had been the first to employ Newton
iterations for the solution of the inverse obstacle scattering problem and he
also had used the boundary integral equation approach to obtain the deriva-
tive. However, his analysis had been only via formal differentiation. An
alternative approach to differentiation of the far field pattern with respect
to the boundary was contributed in 1999 by Kress and Päivärinta [61] based
on Green’s theorems and a factorization of the difference F(∂Dh)−F(∂D).
This approach was also applied in 2004 for the electromagnetic case [34] and
in 2012 for the elastodynamic case [67].

In subsequent years Fréchet differentiability was established for other
boundary conditions, for inverse scattering for cracks and for electromagnetic
obstacle scattering and Newton iterations were successfully implemented in
two and three dimensions. For the latter we mention Farhat et al [29] and
Harbrecht and Hohage [39]. Inverse scattering problems for two-dimensional
cracks have been solved using Newton’s method by Kress and Mönch [59, 71].
We refer to our monograph [23] for references to results of Kress and Run-
dell for a frozen Newton method, for Newton iterations with the amplitude
of the far field as data, for backscattering data, and for the simultaneous
reconstruction of shape and impedance.
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With the proper choice of the regularization parameter in the Levenberg–
Marquardt or iteratively regularized Gauss–Newton iterations, the above ap-
proach leads to highly accurate reconstructions of the unknown scatterer
from the far field pattern for one (or a few) incident plane waves with rea-
sonable stability against data errors. However, since each Newton step re-
quires the solution of the forward problem for the evaluation of F(∂D) and
a finite number of derivatives F ′(∂D;h) according to the dimension of the
approximation space for the update h, an efficient forward solver is needed.
Furthermore, good a priori information is required in order to be able to
choose an initial guess that ensures convergence to a global minimum. In
addition, on the theoretical side, although some progress has been made
through the work of Hohage [40] and others on logarithmic source conditions
in the analysis of Newton iterations for ill-posed operators, the convergence
of regularized Newton iterations for the operator F has not been settled. In
particular, it remains an open problem whether the convergence results for
the Levenberg–Marquardt algorithm and the iteratively regularized Gauss–
Newton iterations that were obtained over the last two decades are applicable
to inverse obstacle scattering.

During the last decade modified Newton type iterations were developed
based on boundary integral equations for the solution of the forward scat-
tering problem. Either using a potential approach or the direct approach
via Green’s representation formula, the inverse obstacle scattering problem
is equivalently reformulated as a system of two nonlinear integral equations
for the unknown boundary ∂D and a density function on ∂D as a sort of slip
variable. Due to the results by Potthast mentioned above, the derivatives of
the corresponding operators can be expressed explicitly in terms of boundary
integral operators which then offers computational advantages as compared
with the derivative of F as expressed by (3.9). For a sound-soft obstacle the
inverse scattering problem is equivalent to solving∫

∂D

∂u

∂ν
(y) Φ(x, y) ds(y) = ui(x), x ∈ ∂D, (3.10)

and

− 1

4π

∫
∂D

∂u

∂ν
(y) e−ik x̂·y ds(y) = u∞(x̂), x̂ ∈ S2, (3.11)

for the unknown boundary ∂D and the unknown normal derivative ϕ := ∂νu
of the total field. Both equations are linear with respect to ϕ and nonlinear
with respect to ∂D. Equation (3.11) is severely ill-posed whereas (3.10) is
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only mildly ill-posed. (For simplicity we assume that k2 is not a Dirichlet
eigenvalue of −∆ in D.)

Obviously there are three options for an iterative solution of (3.10) and
(3.11). In a first method, given an approximation for the boundary ∂D, one
solves the mildly ill-posed integral equation of the first kind (3.10) for ϕ.
Then, keeping ϕ fixed, equation (3.11) is linearized with respect to ∂D to
update the boundary approximation. This approach has been proposed and
implemented in 2007 by Johansson and Sleeman [49].

In a second approach, the system (3.10) and (3.11) is solved simultane-
ously for ∂D and ϕ by Newton iterations, i.e., by linearizing both equations
with respect to both unknowns. Motivated by ideas first developed for the
Laplace equation in [62], in 2006 one of the authors together with his PhD stu-
dent Ivanyshyn [47] has initiated the investigation of this approach including
implementations in three dimensions and also for electromagnetic scattering.
Quite recently, this method has also been successfully employed by Ivanyshyn
and LeLouër [48] for electromagnetic obstacle scattering together with an in-
novative application of the Piola transform of the boundary parametrisation
to transport the integral operators on a fixed reference boundary.

Whereas in the Johansson–Sleeman method the burden of both the ill-
posedness and nonlinearity is put on one equation, in a third method a more
even distribution of the difficulties is obtained by reversing the roles of (3.10)
and (3.11), i.e., by solving the severely ill-posed equation (3.11) by Tikhonov
regularization for ϕ and then linearizing (3.10) to obtain the boundary up-
date. With a slight modification this leads to a variant of the Kirsch–Kress
method where the interior auxiliary surface Γ is considered as an approxi-
mation for ∂D and updated in each iteration by solving the equation (3.11)
and linearizing the boundary condition. This approach was initiated by one
of us in 2003 and further developed together with his PhD student Ser-
ranho [60, 88], again including implementations in three dimensions.

As to be expected, a more detailed investigation reveals a close relation
of all these three approaches based on (3.10) and (3.11) with the Newton
iterations for F . Hence, the quality of the reconstructions obtained be them
can compete with those of Newton iterations for (3.8) based on (3.9) with
the benefit of reduced computational costs. However, as for the case of the
Newton iterations, the convergence issue remains unresolved.

Level set methods were introduced in the 1980s by Osher and Sethian [78]
as a numerical method for the approximation of surfaces in R3 (or curves in
R2) and their movement. Instead of relying on parameterizations, level set
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methods represent the surfaces as the set of zeros Γ = {x ∈ R3 : Ψ(x) = 0}
of a function Ψ defined in R3 which has positive values on one side of the sur-
face and negative values on the other side. For a surface changing with time
a partial differential equation, the so-called Hamilton–Jacobi equation, is
used for the evolution of Ψ and, in principle, all computations are performed
in Cartesian coordinates in R3. In particular, in the level set methods the
topology, i.e., the number of connected components, need not be known in
advance and may change during the computation. On the other hand, by
basing the computations on a Cartesian grid, no parameterization is avail-
able and therefore the spectral methods for boundary integral equations for
smooth surfaces can no longer be used. In 1996 Santosa [87] suggested ap-
plying level set methods to the solution of inverse problems, including inverse
obstacle scattering problems, and since then level set techniques for inverse
problems have continued to be investigated [12, 28].

3.3 Sampling methods

As already pointed out, the iterative methods discussed in the previous sub-
section require sufficient a priori information to ensure their numerical con-
vergence. In contrast to this, sampling methods do not need any a priori
information on the geometry of the obstacle nor on the boundary condition.
However, they require the knowledge of the far field pattern for a large num-
ber of incident waves, whereas iteration methods, in general, work with one
or a few incident fields. Roughly speaking, sampling methods are based on
choosing an appropriate indicator function f on R3 such that its value f(z)
decides on whether a point z lies inside or outside the scatterer D. They
are called sampling methods since the indicator function f is sampled on a
grid of points, i.e., the scatterer is visualized by numerically evaluating f for
points on this grid.

The main actors in the sampling methods that we will discuss are the far
field operator F : L2(S2)→ L2(S2) defined by

(Fg)(x̂) :=

∫
S2
u∞(x̂, d)g(d) ds(d), x̂ ∈ S2, (3.12)

i.e., the integral operator with the kernel given by the far field pattern u∞
for plane wave scattering from D with observation directions x̂ and incident
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directions d, and the Herglotz operator H : L2(S2)→ H1
loc(R3) defined by

(Hg)(x) =

∫
S2
eik x·dg(d) ds(d), x ∈ R3, (3.13)

i.e., by a superposition of plane waves. The latter are called Herglotz wave
functions with kernel g and were first introduced by Herglotz as special so-
lutions to the Helmholtz equation in a lecture in Göttingen in 1945. Clearly,
Fg represents the far field pattern for scattering of a Herglotz wave function
with kernel g by the obstacle D. The compact operator F is injective and
has dense range if and only if there does not exist a Herglotz wave function
that vanishes identically on ∂D. This important property was first discov-
ered in 1984 by Colton and Kirsch [19] in the framework of the underlying
completeness result on far field patterns.

Before we proceed with discussing the two main examples of sampling
methods, namely the linear sampling method and the factorization method,
we briefly mention two other sampling methods that can be considered as
implementations of the uniqueness proof in Theorem 2.3.

For Potthast’s [82, 83] singular source method the indicator function is
given by f(z) := ws(z, z) through the value of the scattered wave ws(· , z) for
the singular source Φ(· , z) as incident field evaluated at the source point z.
These values will blow up when z approaches the boundary from outside D.
Approximating the point source Φ(x, ·) for x in the exterior of an auxiliary
closed surface Γ containing D in its interior by a Herglotz wave function such
that

Φ(x, z) ≈ 1

4π

∫
S2
eik x·dgz(d) ds(d), (3.14)

in 2000 Potthast showed that

ws(z, z) ≈ 1

4π
(Fgz, Rgz)L2(S2)

with the reflection operator R given by (Rg)(x) = g(−x) for x ∈ S2. The
approximation (3.14) can be obtained in practice by solving∫

S2
eik x·dgz(d) ds(d) = 4πΦ(x, z), x ∈ Γ,

via Tikhonov regularization.
The probe method suggested in 1998 by Ikehata [44] follows the uniqueness

proof of Isakov and uses as indicator function an energy integral for ws(· , z)
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instead of the point evaluation ws(z, z). We note that both the singular
source method and the probe method both work for sound-soft and sound-
hard scatterers without knowing the boundary condition a priori.

The origins of the linear sampling method go back to the dual space
method for inverse obstacle scattering that was proposed by Colton and Monk
in 1985 and which has a close connection to the method of Kirsch and Kress,
reflecting the fact that both methods were developed at the same time in close
collaboration between Delaware and Göttingen (c.f. Section 5.5 of [23] and
Section 8 of this paper). Given the far field patterns u∞(· , d) for all incident
directions d, in its first step the dual space method looks for a Herglotz wave
function for which the far field pattern for scattering from D coincides with
the far field pattern

Φ∞(x̂, z) =
1

4π
e−ik x̂·z, x̂ ∈ S2,

of a point source Φ(·, z) located in some point z ∈ D which is kept fixed.
(Typically, in the dual space method z was taken to be the origin leading to
a constant Φ∞.) Obviously, this is achieved by solving the ill-posed linear
equation

Fgz = Φ∞(·, z) (3.15)

for the Herglotz kernel gz ∈ L2(S2). In connection with the linear sampling
method the equation (3.15) eventually got denoted as the far field equation.
We note that by the reciprocity theorem for plane wave incidence (see [23,
Theorem 3.15]) we may also consider the far field operator as a superposition
with respect to the observation directions instead of the incident directions.
Therefore, we can view this method as one of determining a linear functional
having prescribed values on the set of far field patterns and this gave the
method its name. In the second step the unknown boundary ∂D is deter-
mined as the location where the boundary condition

Hgz + Φ(·, z) = 0 on ∂D (3.16)

is satisfied in a minimum norm sense analogously to (3.7). As in the method
of Kirsch and Kress, for a stable regularization procedure the dual space
method was reformulated as an optimization problem by combining the
Tikhonov functional for (3.15) and the least squares fit for (3.16) into one
cost functional.
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The linear sampling method was born in 1995 at the John F. Kennedy
International Airport in New York City while Andreas Kirsch had several
hours to wait for his flight back to Germany after a visit to the University
of Delaware. On his laptop he had the dual space method programmed (in
R2) and for amusement he shifted the source location randomly around. In
doing this, he noted that ‖gz‖L2(S1) became large as z approached ∂D and, by
plotting the level curves of ‖gz‖L2(S1), the shape ∂D miraculously appeared.
After this discovery, the linear sampling method was first presented in 1996
by Kirsch in collaboration with David Colton [20]. They proposed to solve
(3.15) by Tikhonov regularization with the regularization parameter chosen
according to Morozow’s discrepancy principle and to use the norm ‖gz‖L2(S2)

as an indicator function. From the boundary condition (3.16) it is to be
expected that ‖gz‖L2(S2) →∞ as z approaches ∂D.

Unfortunately the ill-posed integral equation (3.15), in general, does not
have a solution and therefore the mathematical foundation of the linear sam-
pling method in [20] had to be based on the denseness properties of Herglotz
wave functions as expressed through the dense range of F mentioned above.
Roughly speaking, these denseness properties ensure that, given ε > 0 and
assuming that k2 is not a Dirichlet eigenvalue for −∆ in D, for each z ∈ D
there exists a Herglotz kernel gεz ∈ L2(S2) such that (3.15) is approximately
satisfied in the sense that

‖Fgεz − Φ∞(· , z)‖L2(S2) < ε (3.17)

and the norms ‖Hgεz‖L2(D) remain bounded as ε→ 0 whereas for z 6∈ D every
gεz ∈ L2(S2) that satisfies (3.17) for a given ε > 0 is such that ‖Hgεz‖L2(D) →∞
as ε→ 0. Since for the inverse problemD is not known, in practice the indica-
tor function ‖Hgεz‖L2(D) is replaced by ‖gεz‖L2(S2). We will give a justification
of the linear sampling method later on in Theorem 6.1 when we discuss the
linear sampling method for the inverse medium scattering problem. There
we also will address the question whether Tikhonov regularization for (3.15)
indeed leads to the approximations predicted using the denseness arguments
for the Herglotz wave functions (see Theorem 6.3).

We proceed by describing the factorization method that resulted from
Kirsch’s efforts to overcome the mathematical deficiencies of the linear sam-
pling method. These originate from the unsolvability of the far field equation
(3.15) since the operator is strongly smoothing. By choosing a slightly less
smoothing operator in 1998 Kirsch [52] was able to establish the following
characterization of the scatterer via the far field operator.
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Theorem 3.1 Assume that k2 is not a Dirichlet eigenvalue of −∆ in D.
Then z ∈ D if and only if

(F ∗F )1/4gz = Φ∞(· , z)

is solvable in L2(S2).

The proof of this theorem required some newly developed functional ana-
lytic tools. It is based the fact that F is a normal operator, i.e., FF ∗ = F ∗F ,
and on the factorization

F = −2πAS∗A∗

in terms of the single-layer potential operator S : L2(∂D) →: L2(∂D) given
by

(Sϕ)(x) :=

∫
∂D

Φ(x, y)ϕ(y) ds(y), x ∈ ∂D,

and the operator A : L2(∂D) → L2(S2) taking Dirichlet boundary data
onto the far field pattern of the radiating solution of the Helmholtz equation
together with their L2 adjoint operators. This factorization gives the method
its name and it expresses the operator F which depends on D only implicitly
through its kernel by operators that clearly exhibit their dependence on D.
We note that Theorem 3.1 also provides an alternative proof of Schiffer’s
Theorem 2.2.

Theorem 3.1 can be used for a reconstruction of D with the aid of a sin-
gular system (λn, ψn, ψn) of the operator F . Then, by Picard’s Theorem [23,
Theorem 4.8] on ill-posed equations of the first kind, we have that z ∈ D if
and only if

∞∑
n=1

|(ψn,Φ∞(· , z))|2

|λn|
<∞,

i.e., a truncated Picard series assumes the role of the indicator function in
the factorization method.

As compared to the original paper [52], the theory of the factorization
method has been largely modified and extended in [55]. Comparing the linear
sampling and the factorization method, the latter is mathematically more
satisfying but lacks flexibility as compared with the linear sampling method.
In particular, despite the recently developed variants of the factorization
method a proof of an analog of Theorem 3.1 the scattering of electromagnetic
waves by a perfect conductor is still open.
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Both the linear sampling method and the factorization method require
that −k2 is not a Dirichlet eigenvalue for the Laplacian in the unknown ob-
stacle D. At first glance, it seems surprising that eigenvalues of the interior
domain have influence on algorithms for scattering problems in the exterior
domain. However this becomes understandable by observing that if the cor-
responding eigenfunctions can be continued as a solution of the Helmholtz
equation into all of R3 then if these fields are used as incident fields the re-
sulting scattered fields are identically zero. This, for example, is the case for
scattering from balls.

The concept of the topological derivative was proposed in 1999 by Sokow-
loski and Zochowski [89] as a measure for the sensitivity of a shape functional
to removing small balls from a given domain. Assume Ω is a given domain
containing the unknown scatterer D and denote by Bρ(x) a ball of radius ρ
centered at x ∈ Ω with volume V (ρ). Then formally the topological derivative
of a shape functional J defined for subsets of Ω at the point x is given by

∂T (x,Ω) = lim
ρ→0

J(Ω \Bρ(x))− J(Ω)

V (ρ)
.

This derivative now can serve as an indicator function for the inverse obsta-
cle scattering problem provided the functional J is designed in a way that
∂T (x,Ω) << 0 implies that x ∈ D. In [30] it was shown that, given the
measured scattered total field uD for scattering from D on a measurement
surface Γ surrounding D, the shape functional

J(Ω) :=

∫
Γ

|uΩ − uD|2ds

where uΩ is the total field for scattering from Ω has this desired property
and its topological derivative was successfully employed for numerical recon-
structions. Although further contributions using the topological derivative in
inverse scattering have appeared in the literature, it seems too early to high-
light this approach in more detail. For numerous references and connections
to other approaches in inverse scattering see [8].

4 Uniqueness in inverse medium scattering

As with the inverse scattering problem for obstacles, the mathematical theory
of the inverse scattering problem for acoustic waves in an inhomogeneous
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medium begins with the problem of uniqueness. We first consider the case
of an isotropic medium with refractive index n and assume that the contrast
m := 1 − n is piecewise continuous and has compact support. It is further
assumed that Imn ≥ 0 and Ren > 0. Then, given the plane wave ui(x) =
eik x·d with positive wave number k > 0 propagating in direction d ∈ S2, the
simplest inhomogeneous medium scattering problem is to find the total field
u ∈ H1

loc(R3) such that u = ui + us satisfies

∆u+ k2nu = 0 in R3 (4.1)

and us satisfies the Sommerfeld radiation condition (2.3). Uniqueness of a
solution to this inverse medium scattering problem again is a consequence of
Rellich’s lemma together with a unique continuation principle for solutions
of (4.1) due to Müller [23]. Existence of a solution follows by rewriting the
scattering problem as the Lippmann–Schwinger equation

u(x, d) = eik x·d − k2

∫
R3

Φ(x, y)m(y)u(y, d) dy, x ∈ R3, (4.2)

where Φ is the fundamental solution introduced in (2.4) [23]. The Som-
merfeld radiation condition again implies that the scattered field us has the
asymptotic behavior

us(x) =
eik|x|

|x|
u∞(x̂, d) +O

(
1

|x|2

)
, |x| → ∞, (4.3)

uniformly for all directions x̂ = x/|x| with the far field pattern u∞. The
inverse scattering problem is to determine the refractive index n from u∞
and the uniqueness of a solution to this problem was given by Nachman [73],
Novikov [76] and Ramm [84] in 1988.

Theorem 4.1 The index of refraction n is uniquely determined by a knowl-
edge of the far field pattern u∞ (x̂, d) for all x̂, d ∈ S2 and a fixed wave number
k.

The proof of the uniqueness result of Nachman, Novikov and Ramm is
based on the following two lemmas.

Lemma 4.2 Let B be an open ball containing the support of m := 1 − n.
Then there exists a constant C > 0 such that for each z ∈ C3 with z · z = 0
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and |Re z| > 2k2 ‖n‖∞ there exists a solution v ∈ H2(B) of ∆v + k2nv = 0
in B of the form

v(x) = ei z·x [1− w(x)]

where

‖w‖L2(B) ≤
C

|Re z|
.

The solution v given in Lemma 4.2 is known as a complex geometric optics
solution to ∆v + k2nv = 0 and has a long history in both inverse scattering
theory and the impedance tomography problem [73, 91].

Lemma 4.3 Let B and B0 be two concentric balls containing the support of
m := 1− n such that B̄ ⊂ B0. Then the set of total fields {u(·, d) : d ∈ S2}
satisfying (4.1) is complete in the closure of{

v ∈ H2(B0) : ∆v + k2nv = 0 in B0

}
with respect to the L2(B) norm.

With these two lemmas at our disposal, the uniqueness of the solution
to the inverse scattering problem for (4.1) is now quite straightforward. In
particular, suppose that n1 and n2 are two refractive indices such that

u1,∞(·, d) = u2,∞(·, d), d ∈ S2,

and let B be a ball containing the support of 1 − n1 and 1 − n2. Then by
Rellich’s lemma we have that u1(·, d) = u2(·, d) in R3 \ B̄ for all d ∈ S2. From
Green’s second identity we can deduce that∫

B

u1(·, d̂)u2(·, d)(n2 − n1) dx = 0

for all d, d̂ ∈ S2 and hence from Lemma 4.3 if follows that∫
B

v1v2(n1 − n2) dx = 0 (4.4)

for all solutions v1, v2 ∈ H2(B0) of ∆v1 + k2n1v1 = 0 and ∆v2 + k2n2v2 = 0
in B0 ⊃ B. Given y ∈ R3 \ {0} and ρ > 0 we now choose vectors a, b ∈ R3

such that {y, a, b} is an orthogonal basis in R3 and |a| = 1, |b|2 = |y|2 + ρ2.
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Then for z1 := y+ρa+ ib, z2 := y−ρa− ib we construct the solutions v1 and
v2 defined in Lemma 4.2, substitute into (4.4) and let ρ→∞. This gives∫

B

e2iy·x [n1(x)− n2(x)] dx = 0

and the desired uniqueness result follows from the Fourier integral theorem.
For details we refer the reader to [23]. (Note that in R2 this proof does not
work since a basis analogous to {y, a, b} above cannot be constructed.) �

The uniqueness Theorem 4.1 assumes that u and its normal derivative
vary smoothly across ∂D. For the case when u and the normal derivative
of u vary discontinuously across ∂D, i.e., the inverse transmission problem,
the uniqueness of a solution to this inverse scattering problem was proven by
Isakov [46] in 1990 using ideas similar to those discussed previously in the
proof of Theorem 2.3 for the uniqueness of a solution to the inverse obstacle
problem for a sound-soft or sound-hard scatterer. Under the assumption that
m := 1−n ∈ C3

0(R3) the uniqueness result of Nachman, Novikov and Ramm
was extended to the electromagnetic case by Colton and Päivärinta [25] in
1992 (see also [77]). The extension of Isakov’s result for the inverse trans-
mission problem for acoustic waves to the case of electromagnetic waves was
given by Hähner [36] in 1993. Finally, a uniqueness result for the inverse
scattering problem for (4.1) in the two dimensional case was established by
Bukhgeim [11] in 2008. Uniqueness results using a single incident plane
wave to determine the support m under the assumption that the support is
a convex polyhedron were presented by Hu, Salo and Vesalainen [43] in 2016.

Uniqueness results for the case of anisotropic media are quite different
from that for isotropic media. Analogous to Section 2 we describe the ge-
ometry of the scatterer by a bounded domain D ⊂ R3 with a connected C2

boundary ∂D and assume D and n are such that n is piecewise continu-
ous in D̄. We now consider the scattering problem to find v ∈ H1(D) and
us ∈ H1

loc(R3 \ D̄) such that us satisfies the Sommerfeld radiation condition
(2.3) and

∇ · A∇v + k2nv = 0 in D,

∆us + k2us = 0 in R3 \ D̄,
v = ui + us on ∂D,

ν · A∇v =
∂ui

∂ν
+
∂us

∂ν
on ∂D,

(4.5)
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where ν is the unit outward normal of ∂D and again ui(x) = eik x·d. The
matrix valued function A has entries that are piecewise continuous in D̄, is
symmetric and satisfies

ξ · ImAξ ≤ 0 and ξ · ReAξ ≥ γ |ξ|2 (4.6)

for all ξ ∈ C3 and x ∈ D̄ where γ > 1. Under these conditions it is known [14]
that (4.5) has a unique solution and us again satisfies the asymptotic relation
(4.3). The inverse scattering problem for (4.5) is to now determine A and
n from the far field pattern u∞. Unfortunately, as shown by Gylys–Colwell
[33], A and n are in general not uniquely determined by u∞. However, using
the ideas of Isakov [46], it was shown by Hähner [37] in 2000 that the support
D is uniquely determined.

Theorem 4.4 Suppose that the far field patterns corresponding to D1, A1, n1

and D2, A2, n2, respectively, coincide for all x̂, d ∈ S2. Then D1 = D2.

Theorem 4.4 remains valid if the second assumption on A in (4.6) is
replaced by 0 < ReAξ ≤ γ |ξ|2 where γ < 1.

The above result of Hähner was extended to the case of electromagnetic
waves by Cakoni and Colton [13] in 2003. However for electromagnetic waves
many open problems remain concerning the uniqueness of the solution to the
inverse scattering problem. We mention just two of these. In the isotropic
case strong conditions are imposed on the index of refraction. In particu-
lar Colton and Päivärinta assumed that 1 − n ∈ C3

0(R3) whereas the result
of Hähner assumed that the refractive index was constant near the bound-
ary. It would be important to replace these condition by ones that are more
physically reasonable. For the case of anisotropic media it is possible that
uniqueness for the inverse scattering problem may be restored if further re-
strictions are made on the coefficients appearing in Maxwell’s equations, e.g.
that the permeability is constant. Such problems remain to be investigated.
For further information we refer the reader to the monographs [14, 15].

5 Reconstruction of n(x) by optimization

Given the fact that the inverse scattering problem both for obstacles and
inhomogeneous media is nonlinear and ill-posed, a natural approach to re-
constructing the index of refraction from measured far field data is to use
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constrained nonlinear optimization techniques. Indeed, one of the earliest
attempts to construct a solution to the inverse obstacle scattering problem
which acknowledged the nonlinearity and ill-posedness of the problem use
precisely such an approach [85] as discussed already in Section 3. Since the
ill-posedness of a nonlinear problem is inherited by its linearization, whenever
one tries to approximately solve an ill-posed nonlinear equation by lineariza-
tion, for example by a Newton method, one obtains ill-posed linear equations
for which a regularization must be enforced. In particular, the existence and
injectivity of the Fréchet derivative of the far field mapping that corresponds
to the inverse scattering problem is the theoretical basis for any approach
using Newton’s method. As also already mentioned in Section 3, for the case
of acoustic obstacle scattering the differentiability of the far field mapping
was first shown by Kirsch [51] in 1993 and Potthast [80] in 1994. For the
case of acoustic scattering by an inhomogeneous medium the corresponding
result was, to our knowledge, first obtained by Hohage in 2001. We now
briefly describe Hohage’s result [41, 42].

For the scattering problem (4.1) from the Lippmann–Schwinger equation
(4.2) we have that the far field pattern u∞ has the representation

u∞(x̂, d) = − k
2

4π

∫
R3

e−ik x̂·ym(y)u(y, d) dy, x ∈ S2.

We can now define a far field mapping F : L2(B)→ L2(S2× S2) for B a ball
containing the unknown support of m by

(Fm) (x̂, d) := − k
2

4π

∫
B

e−ikx·ym(y)u(y, d) dy, x̂, d ∈ S2,

and prove the following theorem.

Theorem 5.1 The operator F : m 7→ u∞ is Fréchet differentiable. The
derivative is given by

F ′mq = v∞

where v∞ is the far field pattern of the radiating solution v ∈ H1
loc(R3) to

∆v + k2nv = −k2uq in R3. (5.1)

Theorem 5.1 can now be used to establish the injectivity of F ′m.
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Theorem 5.2 For piecewise continuous m the operator

F ′m : L2(B)→ L2(S2 × S2)

is injective.

Proof. Assume that q ∈ L2(B) satisfies F ′mq = 0. Then for each d ∈ S2

the far field pattern of the solution to (5.1) vanishes and hence by Rellich’s
Lemma 2.1 we have that v(·, d) = ∂νv(·, d) = 0 on ∂B. Therefore by Green’s
second integral theorem we have that

k2

∫
B

qu(·, d)w dx = 0

for all d ∈ S2 and all solutions w ∈ H1(B0) of ∆w + k2nw = 0 in B0 ⊃ B.
Lemma 4.3 now implies that ∫

B

qww̃ dx = 0

for all w, w̃ ∈ H1(B0) satisfying ∆w + k2nw = 0 and ∆w̃ + k2nw̃ = 0 in B0.
The proof can now be completed analogous to that in Theorem 4.1. �

The analogues of Theorems 5.1 and 5.2 for the case of electromagnetic
waves have been presented by Hohage [42] in 2006. The numerical implemen-
tation of Theorems 5.1 and 5.2 has also been done by Hohage in the above
cited references.

There have of course been numerous other optimization methods to solve
the inverse scattering problem for (4.1) at fixed values of the wave number for
both acoustic and electromagnetic waves and for a sample of these we refer
to Gutman and Klibanov [32], Kleinman and van den Berg [58], Natterer
and Wübbeling [75], and Vögeler [94].

The use of optimization methods to solve the inverse scattering problem
for (4.1) at fixed frequency suffer from two major drawbacks. The first of
these is the need to solve a direct scattering problem at each step of the
iterative process. This has been partially addressed by either constructing
appropriate preconditioners to reduce the number of iterations and combining
this with so-called fast methods to solve the direct scattering problems that
arise at each step of the iteration process or by using decomposition methods
to avoid the need to solve a direct problem altogether (c.f. Chapter 10 of
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[23]). The second defect in using nonlinear optimization methods at fixed
frequency is the problem of local minima. This problem cannot be avoided
if the frequency is kept fixed. However, if it is assumed that the medium is
non-dispersive, then starting with Chen [17] in 1997 and further developed by
Bao and Li and their co-workers [6, 7] recursive linearization algorithms have
been developed which use multi-frequency scattering data and proceed via
a continuation procedure with respect to the frequency. Used appropriately,
this can alleviate the problem of local minima at high frequencies for which
the nonlinear equation becomes extremely oscillatory and possesses many
more local minima.

Before proceeding we wish to make a few remarks on stability estimates.
As noted in the 2001 paper by Hähner and Hohage [38], the best estimate
that can be established, even under appropriate a priori constraints, is log-
arithmic stability. This fact at first glance seems to contradict the many
excellent reconstructions that are presented in the literature for given noisy
far field data. However the stability estimates measure the difference be-
tween two far field patterns corresponding to two different refractive indices
and this is not the problem in practice where one is interested in the differ-
ence between the noise-free far field pattern and the noisy far field pattern
where the latter does not correspond to any refractive index. We also note
that for isotropic media, the degree of ill-posedness for the nonlinear inverse
scattering problem is the same as that of the linear problem arrived at by
using the Born approximation [54, 72].

Finally, we note that nonlinear optimization procedures to solve the in-
verse scattering problem for anisotropic media are fraught with difficulties
due to the fact that as mentioned in Section 4 the solution of the inverse
scattering problem in this case is not uniquely determined.

6 Sampling methods again

We have previously seen in Section 3 how the linear sampling method in
obstacle scattering developed from a decomposition method in obstacle scat-
tering, the dual space method of Colton and Monk. In the same way as in its
counterpart for obstacle scattering, in a first step the dual space method for
inhomogeneous media determines gz ∈ L2(S2) as the (regularized) solution
of the far field equation

Fgz = Φ∞(·, z) (6.1)
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where F : L2(S2)→ L2(S2) is the far field operator

(Fg)(x̂) :=

∫
S2
u∞(x̂, d)g(d) ds(d), x̂ ∈ S2, (6.2)

and

Φ∞(x̂, z) =
1

4π
e−ik x̂·z, x̂ ∈ S2,

is the far field pattern of a point source at a fixed point z where typically
z = 0 is chosen. This requires that F is injective with dense range and it
was shown in 1986 by Kirsch [50] that this is the case provided k is not a
transmission eigenvalue, i.e., the only solution of

∆w + k2nw = 0 in D

∆v + k2v = 0 in D

w = v on ∂D

∂w

∂ν
=
∂v

∂ν
on ∂D

(6.3)

is v = w = 0. Here D is a bounded domain with a connected C2 boundary
such that n is piecewise continuous in D̄ and ν is the unit outward normal
to ∂D. The topic of transmission eigenvalues will be the subject matter of
the next section of this paper. From the same heuristic reasoning as in the
obstacle case that we described in Section 3 it is expected that if a solution
gz to (6.1) exists then ‖gz‖L2(S2) → ∞ as z approaches ∂D. In particular,
this formal method for determining D works both for obstacle and medium
scatterers, i.e., it requires no a priori knowledge of the nature of the scattering
object nor does it make use of any “weak scattering” assumption or of any
nonlinear optimization method.

Although this approach to the inverse scattering problem was originally
called the “simple method”, this term was objected to by Michele Piana
who was visiting the University of Delaware as a postdoc from Italy. His
objection was based on the concern that he would have difficulties obtaining
a position in the tough job market in Italy if a major area of his research
was based on a “simple” method for solving inverse scattering problems. He
proposed instead to call this approach the linear sampling method since 1)
it was a linear method to determine the support D (without making any
“weak scattering” assumptions) and 2) it determined D by “sampling” R3
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with points z to determine where ‖gz‖ was large and small. The name has
stuck and this is what this approach to the inverse scattering problem is now
called.

The linear sampling method was first extended to the case of electromag-
netic waves by Haddar and Monk [35]. For a comprehensive discussion of the
linear sampling method for electromagnetic waves we refer the reader to [15].

The linear sampling method for both acoustic and electromagnetic waves
is based on three simple observations. The first observation (restricting again
our attention to the scattering problem (4.1)) is that a solution of the far
field equation (6.1) cannot exist unless z ∈ D. This follows from Rellich’s
lemma since the left hand side of (6.1) is the far field pattern of a solution of
the Helmholtz equation in R3 \D̄ whereas this is true for the right side if and
only if z ∈ D. The second observation, as already noted, is that the far field
operator is injective with dense range if k is not a transmission eigenvalue.
The third observation is that Fg is the far field pattern corresponding to the
incident field being a Herglotz wave function

vg(x) :=

∫
S2
g(d)eik x·d ds(d), x ∈ R3.

Since in general the far field equation (6.1) has no solution, some work is re-
quired to make use of the above three observations to arrive at a mathemat-
ically correct statement. The result of such an investigation is the following
theorem [20, 26].

Theorem 6.1 Assume that either

1) Imn > 0 in D̄ or

2) Imn = 0 in D̄ and either 0 < n < 1 or n > 1 in D̄.

Then if k is not a transmission eigenvalue for D the following is true:

1. For z ∈ D and a given ε > 0 there exists a function gεz ∈ L2(S2) such
that

‖Fgεz − Φ∞(·, z)‖L2(S2) < ε (6.4)

and the Herglotz wave function vgεz with kernel gεz satisfies

lim
ε→0

∥∥vgεz∥∥L2(D)
<∞.
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2. For z /∈ D every gεz ∈ L2(S2) that satisfies (6.4) for a given ε > 0 is
such that

lim
ε→0

∥∥vgεz∥∥L2(D)
=∞.

In practice the function gεz in the above theorem is determined by us-
ing Tikhonov regularization. However the problem in doing this is that, as
mentioned previously, in general there does not exist a solution of the far
field equation for noise-free data u∞ and hence it is not clear what solution
is obtained by using Tikhonov regularization. This question has been ad-
dressed and clarified by Arens and Lechleiter [3, 4]. The following theorem
due to Kirsch [53] provides the foundation for what is called the factorization
method (since it is based on a factorization of the far field operator F (c.f.
Section 3.3).

Theorem 6.2 Assume that n is real valued and satisfies the assumptions of
Theorem 6.1 and assume again that k is not a transmission eigenvalue for
D. Then z ∈ D if and only if

(F ?F )1/4gz = Φ∞(·, z) (6.5)

is solvable in L2(S2).

The factorization method of Andreas Kirsch has played a central role in the
mathematical theory of inverse scattering theory and for a full discussion
of this approach for solving the inverse scattering problem as well as its
extensions to the case when n is no longer real valued we refer the reader to
the monograph [55]. In particular, Arens and Lechleiter used this method to
provide the following justification for using Tikhonov regularization in the
linear sampling method for the case when n is real valued:

Theorem 6.3 Let F be the far field operator, assume that n is real valued,
satisfies the assumptions of Theorem 6.1 and assume again that k is not a
transmission eigenvalue. For z ∈ D denote by gz the solution to (6.5) and
for α > 0 and z ∈ R3 let gαz denote the solution of the far field equation
(6.1) obtained by Tikhonov regularization. Let vgαz denote the Herglotz wave
function with kernel gαz . If z ∈ D then limα→0 vgαz (z) exists and

c ‖gz‖2 ≤ lim
α→0

∣∣vgαz (z)
∣∣ ≤ ‖gz‖2

for some c > 0 depending only on D. If z /∈ D then limα→0 vgαz (z) =∞.
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The approach used by Kirsch to justify the linear sampling method was
to change the operator F to (F ?F )1/4. An alternative approach is to keep
the operator F but to change the penalty term in the Tikhonov functional
associated with F . This point of view leads to the generalized linear sampling
method of Audibert and Haddar and for details of this method for solving the
inverse scattering problem as well as its connections to the linear sampling
and factorization methods we refer the reader to [5, 14]. In addition to the
linear sampling, factorization and generalized linear sampling methods for
solving the inverse scattering problemfor an inhomogeneous medium, other
non-optimization methods have also been derived and, in particular, we note
the singular source method of Potthast [82], the probe method of Ikehata [44]
and Sylvester’s [63, 90] method of convex scattering support. For details we
refer the reader to the recent monograph [74] as well as the above quoted
literature.

In the above discussion on sampling methods to solve the inverse scatter-
ing problem we have focused on the scattering problem (4.1). However, as
previously mentioned, the sampling methods that we have discussed also ex-
tend to the case of anisotropic media and electromagnetic waves. For details
we refer to [14, 15]. Such results are of particular interest for anisotropic
media since, due to the non-uniqueness of the inverse scattering problem,
optimization methods are in general no longer applicable.

7 Transmission eigenvalues

In the previous section we already mentioned the transmission eigenvalue
problem in connection with the issue of injectivity and dense range of the far
field operator. More generally, the interior transmission problem is to find
(v, w) ∈ L2(D)× L2(D) such that w − v ∈ H2(D) and

∆w + k2nw = 0 in D

∆v + k2v = 0 in D

w − v = f on ∂D

∂w

∂ν
− ∂v

∂ν
= h on ∂D

(7.1)

for given (f, h) ∈ H3/2(∂D) × H1/2(∂D). (Note that w − v ∈ H2(D) and
n > 1 or 0 < n < 1 in D̄ imply that (v, w) ∈ L2(D) × L2(D).) The interior
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transmission problem (7.1) plays an essential role in inverse scattering theory
for inhomogeneous media, in particular in the mathematical justification of
the sampling methods as discussed in the previous section. As already men-
tioned, the homogeneous form of the interior transmission problem is referred
to as the transmission eigenvalue problem and the corresponding eigenvalues
as transmission eigenvalues. Of central concern are 1) the Fredholm property
and solvability of the interior transmission problem, 2) the discreteness of
the set of transmission eigenvalues, 3) the existence of transmission eigenval-
ues and 4) the determination of the transmission eigenvalues from scattering
data and the relationship between them and the material properties of the
inhomogeneous media.

The transmission eigenvalue problem was first introduced by Kirsch [50]
in 1986 in connection with the denseness and injectivity of the far field op-
erator. The solvability of the interior transmission problem (and the name
transmission eigenvalue problem) was subsequently considered by Colton and
Monk in 1988 in their study of the dual space method to solve the inverse
scattering problem [24]. Shortly thereafter Colton, Kirsch and Päivärinta [21]
and Rynne and Sleeman [86] showed that the set of transmission eigenvalues
is discrete. At that time transmission eigenvalues were viewed as something
to avoid since the primary concern was to guarantee that the far field oper-
ator was injective with dense range. This perhaps explains the fact that it
wasn’t until 2008 that Päivärinta and Sylvester [79] finally proved the ex-
istence of real transmission eigenvalues. All of the above research was for
the case of acoustic waves in an inhomogeneous isotropic medium. The solv-
ability of the interior transmission problem for scalar anisotropic media and
for Maxwell’s equations was investigated by Cakoni, Colton and Haddar in
2002 and Haddar in 2004 respectively in which these authors also established
the discreteness of the set of transmission eigenvalues [14, 15]. Finally, the
existence of real transmission eigenvalues for scalar anisotropic media and
Maxwell’s equations was established by Cakoni, Gintides and Haddar [16] in
2010 in which they also established monotonicity properties for transmission
eigenvalues and the role of such properties in determining material properties
of the inhomogeneous media from measured scattering data. The problem
of determining transmission eigenvalues from the far field data of the scat-
tered field was first investigated by Cakoni, Colton and Haddar in 2010 with
a totally different approach to this problem being presented by Kirsch and
Lechleiter in 2013 (c.f. Section 4.4 of [14]). Finally, the question of whether
or not complex transmission eigenvalues exist is an open question except
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for the case of a spherically stratified medium and for details in this latter
case we refer the reader to Chapter 5 of [14]. It has been recently shown by
Vodev that if complex transmission eigenvalues exist, then under appropriate
conditions they all lie in a strip [92, 93].

The above brief outline of the history of the development of the theory
of transmission eigenvalues only scratches the surface of the development of
this area of research. Since the initial results mentioned above, the theory
has been further enriched by the contributions of numerous researchers, in
particular Lakshtanov and Vainberg [64, 65] and the previously mentioned
papers by Vodev. For further references as well as a detailed discussion of
the results obtained in the above cited papers we refer the reader to [14, 15].

In order to give a flavor of the analysis used in studying the interior
transmission problem we consider the transmission eigenvalue problem (6.3)
and outline the proof of the following theorem:

Theorem 7.1 Assume that n > 1 for 0 < 1 < n in D. Then the set of
transmission eigenvalues is at most discrete with infinity as the only possible
accumulation point. Furthermore, the multiplicity of each eigenvalue is finite.

Proof. We write (6.3) as an equivalent eigenvalue problem for u = w − v in
H2

0 (D) for the fourth order equation

(∆ + k2n)
1

n− 1
(∆ + k2)u = 0

which in variational form, after integrating by parts, is formulated as finding
a function u ∈ H2

0 (D) such that∫
D

1

n− 1
(∆u+ k2u)(∆v + k2nv) dx = 0

for all v ∈ H2
0 (D). This can be written as

u− τK1u+ τ 2K2u = 0

where τ := k2, the operators K1, K2 : H2
0 (D) → H2

0 (D) can be shown to be
compact and K2 is non-negative and self-adjoint. Hence, setting

U :=
(
u, τK

1/2
2 u

)
,
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the transmission eigenvalue problem becomes the eigenvalue problem(
K − 1

τ
I

)
U = 0

for the compact non-selfadjoint operator

K : H2
0 (D)×H2

0 (D)→ H2
0 (D)×H2

0 (D)

given by

K :=

(
K1 −K1/2

K
1/2
2 0

)
.

The theorem now follows from the spectral theory for compact operators. �

8 A personal note

We met each other in Oberwolfach in 1975 and hence it seemed particu-
larly appropriate that we completed this paper in 2017 while we were again
together in Oberwolfach participating in the Research in Pairs program. Al-
though we first met in 1975 and began our collaboration in 1976 when David
was a professor at the Univerisity of Strathclyde and Rainer was spending
his sabbatical there, we did not begin working together on inverse scattering
theory until the mid 1980s when we both became involved in decomposition
methods for solving the inverse scattering problem (see Sections 3 and 6 of
this paper).

It was not an accident that we both began working on the same approach
to inverse scattering since at that time there was a particularly active in-
teraction between the Mathematical Sciences Department at the University
of Delaware and the Institut für Numerische und Angewandte Mathematik
at the University of Göttingen. In particular, under the chairmanship of
Ivar Stakgold, the University of Delaware had become a leading center for
inverse problems and inverse scattering theory with Thomas Angell, David
Colton, George Hsiao, Ralph Kleinman, Peter Monk and Zuhair Nashed be-
ing actively involved in this field. At the same time, Rainer Kress was busy
building up the field of inverse problems at Göttingen through his seminars
and supervision of students. As part of these efforts Rainer would send some
of his most promising students to Delaware for a year while at the same
time supporting regular visits of Delaware faculty for shorter periods. As a
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result Joachim Blöhbaum, Peter Hähner, Andreas Kirsch and Roland Pot-
thast spent a year a Delaware whereas faculty members in scattering theory
at Delaware visited Göttingen for shorter (or sometimes longer!) periods of
time.

It was during this period of intense interaction between Delaware and
Göttingen that we wrote our two books [22, 23] together. The results on
inverse scattering in in our first book [23] are by now outdated whereas our
second book [23] has enjoyed widespread popularity in the inverse scattering
community as evidenced by a third edition appearing in 2013. We note that
the final version of the first edition was completed in 1992 when we were
also in Oberwolfach participating in the Research in Pairs program. Indeed,
this book influenced many people to enter the field of inverse scattering
as indicated by the steady production of PhD students in Göttingen (in
particular Thorsten Hohage, Olha Ivanyshyn and Pedro Serranho) as well as
the arrival of more postdoctoral students at Delaware, most notably Fioralba
Cakoni, Houssem Haddar and Michele Piana. This long term interaction
between the two of us, as well with our students, has been instrumental in
forming the view of inverse scattering that we have presented in this paper.
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[25] Colton, D. and Päivärinta, L.: The uniqueness of a solution to an inverse scattering
problem for electromagnetic waves. Arch. Rational Mech. Anal. 119, 59–70 (1992).

[26] Colton, D., Piana, M., and Potthast, R.: A simple method using Morozov’s dis-
crepancy principle for solving inverse scattering problems. Inverse Problems 13,
1477–1493 (1997).

[27] Colton, D. and Sleeman, B.D.: Uniqueness theorems for the inverse problem of
acoustic scattering. IMA J. Appl. Math. 31, 253–259 (1983).

[28] Dorn, O. and Lesselier, D.: Level set methods for inverse scattering – some recent
developments Inverse Problems 25, 125001 (2009).

[29] Farhat, C., Tezaur, R., and Djellouli, R.: On the solution of three-dimensional in-
verse obstacle acoustic scattering problems by a regularized Newton method. Inverse
Problems 18, 1229–1246 (2002).

[30] Feijoo, G.R.: A new method in inverse scattering based on the topological derivative.
Inverse Problems 20, 1819–1840 (2004).

[31] Gintides, D.: Local uniqueness for the inverse scattering problem in acoustics via
the Faber–Krahn inequality. Inverse Problems 21, 1195–1205 (2005).

[32] Gutman, S. and Klibanov, M.: Iterative method for multidimensional inverse scat-
tering problems at fixed frequencies. Inverse Problems 10, 573–599 (1994).

[33] Gylys-Colwel, F.: An inverse problem for the Helmholtz equation. Inverse Problems
12, 139–156 (1996).
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