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1 Introduction

In a bounded domainΩ ⊂ Rd, d ∈ {2, 3}, we consider the Navier-Stokes/Fourier
equations as a model of non-isothermal, incompressible flows

∂tu−∇ · (2νDu) + (u · ∇)u +∇p+ αgθ = f (1)

∇ · u = 0 in (0, T ]×Ω (2)

∂tθ − κ∆θ + u · ∇θ = Q (3)

u|t=0 = u0, θ|t=0 = θ0 in {0} ×Ω (4)

for velocity u, pressure p, and temperature θ with appropriate boundary con-
ditions. The deformation tensor is Du = 1

2 (∇u + (∇u)t). Viscosity ν and
diffusivity κ, together with reference temperature θmax− θmin, characteristic
length L, thermal expansion coefficient α and gravity vector g determine the

relevant dimensionless Rayleigh number Ra = α|g|L3(θmax−θmin)
νκ .

In Section 2, we introduce a projection-based variational multiscale model.
Section 3 is concerned with aspects of the numerical analysis of the semidis-
crete model. Finally, in Section 4, the approach is applied to a benchmark
problem of natural convection.

2 Variational Multiscale Model

Let Th be an admissible triangulation of Ω s.t. Ω = ∪K∈ThK. For simplicity,
we assume that Dirichlet boundary conditions for velocity and temperature
are homogenized. Then, we seek conforming finite element (FE) approxima-
tions of velocity, pressure, and temperature in subspaces of

V = [H1
0 (Ω)]d, Q = L2

∗(Ω) = {q ∈ L2(Ω) :

∫
Ω

q dx = 0}, Ψ = H1
0 (Ω).
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Let us consider inf-sup stable velocity-pressure FE spaces Vh ×Qh ⊂ V ×Q.
The basic Galerkin FE method reads:
find (uh, ph, θh) : [0, T ]→ Vh×Qh×Ψh s.t. for all (vh, qh, ψh) ∈ Vh×Qh×Ψh

(∂tuh,vh) + (2νDuh,Dvh) + bS(uh,uh,vh) + (αgθh,vh)

−(ph,∇ · vh) + (qh,∇ · uh) = (f ,vh) (5)

(∂tθh, ψh) + (κ∇θh,∇ψh) + cS(uh, θh, ψh) = (Q,ψh) (6)

with the skew-symmetric form of the advective terms

bS(u,v,w) := [((u · ∇)v,w)− ((u · ∇)w,v)]/2,

cS(u, θ, ψ) := [((u · ∇)θ, ψ)− ((u · ∇)ψ, θ)]/2.

The variational multiscale (VMS) approach, developed by Hughes [5], has
been used as a tool for scale separation in turbulence since 2000; for a review
see [3]. Consider a three-scale decomposition

V 3 v = vh + ṽh︸ ︷︷ ︸
=vh∈Vh

+v̂h; Q 3 q = qh + q̃h︸ ︷︷ ︸
=qh∈Qh

+q̂h; Ψ 3 ψ = ψh + ψ̃h︸ ︷︷ ︸
=ψh∈Ψh

+ψ̂h

with resolved scales (vh, qh, ψh) ∈ Vh×Qh×Ψh ⊂ V ×Q×Ψ . Inspired by [8],

for the model influence of (v̂h, q̂h, ψ̂h) on (ṽh, q̃h, ψ̃h) define discontinuous FE
spaces LH , MH for the deformation tensor and temperature gradient

{0} ⊆ LH ⊆ L :=
{
L = (lij) ∈ [L2(Ω)]d×d | lij = lji, 1 ≤ i, j ≤ d

}
{0} ⊆MH ⊆M := [L2(Ω)]d

on TH , H ≥ h and the L2-orthogonal projection operators Πu
H : L→ LH and

Πθ
H : M →MH together with the fluctuation operators

κu(Duh) : = (Id−Πu
H)(Duh), κθ(∇θh) : = (Id−Πθ

H)(∇θh).

For the calibration of the subgrid models for velocity and temperature, we
introduce cellwise constant terms νS(uh, θh) and κS(uh, θh) s.t.

νKS (uh, θh) := νS(uh, θh)|K , κKS (uh, θh) := κS(uh, θh)|K .

As model of the small unresolved pressure scales we add grad-div stabilization
with cellwise constant γK(uh, ph) := γ(uh, ph)|K s.t.

(γ(uh, ph)(∇ · uh),∇ · vh) :=
∑
K∈Th

γK(uh, ph)(∇ · uh,∇ · vh)K .

Summarizing, we obtain the following variational multiscale model:
find (uh, ph, θh) s.t. for all (vh, qh, ψh) ∈ Vh ×Qh × Ψh:

(∂tuh,vh) + 2ν (Duh,Dvh) + bS(uh,uh,vh) + (αgθh,vh)

+ (νS(uh, θh)κuD(uh), κuD(vh)) + (γ(uh, ph)∇ · uh,∇ · vh) (7)

+ (∇ · uh, qh)− (∇ · vh, ph) = (f ,vh) (8)

(∂tθh, ψh) + (κ∇θh,∇ψh) + cS(uh, θh, ψh)

+(κS(uh, θh)κθ(∇θh), κθ(∇ψh)) = (Q,ψh). (9)
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3 A priori error analysis of the semidiscrete model

Following [7], we obtain stability estimates for the VMS scheme (7)-(9).

Lemma 1. Let f ∈ L1(0, T ;L2(Ω)), Q ∈ L1(0, T ;L2(Ω)) and u0 ∈ [L2(Ω)]d,
θ0 ∈ L2(Ω). Then we obtain for t ∈ (0, T ] control of kinetic and heat energy

‖θh‖L∞(0,t;L2(Ω)) ≤ K1(Q, θ0) := ‖θ0‖0 + ‖Q‖L1(0,t;L2(Ω))

‖uh‖L∞(0,t;L2(Ω)) ≤ K2(f ,u0, Q, θ0) := ‖u0‖0 + ‖f‖L1(0,t;L2(Ω)) + Cα‖g‖0K1

and control of dissipation and subgrid terms

κ‖∇θh‖2L2(0,t;L2(Ω)) +

∫ t

0

∑
K

κKS (uh, θh)‖κθ∇θh‖20,Kdt ≤
3

2
K2

1

ν‖Duh‖2L2(0,t;L2(Ω)) +
1

2

∫ t

0

∑
K

νKS (uh, θh)‖κuDuh‖20,Kdt

+
1

2

∫ t

0

∑
K

γK(uh, ph)‖∇ · uh‖20,Kdt ≤ 3K2
2 .

Now we introduce elementwise multiscale viscosities νKVMS ,κKVMS via

∑
K∈Th

νKS (uh, θh) ‖κuDvh‖20,K =
∑
K∈Th

νKS (uh, θh)

(
1−
‖Πu

HDvh‖20,K
‖Dvh‖20,K

)
︸ ︷︷ ︸

=:νKVMS(vh)≥0

‖Dvh‖20,K ,

∑
K∈Th

κKS (uh, θh) ‖κθ∇ψh‖20,K =
∑
K∈Th

κKS (uh, θh)

(
1−

∥∥Πθ
H∇ψh

∥∥2
0,K

‖∇ψh‖20,K

)
︸ ︷︷ ︸

=:κKVMS(ψh)≥0

‖∇ψh‖20,K

where we applied the projector properties of the fluctuation operators.
In the following we will omit the dependency of the parameters on uh, θh

for better readability. Using the modified elementwise viscosities

νKmod(vh) : = 2ν + νKVMS(vh), κKmod(ψh) : = κ + κKVMS(ψh)

we define the following mesh-dependent expressions

|||u(t)|||2 := ‖u(t)‖20 +
∑
K∈Th

∫ t

0

(
νKmod(u)

2
‖Du‖20,K + γK(uh, ph) ‖∇ · u‖20,K

)
dt,

|[θ(t)]|2 := ‖θ(t)‖20 +
∑
K∈Th

∫ t

0

1

2
κKmod(θ) ‖∇θ‖20,K dt.

The following semidiscrete a priori estimate is an extension of a previous
result in [6] and [10] for the isothermal case. The proof takes advantage of the
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fact that, for inf-sup stable FE spaces for velocity/pressure, the space V divh

of discretely divergence free functions is not empty. Thus one can separate
estimates for velocity/temperature and pressure and apply an interpolation
operator by Girault/Scott [2] in V divh on isotropic meshes.

Theorem 1. For a sufficiently smooth solution (u, θ) of the Navier-Stokes/
Fourier model with ∇u ∈ L4(0, t;L2Ω)), ∂tu ∈ L2(0, t;H−1(Ω)) and ∇θ ∈
L4(0, t;L2Ω)), ∂tθ ∈ L2(0, t;H−1(Ω)), it holds for the solution of (7)-(9) for
all t ∈ (0, T ):

|||(u− uh)(t)|||2 + |[(θ − θh)(t)]|2

≤ 2 inf
ũh ∈ L2(0, t;V divh )

θ̃h ∈ L2(0, t;Ψh)

|||(u− ũh)(t)|||2 + |[(θ − θ̃h)(t)]|2

+ inf
ũh ∈ L4(0, t;V divh )

p̃h ∈ L2(0, t;Qh)

θ̃h ∈ L2(0, t;Ψh)

e
∫ t
0
g(s)ds

(
‖(uh − ũh)(0)‖20+‖(θh−θ̃h)(0)‖20+

∫ t

0

g2(s)ds

)

with

g(t) : =
27C4

LT

2νmin
mod(euh)3

‖Du‖40 +
8C4

1

νmin
mod(euh) κmin

mod(eθh)2
‖∇θ‖40 + 2α ‖g‖∞ ,

g2(t) : =2
∑
K∈Th

[
min

(
9C2

Ko

νmin
mod(euh)

,
1

γK(uh)

)(
‖p− p̃h‖20,K + γ2K(uh) ‖∇ · εu‖20,K

)
+ 6
(
ν + νKVMS(εu)

)
‖Dεu‖20,K +

(
2κ + 4κKVMS(εθ)

)∥∥∇εθ∥∥2
0,K

+ 6νKS (uh, θh) ‖κuDu‖20,K + 4κKS (uh, θh) ‖κθ∇θ‖20,K

]
+

6C2
Ko

νmin
mod(euh)

‖∂tεu‖2−1,Ω +
4

κmin
mod(eθh)

∥∥∂tεθ∥∥2−1,Ω + α|g|∞
∥∥εθ∥∥2

0

+
6C2

LT

νmin
mod(euh)

(
CFCKo ‖Du‖20 + ‖uh‖0 ‖Duh‖0

)
‖Dεu‖20

+
4C2

1CKo

κmin
mod(eθh)

(
CFCKo ‖∇θ‖20 ‖Dε

u‖20 + ‖uh‖0 ‖Duh‖0
∥∥∇εθ∥∥2

0

)
where νmin

mod(euh) := minK∈Th ν
K
mod(euh), κmin

mod(eθh) := minK∈Th κKmod(eθh) and

uh−u = (uh−ũh)−(u−ũh) =: euh−εu, θh−θ = (θh−θ̃h)−(θ−θ̃h) =: eθh−εθ.

CF and CKo are the constants of the inequalities of Friedrichs and Korn. CLT
and C1 are related to upper bounds of the advective terms.

Sketch of the proof: Please note that the regularity assumptions imply
uniqueness of the continuous solution (u, p, θ). Starting from the error equa-
tions for euh and eθh, careful estimates of the right hand side terms lead to
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∂t

(
‖euh‖

2
0 + ‖eθh‖20

)
+ g1(t) ≤ g(t)

(
‖euh‖

2
0 + ‖eθh‖20

)
+ g2(t)

with g(t) and g2(t) as stated in the Theorem and

g1(t) : =
1

4

∑
K∈Th

νKmod(euh) ‖Deuh‖
2
0,K +

1

2

∑
K∈Th

κKmod(eθh)
∥∥∇eθh∥∥20,K

+
∑
K∈Th

γK(uh, ph) ‖∇ · eh‖20,K .

Gronwall’s Lemma implies for all t ∈ [0, T ]

‖euh(t)‖20+‖eθh(t)‖20+

∫ t

0

g1(s)ds ≤ e
∫ t
0
g(s)ds

(
‖euh(0)‖20+‖eθh(0)‖20+

∫ t

0

g2(s)ds
)
.

Finally, the triangle inequality concludes the proof. For full details of the
proof, we refer to [9]. 2

Let us discuss the result for FE spaces Qk/Qk−1/Qk or Pk/Pk−1/Pk for
(uh, ph, θh) on isotropic meshes. Moreover, we formally assume sufficiently
smooth solutions (u, p, θ) of the continuous model. In particular, it can be
shown that the piecewise constants νmin

mod(euh), κmin
mod(eθh), and γK(uh, ph), oc-

curing on the right hand side of the error estimate, remain bounded.
The third line of term g2(t) consists of model errors. Let us assume

νKS (uh, θh),κKS (uh, θh) = O(h2K) for the subgrid functions. For the discon-
tinuous spaces LH = [Qdisck−2]d×d, MH = [Qdisck−2]d, or Qdisck−2 replaced with Pdisck−2,

the fluctuation operators provide an interplation error of O(h
2(k−1)
K ). Thus

the model error terms are of order O(h2k).
The remaining approximation terms in g2(t) are formally of order O(h2k),

based on the V divh -interpolation operator on isotropic meshes, see [2]. Properly
chosen subgrid parameters improve the estimate. see, e.g., the role of γK .
Moreover, in term g(t), viscosity ν is replaced with ν+ 1

2 minK ν
K
VMS(uh;u−

ũh), which corresponds to an increased effective Reynolds number. A similar
argument holds for κ.

Let us finally consider the Gronwall factor e
∫ t
0
g(s)ds. Following [4], this

factor is unavoidable for unstable solutions of the Navier-Stokes problem. It
can be avoided in case of (quasi-)exponentially stable solutions.

4 Application to natural convection flow

For the spatial discretization we apply quadrilateral meshes with FE spaces
Q2/Q1/Q2 for velocity/pressure/temperature within the FE package deal.II,
see [1]. The arising semidiscrete problem of the form
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0 Mθ 0
0 0 0

u′h(t)
θ′h(t)
p′h(t)

 =

 fh(t)
qh(t)

0

−
Au(uh) C B

0 Aθ(uh) 0
BT 0 0

uh(t)
θh(t)
ph(t)


is a DAE-system with differentiation index 2 and perturbation index 2. For
the time discretization, we apply the BDF(2)-formula for velocity

u′h(tn+1) ≈ [3uh(tn+1)− 4uh(tn) + uh(tn−1)]/(2τn)

and similarly for θ′h(tn+1). This results in favourable stability properties and
does not lead to order reduction for the algebraic variable. A fixed-point iter-
ation is performed for the arising non-linear implicit scheme.

In a next step, we have to introduce the non-isothermal viscosity model.
We start from the residual stress tensor τR and residual temperature flux h

τR := 〈u⊗ u〉 − uh ⊗ uh ≈ −2νSDuh, h := 〈uθ〉 − uhθh ≈ −κS∇θh

and apply the subgrid model of Smagorinsky-Eidson [12]

νS = (CE∆)2 max

(
0 , ‖Duh‖2F +

β

PrS
g · ∇θh

)1/2

, κS = νS/PrS

with CE = 0.21 and PrS = 0.4. As filter width ∆ we use an anisotropic scaling
matrix that takes local mesh anisotropy and orientation into account. This
approach gave better results than taking an isotropic filter width (e.g. length of
shortest edge). The model reduces to the Smagorinsky model if g·∇θh = 0. For
wall bounded flows the turbulent viscosities may be multiplied by van Driest-
type damping functions for reasonable near wall behavior. It is well known
that the Smagorinsky model is over-diffusive. A reduction of model dissipation
may then be established by an application of the fluctuation operators

τR = −2νSκu(Duh), h = −κSκθ(∇θh).

In our implementation, we use an one-level approach with H = h and the
discontinuous spaces Lh = [Qdisc0 ]d×d and Mh = [Qdisc0 ]d.

Now we apply the method to natural convection in a differentially heated
cavity Ω := (0, 1)d. The numerical simulations in [12] in a three-dimensional
cavity show that for appropriate boundary conditions in x3-direction there
appears a statistically two-dimensional flow. This motivates the present re-
striction to d = 2. Heating θ = θmax and cooling θ = θmin is performed
at lateral boundaries, whereas the upper and lower boundaries are highly
conducting. As suggested in [11] we use experimental data as boundary con-
ditions on these walls. No-slip conditions u = 0 for velocity are given at
the whole boundary ∂Ω. Computations were done on two meshes with 64
and 32 cells in each dimension. An anisotropic mesh refinement had been per-
formed at all boundaries by transforming an equidistant reference mesh with
x = x̂ − 19

40π sin(2πx̂) and y = ŷ − 7
16π sin(2πŷ) . The maximum aspect-ratio

of cells at the vertical walls was about 36:1.
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Fig. 1. Boundary layer profiles for horizontal velocity profile v(x, 0.5) (left) and for
horizontal temperature profile T (x, 0.5) (right) and experimental data [11]
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Fig. 2. Temperature profile on vertical centerline T (0.5, y) (left) and wall shear
stress (right) and experimental data of [11]

Let us present some first results for time-averaged quantities of a low-
turbulence flow at Ra = 1.58× 109. Here we used the projection-based VMS
with Smagorinsky-Eidson parametrization of the subgrid model without van
Driest damping. On both meshes the results for velocity and temperature
profiles, wall shear stress (see Fig. 1 and 2) and Nusselt number (not shown)
are in good agreement to experimental data of [11]. Interestingly, we observed
(for fixed parameters) no big difference of the solutions on the two grids with
exception of wall-shear stress.

We used grad-div stabilization with constant γK = 0.3 to improve the
mass conservation properties of the scheme. On the coarse grid with n = 32,
we obtained ‖∇ · uh‖0 = 0.0029 for γ = 0.3 as opposed to ‖∇ · uh‖0 = 0.0517
for γ = 0, i.e., an improvement by a factor of 18.

One critical point of the simulation is the separation of the flow at the
vertical walls and its reattachment at the horizontal walls. Experiments show
small counter-rotating vortices in these corners, which we also found in our
simulations on the fine mesh.
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5 Summary and Outlook

In this paper, we applied a variational multiscale model to the time-dependent
Navier-Stokes/Fourier model of incompressible and non-isothermal flows. For
the case of piecewise nonlinear subgrid models for the unresolved velocity,
temperature, and pressure fluctuations, an a priori analysis of the nonlin-
ear semidiscrete problem was given. Finally, we applied the approach to the
standard benchmark problem of natural convection problem in a differentially
heated two-dimensional cavity.

Some open problems are the extension to Rayleigh-Benard convection and
to mixed convection problems in indoor air-flow simulation. This will be con-
sidered in future research.
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