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1 Introduction

In a bounded domain Ω ⊆ R3, we consider the incompressible Navier-Stokes
model to determine velocity u and pressure p s.t.

∂tu−∇ · (2νDu) + (u · ∇)u +∇p = f in (0, T ]×Ω (1)
∇ · u = 0 in [0, T ]×Ω (2)

u|t=0 = u0 in Ω (3)

together with appropriate boundary conditions on the boundary ∂Ω. The
deformation tensor is denoted by Du = 1

2 (∇u+(∇u)T ). The Reynolds number
Re = UL

ν relies on viscosity ν, a reference length L and velocity U.
In Section 2, we introduce a variational multiscale (VMS) finite element

model. Aspects of the numerical analysis of the semidiscrete model are ad-
dressed in Section 3. Section 4 is concerned with the application of the ap-
proach to a benchmark problem of wall-bounded flows in a channel. In partic-
ular, we discuss the problem whether a layer-adapted mesh in the boundary
layer regions or a weak implementation of boundary conditions for the velocity
at the wall is appropriate.

2 Variational multiscale approach

For simplicity, we consider no-slip boundary conditions and thus, for a weak
formulation, the spaces

V = [H1
0 (Ω)]3, Q = L2

∗(Ω) := {q ∈ L2(Ω) :
∫
Ω

q dx = 0}.

By ‖ · ‖0,G we denote the standard L2-norm on a measurable domain G ⊆ Ω.
Moreover, let ‖ · ‖0 = ‖ · ‖0,Ω .
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Let Th be an admissible (possibly anisotropic) mesh s.t. Ω = ∪K∈ThK. We
consider finite element (FE) spaces Vh × Qh ⊂ V × Q for velocity/pressure
subject to the discrete inf-sup stability condition

∃β 6= β(h) s.t. inf
qh∈Qh

sup
vh∈Vh

(qh,∇ · vh)
‖qh‖0‖∇vh‖0

≥ β > 0.

The basic Galerkin FE method reads:
find (uh, ph) : [0, T ]→ Vh ×Qh s.t. ∀(vh, qh) ∈ Vh ×Qh

(∂tuh,vh) + (2νDuh,Dvh) + bS(uh,uh,vh)− (ph,∇ · vh) = (f ,vh)
(qh,∇ · uh) = 0

with the skew-symmetric advective term

bS(u,v,w) := [((u · ∇)v,w)− ((u · ∇)w,v)]/2.

We consider the following three-scale decomposition

V 3 v = vh + ṽh︸ ︷︷ ︸
=vh∈Vh

+v̂h; Q 3 q = qh + q̃h︸ ︷︷ ︸
=qh∈Qh

+q̂h

with resolved scales (vh, qh) ∈ Vh ×Qh ⊂ V ×Q. The influence of the small
unresolved scales (v̂h, q̂h) on (ṽh, q̃h) will be modelled following the variational
multiscale approach, see [5]. Define the FE space LH for the deformation
tensor on TH , H ≥ h

{0} ⊆ LH ⊆ DVh ⊆ L :=
{
L = (lij) | lij = lji ∈ L2(Ω) ∀i, j ∈ {1, 2, 3}

}
and the L2-orthogonal projection operator ΠH : L → LH . The model of the
small unresolved velocity scales is defined by means of the fluctuation operator

κ(Dvh) : = (Id−ΠH)(Dvh).

For the calibration of the subgrid model for velocity, we introduce cellwise
constant terms νT (uh) s.t. νKT (uh) := νT (uh)|K .

As a model of the small unresolved pressure scales, we add the so-called
grad-div stabilization [12] with cellwise constant γK(uh) := γ(uh)|K s.t.

(γ(uh)(∇ · uh),∇ · vh) :=
∑
K∈Th

γK(uh)(∇ · uh,∇ · vh)K .

Finally, the VMS model reads as follows: find (uh, ph) s.t.

(∂tuh,vh) + 2ν (Duh,Dvh) + bS(uh,uh,vh) (4)
+ (νT (uh)κ(Duh), κ(Dvh)) + (γT (uh)∇ · uh,∇ · vh) (5)

+ (∇ · uh, qh)− (∇ · vh, ph) = (f ,vh) (6)

for all (vh, qh) ∈ Vh ×Qh.
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3 Aspects of the numerical analysis

The following sketch of the semidiscrete analysis is an extension of a result
in [8]. It takes advantage of the fact that, for inf-sup stable FE spaces for
velocity/pressure, the space V divh of discretely divergence free functions is not
empty. In particular, we can separate estimates for velocity and pressure.
Moreover, an additional pressure stabilization is not required.

Following the approach in [10], we obtain the following stability estimates
which are valid on arbitrary admissible grids.

Lemma 1. Let f ∈ L1(0, T ;L2(Ω)),u0 ∈ [L2(Ω)]3. Then, for all t ∈ (0, T ],
there is control of kinetic energy

‖uh‖L∞(0,t;L2(Ω)) ≤ K(f ,u0) ≡ ‖u0‖0 + ‖f‖L1(0,t;L2(Ω))

and of the dissipation and subgrid terms

ν‖Duh‖2L2(0,t;L2(Ω)) +
1
2

∫ t

0

∑
K

νKT (uh)‖κ(Duh)‖20,Kdt

+
1
2

∫ t

0

∑
K

γK(uh)‖∇ · uh‖20,Kdt ≤ 3K2(f ,u0).

We introduce elementwise multiscale viscosities νKVMS(uh,vh) via∑
K∈Th

νKT (uh) ‖κ(Dvh)‖20,K =
∑
K∈Th

νKT (uh)
(

1−
‖ΠHDvh‖20,K
‖Dvh‖20,K

)
︸ ︷︷ ︸

=:νKVMS(uh,vh)≥0

‖Dvh‖20,K

where we take advantage of the projector properties of the fluctuation operator
κ. Then we define the following mesh-dependent norm for the analysis

|||u(t)|||2 := ‖u(t)‖20 +
∑
K∈Th

∫ t

0

(
νKmod(u,uh)

2
‖D(u)‖20,K + γK(uh) ‖∇ · u‖20,K

)
dt

with modified elementwise viscosities:

νKmod(uh,vh) : = 2ν + νKVMS(uh,vh).

Then we obtain the following semidiscrete a priori estimate.

Theorem 1. For a sufficiently smooth solution u of the Navier-Stokes model
(1)-(3) it holds for the solution of the VMS model (4)-(6) for all t ∈ (0, T ):

|||(u− uh)(t)|||2 ≤ 2 inf
ũh ∈ L

2(0, t;V divh )
|||(u− ũh)(t)|||2

+ e

R t
0

27C4
LT

2νmin
mod

(uh,e
u
h

)3
‖Du(s)‖40ds inf

ũh ∈ L
4(0, t;V divh )

p̃h ∈ L
2(0, t;Qh)

(
‖(uh − ũh)(0)‖20 +

∫ t

0

A(s)ds
)
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with

A(t) : =2
∑
K∈Th

[
6νKVMS(uh,u) ‖Du‖20,K

+ 6
(
ν + νKVMS(uh, εu)

)
‖Dεu‖20,K

+ min
(

9C2
Ko

νmin
mod(uh, euh)

,
1

γK(uh)

)(
‖p− p̃h‖20,K + γ2

K(uh) ‖∇ · εu‖20,K
)]

+
6C2

LT

νmin
mod(uh, euh)

(
CFCKo ‖Du‖20 + ‖uh‖0 ‖Duh‖0

)
‖Dεu‖20

+
6C2

Ko

νmin
mod(uh, euh)

‖∂tεu‖2−1,Ω

where νmin
mod(uh, euh) := minK νKmod(uh(t),vh(t)) and

uh − u = (uh − ũh)− (u− ũh) =: euh − εu.

CF and CKo are the constants of the inequalities of Friedrichs and Korn. CLT
is related to an upper bound of the advective term.

Remark 1. The first r.h.s. term in the first line of term A(t) is related to
the VMS-model error. For the remaining approximation terms in A, we can
apply the interpolation operator by Girault/Scott [6] in V divh on isotropic
meshes and a standard interpolation operator for the pressure. Then these
terms are formally of order O(hk) for FE spaces Qk/Qk−1 or Pk/Pk−1 for
velocity/pressure.

Sketch of the proof: From the weak form of (1)-(3) and (4)-(6), we obtain
the error equation

1
2
∂t ‖euh‖

2
0 +

∑
K∈Th

νKmod(uh, euh) ‖Deuh‖
2
L2(K) +

∑
K∈Th

γK(uh) ‖∇ · euh‖
2
L2(K)

= (∂tεu, euh) + (2νDε,Deuh) + bS(u,u, euh)− bS(uh,uh, euh)− (p− λh,∇ · euh)

+
∑
K∈Th

[
γK(uh) (∇ · εu,∇ · euh)K + νKT (uh) (κDεu, κDeuh)K

−νKT (uh) (κDu, κDeuh)K
]
, ∀λh ∈ Qh.

Careful estimates of the right hand side terms lead to

∂t ‖euh(t)‖20 + d(t) ≤ g(t) ‖euh(t)‖20 +A(t)

with

g(t) : =
27C4

LT

2νmin
mod(uh, euh)3

‖Du(t)‖40 ,

d(t) : =
1
4

∑
K∈Th

νKmod(uh, euh) ‖Deuh(t)‖20,K +
∑
K∈Th

γK(uh) ‖∇ · eh(t)‖20,K ,
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and A(t) as given in the Theorem. Gronwall’s Lemma implies for all t ∈ [0, T ]

‖euh(t)‖20 +
∫ t

0

d(s)ds ≤ e
R t
0 g(s)ds

(
‖euh(0)‖20 ‖

2
0 +

∫ t

0

A(s)ds
)
.

Finally, the triangle inequality concludes the proof. For full details of the
proof, we refer to [13]. 2

In the remaining part of paper, we will discuss how the given approach
can be adapted to the case of turbulent channel flows.

4 Application to turbulent channel flow

For the spatial discretization, we apply hexahedral meshes with FE spaces
Q2/Q1 for velocity/pressure within the FE package deal.II, see [2]. The
arising semidiscrete problem of the form(

Mu 0
0 0

)(
u′h(t)
p′h(t)

)
=
(

fh(t)
0

)
−
(
Au(uh) B
BT 0

)(
uh(t)
ph(t)

)
is a DAE-system with differentiation index 2 and perturbation index 2. For
the time discretization, we apply the BDF(2)-formula

u′h(tn+1) ≈ 1
2δt

[3uh(tn+1)− 4uh(tn) + uh(tn−1)]

which provides favourable stability properties and does not lead to order re-
duction for the pressure. A fixed-point iteration is applied for the resulting
non-linear implicit scheme.

The calibration of the viscosity model is motivated by the Boussinesq
approximation of the residual stress tensor via

τR := 〈u⊗ u〉 − uh ⊗ uh ≈ −2νtDuh

together with the classical Smagorinsky model and van-Driest damping

νt(Duh)|K =
[
CS∆K(1− exp (−uτdist(SK , ∂Ω)

26ν
)
]2
‖Duh(SK)‖F .

Here, SK denotes the center of gravity of element K and uτ denotes the wall
friction velocity (see below). A reduction of model dissipation is established
by application of the fluctuation operator

τR ≈ −2νt(Duh)κ(Duh).

For the fluctuation operator κ := Id−Πh with the L2-orthogonal projection
Πh : L→ Lh, we apply a one-level approach with H = h and Lh = Q0

d×d. On
each element K ∈ Th, the filter width is given by ∆K = meas(K)/(2(k − 1))
with element order k of Vh. The Smagorinsky constant C2

S = 0.0942 is taken
from Lilly’s argument for isotropic homogeneous turbulence, see [13].
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4.1 Turbulent channel flow at moderate Reynolds number Reτ

We start with channel flow at a moderate Reynolds number Reτ = 180 (cor-
responding to Re = 5644 in channel center) for which an anisotropic grid
resolution of the boundary layer regions is feasible. The Reynolds number
Reτ = Huτ/ν is defined via the half width H of the channel and wall-friction
velocity uτ satisfying Spalding’s form of the law of the wall

y+ = f(u+) := u+ + e−5.5χ

(
eχu

+
− 1− χu+ − 1

2
(χu+)2 − 1

6
(χu+)3

)
with y+ := yuτ

ν , u+ := ‖uh‖
uτ

, and χ = 0.4.
A careful description of the set-up of the problem (but with different

scaling) is given in [9]. We performed simulations with N3 grid points, with
equidistant distribution of elements in x1, x3-directions and anisotropic dis-
tribution in x2-direction according to

x2 = y = tanh(2(2i/(N)− 1))/ tanh(2), for i = 0, ..., N.
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Fig. 1. Channel flow at Reτ = 180 with 323 grid points: Mean streamwise velocity
U = 〈uh〉e1 (left) and its normalized variant U+ = U/uτ (right)

Statistical averaging 〈·〉 is performed over all homogeneous directions
x1, x3, t. As an example of first-order statistics, we present in Fig. 1 the mean
streamwise velocity U = 〈uh〉e1 and its normalized variant U+. Compared to
direct numerical simulation (DNS) results of [11], we obtain very good agree-
ment in the viscous sub-layer whereas slight deviations can be found in the
log-layer and in the center of the channel. As examples of second-order statis-
tics, the normalized fluctuations 〈u′1, u′2〉+ and 〈u′1, u′1〉+ are shown in Fig. 2.
The agreement with the DNS data is very good in the vicinity of the wall and
(for such relatively coarse grid) resonable in the core of the channel.

Numerical experiments in [1] with lowest-order Taylor-Hood elements on
anisotropic grids indicate a potential strong influence of a large aspect ratio
a := maxK h1,K/h2,K . In our experiments, we obtained for N = 32 grid points
in x2-direction a value of a ≈ 20. A modification of the V divh -interpolation
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Fig. 2. Channel flow at Reτ = 180 with 323 grid points: Normalized fluctuations
〈u1, u

′
1〉 (lect) and 〈u′

1, u
′
2〉 (right)

results of [6] to Cartesian tensor-product meshes shows the dependence of
the aspect ratio on interpolation results. This will be reported elsewhere.
This clearly limits the applicability of layer-adapted meshes with Taylor-Hood
elements to moderate values of Reτ .

4.2 Turbulent channel flow at higher Reynolds numbers

A proper anisotropic resolution of near-wall region in LES for higher Reτ is
not feasible. Near-wall modelling with adaption of wall-functions on isotropic
grid may be considered as a remedy. Here we follow the approach in [3, 4]
with weak implementation of wall boundary conditions on isotropic grids.

The simplest variant [3] is a weak nonsymmetric or symmetric penalty-
type implementation of Dirichlet condition uh = 0 at the wall ΓW and is
performed by adding the following terms

−
∑
K

(2νDuh · n,vh)∂K∩ΓW ± (uh, 2νDvh · n)∂K∩ΓW + (uh, τBvh)∂K∩ΓW ) .

Here the Dirichlet penalty factor is taken as τB := u2
τ

‖uh‖ with tangential veloc-
ity uh and wall-friction velocity uτ . A similar approach is realized on inflow
and outflow parts of the channel.

In particular, for the non-symmetric case, symmetric testing vh = uh gives
immediately control of

∑
K τB‖uh‖20,∂K∩ΓW . A modification of the numerical

analysis in Section 3 is possible, but will not considered.
A refined variant of a weak implementation of Dirichlet conditions, in-

cluding advective and pressure parts of the traction operator, is given in [4].
Convincing numerical results for channel flows on (rather fine) isotropic grids
are reported in [3, 4] for Reynolds numbers Reτ ∈ {395, 950, 2003}.

5 Summary. Outlook

We applied a variational multiscale model to the time-dependent Navier-
Stokes model. For wall-bounded flows in a channel, we discussed two variants:
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anisotropic mesh resolution in boundary layers for moderate Reτ and isotropic
meshes with near-wall modelling via weak Dirichlet conditions for higher Reτ .
The a priori analysis of the arising nonlinear semidiscrete problem given in
[13] can be adapted to both situations.

We believe that the current approach in airbus industry, e.g. at DLR (Ger-
man Aerospace Center), with delayed detached eddy simulation (DDES) with
LES away from layers and RANS in layer regions can be cast into the frame-
work of the proposed projection-based VMS method. In particular, an appli-
cation of the approach to problems with separation is in order.
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