Interior Point Methods for Large Scale
Portfolio Optimization

Diplomarbeit

vorgelegt von
Stefan Klebor

aus Liidinghausen

angefertigt am
Institut fiir Numerische und Angewandte Mathematik
der Georg-August-Universitat Gottingen
1994






This thesis is dedicated to my teachers Michael Rasche who
sparked my interest in mathematics and Prof. Dr. P.E. Gill
who sparked my interest in interior point methods.

It is also dedicated to the wonderful institution INTERNET.
[ feel that without it this thesis would not have been possible.






Acknowledgements

My first and special thanks goes to Prof. Dr. J. Werner for the freedom he gave me in
selecting the topic, for the supervision of my work, for a lot of useful comments and
fruitful discussions and last but not least for his intervention in getting the permission
to write this thesis in english.

I am also most grateful for the invaluable support of The MathWorks, Inc. and
Bausch-Gall GmbH and here in particular Cleve B. Moler, Sandra Heaney and Adriana
Ionescu. Their free provision of the powerful tool MATLAB made the implementations
and the numerical experiments possible. Thanks to Gerhard Siebrasse for installing
the UNIX version of MATLAB and to Peter Beisel for granting me access to MATLAB
at the University of Wuppertal.

In this context I want to extend a special thanks to Messrs. Ken-ichi Suzuki and
Hiroshi Konno for the provision of their test data from the Tokyo Stock Exchange
Market.

Thanks also to Tamra J. Carpenter, Masakazu Kojima, Kenneth O. Kortanek,
Irvin J. Lustig, David F. Shanno, Richard A. Tapia, Robert J. Vanderbei, Yin Zhang
and Eberhard Kranich for useful hints and for providing me with interesting preprints
of papers.

I would like to particularly thank my parents for all the support they have given me
throughout my studies and before. I know that they helped me more than I would be
able to imagine.

It is impossible to thank my beloved fiancée Lara enough for everything she has
given me. I hope I will have a lifetime at her side to show her my gratitude.






Contents

Acknowledgements
1. Introduction

2. Portfolio Optimization
2.1 The Mean-Variance Model . . . . . . . . ... ... .. .. .......
2.2 A Separable Representation . . . . .. .. .. ... .. ... ... ..

3. Introduction to Interior Point Methods
3.1 Logarithmic Barrier Transformations . . . . . . .. ... ... ... ..
3.2 A Model Algorithm . . . . . . ... .. ...

3.3 Superlinear Convergence . . . . . . . . . . . ..o

4. A Globally and Superlinearly Convergent Interior Point Method
4.1 Algorithm . . . . . ..
4.2 Choices of Parameters . . . . . . . .. ... .00
4.2.1 Centering Parameter . . . . . . . .. . ... L.
4.2.2 Steplength . . . . . ..o
4.3 Global Convergence . . . . . . . . .. . .

4.4 Superlinear Convergence . . . . . . . . . . .. e

5. Implementation
5.1 The Models in Practice . . . . . . . .. . ... ... ... ... ....
5.2  Pure Primal-Dual Algorithm . . . . . . . ... ... ... ... ....

5.2.1 Initialization . . . . . . . . . . .



Contents

6.

5.2.2  Computation of Centering Parameter . . . . . . .. . .. .. ..
5.2.3 Computation of Search Directions . . . . . . .. ... ... ...
5.2.4 Computation of Steplength . . . . . . ... ... ... .. ....
5.2.5  Termination Criteria . . . . . . . . . .. .. .. .. ... .. ..
5.3 Predictor-Corrector Algorithm . . . . . . .. ... ... ... .. ....
5.3.1 Motivation . . . . . ...
5.3.2 Implementation . . . . . ... .. .. ... ... ...

5.4 Numerical Results . . . . . . . . . .

Conclusions and Summary

Appendix

A.

Listings of Routines

A.1 Model Generator: mvtosta . . . . . . . .. . ...
A.2 Pure Primal-Dual Algorithm: pd_ipm . . . . . . .. .. ... .. ....
A.3 Predictor-Corrector Algorithm: pc_ipm . . . . . .. .. ... ... ...
A4 Data Generator: randprob . . . . . . . .. ...

Bibliography

61

63

65
65
66
71
76

79



1. Introduction

In 1959 Harry M. Markowitz laid the foundation for modern portfolio* theory with
the introduction of his mean-variance (MV) model [16]. From a mathematical point of
view it is nothing more than a convex quadratic program (QP) with a matrix in the
objective function that is usually completely dense. This circumstance often makes it
difficult to solve large MV models. In fact it is difficult even to generate the model as
this involves the estimation of a great number of parameters.

As a result the MV model was not used very much in practice throughout the 1960s
and '70s. Instead other —simplified— models that were based on the MV model but
much easier to solve, such as CAPM [20] gained increasing popularity. The drawback
of course was, that because of the idealistic, simplifying assumptions these models
imposed, their results could be used only as a first order approximation. The search
for more reliable models produced the multiple factor and the index matching models
(cf. [6]) which require considerably more computational work than CAPM but due to
the increasing performance of computers that seemed to be acceptable.

The next leap forward in large scale portfolio optimization was again marked by
Markowitz together with Perold through the appearance of their paper [17] in 1981, in
which they used a scenario model to generate a sparse representation of an MV model,
i.e. with a sparse matrix in the objective function of the QP. This together with sparse
matrix techniques made it possible for the first time to solve a large scale MV model
in an efficient amount of time.

In Chapter 2 of this thesis we will show how to transform an MV model, i.e. a
QP with a dense matrix, into a separable QP, i.e. a QP with an ultimately sparse
diagonal matrix. We will demonstrate that this sparse representation can be solved
very efficiently. At the same time we will show how one can alleviate the problem of
model generation by using readily available historical data. This has the nice side effect
of producing portfolios with a manageable number of assets.

Chapter 3 contains a brief introduction to a fairly new approach for solving QPs,
namely interior point methods (IPMs), which became popular in 1984 through an often
cited paper by Karmarkar [10]. IPMs have been proven to be often superior to other

!The word portfolio has its origin in the french word portefeuille which means wallet or briefcase.



1. Introduction

QP solvers especially for large problems [2] and they are particularly well suited for
making use of sparsity. We will present a model algorithm for which the duality gap
superlinearly converges to zero under certain assumptions.

Chapter 4 provides a more specific primal-dual algorithm for which the duality gap
is globally and superlinearly convergent. These theoretical convergence results require
quite some technicalities.

In Chapter 5 we will show that these technicalities are not entirely necessary in
order to get a practically efficient algorithm. The implementations of two established
practical IPMs are described in detail, together with some techniques that make IPMs
work well in practice. The very promising results of our numerical experiments with
test data from the Tokyo Stock Exchange Market indicate that there is a big potential
in this approach to large scale portfolio optimization.

10



2. Portfolio Optimization

2.1 The Mean-Variance Model

Consider an investor with a given budget who can choose among n risky asset types S;,
1 =1,...,n to invest her money. Let x; be the rate of money to be invested in S; out
of the total budget (normalized to 1) and R; a random variable representing the rate
of return of S; (per period). Further we define 7; := E[R;], where E[-] is the expected
value and @;; := cov[R;, R;]. Then the total expected return of a portfolio z is given
by 772 and the total variance, which is being used as the measure of risk is given by
2TV

In its original form [16] the MV model intends to find all efficient portfolios Z, i.e.
all portfolios for which

i) ze M:={reR":efx =1, x>0}, where e :=(1,...,1)

(ii) Vo € M with #"z > 7% it holds that 2" Vz > z"Vax

(iii) Vz € M with 27Vz < z7Vz it holds that 7'z < 7Tz,

The efficient portfolios can also be obtained by solving the following convex para-
metric optimization problem

Minimize 2TV — 1T
subject to €Tz =1

(EF) r> 0
Vr €0, 00).

The convexity is due to the fact that V is a covariance matrix and as such the expected
value of a quadratic.

11



2. Portfolio Optimization

In most situations it is not necessary to compute all efficient portfolios but it suffices
to compute the portfolio with minimum risk for a given required total rate of return
« (cf. [11]) which leads to the following model

Minimize 2z7Vz
(MV1) subject to 7Tz > «
eler =1
z>0.

Sometimes [21] the first constraint appears as an equality rather than an inequality
which usually does not make much difference because a higher return normally also
forces a higher risk. We chose the above formulation because it is more flexible and
does not require substantially more work to solve.

Practical applications frequently require additional constraints, like linear institu-
tional constraints or transaction costs. Since their only effect from a theoretical point
of view is the enlargement of the model we will not include them here. In parts they
will be covered together with the implementation issues in chapter 5.

2.2 A Separable Representation

As was mentioned before, there are two major problems associated with model (MV1)
especially for large n. The first is to obtain the required data 7 and V and the second
is the solution itself since the covariance-matrix V will usually be completely dense.
This means that even sophisticated hard- and software will take quite a long time to
solve the model if it involves several thousand assets.

Luckily a solution to the first problem almost automatically brings one for the second
problem as well [11]. Consider a discrete payoff-matrix P € IR**" that contains k
independent samples of the random variables R;, i = 1,...,n , e.g. the realized returns
of the most recent k£ periods over the n assets. This data will in most cases be readily
available. Then we get unbiased estimators [12] r and V for 7 and V, respectively as

1
ri= EPTe (2.1)

and

1
Vij = mZ(pu—ﬁ)(plj_Tj)

k

=1

s Vo= LPT(I—leeT)P (2.2)
k-1 k ’ '



2. Portfolio Optimization

where T is the k x k identity matrix. Substituting # and V by the above estimators in
(MV1) yields

Minimize 52’ PT(I — tee”)Px

(MV2) subject to e’ Pz > «

k
elr =1
0

T

AVARS

which is equivalent to the separable program
Minimize x?xf

subject to (I — zee")Px, —xp =0
re' Px, > o

T, _
ez, =1

(MV3)

xp >0, x4 free.

For the case when then the first constraint in model (MV2) is an equality constraint
we get an even simpler separable representation [21]

Minimize x?xf

. subject to Pz, —zy = ae
(MV3) Tz =0
ez, =1

zp, > 0, zy free.

So what did we gain from all these transformations? Let us compare models (MV1)
and (MV3). Obviously model (MV3) contains k& more design variables [z¢]i,. .., [zf]k
and k£ more constraints. (Note that here and later we will sometimes —where necessary
to avoid double subscripts— denote the components of a vector = by [z];.) On the other
hand the (k+n) x (k4 n) matrix in the objective functions is much more sparse than
V with only & non-zeros that lie on the main diagonal. The first hint that this is a
good bargain gives us the fact that k£ is always much smaller than n. Particularly in
chapter 5 we will see that the sparsity of () saves a lot more computational time than
has to be sacrificed for the additional variables and constraints.

A nice side-effect of model (MV3) is that it has a solution such that at most &k + 2
components of x, are non-zero. This is very relevant in practice because it is desirable
to have a portfolio with a manageable number of assets [11]. It is straightforward
to prove this property: Let (z;,2}) € IR™** be an optimal solution of (MV3). Now

13



2. Portfolio Optimization

consider the linear system

(I — gee")Pxy = a7
%eTPxp >«
6T£Ep =1

T, >0

(2.3)

This system has a feasible solution x; and hence also a basic feasible solution &, [24]
with at most k£ + 2 non-zero components because the rank of the system is less than
or equal to k + 2. Obviously (#,,2}) is also an optimal solution of (MV3).

Evidently model (MV3) can be transformed into a standard form convex QP using
slack variables and variable splitting. We will not use this transformation in practice
because it leads to a considerable enlargement of the model but it is important for
establishing the convergence results in the following chapter.

14



3. Introduction to Interior Point
Methods

3.1 Logarithmic Barrier Transformations

Consider the standard form QP [2]
Minimize $27Qz + 'z
(P) subject to Ax =b
x>0
where z € R”, Q € R"" and A € R™*™, m < n. As usual for IPMs we assume that
rank(A) =m (3.1)

and _
Mp:={z: Az =0, >0} #0. (3.2)

Additionally we assume that @ is at least positive semi-definite hence making (P) a
convex problem.

For an obvious reason all 2 € Mp are called interior or strictly feasible points for
(P). As we will see later, we can obtain far more effective algorithms by working on
primal and dual problems simultaneously. Hence we will now also consider the dual of
problem (P)

Maximize —%xTQx + b7\

(D) subject to ATA+y — Qx =c
y=>0

where just like for the primal it is assumed that

Mp == {(z,y,\) : AT +y—Qz=¢, y >0} #0.

15



3. Introduction to Interior Point Methods

Let us quickly review the first order necessary and sufficient conditions for simulta-
neous optimality of (P) and (D):

Az —b
AT AN+y—Qz—c | =0, (z,y)>0 (3.3)
XYe

where here and subsequently we will use the convention that X := diag(x) and similarly
for Y and other capitalized vector names. In order to simplify notation and only for
that reason we will eliminate the dual variable A from the above system. To do this,
let B € R(™ ™" he any matrix such that the columns of BT form a basis for the null
space of A. Pre-multiplying the second equation of (3.3) by the nonsingular matrix

[ AT BT }T and remembering that BAT = 0 yields

[ A o AATA - A(—y+Qz +¢)
0—[3](AT)\+y—Q:c—c)—< By — BOx — Be )

Since AAT is nonsingular, ) is uniquely determined once z and y are known. Hence we
can remove the first equation of the above system to arrive at the following optimality

conditions
Ax — b
F(z,y):=| By— BQx—Bc | =0, (z,y)>0. (3.4)
XYe

Accordingly we define the primal-dual strict feasibility set as

M := {(z,y) : Az = b, By — BQz = Be, (z,y) > 0}.
Our goal now is to develop an algorithm that

(i) successively finds solutions for both (P) and (D),

(ii) operates on M, i.e. we start with strictly feasible points for (P) and (D) and all
iterates remain strictly feasible (this property is the reason why the algorithm is
called interior point method),

(iii) at least partially inherits the excellent local convergence properties of Newton’s
method.

The vehicle that we use to achieve all three goals are so called logarithmic barrier
transformations [2]. Barrier methods evolved as a means for solving mathematical
programs subject to inequality constraints. Acting from a strictly feasible point, barrier
methods seek to minimize an unconstrained function formed from the original objective
plus barrier terms which prevent crossing a boundary. These barriers are imposed by

16



3. Introduction to Interior Point Methods

functions which are smooth throughout the feasible region but become indefinite at
boundaries. The natural logarithm is a good choice to serve as barrier.

In our case we have both inequality and equality constraints so we have to work a
little harder but the principle remains the same so that we get the following barrier

transformed problems (P) and (D) for (P) and (D), respectively:
Minimize 12"Qz + "z — p )" Inz;
i=1

subject to Arx =0, x>0.

Maximize —% TQr + 0" A+ > Iny;
=1

subject to ATAN+y—-Qr=c, y>0.

The Lagrangian functions associated with (P) and (D) are

L 7 T - T
57 Qzr +c x—,u;lnxi—)\ (Az —b) (3.5)
and .
1 T T AT e
5% Qr+0b A—l—,uZlnyz T (ATA+y—Qz —c), (3.6)
i=1
respectively. Let us look at the first order optimality conditions again. For (3.5) they
are
Ax —b
<AT)\+/LX_1€—Q$—C>_0 (3.7)
and similarly for (3.6)
Ax —b
—Qr — AT)N—y+2Qr +c = 0
pY e — Xe
Ax —b
& AT A+ y—Qz —c = 0. (3.8)
XYe — pe

Together (3.7) and (3.8) provide necessary and sufficient conditions for simultaneous
optimality in (3.5) and (3.6). However we can get an even more concise description by
eliminating redundant equations. Obviously the first equations in (3.7) and (3.8) are
the same. Furthermore, if we pre-multiply the third equation of (3.8) by X' and plug

17



3. Introduction to Interior Point Methods

the result into the second equation of (3.7) this equation is equal to the second equation
of (3.8). Therefore, the equations characterizing simultaneous optimality in (3.5) and
(3.6) for a fixed p > 0 are

Az —b
ATA+y—-Qz—c | =0 (3.9)
XYe— pe

and the nonnegativity requirements x,y > 0 .

Clearly (3.9) is almost identical to (3.3), the only difference being the pe term on
the right hand side of the third equation. Hence if we choose 1 = 0 we get exactly
(3.3). This already gives us a first hint that asymptotically we will have to reduce pu
to zero in our algorithm to get optimal solutions for (P) and (D). Also (3.9) is exactly
the same as (3.8) so we see that working on primal and dual problem simultaneously
does not require more work than working on just one of them.

Analogous to (3.3) we can transform (3.9) to eliminate A which renders

Ax —b
F,(x,y):=| By—BQx— Bc | =0. (3.10)
XYe — pe

It is well known (cf. e.g. [25]) that (3.10) has a unique solution (z,, y,) for every positive
i and that the so called central path,

Scen = {(z,yu) : > 0} (3.11)

forms a continuous curve which converges to a solution of (3.4), i.e. of (P) and (D) as
i tends to zero. IPMs which iterates stay in a certain neighborhood

NO@) :={(z,y) € M :zjy; >~ (x"y/n), i=1,...,n} (3.12)

of the central path for some v € (0,1] are called path-following methods. We will see
that this property is essential in our superlinear convergence analysis.

3.2 A Model Algorithm

The next step is to apply Newton’s method to (3.10). More precisely let us formulate
a coarse model algorithm [26].

Algorithm 1
Given a strictly feasible pair (xg,1,). For k =0,1,..., do

Step 1 Optimality Test: If (2, yx) satisfies the optimality criteria — STOP

18



3. Introduction to Interior Point Methods

T
Ty Yk
n

Step 2 Choose oy € [0,1) and set py, := oy

Step 3 Compute the Newton directions

Axk ’ -1
( Ayk > = - [Fuk(xkayk)] Fuk(l‘kayk) ’

where F/Lk = F' is the Jacobian of F.

Step 4 Choose 71, € (0,1) and compute the steplength

min (X,;lAa:k, kalAyk, —Tk) ’

o =

where min(-) refers to the smallest component of all vectors in the parentheses.

Step 5 Compute the new iterates

Th+1 Tk Axy,
= + ,
(yk+1> (%) a’“<Ayk>
set k:=k+ 1 and go to Step 1

The first thing one should notice about Algorithm 1 is that there are two important
parameters which control its behaviour. One is o} which determines the centering
parameter j. Since only oy is directly under our control we will from now on call oy
the centering parameter. As we mentioned before we ultimately have to ‘phase out’
p to get solutions for our original problems (P) and (D). Since we will show below
that all iterates produced by Algorithm 1 are strictly feasible, the term (z}yx)/n
in the definition of u; provides a proximity measure towards optimality (cf. (3.4))
hence making the extent of centering dependent upon the closeness to the solution
which sounds very reasonable. The parameter a; controls the steplength making the
algorithm a damped variant of Newton’s method. Its definition guarantees that all
components of (zjy1, k1) will remain strictly positive.

We will now establish that Algorithm 1 is well defined.

Proposition 3.1 Let F,(x,y) be defined as in (3.10) then it holds that
1. F;L(:c, y) = F'(x,y) is nonsingular for (z,y) > 0.

2. If (xo, o) € M then all iterates produced by Algorithm 1 are strictly feasible, i.e.
(xr,yr) € M, Yk > 0.

19



3. Introduction to Interior Point Methods

Proof:
Ad 1. From (3.4) it holds that

A 0
Fl(l‘ay)_ _BQ B
Y X

So we have to show that

A y u 0 u 0
~-BQ B < ): 0 :>< >:<0>_ (3.13)
y x|\ 0 !
Remembering that the columns of BT form a basis for the null space of A, the first
equation of (3.13) indicates that u = BTw for some w. Using this result and solving

the third equation for v gives us v = —X 'Y BTw. Plugging the equations for u and v
into the second equation yields

_BQBTw— BX 'YBTw=0.
Premultiplying this by w”, we get
—w"BQB"™w - w"BX"'YBTw=0.

Now BQB is positive semi-definite and BX ~'Y B” is positive definite and therefore
the left hand side is zero if and only if w = 0. From the above equations for u and v it
now follows that (uT,vT) = (0,0).

Ad 2. Given (zy,yx) is feasible, the feasibility of (zjy1, k1) is automatically guar-
anteed by the first two defining equations of (Az], Ayl) (cf. Step 3 of Algorithm 1)

As mentioned before the strict positivity of (i1, yg+1) is achieved through the choice
of ay.. To demonstrate that a4 suits this purpose we define

1
vy = — . 3.14
Wk min (X,;lek, kalAyk) ( )

In Remark 3.2 below we will show that min(X, 'Axy, Y, 'Ay) < 0 for all k and thus
it obviously holds that a; < @;. In fact &, is the steplength for which exactly one
component of (zxy1, yr4+1) becomes zero. To prove this we have to show that

¢y = min {miin {_[Eii]. L [Amy], < 0} , min {—[E/i? Ay, < 0}} :

20



3. Introduction to Interior Point Methods

Equivalently we can write this as

Q= min{—ml‘ax{[gii]‘ DAz, < 0}, —m]ax{[f?i]] : [Ayk]j < 0}} .

Taking reciprocals, we can drop the limitations [Azy]; , [Ay;]; < 0 because the positive
components of the search directions are not relevant when taking the minimum:

ol 22

But this is (3.14) just stated differently.

Remark 3.2 It holds that &, > 0, VEk > 0.

Proof: It suffices to show that min(Azy, Ayx) < 0. From the third defining equation
of (Axl, Ayl (cf. Step 3 of Algorithm 1) it follows that

T
Ty Yk

YkASUk +XkAyk = —XkYke—i—ak €. (315)
Remembering that o4 € [0,1) we get

T
Ty Yk
n

OSO'k

< max(X;Yye)

so that at least one component of Y,Ax, + XAy, has to be negative. This in turn
implies that Az, or Ay, must have at least one negative component. O

3.3 Superlinear Convergence

The reason for the great publicity of Karmarkar’s method [10] was that it was the first
method for solving a linear program with a polynomial complexity bound and report-
edly 50 times faster solution times than the simplex method at least for some large
problems. As a result a lot of the subsequent research on IPMs focused on complexity
issues. It soon became evident though that the IPMs with good theoretical complexity
bounds were not the ones that performed well in practice. This is true for linear as
well as nonlinear problems. Zhang and Tapia were among the first who shed light on
the aspect of fast local convergence which has always been an important issue in con-
tinuous optimization [27, 28]. It seems that algorithms with a good local convergence

21



3. Introduction to Interior Point Methods

perform better in practice [14]. In Chapter 4 we will present an algorithm which blends
the often conflicting objectives of global and fast local convergence.

For now we will analyze the local convergence properties of Algorithm 1. Most of
the results will be useful for the convergence analysis in the next chapter as well.
To simplify things here and particularly in the next chapter we adopt the following
notation:

zr(a) = xp+ alxy, (3.16)
yr(a) = yp +aly, (3.17)
frla) = Xp(a)Yi(a)e, (3.18)
min(o) = min (fy(a)), (3.19)
L% (a) = max (fr(a)) , (3.20)
() = (zr() yr(@)) /n. (3.21)

Whenever a = 0, we will drop the argument, e.g. x; = x.(0).

Our goal in this section is to prove the following theorem [26] concerning the super-
linear convergence of Algorithm 1. Comparing it to similar results for Newton’s method
[24] it should be noted that it does not require the nonsingularity of F'(x.,y.).

Theorem 3.3 Let {(zy,yr)} be generated by Algorithm 1 and (zg,yr) — (T, Ys),
where (x.,y.) is a solution of (3.4). If

(i)  strict complementarity holds at (z.,y.), i.e.

[z, =0=[y.], >0, [z.],>0= [y, =0,
(ii) the sequence { fi¥¢/fi™} is bounded,
(iii) 7, = 1 and op — 0,

then the sequence {F(zk,yr)} componentwise converges to zero Q-superlinearly.

Remark 3.4 Componentwise QQ-superlinear convergence of a sequence implies its su-
perlinear convergence.

Proof: Let z; — z,, then componentwise ()-superlinear convergence means that

o = L2

=0 fore=1,...,n.
koo | [2]; — [2]; ]

We have to show that this implies

[ 2re1 — 2l _

lim =0

koo || 2 — 2|

22



3. Introduction to Interior Point Methods

for some norm. If we choose the oco-norm we get
| zks1 — 2e|oc Zgllaxn| [2k41]; — [24]; |
Tz~ 2o max [[z]; (2]

=1,...,

0<

Let i(k + 1) be the index for which the maximum is achieved in the numerator, then
the right hand side of the above inequality chain is equal to

‘ [Zk+1]i(k+1) - [Z*]’i(k+1) | ‘ [Zk+1]i(k+1) — [Z*]’i(k+1) | o
zirllaxn | [Zk]z N [Z*]l I [Zk]i(k—l—l) - [z*]i(k-l—l) |
which implies our claim. -

Theorem 3.3 is somewhat unsatisfactory because it places conditions on the quantity
fave/ fmin which is is not directly under our control. This gives reason to the concern
that Theorem 3.3 might be a vicious circle. However in the next chapter we will place
additional conditions on 7 and o} which will make assumption (ii) obsolete. Note that
assumption (ii) makes sure that the iterates lie in N(v) (cf. (3.12)) for some suitable
v, thus making Algorithm 1 a path-following method.

Another cause for concern is assumption (i) because unlike for LP, a strictly comple-
mentary solution may not exist for convex QP. Unfortunately though the assumption
that the QP at least possesses a strictly complementary solution seems to be essential.
In their paper on a slightly different IPM for monotone linear complementarity prob-
lems (LCP) [1], Anstreicher and Ye give an example of an LCP which does not possess
a strictly complementary solution and for which their IPM converges no faster than
linear. In our numerical experiments we always observed superlinear convergence (cf.
Chapter 5), so in practice this assumption does not seem overly restrictive.

In order to prove Theorem 3.3 we need the following two lemmas.

Lemma 3.5 Let (Axy, Ayy) be search directions produced by Algorithm 1. Then it
holds that
Azf Ay, >0, Vk>O0.

Proof: As we had already established in the proof of Proposition 3.1 we have
—BQAl‘k + BAyk - 0 .

We will show more generally that for all (u,v) for which

(i) Au=0 and
(i) —BQu+ Bv =0

23



3. Introduction to Interior Point Methods

it holds that u”v > 0.

Again we remember that the columns of BT form a basis for the null-space of A.
Then (i) implies that u = BTw for some w. Plugging this in (ii) yields Bv = BQBTw
Premultiplying this by w” and noting that BQB” is positive semi-definite, we get

0 < w'BQBTw = w”Bv = (BTw)"v = u"v,

which completes the proof. O

Lemma 3.6 Under the assumptions of Theorem 3.3,

kl;rgo ap=1.
Proof: Define at each iteration
pr =X, 'Az;, and g =Y, 'Ay. (3.22)
We will show that for every i either [py], — 0 and [gz], = —1 or [px], = —1 and

[qx]; = 0. Recalling the definition of ay in Step 4 of Algorithm 1 and our assumption
Tr — 1 it is easily verified that this implies the lemma.

To do this it is necessary to first establish that oy is bounded away from zero. It
follows from the definition of oy, that it suffices to show that {p;} and {¢x} are bounded.
Premultiplying (3.15) by (X;Y;)™" we get

Pr + qr = —e + o Tie, (3.23)

where

Ty := f2( X1 Y5) " (3.24)

Multiplying both sides of (3.23) by (X, V) 2 and taking the square of the 2-norm
results in

2 2
ot ot -2 -

n

X, Y) !
2Ty <1 — 204 + ol fAv° M) . (3.25)

Dividing both sides by f'¢ and using Lemma 3.5 we have

HTk Pk k pk

2 7,
<n (1 — %0, + 02 & ke) . (3.26)
n

Since T} is closely related to {fi*¢/fmin} which by assumption (i) is bounded, it is
easy to see that {||Tx||} is bounded above and {||T, ?||} is bounded away from zero.
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3. Introduction to Interior Point Methods

Therefore (3.26) implies that both {py} and {gx} are bounded. As mentioned above
this suffices for a4 in order to be bounded away from zero.

Now we distinguish two cases. First assume that [z,], > 0. An equivalent way of
stating xxy1 and ygyq using pr and gy is

Tgt1 = Xk(e + akpk) and  ypp1 = Yk(€ + aqu) ; (3-27)

which is why

T [5Uk+1]i_ .
= T, T A eelpd).

This implies [py); — 0, because {ax} is bounded away from zero. Since fi¥¢/fmin =
|Tke||o, assumption (ii) together with oy — 0 applied to (3.23) implies

lim (p, + qx) = —e. (3.28)
k—o0

This in turn implies now that [gx]; — —1. If on the other hand [z,]; = 0, then [y.]; > 0
by assumption (i). The same argument as for the first case, interchanging the roles of
pr. and g gives [gx]; — 0 and [pgl; — —1. O

Now we are ready to prove Theorem 3.3.
Proof of Theorem 3.3: Let

Ax — b

Fi(z,y) = ( By — BOx — Be ) and Fy(z,y) = XYe.

As we have already seen F(xy,yx) is always zero hence we only have to show that
{Fy(zk, yx)} componentwise converges to zero @Q-superlinearly. From (3.27) it follows
that

X wpp=e+oupe and Y 'ypgr = e+ g

Adding the above equations
X wp + Y ke = 2e 4+ op(pe + ai)
taking the limit and using (3.28) and Lemma 3.6, we get
klggc(x,;lxkﬂ + Y, ) =e. (3.29)
Again we will distinguish two cases. If [x,]; = 0, then by strict complementarity,
[y+]i > 0 and [yx+1]i/[yk)i — 1. It follows from (3.29) that [xx1];/[zk];i — O and hence

[zx]; — 0 Q-superlinearly. Since (3.29) is symmetric in z and y we have [yx]; — 0
Q-superlinearly if [z,]; > 0 by assumption (i). So for every i we have either

lim [kl =0 and lim s1li =1
k—oc [f]]‘k]l k—oc [yk]l
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3. Introduction to Interior Point Methods

or
lim [wkﬂ]i =1 and lim [ka]i =0.
k=00 [T4]; k—oo [yxli

In any case, it holds for every 7 that

i Pl X Yiael:

— -0

which proves our Theorem.

To solve the difficulties in our superlinear convergence analysis mentioned above
is technically quite difficult and subject of the next chapter. Theorem 3.3 is surely
sufficient to give a first idea how parameters should be chosen in practice to get an
efficient algorithm. Moreover it served well to demonstrate which parameters influence

the behaviour of primal-dual barrier IPMs in general.
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4. A Globally and Superlinearly
Convergent Primal-Dual Interior
Point Method for Convex

Quadratic Programming

4.1 Algorithm

In order to make Algorithm 1 globally and superlinearly convergent only by the choice
of parameters which are directly under our control, we have to modify it somewhat.
The following algorithm and the proofs of its global and superlinear convergence are
based in big parts on [9].

Algorithm 2
Given a strictly feasible pair (xg, o). For k =0,1,..., do

Step 1 Optimality Test: If (2, yx) satisfies (3.4) — STOP

Step 2 Compute the descent directions

and the centering directions

(38)-mrir (2).

Step 3 Choose oy € [0,1) by Procedure 1 and form the combined search directions
<Azk>_<Ax,?>+a<Axkc>
Ay Ay "\ Age )
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4. A Globally and Superlinearly Convergent Interior Point Method

Step 4 Choose the steplength ay € (0, &) by Procedure 2, where &; was defined in
(3.14).

Step 5 Compute the new iterates

Tk41 T Axy,
= + ,
<yk+1> (%) ak<Ayk>
set k:=k+ 1 and go to Step 1.

Comparing Algorithm 2 with Algorithm 1, we notice that the search directions have
been split into descent directions for the total complementarity—which for feasible
iterates equals the duality-gap and serves as our measure of convergence— and cen-
tering directions. This was necessary because the choice of o, will depend on descent
and centering directions. In the IPM literature the descent directions are also called
affine or affine scaling directions.

The procedures for choosing o4 and a4 will be described below. Proposition 3.1 is
applicable to Algorithm 2 as well, hence it is well defined.

4.2 Choices of Parameters

4.2.1 Centering Parameter

Through the splitting of the search directions we are in need for more notation. Simi-
larly to (3.22) let
pP = X 'AzP | qP =Y TAYP

- - (4.1)
=X AxC ¢ =Y AYC
An important quantity in our further analysis is
wr 1= max (|[pylilgy il [[pg lilai il 11k lilai ), 1ok lilak 1) - (4.2)

For technical reasons which will become clear in the course of this chapter we have
to introduce the following set of 2n points (cf. also [27])

. _[]JLDL' _[QkD]i_i: n
= '_{ A b } ()

and define the distance from a scalar £ to the set 3, as

dist(§,2;) :=min{|§ —¢| : ¢ € i} .
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4. A Globally and Superlinearly Convergent Interior Point Method

Now we can state our procedure for choosing the centering parameter oy.
Procedure 1
Given o € (0,1), v € (0,min (1/2, fihin/ fave)], p' = v%c/(2n), p* > 24n .
Step 1 Compute wy, according to (4.2).
Step 2 Compute p} = min(p", o/wg).

wi (P + i)
2

Step 3 Let o) := min {J 10 € [ , wrpp |, dist(a, Xg) > Ll },

8n + 4
where 7 := p¥ — p.

It should be remarked that the complicated choice of o, in Step 3 of the above
procedure is merely for technical problems associated with the superlinear convergence
analysis of Algorithm 2. For practical purposes it will suffice to define o), := pjws.

The following lemma confirms that oy, is well defined and o € (0, 1).

Lemma 4.1 Let (xy,y;) and (Axy, Ayy) be produced by Algorithm 2, then it holds
that

1. (AzPYTAyP > 0 and (Ax$)TAyS > 0,

2. if it/ fi = v then wy <n/y?,

Vo
n

I pi 2

)

wi(p! + pj) . kW
— " ®7 U M) >
5 , wrpp |, dist(a, 3g) > o 4

4. the set {6 10 € [ } 1S nonempty.

Remark: As we will see in the next section, f"/f&® > + is ensured by the choice
of Q. O

Proof:
Ad 1. Analogous to the proof of Lemma 3.5.
Ad 2. In analogy to (3.15) it holds that

ViAzp + Xp Ayl = =X Ye .

Multiplying both sides by (XkYk)_% and taking the 2-norm results in

1 2 1 2
g+ o 208 =
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4. A Globally and Superlinearly Convergent Interior Point Method

Considering 1. and dividing both sides by fi'¢, we get

2

<n

1
T_E
|70 2

[t

3

where T} is the diagonal matrix defined in (3.24). Our choice of v and our assumption

min / fave > 4 now imply

AT R

For the centering directions we have
YkAfL‘k + XkAyk — fave 3

which using the same strategy as above leads to

1 2
PR L Y o ey
2
Hence we have also s /i
n n
Hpg]l‘ < 7 and HQkC]z‘ < 7 :

The result in 2. follows directly from the definition of wy.

Ad 3. By 2. we have

2 2
pp = min <p“, i) > min (2471, M) =17,
Wi n n

Ad 4. First we note that by 3. it holds that

S 2o
Tk = P —P = o

(4.5)

Hence the interval [wy(p! + pt)/2, wpp?] of length mpwy/2 is nonempty. Partition this
interval into 2n + 1 equal sub-intervals of length mwg/(4n + 2) each. If the interior
of any one of the sub-intervals does not intersect ¥, then the midpoint of this sub-
interval will have the required distance to ¥,. Since ¥, only has 2n points, it cannot

intersect the interiors of all the 2n + 1 sub-intervals.

This proof illustrates why it is necessary for o, to be chosen from an interval. Oth-
erwise it would be impossible to ensure that we can always find a o, which has the

required distance from Y.

O

From the definition of o in Step 3 of Procedure 1 it is now evident that o} is well

defined and 0 < 0y, < pjwi <o < 1.
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4. A Globally and Superlinearly Convergent Interior Point Method

4.2.2 Steplength

As we already know from Theorem 3.3 our choice of steplength has to guarantee that

{fave/ fminl is bounded. Tt is always bounded below by 1, though. Hence it suffices to

require that for a = «ay it holds that
i ()

fir(a)

where v was already chosen in Procedure 1.

>y, a>0, (4.6)

Of course we still want to choose «y, as large as possible. To do so let us for notational
convenience first introduce the following function

hi(a) = fi™" () =7 fi*(a). (4.7)

Obviously (4.6) is equivalent to

hi(@) >0, a>0. (4.8)

Since (4.8) is not the only condition we will place on ay we define
a) = min{a > 0: hy(a) =0} . (4.9)
Let us make sure o) is well defined and satisfies (4.6).

Lemma 4.2 The quantity o) is well defined and o) € (0,éy). Condition (4.6) is
satisfied for all o € (0, o]

Proof: The proof is by induction over k. First we note that v was chosen to satisfy
v < fmin/fave Now assume v < fin/ fave Then it follows that

hk(O) _ mln ,yfave
On the other hand recalling (3.14) we have
T () = i7" (Gn) = fi7° () < 0
=0 >0

In order to establish now that hy(a) has a root in [0, &) it is necessary to demonstrate
that hy(«) is a continuous function. Let us take a closer look at its components:

fe(@))i = fee(@)]ilye(a)]i

= [zelilyeli + o (uelilAze]i + [ve]i[Ayeli) + o [Aﬂfk] [Ays];

O A = (Ul — 00 f2) 0 + [Azili[Agel: o2, (4.10)
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4. A Globally and Superlinearly Convergent Interior Point Method

hence f™"(«) is a continuous, piecewise quadratic function.

SONENES SO

110) 1L 1 < 1 e 1 <

v - > i - <ﬁ > Ui - ornf ) a+ - > [Azy]i[ Ayl o
i=1 i=1 i=1

Az} Ay, 02

= - (=) a)+ S

: (4.11)
so f2V¢(«) is also a continuous, piecewise quadratic function which combined with (4.10)
leads to the continuity of hy(a) and therefore to a root in [0, &). In case h(0) > 0
there must be a root in (0, & ). If A(0) = 0 then we have, considering (4.10) and (4.11)

WOT) = —( kmin. —or i)+ (1 —ow) fi™°
= [= (/) + (1 = y)or] [
=0 >0 >0
> 0.

Therefore h(a) > 0 for positive but suitably small . Thus ) € (0, Gx) is well defined
and condition (4.6) is automatically satisfied for all o € (0, «]] by definition (4.9). O

Our ultimate goal is to reduce the duality gap zx ()" yx(c). So we will examine how
the choice of steplength influences the reduction in the duality gap.

r(@) () = 2y + alz) Ay + yl Axy) + o? Az Ay,

(3.15)
=7 2Ty + al—aly + opzlye) + o*Axl Ay,

= 2yl — (1 —op) a+ Axf Ay o (4.12)
is a quadratic function of o with the second derivative Az} Ay,. We know from
Lemma 3.5 that Az} Ay, > 0. If Az} Ay, > 0, the duality gap will reach its min-

imum at

(1 — ak):rfyk
p= 4.13
“ 2AxT Ay (4.13)

and if Az] Ayx = 0 it is a decreasing function of « and we should take the biggest
steplength otherwisely possible.

Taking this into consideration, we are now ready to state our procedure for choosing
the steplength ay, (cf. [9]).

Procedure 2

Given 7 from Procedure 1.

Step 1 Compute o] according to (4.9) and if Az} Ay, > 0, af according to (4.13).
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4. A Globally and Superlinearly Convergent Interior Point Method

Step 2 Let

min(1, o, ), if AaT Ay, >0
= { (1, . ) e (4.14)

min(1, o)), otherwise

As we have seen above this procedure guarantees that oy € (0, &), the duality gap is
reduced as much as possible and the prerequisite (4.6) for superlinear convergence is
satisfied.

4.3 Global Convergence

First though we will analyze the global convergence of our objective function, i.e. the
duality gap. As was to be expected this once again requires some new notation,

My 1= %Afoyk — min([Azg]i[Aykl) - (4.15)

If we plug a4 into equation (4.12) it comes already close to a global convergence

result T
Azy Ayy a?)

$f+1yk+1 = ﬁfyk <1 — (1 —op) oy + 2Ty k
k

but we still need to show that for

AzlA
(Sk = <1 — O — M (Xk) (077 (416)
Ty Yk

it holds that {0y} is bounded away from zero and ¢; < 1. The latter is trivial considering
that o € (0,1), Azl Ay > 0, 21 yx > 0 and oy, € (0, 1]. Thus our goal in this section
is to prove the following result

Theorem 4.3 Let {(zk, yx)} be generated by Algorithm 2. Then it holds that

«Tfﬂykﬂ < xfye(1—6),

and & € (0,1), where 6 > 0 is a constant independent of k. Hence the duality gap
globally converges to zero at least at a linear rate.

Before we prove Theorem 4.3 we will first establish some lemmas that give estimates
of some quantities.

Lemma 4.4

1. Let ng be given by (4.15). It holds that np < 6wy f*.
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2. Let o be given by (4.9). If g, < 0 then o > 1; otherwise

Tk
Proof:

Ad 1. Note that

(3.23)
[Azei[Ayelil =" |lzelilpelilyelilari]
< max(X,Yee) max (el lail)
=A™ max (|[pTilay T + oxlpg lilai )i +
+oupy lilad li + orlpy Jilag 1i)
(4.2)
< AfMwy .
It follows that
Ax] Ay < Anfir*wy, (4.17)

and therefore

T %Aw{Ayk — min([Azy];[Aykli)
Ay [, + A f wy

6f]£naxwk 3

VANVAN

because we chose v < 1/2.
Ad 2. Let o € [0,1]. Then we have

e@)] "2 1110 = 0) + onfia + [Azgli|Ayels o

> M1 = @) + orfa 4+ min([Azg]i[Ay]i) o
and therefore, recalling (4.11)
(@)l =afi*(e) > (™ =2 fi") (1= ) +(1 = Nowfi™a — ko
~——— N —
>0 >0
> (1 —7)orfia — na’. (4.18)

Since we assumed that « € [0, 1] it follows now considering (4.7) that if n, < 0, hy(a)
has no root in (0, 1). Hence o > 1.

On the other hand if 7, > 0 the right hand side of (4.18) has a unique positive root

in 1 ave
& = (1 —)owfi
Tk
and it is greater than zero for all « € (0, @). It follows from (4.18) that hy(a) > 0 for
a € (0,a). Soif ) <1 by (4.9) o] must be greater than or equal to a. 0
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Lemma 4.5 Let (xy, y), (Azg, Ayx) and o be generated by Algorithm 2.

1. There exists a constant 3 > 0, such that

min(1, o)) > ﬁ (4.19)

n?

2. It holds that ATA .
e (4.20)

:rk Yk 4

Proof:

Ad 1. By Lemma 4.4 (2.), it obviously suffices to consider the case where n; > 0 for
which follows

ave
min(1,«]) > min <1,%> , by Lemma 4.4,

6(,() fmax
) max
. p , 1
> min (1, — since v < =, oy > plw, and <n,
12n 2’ ,j"e
= min |1 ﬂ since p! = L
"24n? )’ 2n
Thus,
2
vo
=— 4.21
p=1 (121)

is a suitable choice.

Ad 2. Using previous results we get

11 11 2
4ATL Ay, < HX,:EYI,C2 Az — XY, 2Aka2 + 4Ax; Ay

1 2 1 2
S CAOE R [EAREA A VA
) T(X.Y:) e

(4.6) 2
< :c{yk <1 - 20'k + %) .

Recalling 01, < 1 it now follows that

AxTA 1 2
Ao o (- B)
T Yk 4 Y
1 _
= (-0 +0i(y " - 1)
1
< N
<+
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which completes the proof. O

The preceding lemmas are helpful in getting a better understanding of our choice of
ok. From the proof of Lemma 4.4 (1.) we see how the definition of wj, came about and
the proof of Lemma 4.5 (1.) illustrates that wy has to be part of oy in order to get a
uniform lower bound on «]. We again emphasize that this far it would have sufficed
to choose oy, = pjwg.

Proof of Theorem 4.3: In our analysis we will use the following two functions of «

T
O (@) = (1 — o) — w a) o (4.22)

Ty Yk

and

§(a) = <1 —0— %a) . (4.23)

Using (4.20) and the fact that oy < o, we see that for a > 0 it holds that & (a) > §(a).
We will first demonstrate that

a = argmax {0 («) : @ € [0, min(1, )]} . (4.24)

The derivatives of 0 (a) are

AxTA
0 () zl—ak—ZMa
T Yk
and
AzTA
5i(a) = —2 =Rk
Ty Yk

Hence only if Azl Ay, > 0, 6;,() has a unique maximum in o¥ and for o < o, & ()
is an increasing function of a. For this case (4.24) now follows from definition (4.14)
of ay. If Azl Ayy, = 0, () is an increasing function of a altogether and (4.24) again
follows from (4.14).

Therefore we have for all & € [0, min(1, &})],

If we define 3 as in (4.21) then (4.19) implies that (4.25) holds for & = (3/n?. Hence

we get
6k25::5(ﬁ/n2):<1—0 b )ﬁ

C4yn? ) n?

which completes the proof and this section. 0O
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4.4 Superlinear Convergence

For the superlinear convergence analysis we will make use of the results of the preceding
chapter. One of the assumptions of Theorem 3.3 was that the sequence {ff¥¢/fmin} he
bounded. This is ensured by our choice of ;. Looking at the proof of Theorem 3.3
it is evident that the assumption 7, — 1 can be replaced by a; — 1 which is more
meaningful in our case.

However, to make our superlinear convergence result even more general, we will first
show that it is not necessary to require that (xy,yx) converges to a strictly comple-
mentary solution of (P). For x € IR" we define

I't(x) :={i:z; >0}

and note that for any solution (&, ) of the optimality conditions (3.4) of our problem
(P) it holds that
IT@)NIt(g) =0. (4.26)

If (3.4) has a strictly complementary solution (., y.) we have on top of this

I'f(z) Ul (y.)={1,...,n}. (4.27)
The following result is based in big parts on Giiler [8].

Lemma 4.6 Let (1, yr) be generated by Algorithm 2. Assume (3.4) has a strictly
complementary solution (., y.). Then

1. for every solution (Z,y) of (3.4) it holds that
I'(2) C T (z.) and I7(9) CT"(ys),

2. for every limit point (T oo, Yoo) of the sequence {(x,yr)} it holds that (T, Yoo) SolvES

(3.4) and
I'(200) = I"(w.) and I (yoo) = I" (),

i.e. every limit point is a strictly complementary solution of (3.4).

Proof:

Ad 1. First note that by the positive semi-definiteness of () for any x;,x, € IR”

0 S (1‘1 + !EQ)TQ(I‘l + !EQ)
= xf@xl + :ch:cg + 2:5{@3:2

and thus
Qx?QxQ < :1:{@:1:1 + ngxQ .
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Recalling the equivalent optimality conditions (3.3) it now follows

0 = aly, +27y

= 2T (—A"\, + Q. +¢) + 2T (—ATXA + Qi + ¢)
"M\ + 2T Quy + Ty, — A+ 2TQi + T2
"N+ 27Qi + i — b\ 4+ 2T Qu, + Tay

_ T ~ ~T
- $*y+$ y*a

Y

for some A,, . Since (z,,4.), (#,7) > 0 the result follows immediately.

Ad 2. From Theorem 4.3 it follows that for all k&
Thye < Yo -
Using this estimate and proceeding similarly to 1. we get
Thyo + To Yk < Ty + To Yo < 270 Yo

and hence
21§ Yo 214 Yo

[yoli [wo]i

Consequently the sequence {(z, yx)} is bounded and therefore it has at least one limit
point. Considering that z7 yx — 0, every limit point has to satisfy 22y, = 0 and thus
every limit point solves (3.4).

[z]; <

and  [y]; <

By 1. it remains to be shown that
]Jr(x*) C [Jr(xw) and Fr(@/*) C Fr(@/oo) .
Recalling 2Ty, = 0, for every k& we have

Ty + iy < afye + 2Ty, = afyp

ieIt(z4) ielt(y«)

We see from (4.26) and (4.27) that for every i, either i € I (x,) or i € I (y,). If
i€ I't(x,),

[]

S
8

B

=

min (4.6)
=[] > n—fkave [z.)i > nylz.i
k

= [Too)i > ny[ri]; >0
= I"(z.) C T (2s0)-
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The case ¢ € I (y,) is treated analogously. O

In view of Lemma 4.6 it would be very nice now of course if we could get a super-
linear convergence result without having to assume the convergence of the iteration
sequence {(zg,yx)} at all. However, unfortunately we were unable to prove the follow-
ing Theorem without this assumption. An improvement in comparison to Theorem 3.3
and Theorem 5.2 in [9] though is that we no longer need to assume the convergence of
{(zk, yx)} to a strictly complementary solution, but we merely need convergence. The
proof of Theorem 4.7 will also give a final explanation for our choice of oy.

Theorem 4.7 Let {(zk,yr)} be generated by Algorithm 2. Assume that (3.4) has
a strictly complementary solution and that (zy,yr) — (T, y«). Then the sequence
{XYre} componentwise converges to zero Q-superlinearly.

Proof: As we have already explained we can use the results of Theorem 3.3. By
Lemma 4.6, (2., y.) is a strictly complementary solution of (3.4). Hence all that is left
for us to show is that o, — 0 and oy — 1.

We first prove o, — 0. Since pj is bounded, by the definition of o in Step 3 of
Procedure 1 it suffices to show w; — 0.

Let [z.]; > 0. Then clearly

T [-Tk+1]i_ .
= T, T A eedpd).

In order for this to imply that [pg]; — 0 we still need that «y is bounded away from
zero. The answer gives us Lemma 4.5, because

S|

min(1, o)) >

and furthermore .
Az Ayy, <

1
aly,  — 4y
indicates that

v _ (L= oK)y

>2(1-0)y.
2AxT Ayy
Hence by the definition of a; we see that it is bounded away from zero.

If on the other hand [z.]; = 0, then [y.]; > 0 by strict complementarity. Proceeding
analogue to above we get [gx]; — 0. As a result for each i,

either  [pili = [pp)i + onlpi]i = 0 or  [ali = [g7) + oulay]i = 0. (4.28)

This is where the reason for our choice of oy lies. Even though we have (4.28), we
cannot guarantee that if, say [py]; — 0 this also holds for [pP]; and [p$];. Accordingly
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we have to make sure that oy, stays far enough from —[p”];/[p¢];. Hopefully our choice
of parameters is fully transparent to the reader now.

The proof of wy — 0 is by contradiction. Suppose the opposite. Then, there must
exist a subsequence {wg(jj} € {wy} which is bounded avvay from zero since wy, > 0.
The definition of o4, and (4.5) then imply that {dist(o(;), g (;))} is bounded away from
zero.

Assume [pg; — 0. Then, we claim that {[pkc(j)]i} — 0. If this was not true then there
would be a subsequence {[pk Jit € {[pk yJi} for which {|[ka Ji|} is bounded away from

zero. Since [pg]; — 0 this must also hold for every subsequence and thus also for [py);
so that we have

[kal ]2
[peli = [piyli + ok Pkl = i ( c() + ok | = 0.

[pk(l)]i
Considering that {|[ plil} is bounded away from zero, this implies
[ka(l)]i
+ oy = 0,
[pf(l)]i ®
which contradicts the fact that {dist(ow@), Zr@))} C {dist(ow), Zr@))} is bounded away
from zero. Therefore {[pk Ji} = 0. In view of (4.28) this 1ndlcates that {[pk Jit =0,

as well.

The case where [gx]; — 0 can be treated analogously. Consequently for each i, either
[pP]; and [p{]; or [¢P]; and [¢f']; converge to zero. In the proof of Lemma 4.1 we showed
that all these sequences are bounded and therefore by definition (4.2) of wy it follows
that wy(;) — 0. This contradicts our hypothesis that {wy(;)} is bounded away from
zero. Hence wy — 0 and ergo o — 0.

In order to prove oy — 1 we have to distinguish two cases. If Azt Ay, = 0, then
ar = min(1, o). From Lemma 4.4, v < 1/2 and f**/ & < n it follows that

'y p +pk
U 2 24n,

Since p} = min(p", 0 /w), wr, — 0 and p* > 24n, we have for k sufficiently large
Pk > = p" > 24n.

Consequently ay = 1 for k sufficiently large in this case.

Note that we did not use Azl Ay, = 0 to get this result. If AzT Ay, > 0 we have
ar = min(1, o, af) and so all we need to show is that aj > 1 for & sufficiently large.
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4. A Globally and Superlinearly Convergent Interior Point Method

This can be seen from

o = (1 — ow)zfyk
k 2AxT Ayy
1— T
# , since o < 0
k k
1 — ave
= % , by (4.17)
Wi k
1—0o ) ove 1
, since > —.
8nwy, i " n

Now in view of wy — 0 it follows that for £ sufficiently large o > 1 and consequently
Q. = 1. O
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5. Implementation

It is a well known fact in numerical mathematics that in practice many things are
different, e.g. the algorithms with good theoretical convergence properties and the
algorithms that perform well in practice frequently have very little in common. On
the other hand to get a practical algorithm it is often necessary to find solutions for
problems that do not exist in theory due to idealizing assumptions. These are the
main reasons why we dedicate a lot of space to the topic of implementing IPMs for
portfolio optimization problems. We will present two algorithms that performed best
in our numerical experiments. As we will see their choice of parameters is consistent
with Theorem 3.3.

All algorithms were implemented in the excellent, high-performance numeric compu-
tation package MATLAB 4.0 by The MathWorks, Inc., Natick, Mass. All subroutines
listed in the Appendix are written in the macro-language of MATLAB.

5.1 The Models in Practice

The Models that we will consider are models (MV3) and (MV3') from Chapter 2 with
box constraints and slack variable x, for model (MV3).

Minimize x?:rf

subject to (I — zee’)Px, —xp =0

ceTPr, — 2, =«
(PMV) )
0<z, <u,,
0<z, <00

—o¢c <xp <00
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and
Minimize 7}y
subject to Pz, —xy = ae
(PMV’) e'z; =0
T, _
ez, =1
0<z, <u,,

—o0o <1xp < oo,

for some upper bounds vector u, € IR". Remember that z, € IR", 2y € R* and
P € R¥*". We have to include these upper bounds on z,, because we want to avoid
the situation where the weight of certain assets in the solution-portfolio becomes too
big hence making the portfolio too susceptible to fluctuations in the prices of those
assets. We will typically choose u, = Ce, where C' is a scalar which of course depends
on n. It is also practically convenient to express the free variable z; as one with infinite
box constraints. We chose not to include any other additional linear constraints because
those constraints are mostly situation specific. Plus it is very easy to extend our models
to include them without having to change any part of our algorithms.

In order to make our models more concise we define for (PMV)
the (n+ 1+ k) x (n+ 1+ k)-matrix

0
01, (5.1)
I

A= rel P -1 01, (5.2)
{ el 0 0 J
the (k + 2)-vector
0
b= ae (5.3)
1
and the (n + 1+ k)-vectors
Tp 0 Up
ri=| zs |, l:= 0 ., oui=| oo (5.4)
Ty —00 00
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Now (PMV) is equivalent to
Minimize 127Qux

(PQP) subject to Ax =

Similarly, for (PMV’), we define
the (n + k) x (n + k)-matrix

o]
Q=10 0], (5.5)
Lo 1]
the (k +2) x (n + k)-matrix
P —I
A=|0 €|, (5.6)
el 0
the (k + 2)-vector
ae
V=1 0 (5.7)
1

and the (n + k)-vectors

() re(L) () e

Accordingly (PMV’) is equivalent to
Minimize %x’TQ’x’
!/
(PQPY) subject to A'x' =V
' <z <.

These notations enable us to treat (PQP) and (PQP’) as identical for the most part.
Hence from now on we will work only with (PQP).

In the implementation the models are being generated by the subroutine mvtosta
(mean variance to standard model) which is listed in the Appendix. It only requires
P, o and u, as input data and due to the structure of () we can make good use of
MATLAB’s sparse data type [22].

If u, is empty it is uniformly set to infinity. If it is shorter than z,, say of length
i, then only the first 7 components of x, are treated as bounded, while the remaining
components have infinite bounds.
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We define m and 7 as the number of rows and columns of A, respectively. The first
order optimality conditions of (PQP) are (cf. (3.3))

Ax —b l <
U
AT N+ y—2—-Qx -
GO(xaya 2, )‘) = SlYe . 06 = 07 0 S Yy ) (59)
0
S, Ze — Qe =%

where S; ;= X — L and S, := U — X. Theoretically it is of course impossible to satisfy
the last two equations, because of the infinite bounds. In practice however we set [y;
and [z;]; to zero for all k if [; = —oc or u; = 0o, respectively. This method has proven
more effective in our numerical experiments than the variable splitting technique known
from the simplex method (cf. also [23]).

5.2 Pure Primal-Dual Algorithm

The algorithm described in this section is implemented in the subroutine pd_ipm which
is also listed in the Appendix. In essence the algorithm follows the scheme of Algo-
rithm 1 except that we do not require (g, o) to be strictly feasible and the centering
parameter pu; and the steplength a4 are computed by special procedures which will
be described below. Of course the termination criteria have to be also different to suit
practical considerations.

5.2.1 Initialization

There are two checks that are performed at the very beginning. First the algorithm
makes sure that the dimensions of the input data match. Then it checks if the constraint
matrix A has full (row-)rank. If any of the checks fail, the algorithm stops with an
error message. Currently there is no preprocessor included that removes redundant
equations.

Unlike the theoretical algorithms in Chapters 3 and 4, the algorithm does not require
an initial strictly feasible solution but will use one if one is given by the user. Instead it
has proven far more efficient [13] to compute initial values for x, y, z and A such that the
box constraints are satisfied and the other constraints are approximately satisfied and
then start from this infeasible point. There have been first efforts to establish theoretical
convergence results for these so called infeasible IPMs, e.g. [26, 29], which indicate
that very similar choices of parameters as for Algorithm 2 are adequate. However our
choice of parameters is influenced by the more practically oriented works of Lustig et
al. [4, 2, 13].
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The default procedure for computing the initial points was partly motivated by the
one in [14].

Procedure 3
Given 6 > 0.

Step 1 Compute 7o := AT(AAT)~'b and 0p := 0| o]]1 /7.

Step 2 Fori=1,...,n, set [zq]; :== (u; — 1;)/2, if u; — [; <= 20p or else

U; — 013, if U; — [3_70]1 < GP
[l‘o]i = l; + 013, if [3_70}1 - < GP
(o] otherwise.

Step 3 Set )\ := 0. Compute vy := Qo + ¢ and Op := 0 ||vo||1 /n.

Step 4 Fori=1,...,n, set [y]; := 0, if [; = —oc or else
[’Ug}z’, if [UO]i > QD
[yoi :=

0p . otherwise,
and [z]; := 0, if u; = oo or else

—[voli, if [ve]; < —0p
[ZO]i = .
0p . otherwise.

The computation of the pseudoinverse of A in Step 1 is possible, because we have
made sure that A has full row-rank. Overall, Procedure 3 computes initial values xg,
Yo and zy which are at least a certain threshold #p for zy and 0p for yo and 2z, away
from the relevant boundaries. The user can influence this threshold value by changing
the scaling parameter 6. After extensive testing it seems that # = .3 is a good universal
choice.

On the other it is attempted to keep the norm of the initial infeasibility or residual,
i.e.

)
2

Irollz == Azo b
oliz = AT Ny + 9o — 20 — Qg

as small as possible.

5.2.2 Computation of Centering Parameter

Our procedure for computing the centering parameter p; was motivated by the ones in
the primal-dual algorithms for linear-programming described in [13, 14]. In the case of
infeasible starting points, p; must play the important role of a feasibility parameter.
This means that p; should be large as long as primal and dual feasibility have not been
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attained yet, because the centering directions point from the current iterates away from
the boundary into the interior of the feasible region. Hence more centering will allow
for larger steps before the nonnegativity constraints restrict the steplength. Of course
another result of this technique is that the emphasis on attaining feasibility is greater
than on attaining optimality. However, from our numerical experiments we feel that
this has no significant negative effect on the efficiency of the algorithm.

Our procedure for computing  is as follows.

Procedure 4

Given € > 0, £ > 0,

w2, if n < 5000, (5.10)
Tl a2, if o> 5000, '
and
M =& ¢ max(Q,b), (5.11)

where max (@, b) refers to the largest component of both items in the parenthesis and
€ is the same that is being used in the termination criteria.

Step 1 If primal and dual feasibility has been attained, i.e.

Az — bls AT Ae + yk — 21 — Qi — |y

———— <€ and <€,

1+ [Jzg s L flzelln + llyelle + [zl + [ Aell
then

(e = DTy (u = 2)
Kk = )
0

otherwise

_ 2 Q= b A — My + w2z + M|ref[1/ |70l
/‘Lk L ¢

where like above rj is the residual of primal and dual constraints at the k-th
step.

This procedure merits an explanation. First it is apparent that for feasible iterates
py is similar to the one in Algorithm 1 with oy = n/¢. Thus oy is a constant rather
than converging to zero. This works much better in practice than for instance choosing
or as the minimum of duality gap and say .99, in which case the centering parameter
converges to zero much slower than for our choice.

When feasibility has not been achieved yet, we obviously have to compute the du-
ality gap as the difference between primal and dual objective function since the total
complementarity no longer equals the duality gap. In this case M controls the influence
the degree of infeasibility has on . The bigger M, the larger u; will be chosen when
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the degree of infeasibility is still high. M takes into account the scaling of the problem
and can be controlled by the user by adjusting the parameter £&. We choose & = .45.

Since we are dealing with a very homogeneous class of problems there is no need
to adjust any of the parameters involved in the computation of ;. For an interesting
discussion about this topic for the case of LP see [13].

5.2.3 Computation of Search Directions

Due to the infeasible start, the system defining the search directions in our case is
of course also different from the feasible case when the upper part of the right hand
side is zero. We still proceed similarly as in Algorithm 1 though and define the search
directions as solutions to the system

Al‘k

A
G:Lk(xkiykizki)\k) Az: = _Guk(ajk;yk;zk;)\k) 3

AN

where G. was defined in (5.9). Dropping the index & for notational convenience, this is
equivalent to

A 0 0 0 Ax b— Ax
-Q I -1 AT Ay B —ATN—y+2+Qx (5.12)
Y S5 0 0 Az - pue — SiYe ' '
-7 0 S, 0 A\ pe — S, Ze
If we set
P b— Ax
D2 . AT —y+2+Qx
" - o510 , (5.13)
D4 pe — S, Ze
we can compute the solutions to (5.12) directly by
AN (AHYAT) L [AH Y(py — S, "'ps + Sy 'pa) + pi]
Az B H=Y(—py+ S, 'p3 — Sy tps + ATAN) (5.14)
Ay B S, H(ps — YAT) '
Az Su_l(p4 + ZA:C)

with H := Q + Sl_lY +S,1Z. When computing Sz_l and S, !, the diagonal elements
associated with infinite bounds are set to zero.

The computation of the search directions, in particular of (AH ~*AT)~! uses up most
of the computation time in each iteration. Fortunately H is a diagonal-matrix and as

49



5. Implementation

such easy to invert. Moreover the increasingly ill condition of H which is an inherent
property of all IPMs does not pose a problem in practice. It is worth noting though
that H can only be inverted when zj, y; and z; are not too close to their respective
bound which is why the starting points are made to meet this requirement.

Recalling (5.2) and (5.6) we see that A unfortunately is mostly dense. Our actual
strategy therefore is to compute the cholesky factors of AH'AT and then solve the
defining equation for A\ by forward and backward substitution. The quantities that are
needed several times are just computed once and then stored in temporary variables.
All diagonal matrices needed in the computation are stored as sparse matrices again
[22].

It should be remarked that Monteiro and Adler [19] devise an updating scheme for
the cholesky factors of AH~'AT which exploits the fact that only diagonal elements of
H change at each iteration. This reduces the bound on the number of operations per
iteration [7] from O(n?) to O(n*®). We did not implement this scheme because we feel
that it would not have a significant effect on the performance of the algorithm.

5.2.4 Computation of Steplength

Our choice of steplength in practice is not limited by technical theoretical considera-
tions. The vast majority of practical IPM implementations (e.g. [15, 23]) use a slightly
smaller steplength than the maximal possible, i.e. in order for xj, y; and z; to stay
strictly within their respective limits.

We compute the maximal possible steplengths separately for primal (&) and dual
D) variables. For simplicity we will drop the index k again.

af = min {mjn {_%‘A— l Az < 0} : rniin {u’A_ T Az; > 0}} (5.15)

¢ X X

(&

and

&P = min {min{—A‘yi' C Ay < 0}, rniin{—AZi t Az < 0}} . (5.16)

¢ i Zi

For LP it has proven very efficient to use different step sizes for primal and dual
variables [13, 15] and there is also no reason for concern from a theoretical point of
view against this technique, because in LP there are no primal variables in the dual
constraints and vice versa. In QP this is different however since we have the term Qx
in the dual constraints, hence when we take different steplengths the next iterate may
violate these constraints. Therefore a theoretically correct choice of steplength would
be
{ comin(a” aP), if min(a”,a”) <1,
o .=

1, otherwise
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with typically ¢, := .99995.

After extensive testing with various choices of steplengths, including the extreme case
of different steplengths for all variables —which did not work for one single problem by
the way— it became evident that when using different steplengths for primal and dual
variables we never achieved a slower but in most cases a considerably faster convergence
than for the case when the same steplength was used for all variables. Moreover in most
cases the iterates became feasible after less steps. This will certainly not always be the
case and especially not for all convex QP but since it worked so well we stuck with the

technique.

Consequently our procedure for computing the steplengths and for updating the

iterates is the following.

Procedure 5
Given ¢, := .99995,

Step 1 Compute & and &P by (5.15) and (5.16), respectively.

Step 2 Compute

Oék = .
1, otherwise

Step 3 Update the iterates by

Tk

Yk
2k

and set k < k + 1.

5.2.5 Termination Criteria

- { catl,  if cuaf <1,

TTTT

and aof =

Tp + a,fA:ck
yr + o Ay,
zk + a,’?Azk
Ap + a,’?A)\k

{

A D
Cal¥y

L,

if coaf <1,

otherwise.

Due to the above choice of steplengths we cannot solely rely on the duality-gap as
termination criterion, but we also have to make sure that the iterates are still “suffi-
ciently” feasible. Therefore the algorithm terminates if for the total complementarity

it holds that

() — l)Tyk + (u — xk)Tzk <€

and for the relative infeasibility

7]l

U flzelly 4 1yl + lzell + (Al
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with currently e = 10~7. This choice of € is mainly to allow performance comparisons
with other implementations. In most situations the algorithm converges also for smaller
€.

Since we did not include a mechanism for detecting infeasible or ill-posed problems
the alternative termination criterion is that a given maximal number of iterations has
been reached. Currently this number is 100 which is reasonable because typically the
algorithm terminates after less than 20 iterations. Unsolvable problems usually give
themselves away by causing numerical difficulties after about 20 iterations because one
of the objective values tends to infinity.

5.3 Predictor-Corrector Algorithm

Recently it has become evident through several publications e.g. [15, 3, 14, 29, 1] to
name only a few that Mehrotra’s predictor-corrector algorithm [18] and variants of it
clearly dominate the field of IPMs as far as practical efficiency and local convergence
is concerned. This was reason enough to include an implementation of this method in
our numerical experiments. To tell it right away, our results fully support the good
reputation, but before we look at the results we will give a brief description of the
method and our implementation of it.

5.3.1 Motivation

In motivating the predictor-corrector algorithm, we will follow the very neat description
in [14].

The basic idea behind this IPM is to use the “expensive” cholesky factorization of
AH~'AT that is needed in the computation of the search directions, twice in every
step and thereby gain extra information about the central path through the current
iterates to the optimal solution.

This is achieved by first solving (5.12) for the affine directions, i.e.

A0 0 0 Az b— Ax
-Q I -1 AT Ay B AT —y+2+Qx (5.17)
Y S 0 0 A% - —SYe ' '
-Z 0 S, 0 AN —S,Ze

This is called the predictor step.

Similarly to Algorithm 2 these directions are then used to determine the centering
parameter z. Analogous to (5.15) and (5.16), let @7 be the minimum of the primal
and dual maximal possible steplengths if the predictor directions were used and

o := min(1,.99995a") .
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Then the new total complementarity after a step in the predictor directions is
g:=(@+a"Az = D)"(y+aPAY) + (u— 2 — a"AZ)" (2 + o A3)

and p is computed by

~ 2 A

9 9
= =. 5.18
. <(a:—l)Ty+(u—a:)Tz> n (5.18)
Since the predictor directions are descent directions for the total complementarity the
first fraction will always be smaller than 1. Moreover it will be small when good progress
can be made in the predictor directions and large when these directions promise little
improvement due to a small possible stepsize which usually indicates the need for more

centering. The second fraction is exactly p from Algorithm 1.

Next, in the corrector step, the actual search directions are computed as solutions
to

A0 0 0 Az b— Az
—Q I -1 AT Ay _ —ATA—y+2+Qu (5.19)
Y 5 0 0 Az pe — S;Ye — AXAY ' '
-Z 0 S, 0 AN pe — SyZe + AXAZ

Clearly all that has changed in comparison to the pure primal-dual algorithm (cf.
(5.12)) are the corrector terms —AXAY and AXAZ on the right hand side. The
computation of step size and the procedures for updating the iterates are the same as
in the pure primal-dual algorithm.

So the extra work that has to be done for the predictor-corrector algorithm is the

backsolve to compute the predictor directions and the ratio test to determine o”.

But what is gained? We will show that one step of the predictor-corrector algorithm
approximately combines one step in the predictor or affine direction and from there
one step of the pure primal-dual algorithm.

Note that we can write the search directions as
Ar = Az +c¢,
Ay = Ag+g
Az = Az+e,
AN = Ad+cy,

where the correction terms satisfy

40 0 0 e b— Ax
-Q I -1 AT cy _ —AT) —y +2+Q (5.20)
Y S 0 0 . e — AXAY ' :
-Z 0 S, 0 Cx pe + AXAZ
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Note further that

(X +AX — L)(Y + AY)e
= (S, +AX)(Y +AY)e
= §lYe+YA:E+SlAg+AXAY

~”

=0 by (5.17)

and similarly X X o
(U—-X-AX)(Z+ AZ)e=-AXAZ.

Thus (5.20) defines pure primal-dual search directions from the point x + Az, y + Ag,
z 4 A2, X+ A) that would result from a full step in the predictor directions, except
that the terms Az, Ay, AZ have not been added to the diagonal matrices on the left
hand side. That means that instead of using the Jacobian at the point resulting from
a full step in the affine directions, the Jacobian at the current point x,y, z, A is being
used.

Despite the approximation this technique produces excellent search directions fre-
quently leading to a considerably smaller number of total iterations. A logical extension
of this approach is to attempt to use one matrix factorization even more often. There
has been some research in this direction [3, 2] which indicates that the number of
iterations often can be reduced even more with more “correcting”.

5.3.2 Implementation

The predictor-corrector algorithm is implemented in the subroutine pc_ipm which can
be found in the Appendix.

In accordance with the brief description of the algorithm above, the implementation
is very similar to the one of the pure primal-dual algorithm. The initialization procedure
is the same as in 5.2.1, except that we set # = 1, because for reasons given below it is
desirable to keep farther away from the boundaries.

The computation of the search directions and the centering parameter is according
to the description above, with a little difference. Our actual procedure for computing
1 is as follows.

Procedure 6
Given 1 :=.7.
Step 1 If primal or dual feasibility has not been attained and

[l
(LEk — l)Tyk + (U - LEk)TZk

> 103,

then set uy := i and skip Step 2.
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Step 2 If (zx — 1)"yx + (u — 2%)" 2 < 1 and primal and dual feasibility has been
attained, then

(l‘k — l)Tyk + (U — l‘k)TZk
HE = q5 )

otherwise compute py by (5.18) but with separate steplengths for primal and
dual variables in computing g.

The second step was partly motivated by [14], i.e. when the iterates are close to
an optimal solution we use the same centering parameter as in the pure primal-dual
algorithm to avoid potentially numerically unstable systems.

The first step has proven to be essential, because before it was included the algorithm
mostly did not converge. This happens when the starting points are too close to their
bounds which sometimes cannot be avoided due to small upper bounds. Then it often
happened in our experiments that the first fraction in (5.18) was close to 1 but the
second fraction was too small for this to have a significant effect on p;. Consequently
the algorithm got caught in the erroneous assumption that it was already close to a
solution and perpetually chose p; much too small. As a remedy we had to include a
mechanism that also takes into account the infeasibility. The heuristic in Step 1 with
the user-controllable parameter g has proven to serve this purpose very well. Typically
it only affects the first step. Lustig et al. [14] work around this problem by not requiring
xy to initially satisfy the upper bound but allowing it to iterate to bound feasibility
and hence choosing large initial points.

For the same practical reasons given in 5.2.4 we compute g with separate steplengths
for primal and dual variables. The computation of the actual steplengths, the updating
scheme for the iterates and the termination criteria are the same as for the pure primal-
dual algorithm.

5.4 Numerical Results

All numerical experiments were carried out on a DEC Alpha workstation running
OSF/1 with the numeric computation software package MATLAB 4.0. Although the
MATLAB optimization toolbox contains a QP solver we did not use it for performance
comparisons because its performance was too poor on our problems.

Three sets of test data, i.e. three matrices P, from the Tokyo Stock Exchange Market
were most generously provided by Messrs. Ken-ichi Suzuki and Hiroshi Konno from the
Tokyo Institute of Technology. They have been used in the numerical experiments in
[11, 21] before. The test set called r8912 contains 60 monthly rates of return (January
1985 — December 1989) for the stocks included in the Nikkei225 index. The test set
called r9012 contains the same kind of data for the period January 1986 — December
1990. The test set called tsem contains the same data but for all 1064 stocks traded
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in the Tokyo Stock Exchange Market for the 152 months between January 1980 and
August 1982. The sets called tsem1, tsem2 and tsem3 are the subsets P(1 : 60,1 : 225),
P(61: 200,226 : 450) and P(93 : 152,451 : 675) of tsem, respectively.

Besides the real world data we also used 3 randomly generated data sets. The MAT-
LAB routine that was used to generate the data sets is called randprob and can be
found in the Appendix. The size of the sets is 60 x 225 for randl and rand2 and
60 %2500 for rand3. The sets were generated by randl: randprob(60,225,2,11.5,0,0),
rand?2: randprob(60,225,-2,1,8,0) and rand3: randprob(60,2500,-2,1,8,0). The
sets rand2 and rand3 were deliberately chosen to be almost infeasible for our choice of
a = 2 and u, = .03e, to see how the algorithms behave.

In all tests the required rate of return was o = 2.0. The columns in Tables 5.1 and
5.2 have the following meanings: ‘Model’ refers to the two models we are considering,
where ‘>’ means model (PQP) and ‘=" means model (PQP’). An ‘M’ in this column
indicates that the regular MV-model (MV2) with the according equality or inequality
constraint was used. ‘Bound’ refers to the upper bound u, and the actual value in
column ‘Bound’ is the uniform upper bound on all components of z,. Obviously the
‘Solver’ column gives the algorithm that was used, where PC stands for the predictor-
corrector algorithm and PD for the pure primal-dual algorithm. ‘Total # Steps’ is the
number of steps the algorithm needed to reach optimality and ‘Infeasible # Steps’ is the
number of steps the algorithm needed until primal and dual feasibility was reached. As
already mentioned, the ‘CPU Times’ were achieved on a DEC Alpha workstation and
computed by the built-in MATLAB function cputime. The column ‘1-Norm Residual’
lists the 1-norm of the last residual vector r;. To decide whether a stock was in or out
the solution portfolio, i.e. if the corresponding component of x, was zero or not, we
used the convergence tolerance €. All components of x, smaller than e were assumed to
be zero. Of course there are more reliable and yet inexpensive ways to decide this but
they are not within the scope of this thesis. For more information about identifying
zero components we refer the interested reader to [5].

It should be remarked that the built-in QP solver of MATLAB was used to detect
infeasible problems.

Even though our implementations are only research codes, they still exhibit quite a
good performance, as can be seen in Tables 5.1 and 5.2. The results are definitely better
than the ones reported in [11] and [21] where the same kind of data was used. The last
three entries of Table 5.2 clearly demonstrate that our algorithms even find solutions
for nearly infeasible problems in still an acceptable amount of time. On the other hand
there is no doubt that there is still room for improvement in our implementations.

An important remark concerning the results of data set randl is that the fact that
there are 225 stocks in the solution does not contradict the result at the end of Chap-
ter 2. According to this result there exists a solution of model (MV3) such that there
are no more than 62 stocks in the solution portfolio. Unfortunately the algorithm
did not find one of these solutions in this case. Hence we will have to do some extra
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computations, i.e. solve an easy LP to identify a solution with the desired properties.

The results of our experiments support the clear dominance of the predictor-corrector
algorithm. It only got beat once by the pure primal-dual algorithm, as far as the total
number of iterations and the CPU-time is concerned, and this might even be due to a
weakness in our implementation.

As far as the models are concerned, the six examples we included are sufficient to
demonstrate that the compact models (PQP) and (PQP’) are clearly much faster to
solve than the regular MV-model (MV2).

A final remark has to be made regarding MATLAB’s spdiags routine. When called
with an empty first argument, e.g. spdiags([]1,0,0,0) it produces an error message
while one would expect it to simply return an empty matrix. This somewhat unpre-
dictable behavior causes trouble when calling pd_ipm or pc_ipm with empty lower or
upper bounds on the design variable. Thus instead of programming around this “bug”
we decided to rather “fix” the spdiags routine in such a way that it now returns an
empty result when called with an empty first argument.
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Table 5.1: Numerical Results I

Data | Model | Bound | Solver | Total | Infeasible | CPU | 1-Norm | # Stocks in
# Steps | # Steps | Time | Residual solution
r8912 ‘=’ 1 PC 10 8 4.67 | 1.11E-12 28
r8912 ‘=’ 1 PD 15 11 6.05 | 4.31E-12 28
r8912 | M ‘=’ 1 PC 14 2 49.03 | 2.11E-15 28
r8912 | M ‘=’ 1 PD 23 5 79.15 | 3.78E-15 28
r8912 >’ 1 PC 10 9 4.68 | 4.93E-12 32
r8912 >’ 1 PD 16 7 6.38 | 4.39E-13 32
r8912 ‘=’ .03 PC 11 10 5.07 | 1.06E-11 42
r8912 ‘= .03 PD 16 13 6.40 | 9.39E-14 42
r8912 >’ .03 PC 12 7 5.35 | 8.01E-13 48
r8912 >’ .03 PD 19 13 7.45 | 9.17E-13 48
r9012 ‘=’ 1 PC 11 10 5.03 | 1.14E-10 21
r9012 ‘=’ 1 PD 14 7 .77 | 1.7T7E-12 21
r9012 ‘>’ 1 PC 11 10 5.08 | 5.08E-11 21
r9012 >’ 1 PD 14 7 5.72 | 1.35E-12 21
r9012 ‘=’ .03 PC 14 10 6.13 | 2.14E-13 45
r9012 ‘=’ .03 PD 18 12 7.05 | 1.97E-12 45
r9012 ‘>’ .03 PC 14 11 6.18 | 2.09E-12 45
r9012 >’ .03 PD 18 12 7.08 | 2.38E-12 45
r9012 | M >’ .03 PC 12 1 43.87 | 1.55E-15 45
r9012 | M >’ .03 PD 24 3 86.12 | 5.55E-16 45
tseml ‘=’ 1 PC 10 8 4.68 | 1.80E-12 29
tseml ‘=’ 1 PD 15 ) 6.02 | 1.79E-11 29
tseml >’ 1 PC 10 8 4.70 | 2.17E-12 29
tseml >’ 1 PD 15 5 6.07 | 2.54E-11 29
tseml ‘=’ .03 PC 9 8 4.30 | 1.93E-11 40
tseml ‘=’ .03 PD 16 11 6.47 | 4.53E-14 40
tseml >’ .03 PC 9 8 4.37 | 7.17E-11 40
tseml >’ .03 PD 16 11 6.38 | 1.49E-11 40
tsem2 ‘=’ 1 PC 10 4.67 | 1.83E-11 32
tsem?2 ‘=’ 1 PD 15 6.02 | 1.50E-11 32
tsem?2 ‘>’ 1 PC 11 5.08 | 4.31E-10 36
tsem?2 >’ 1 PD 17 10 6.77 | 7.09E-10 36
tsem2 ‘=’ .03 PC 11 9 5.05 | 1.65E-11 48
tsem2 ‘=’ .03 PD 16 11 6.45 | 1.58E-12 48
tsem?2 ‘>’ .03 PC 10 8 4.72 | 6.25E-11 47
tsem?2 >’ .03 PD 16 10 6.38 | 8.88E-12 47
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Table 5.2: Numerical Results 11

Data | Model | Bound | Solver | Total | Infeasible | CPU | 1-Norm | # Stocks in
# Steps | # Steps | Time | Residual solution
tsem3 ‘=’ 1 PC 17 13 7.27 | 2.56E-14 10
tsem3 ‘=’ 1 PD 20 15 7.78 | 2.02E-14 10
tsem3 ‘>’ 1 PC 17 13 7.23 | 4.13E-14 10
tsem3 ‘>’ 1 PD 20 15 7.85 | 4.60E-14 10
tsem3 | M ‘>’ 1 PC 16 5 58.33 | 1.55E-15 10
tsem3 | M ‘>’ 1 PD 20 5 71.73 | 1.33E-15 10
tsem3 =’ .03 Infeasible Problem
tsem3 > .03 Infeasible Problem
randl ‘=’ 1 PC 7 3 3.58 | 1.11E-15 225
randl ‘=’ 1 PD 14 5 5.83 | 1.55E-14 225
randl >’ 1 PC 7 3 3.50 | 1.55E-14 225
rand1 ‘>’ 1 PD 14 5) 5.77 | 2.00E-15 225
rand1 ‘=’ .03 PC 7 3 3.55 | 9.99E-16 225
randl ‘=’ .03 PD 13 4 5.45 | 6.66E-16 225
randl >’ .03 PC 7 3 3.53 | 5.00E-15 225
rand1 ‘>’ .03 PD 13 4 5.48 | 1.78E-15 225
rand?2 ‘=’ 1 PC 13 10 5.77 | 8.81E-12 6
rand2 ‘=’ 1 PD 12 7 5.05 | 1.91E-12 6
rand2 >’ 1 PC 12 9 5.50 | 1.21E-11 6
rand2 >’ 1 PD 18 8 7.12 | 1.03E-11 6
rand?2 ‘=’ .03 Infeasible Problem
rand2 ‘> .03 Infeasible Problem
tsem ‘=’ 1 PC 12 10 128.1 | 1.42E-11 36
tsem ‘=’ 1 PD 16 11 156.6 | 3.77E-10 36
tsem ‘>’ 1 PC 12 10 126.6 | 4.31E-12 36
tsem >’ 1 PD 16 11 159.3 | 6.09E-10 36
tsem ‘>’ .03 PC 17 12 169.2 | 1.60E-09 49
tsem >’ .03 PD 21 13 196.3 | 1.88E-09 49
rand3 ‘=’ 1 PC 26 6 102.2 | 7.56E-12 33
rand3 ‘=’ 1 PD 33 9 118.1 | 7.30E-10 34
rand3 ‘>’ 1 PC 23 7 89.9 | 1.17E-11 33
rand3 >’ 1 PD 32 6 113.2 | 1.39E-09 34
rand3 > .03 Infeasible Problem
rand3 >’ .04 PC 33 13 126.4 | 1.44E-11 37
rand3 ‘>’ .04 PD 44 16 154.6 | 1.49E-11 37
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6. Conclusions and Summary

In this thesis we demonstrated that by transforming a MV model into a separable QP
and by applying [PMs to this separable representation, Markowitz’ model and hence
also most models based on it now can be solved in a very practical amount of time
even for large problems.

The transformation itself makes the model generation very easy by using historical
data and permits to solve the MV model in usually 10% of the time that would be
needed to solve the regular MV model. At the same time the algorithms that we im-
plemented generally find solution portfolios with a very manageable number of assets.
Even if they don’t it only requires a little extra work to find such a solution as its
existence is guaranteed by the separable representation.

We have seen that the behavior of the presented primal-dual IPM is mainly con-
trolled by the centering and the steplength parameters and that it required a substan-
tial amount of work to find choices of these parameters which guarantee the global and
superlinear convergence of the duality gap. On the other hand the numerical experi-
ments have shown that in practice the choices of parameters do not have to be restricted
so narrowly to get practically efficient algorithms. Very interesting, especially from a
practical point of view is the possibility of starting with infeasible iterates and yet
to achieve reliable fast convergence in all solvable cases that we tested. A fairly new
approach might be the way we deal with free variables in practice, i.e. to treat them
as variables with infinite lower and upper bounds which works very well.

From our and the cited results it is save to say that at this time the different variants
of Mehrotra’s predictor-corrector IPM offer the best practical efficiency. The cited
sources seem to support its dominance over all other IPMs also in theory.

Considering that portfolio models are used in a variety of areas, more professional
versions of the presented portfolio optimization methods have the potential of being
included in a wide range of software packages in the future.
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A. Listings of Routines

A.1 Model Generator: mvtosta

function [H,c,A,b,lboundx,uboundx] = mvtosta(P,alpha,uboundx,which)
% MVTOSTA

% [H,c,A,b,1lboundx,uboundx] = mvtosta(P,alpha,uboundx,which)

yA transforms the values of a problem given in the form of a Mean-
yA Variance model with compact factorization of the covariance-

yA matrix into a standard QP-model with lower and upper bounds on
yA (possibly just parts of) the design variable x:

b

yA Min x’Hx+c’x

b

% s.t Ax=b , lboundx<=x<=uboundx

T

yA Due to the size and structure of the problems considered the function
yA takes advantage of the sparse matrix type: H and c are returned
yA as sparse matrices.

[k,n] = size(P);

% First handle missing arguments
if nargin < 3 uboundx=[];end

if which == 1’ % Regular case
lboundx = zeros(n,1);
A = [[P ; zeros(1,n) ; ones(1,n)] [-eye(k); ones(1l,k);zeros(1,k)]];
b [alpha*ones(k,1);0;1];
H = [sparse(n,k+n);sparse(k,n) speye(k)];
c = sparse(n+k,1);
elseif which == ’2’ % >= constraint for alpha
lboundx = zeros(n+1,1);
A = [[(eye(k)-(1/k)*ones(k))*P ; 1/k*ones(1,k)*P ; ones(1,n)]
[zeros(k,1);-1;0] [-eye(k); zeros(2,k)]];
b = [sparse(k,1);alpha;1];
H = [sparse(n+1,k+n+1) ;sparse(k,n+1) speye(k)];
c = sparse(n+k+1,1);
elseif which == 3’ % Point on the efficient frontier
lboundx = zeros(n,1);
A = [[(eye(k)-(1/k)*ones(k))*P ; ones(1,n)] [-eye(k); zeros(1,k)]1];
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b = [sparse(k,1);1];

H = [sparse(n,k+n);sparse(k,n) speye(k)];

c = [-alpha/k#*P’*ones(k,1);sparse(k,1)];
end

A.2 Pure Primal-Dual Algorithm: pd ipm

function [xstar,ystar,zstar,lambda]=pd_ipm(A,H,b,c,lboundx,uboundx,x0,maxit,tol)
% [xstar,ystar,zstar,lambdal=pd_ipm(A,H,b,c,lboundx,uboundx,x0,y0,maxit,tol)

% Primal-Dual Interior Point Method Quadratic Optimization

% pd_ipm solves convex Quadratic Programs

% Minimize 1/2 x’*H*x + c’#*x subject to A*x == b, lboundx <= x <= uboundx

% using a primal-dual interior point method.

% H must be positive semi-definite and A must have full rank.

% The user has the option of incorporating lower and upper bounds on x, using
% lboundx and uboundx, respectively. If lboundx or uboundx are shorter than x,
% the remainig components of x are assumed to be unbounded in the respective
% direction.

%» A starting value x0 can be given but it has to satisfy the box-constraints.

% The default maximal number of iterations is 100 and can be adjusted by setting
% maxit.

% The default termination tolerance is 1E-7 and can be adjusted by setting tol.
% The routine returns the solution xstar and the lagrangian multipliers, where

% ystar is associated with lboundx, zstar is associated with uboundx and lambda
% is associated with the equality constraints.

% First set a couple of default values

h
defmaxit = 100; % Default value for the maximum number of iterations
deftol = le-7; % Default tolerance for objective value and residuals
threshold_scale = .3; % This is used for x0 and yO
xi = .45; % Only an initial value used for sigmak,
% the centering parameter
alpha_scale=.99995; % Used for computation of alphak

% Determine dimensions of the problem

[m n] = size(A);
if (size(H)”=[n,nl)|(size(b)~=[m,1]) | (size(c)“=[n,1])|
(size(uboundx,1)>n) | (size(1boundx,1)>n)
error (’Dimensions mismatch !!!’);
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end

nucstr=size(uboundx,1); % Number of upper-constrained variables

nufree = n-nucstr;

nlcstr=size(lboundx,1); % Number of lower-constrained variables

nlfree = n-nlcstr;

if n <= 5000
phi = n"2;
else
phi = n"(1.5);
end

Determine if A has full rank

h

h
h
h

phi and max_bcH are used in the calculation of
sigmak, the centering parameter
cf. Lustig, Marsten, Shanno

if rank(A) < m , error(’A does not have full row-rank’); end

If no tolerance is given use default

if nargin < 9, tol = deftol;

If no limit on iterations is given use default value

if nargin < 8, maxit = defmaxit;

If no starting-point is given compute one by default procedure

if nargin < 7

xk = A’/(A*A’)*b; 7 This is legitimate since we know that A has full row-rank
% and it’s much faster than pinv(A)*b !!!

threshold=norm(xk,1)/n*threshold_scale;

for i = 1:min([nlcstr,nucstr])

if uboundx(i)-1lboundx(i) < 2*threshold
xk (i) = (uboundx(i)-1lboundx(i))/2;

else

if xk(i)-1boundx(i) < threshold
xk(i) = lboundx(i)+threshold;

else

if uboundx(i)-xk(i) < threshold
xk(i) = uboundx(i) - threshold;

end;
end;
end;end;
if nlcstr < nucstr
for i = nlcstr+1:nucstr

if uboundx(i) - xk(i) < threshold
xk (i) = uboundx(i)-threshold;

end;
end;
else
for i = nucstr+l:nlcstr

if xk(i)-1lboundx(i) < threshold
xk(i) = lboundx(i) + threshold;
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end;
end;
end;
else
xk=x0;
end,end,end

lambdak=zeros(m,1) ;

yk=c+Hx*xk;

threshold=norm(yk, 1) /n*threshold_scale;

if threshold == , threshold = threshold_scale; end
zk = yk;

temp = (zk<=0);

zk=abs (zk) . *temp;

yk=zk.* (" temp) ;

yk(nlcstr+1l:n)=zeros(nlfree,1);

zk (nucstr+1:n)=zeros (nufree,1);

temp = yk(1l:nlcstr) < threshold;

yk([temp;zeros(nlfree,1)]) = threshold * ones(nnz(temp),1);
temp = zk(l:nucstr) < threshold;

zk ([temp;zeros(nufree,1)]) = threshold * ones(nnz(temp),1);

% Pick global parameters based on x0 and yO

fk1 = ([xk(l:nlcstr)-lboundx;zeros(nlfree,1)]).*yk;
fk2 = ([uboundx-xk(1l:nucstr);zeros(nufree,1)]).*zk;
objectivel=sum(fk1);

objective2=sum(£fk2) ;
objective=objectivel+objective?2;

residual = [A*xk-b;A’*lambdak-H*xk+yk-zk-c];

k=0;
converged=0;

x_feasible=0;

yz_feasible=0;

dxyk=zeros (3*n+m, 1) ; % Allocate space !!!
M = xi*phi*max([max(max(H));b;cl); % For sigmak
residual0 = norm(residual,l);

% Start iteration
0,
%

while (“converged) & (k <= maxit)

% Here the centering parameter is computed
%
if x_feasible & yz_feasible
sigmak = objective / phi;
else
sigmak = (c’*xk+xk’*H*xk-b’*lambdak+uboundx’*zk(1:nucstr)- ...
lboundx’*yk(1:nlcstr)+ M*(norm(residual,l)/residualO))/ phi;
end;
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% Compute the search directions
% dxyk = [ dxkN dxkC

% dykN dykC
yA dzkN dzkC
yA lambda ]

Slinv=spdiags([(-1boundx+xk(1:nlcstr)). (-1);zeros(nlfree,1)],0,n,n);
Suinv=spdiags ([ ( uboundx-xk(1:nucstr)). (-1);zeros(nufree,1)],0,n,n);
SlinvYk=spdiags(Slinv*yk,0,n,n);

SuinvZk=spdiags (Suinv*zk,0,n,n) ;

Ginv=H+SlinvYk+SuinvZk;

if k ==
if condest(Ginv) > lel2
H_ill = 1;
disp(’Warning: H is ill-conditioned !!!’);
else
H_ill = 0;
end;
end;
if H_ill
Ginv=Ginv+5*max (max (Ginv) ) *eps*speye(n) ;
end
Ginv=inv(chol(Ginv)); % This seems to be numerically more stable than
Ginv=Ginv*Ginv’ ; % inv(H+SlinvYk+SuinvZk) !

Rchol=chol (A*Ginv*A’);

templ=Slinv*(-fkl+sigmak*ones(n,1));

temp2=Suinv* (-fk2+sigmak*ones(n,1));

temp3=templ-temp2-(-residual (m+1:m+n));

dxyk (3*n+1:3*n+m)=Rchol\ (Rchol’\ (-A*Ginv*temp3+(-residual(1:m))));
dxyk(1:n)=Ginv* (temp3+A’*dxyk (3*n+1:3*n+m,:));

dxyk (n+1:2*n)=templ-SlinvYk*dxyk(1l:n,:);

dxyk (2*n+1:3%n)=temp2+SuinvZk*dxyk(l:n,:);

% Compute alphak, the step-length

minimum = min([Slinv*dxyk(1:n,1);-Suinv*dxyk(1:n,1)]1);
if minimum < O
alphak_p=min([(-alpha_scale/minimum);1]);
else
alphak_p=1;
end;

minimum = min([spdiags(yk(1l:nlcstr).”(-1),0,nlcstr,nlcstr)* ...
dxyk(n+1:n+nlcstr,1);
spdiags(zk(1:nucstr)."(-1),0,nucstr,nucstr)* ...
dxyk (2*n+1:2*n+nucstr,1)]) ;
if minimum < O
alphak_d=min([(-alpha_scale/minimum);1]);
else
alphak_d=1;
end;

h if alphak_p < alphak_d
h alphak_d = alphak_d
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yA else
h alphak_p = alphak_d
% end;

% Compute the new iterates

xk = xk + alphak_p * dxyk(1l:n,1);

yk = yk + alphak_d * dxyk(n+1:2#%n,1);

zk = zk + alphak_d * dxyk(2*n+1:3%n,1);

lambdak = lambdak + alphak_d * dxyk(3*n+1:3*n+m,1);

% Increase k the iteration parameter and display it
k = k+1;

disp([num2str(k) ’ steps completed’]);

% Test sequence for convergence rate

co = (objective + max(abs(residual)))”1;

% Update quantities

fk1 = ([xk(1l:nlcstr)-1boundx;zeros(nlfree,1)]).*yk;
fk2 ([uboundx-xk(1:nucstr) ;zeros(nufree,1)]).*zk;
objectivel=sum(fk1);

objective2=sum(fk2) ;
objective=objectivel+objective?2;

residual = [A*xk-b;A’*lambdak-H*xk+yk-zk-c];

% Test sequence for convergence rate

co = objective + max(abs(residual)) / co;
disp([’co = ’ num2str(co)]);

% Feasibility test

if “x_feasible & norm(residual(l:m),1)/(1+norm(xk,1))<=tol
disp([’xk feasible after ’ num2str(k) ’ steps.’]);
x_feasible=1;

end

if “yz_feasible & norm(residual (m+1:m+n),1)/ ...

(14norm([xk;lambdak;yk;zk],1))<=tol

disp([’yk & zk feasible after ’ num2str(k) ’ steps.’]);
yz_feasible=1;

end

% Optimality test

if (abs(objective)<tol) & norm(residual,1l)/ ...
(14+norm([xk;lambdak;yk;zk],1))<tol
converged = 1;
end
end
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if k > maxit

disp([’No solution after ’ num2str(maxit) ’ steps !!!’]);
disp(’Last iterates were:’);

else
disp([’Solution found after ’ num2str(k) ’ steps.’]);

end

xstar = xk; ystar = yk; =zstar=zk; lambda=lambdak;

A.3 Predictor-Corrector Algorithm: pc_ipm

function [xstar,ystar,zstar,lambda]=pc_ipm(A,H,b,c,lboundx,uboundx,x0,maxit,tol)
% [xstar,ystar,zstar,lambdal=pc_ipm(A,H,b,c,lboundx,uboundx,x0,y0,maxit,tol)

% Predictor-Corrector Interior Point Method Quadratic Optimization

% pc_ipm solves convex Quadratic Programs

% Minimize 1/2 x’*H*x + c’#*x subject to A*x == b, lboundx <= x <= uboundx

% using a predictor-corrector interior point method.

% H must be positive semi-definite and A must have full rank.

% The user has the option of incorporating lower and upper bounds on x, using
% lboundx and uboundx, respectively. If lboundx or uboundx are shorter than x,
% the remainig components of x are assumed to be unbounded in the respective
% direction.

%» A starting value x0 can be given but it has to satisfy the box-constraints.

% The default maximal number of iterations is 100 and can be adjusted by setting
% maxit.

% The default termination tolerance is 1E-7 and can be adjusted by setting tol.
% The routine returns the solution xstar and the lagrangian multipliers, where

% ystar is associated with lboundx, zstar is associated with uboundx and lambda
% is associated with the equality constraints.

% First set a couple of default values

b
defmaxit = 100; % Default value for the maximum number of iterations
deftol = 1le-7; % Default tolerance for objective value and residuals
threshold_scale = 1; % This is used for x0 and yO
sigma_scale=.7; % This used as centering parameter
% if residual >> objective
alpha_scale=.99995; % Used for computation of alphak

% Determine dimensions of the problem

[m n] = size(A);
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if (size(H)~"=[n,n])|(size(b)"=[m,1]) | (size(c) =[n,1]1)|
(size(uboundx,1)>n) | (size(1boundx,1)>n)

error (’Dimensions mismatch !!!’);
end
nucstr=size(uboundx,1); % Number of upper-constrained variables
nufree = n-nucstr;
nlcstr=size(lboundx,1); % Number of lower-constrained variables

nlfree = n-nlcstr;

if n <= 5000 %
phi = n"2; % phi is used in the calculation of
else % sigmak, the centering parameter
phi = n~(1.5); % cf. Lustig, Marsten, Shanno
end h

Determine if A has full rank

if rank(A) < m , error(’A does not have full row-rank’); end
If no tolerance is given use default

if nargin < 9, tol = deftol;

If no limit on iterations is given use default value

if nargin < 8, maxit = defmaxit;

If no starting-point is given compute one by default procedure

if nargin < 7
xk = A’/(A*A’)*b; % This is legitimate since we know that A has full row-rank
% and it’s much faster than pinv(A)*b !!!

threshold=norm(xk,1)/n*threshold_scale;
for i = 1:min([nlcstr,nucstr])
if uboundx(i)-1lboundx(i) < 2*threshold
xk(i) = (uboundx(i)-1lboundx(i))/2;
else
if xk(i)-1lboundx(i) < threshold
xk(i) = lboundx(i)+threshold;
else
if uboundx(i)-xk(i) < threshold
xk (i) = uboundx(i) - threshold;
end;
end;
end;end;
if nlcstr < nucstr
for i = nlcstr+1:nucstr
if uboundx(i) - xk(i) < threshold
xk (i) = uboundx(i)-threshold;
end;
end;
else
for i = nucstr+1:nlcstr
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if xk(i)-1lboundx(i) < threshold
xk(i) = lboundx(i) + threshold;
end;
end;
end;
else
xk=x0;
end,end,end

% Compute initial values for y, z and lambda based on x

lambdak=zeros(m,1);

yk=c+Hx*xk;

threshold=norm(yk, 1) /n*threshold_scale;

if threshold == , threshold = threshold_scale; end
zk = yk;

temp = (zk<=0);

zk=abs (zk) . *temp;

yk=zk.*(“temp) ;

yk(nlcstr+l:n)=zeros(nlfree,1);
zk(nucstr+1:n)=zeros(nufree,1);

temp = yk(1:nlcstr) < threshold;

yk([temp;zeros(nlfree,1)]) = threshold * ones(unz(temp),1);
temp = zk(1l:nucstr) < threshold;

zk ([temp;zeros(nufree,1)]) = threshold * ones(nnz(temp),1);

% Pick global parameters based on x0 and yO

fk1 = ([xk(1l:nlcstr)-1lboundx;zeros(nlfree,1)]).*yk;
fk2 = ([uboundx-xk(1:nucstr) ;zeros(nufree,1)]).*zk;
objectivel=sum(fk1) ;

objective2=sum(fk2) ;
objective=objectivel+objective?2;

residual = [A*xk-b;A’*lambdak-H*xk+yk-zk-c];

k=0;
converged=0;

x_feasible=0;
yz_feasible=0;
dxyk=zeros (3*n+m, 1) ; % Allocate space !!!

% Start iteration
h
while (“converged) & (k <= maxit)

% Compute the search directions
% dxyk = [ dxkN dxkC

% dykN dykC
% dzkN dzkC
% lambda ]

Slinv=spdiags([(-1boundx+xk(1:nlcstr))." (-1);zeros(nlfree,1)],0,n,n);
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Suinv=spdiags ([( uboundx-xk(1:nucstr)). (-1);zeros(nufree,1)],0,n,n);
SlinvYk=spdiags(Slinv*yk,0,n,n);

SuinvZk=spdiags (Suinv*zk,0,n,n);

Ginv=H+SlinvYk+SuinvZk;

if k ==
if condest(Ginv) > lel2
H_ill = 1;
disp(’Warning: H is ill-conditioned !!!’);
else
H_ill = 0;
end;
end;
if H_ill
Ginv=Ginv+5*max (max (Ginv) ) *eps*speye(n) ;
end
Ginv=inv(chol(Ginv)); % This seems to be numerically more stable than
Ginv=Ginv*Ginv’; % inv(H+S1linvYk+SuinvZk)

Rchol=chol (A*Ginv*A’) ;

First compute the predictor step

templ1=Slinv*(-fk1);

temp2=Suinv* (-£k2) ;

temp3=templ-temp2- (-residual (m+1:m+n));

dxyk (3*n+1:3*n+m)=Rchol\ (Rchol’\ (-A* (Ginv*temp3)-residual (1:m)));
dxyk (1:n)=Ginv* (temp3+A’*dxyk (3*n+1:3*n+m)) ;

dxyk (n+1:2*n)=temp1-SlinvYk*dxyk(1:n);

dxyk (2*n+1:3%n)=temp2+SuinvZk*dxyk(1:n) ;

Here the centering parameter is computed

if “(x_feasible & yz_feasible) & norm(residual,l) / objective > 1le3
sigmak = sigma_scale;
else
if objective < 1 & x_feasible & yz_feasible
sigmak = objective / phi;
else
minimum = min([Slinv*dxyk(1l:n,1);-Suinv*dxyk(1l:n,1)]);
if minimum < O
alphak_p=min([(-alpha_scale/minimum);1]);
else
alphak_p=1;
end;

minimum = min([spdiags(yk(1:nlcstr).”(-1),0,nlcstr,nlcstr)* ...
dxyk (n+1:n+nlcstr);
spdiags (zk(1:nucstr). (-1),0,nucstr,nucstr)* ...
dxyk (2*n+1:2*n+nucstr)]);
if minimum < O
alphak_d=min([(-alpha_scale/minimum);1]);
else
alphak_d=1;
end;
g_hat1=([xk(1l:nlcstr)-1lboundx+alphak_p*dxyk(l:nlcstr);...
zeros (nlfree,1)])’* (yk+alphak_d*dxyk(n+1:2%n));
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g_hat2=([uboundx-xk(1:nucstr)-alphak_p*dxyk(1l:nucstr);...
zeros(nufree,1)])’* (zk+alphak_d*dxyk(2*n+1:3*n));
sigmak=((g_hatl+g_hat2)/objective) "2 * ((g_hatl+g_hat2)/n);
end;
end;

disp([’sigmak = ’ num2str(sigmak)]);
Now the centered corrector step

templ=Slinv*(sigmak*ones(n,1)-fki1-dxyk(1l:n).*dxyk(n+1:2*n));
temp2=Suinv* (sigmak*ones(n,1)-fk2+dxyk (1:n) .*dxyk (2*n+1:3%n)) ;
temp3=templ-temp2-(-residual (m+1:m+n));

dxyk (3*n+1:3*n+m, : )=Rchol\ (Rchol’\ (-A*(Ginv*temp3)-residual(1:m)));
dxyk(1:n)=Ginv* (temp3+A’*dxyk (3*n+1:3%n+m)) ;
dxyk(n+1:2*n)=temp1-SlinvYk*dxyk(1:n);

dxyk (2*n+1:3*n)=temp2+SuinvZk*dxyk(1:n) ;

Compute alphak, the step-length

minimum = min([Slinv*dxyk(1:n,1);-Suinv*dxyk(1:n,1)]1);
if minimum < 0
alphak_p=min([(-alpha_scale/minimum);1]);
else
alphak_p=1;
end;

minimum = min([spdiags(yk(1:nlcstr). (-1),0,nlcstr,nlcstr)* ...
dxyk (n+1:n+nlcstr,1);
spdiags (zk(1:nucstr). (-1),0,nucstr,nucstr)* ...
dxyk (2*n+1:2%n+nucstr,1)]);
if minimum < O
alphak_d=min([(-alpha_scale/minimum);1]);
else
alphak_d=1;
end;

Compute the new iterates

+ alphak_p * dxyk(l:n,1);
yk = yk + alphak_d * dxyk(n+1:2#%n,1);

+ alphak_d * dxyk(2*n+1:3#%n,1);

= lambdak + alphak_d * dxyk(3*n+1:3*n+m,1);
Increase k the iteration parameter and display it
k = k+1;
disp([num2str (k) ’ steps completed’]);

Test sequence for convergence rate

co = (objective + max(abs(residual)))”1;
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h
h

end

Update quantities

fk1 = ([xk(1l:nlcstr)-1boundx;zeros(nlfree,1)]).*yk;
fk2 = ([uboundx-xk(1:nucstr) ;zeros(nufree,1)]).*zk;
objectivel=sum(fk1);

objective2=sum(fk2) ;
objective=objectivel+objective2;

residual = [A*xk-b;A’*lambdak-H*xk+yk-zk-c];

Test sequence for convergence rate

co = objective + max(abs(residual)) / co;
disp([’co = ’ num2str(co)]);

Feasibility test

if “x_feasible & norm(residual(1:m),1)/(1+norm(xk,1))<=tol
disp([’xk feasible after ’ num2str(k) ’ steps.’]);
x_feasible=1;
end
if “yz_feasible & norm(residual (m+1:m+n),1)/(1+norm([xk;lambdak;yk;zk],1))<=tol
disp([’yk & zk feasible after ’ num2str(k) ’ steps.’]);
yz_feasible=1;
end

Optimality test
if (abs(objective)< tol) & norm(residual,l)/(1+norm([xk;lambdak;yk;zk],1))<tol

converged = 1;
end

if k > maxit
disp([’No solution after ’ num2str(maxit) ’ steps !!!’]);
disp(’Last iterates were:’);

else

disp([’Solution found after ’ num2str(k) ’ steps.’]);

end

xstar = xk; ystar = yk; =zstar=zk; lambda=lambdak;

A.4 Data Generator: randprob

function P = randprob(samples,variables,mu,sigma,r_mu,r_sigma)
% RANDPROB

T

P = randprob(samples,variables,mu,sigma,r_mu,r_sigma)

creates a test-matrix for portfolio optimization of the size samples by
variables. It imitates a matrix that contains #samples samples of
#variables variables, for which the expected values of the variables are
contained in an interval of length r_mu with its center at mu and the
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% standard-deviations of the variables are contained in an interval of
yA length r_sigma with its center at sigma.
% It creates a different matrix each time it is invoked.

randn(’seed’ ,sum(100*clock));

P = randn(samples,variables);

Exp = rand(variables,1)*r_mu + (mu - r_mu/2) * ones(variables,1);

Std = rand(variables,1)*r_sigma + (sigma - r_sigma/2) * ones(variables,1);
P = Pxdiag(Std) + ones(samples,variables)*diag(Exp);
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