
Interior Point Methods for Large S
alePortfolio OptimizationDiplomarbeitvorgelegt vonStefan Kleboraus L�udinghausen

angefertigt amInstitut f�ur Numeris
he und Angewandte Mathematikder Georg-August-Universit�at G�ottingen1994

This thesis is dedi
ated to my tea
hers Mi
hael Ras
he whosparked my interest in mathemati
s and Prof. Dr. P.E. Gillwho sparked my interest in interior point methods.It is also dedi
ated to the wonderful institution INTERNET.I feel that without it this thesis would not have been possible.

A
knowledgementsMy �rst and spe
ial thanks goes to Prof. Dr. J. Werner for the freedom he gave me insele
ting the topi
, for the supervision of my work, for a lot of useful
omments andfruitful dis
ussions and last but not least for his intervention in getting the permissionto write this thesis in english.I am also most grateful for the invaluable support of The MathWorks, In
. andBaus
h-Gall GmbH and here in parti
ular Cleve B. Moler, Sandra Heaney and AdrianaIones
u. Their free provision of the powerful toolMatlab made the implementationsand the numeri
al experiments possible. Thanks to Gerhard Siebrasse for installingthe UNIX version of Matlab and to Peter Beisel for granting me a

ess to Matlabat the University of Wuppertal.In this
ontext I want to extend a spe
ial thanks to Messrs. Ken-i
hi Suzuki andHiroshi Konno for the provision of their test data from the Tokyo Sto
k Ex
hangeMarket.Thanks also to Tamra J. Carpenter, Masakazu Kojima, Kenneth O. Kortanek,Irvin J. Lustig, David F. Shanno, Ri
hard A. Tapia, Robert J. Vanderbei, Yin Zhangand Eberhard Krani
h for useful hints and for providing me with interesting preprintsof papers.I would like to parti
ularly thank my parents for all the support they have given methroughout my studies and before. I know that they helped me more than I would beable to imagine.It is impossible to thank my beloved �an
�ee Lara enough for everything she hasgiven me. I hope I will have a lifetime at her side to show her my gratitude.

5

Contents
A
knowledgements 51. Introdu
tion 92. Portfolio Optimization 112.1 The Mean-Varian
e Model : 112.2 A Separable Representation : 123. Introdu
tion to Interior Point Methods 153.1 Logarithmi
 Barrier Transformations : : : : : : : : : : : : : : : : : : : 153.2 A Model Algorithm : 183.3 Superlinear Convergen
e : 214. A Globally and Superlinearly Convergent Interior Point Method 274.1 Algorithm : 274.2 Choi
es of Parameters : 284.2.1 Centering Parameter : 284.2.2 Steplength : 314.3 Global Convergen
e : 334.4 Superlinear Convergen
e : 375. Implementation 435.1 The Models in Pra
ti
e : 435.2 Pure Primal-Dual Algorithm : 465.2.1 Initialization : 467

Contents5.2.2 Computation of Centering Parameter : : : : : : : : : : : : : : : 475.2.3 Computation of Sear
h Dire
tions : : : : : : : : : : : : : : : : : 495.2.4 Computation of Steplength : 505.2.5 Termination Criteria : 515.3 Predi
tor-Corre
tor Algorithm : 525.3.1 Motivation : 525.3.2 Implementation : 545.4 Numeri
al Results : 556. Con
lusions and Summary 61Appendix 63A. Listings of Routines 65A.1 Model Generator: mvtosta : 65A.2 Pure Primal-Dual Algorithm: pd ipm : : : : : : : : : : : : : : : : : : : 66A.3 Predi
tor-Corre
tor Algorithm: p
 ipm : : : : : : : : : : : : : : : : : : 71A.4 Data Generator: randprob : 76Bibliography 79

8

1. Introdu
tionIn 1959 Harry M. Markowitz laid the foundation for modern portfolio1 theory withthe introdu
tion of his mean-varian
e (MV) model [16℄. From a mathemati
al point ofview it is nothing more than a
onvex quadrati
 program (QP) with a matrix in theobje
tive fun
tion that is usually
ompletely dense. This
ir
umstan
e often makes itdiÆ
ult to solve large MV models. In fa
t it is diÆ
ult even to generate the model asthis involves the estimation of a great number of parameters.As a result the MV model was not used very mu
h in pra
ti
e throughout the 1960sand '70s. Instead other {simpli�ed{ models that were based on the MV model butmu
h easier to solve, su
h as CAPM [20℄ gained in
reasing popularity. The drawba
kof
ourse was, that be
ause of the idealisti
, simplifying assumptions these modelsimposed, their results
ould be used only as a �rst order approximation. The sear
hfor more reliable models produ
ed the multiple fa
tor and the index mat
hing models(
f. [6℄) whi
h require
onsiderably more
omputational work than CAPM but due tothe in
reasing performan
e of
omputers that seemed to be a

eptable.The next leap forward in large s
ale portfolio optimization was again marked byMarkowitz together with Perold through the appearan
e of their paper [17℄ in 1981, inwhi
h they used a s
enario model to generate a sparse representation of an MV model,i.e. with a sparse matrix in the obje
tive fun
tion of the QP. This together with sparsematrix te
hniques made it possible for the �rst time to solve a large s
ale MV modelin an eÆ
ient amount of time.In Chapter 2 of this thesis we will show how to transform an MV model, i.e. aQP with a dense matrix, into a separable QP, i.e. a QP with an ultimately sparsediagonal matrix. We will demonstrate that this sparse representation
an be solvedvery eÆ
iently. At the same time we will show how one
an alleviate the problem ofmodel generation by using readily available histori
al data. This has the ni
e side e�e
tof produ
ing portfolios with a manageable number of assets.Chapter 3
ontains a brief introdu
tion to a fairly new approa
h for solving QPs,namely interior point methods (IPMs), whi
h be
ame popular in 1984 through an often
ited paper by Karmarkar [10℄. IPMs have been proven to be often superior to other1The word portfolio has its origin in the fren
h word portefeuille whi
h means wallet or brief
ase.9

1. Introdu
tionQP solvers espe
ially for large problems [2℄ and they are parti
ularly well suited formaking use of sparsity. We will present a model algorithm for whi
h the duality gapsuperlinearly
onverges to zero under
ertain assumptions.Chapter 4 provides a more spe
i�
 primal-dual algorithm for whi
h the duality gapis globally and superlinearly
onvergent. These theoreti
al
onvergen
e results requirequite some te
hni
alities.In Chapter 5 we will show that these te
hni
alities are not entirely ne
essary inorder to get a pra
ti
ally eÆ
ient algorithm. The implementations of two establishedpra
ti
al IPMs are des
ribed in detail, together with some te
hniques that make IPMswork well in pra
ti
e. The very promising results of our numeri
al experiments withtest data from the Tokyo Sto
k Ex
hange Market indi
ate that there is a big potentialin this approa
h to large s
ale portfolio optimization.

10

2. Portfolio Optimization
2.1 The Mean-Varian
e ModelConsider an investor with a given budget who
an
hoose among n risky asset types Si,i = 1; . . . ; n to invest her money. Let xi be the rate of money to be invested in Si outof the total budget (normalized to 1) and Ri a random variable representing the rateof return of Si (per period). Further we de�ne ~ri := E[Ri℄, where E[�℄ is the expe
tedvalue and ~vij :=
ov[Ri; Rj℄. Then the total expe
ted return of a portfolio x is givenby ~rTx and the total varian
e, whi
h is being used as the measure of risk is given byxT ~V x.In its original form [16℄ the MV model intends to �nd all eÆ
ient portfolios �x, i.e.all portfolios for whi
h(i) �x 2 M := fx 2 IRn : eTx = 1; x � 0g, where eT := (1; . . . ; 1)(ii) 8x 2M with ~rTx > ~rT �x it holds that xT ~V x > �xT ~V x(iii) 8x 2M with xT ~V x < �xT ~V x it holds that ~rTx < ~rT �x.The eÆ
ient portfolios
an also be obtained by solving the following
onvex para-metri
 optimization problem
(EF) Minimize xT ~V x� � ~rTxsubje
t to eTx = 1x � 08� 2 [0;1):The
onvexity is due to the fa
t that ~V is a
ovarian
e matrix and as su
h the expe
tedvalue of a quadrati
. 11

2. Portfolio OptimizationIn most situations it is not ne
essary to
ompute all eÆ
ient portfolios but it suÆ
esto
ompute the portfolio with minimum risk for a given required total rate of return� (
f. [11℄) whi
h leads to the following model(MV1) Minimize xT ~V xsubje
t to ~rTx � �eTx = 1x � 0 :Sometimes [21℄ the �rst
onstraint appears as an equality rather than an inequalitywhi
h usually does not make mu
h di�eren
e be
ause a higher return normally alsofor
es a higher risk. We
hose the above formulation be
ause it is more
exible anddoes not require substantially more work to solve.Pra
ti
al appli
ations frequently require additional
onstraints, like linear institu-tional
onstraints or transa
tion
osts. Sin
e their only e�e
t from a theoreti
al pointof view is the enlargement of the model we will not in
lude them here. In parts theywill be
overed together with the implementation issues in
hapter 5.2.2 A Separable RepresentationAs was mentioned before, there are two major problems asso
iated with model (MV1)espe
ially for large n. The �rst is to obtain the required data ~r and ~V and the se
ondis the solution itself sin
e the
ovarian
e-matrix ~V will usually be
ompletely dense.This means that even sophisti
ated hard- and software will take quite a long time tosolve the model if it involves several thousand assets.Lu
kily a solution to the �rst problem almost automati
ally brings one for the se
ondproblem as well [11℄. Consider a dis
rete payo�-matrix P 2 IRk�n that
ontains kindependent samples of the random variables Ri, i = 1; . . . ; n , e.g. the realized returnsof the most re
ent k periods over the n assets. This data will in most
ases be readilyavailable. Then we get unbiased estimators [12℄ r and V for ~r and ~V , respe
tively asr := 1kP T e (2:1)and vij := 1k � 1 kXl=1 (pli � ri)(plj � rj), V = 1k � 1P T (I � 1keeT)P ; (2.2)12

2. Portfolio Optimizationwhere I is the k� k identity matrix. Substituting ~r and ~V by the above estimators in(MV1) yields(MV2) Minimize 1k�1xTP T (I � 1keeT)Pxsubje
t to 1keTPx � �eTx = 1x � 0whi
h is equivalent to the separable program
(MV3) Minimize xTf xfsubje
t to (I � 1keeT)Pxp � xf = 01keTPxp � �eTxp = 1xp � 0; xf free.For the
ase when then the �rst
onstraint in model (MV2) is an equality
onstraintwe get an even simpler separable representation [21℄
(MV30) Minimize xTf xfsubje
t to Pxp � xf = �eeTxf = 0eTxp = 1xp � 0; xf free.So what did we gain from all these transformations? Let us
ompare models (MV1)and (MV3). Obviously model (MV3)
ontains k more design variables [xf ℄1; . . . ; [xf ℄kand k more
onstraints. (Note that here and later we will sometimes {where ne
essaryto avoid double subs
ripts{ denote the
omponents of a ve
tor x by [x℄i.) On the otherhand the (k+ n)� (k+n) matrix in the obje
tive fun
tions is mu
h more sparse than~V with only k non-zeros that lie on the main diagonal. The �rst hint that this is agood bargain gives us the fa
t that k is always mu
h smaller than n. Parti
ularly in
hapter 5 we will see that the sparsity of Q saves a lot more
omputational time thanhas to be sa
ri�
ed for the additional variables and
onstraints.A ni
e side-e�e
t of model (MV3) is that it has a solution su
h that at most k + 2
omponents of x�p are non-zero. This is very relevant in pra
ti
e be
ause it is desirableto have a portfolio with a manageable number of assets [11℄. It is straightforwardto prove this property: Let (x�p; x�f) 2 IRn+k be an optimal solution of (MV3). Now13

2. Portfolio Optimization
onsider the linear system 0BBB� (I � 1keeT)Pxp = x�f1keTPxp � �eTxp = 1xp � 0
1CCCA (2:3)This system has a feasible solution x�p and hen
e also a basi
 feasible solution x̂p [24℄with at most k + 2 non-zero
omponents be
ause the rank of the system is less thanor equal to k + 2. Obviously (x̂p; x�f) is also an optimal solution of (MV3).Evidently model (MV3)
an be transformed into a standard form
onvex QP usingsla
k variables and variable splitting. We will not use this transformation in pra
ti
ebe
ause it leads to a
onsiderable enlargement of the model but it is important forestablishing the
onvergen
e results in the following
hapter.

14

3. Introdu
tion to Interior PointMethods
3.1 Logarithmi
 Barrier TransformationsConsider the standard form QP [2℄(P) Minimize 12xTQx +
Txsubje
t to Ax = bx � 0where x 2 IRn, Q 2 IRn�n and A 2 IRm�n, m < n. As usual for IPMs we assume thatrank(A) = m (3:1)and _MP := fx : Ax = b; x > 0g 6= ; : (3:2)Additionally we assume that Q is at least positive semi-de�nite hen
e making (P) a
onvex problem.For an obvious reason all x 2 _MP are
alled interior or stri
tly feasible points for(P). As we will see later, we
an obtain far more e�e
tive algorithms by working onprimal and dual problems simultaneously. Hen
e we will now also
onsider the dual ofproblem (P)(D) Maximize �12xTQx + bT�subje
t to AT�+ y �Qx =
y � 0where just like for the primal it is assumed that_MD := f(x; y; �) : AT�+ y �Qx =
; y > 0g 6= ; :15

3. Introdu
tion to Interior Point MethodsLet us qui
kly review the �rst order ne
essary and suÆ
ient
onditions for simulta-neous optimality of (P) and (D):0� Ax� bAT�+ y �Qx�
XY e 1A = 0; (x; y) � 0 (3:3)where here and subsequently we will use the
onvention thatX := diag(x) and similarlyfor Y and other
apitalized ve
tor names. In order to simplify notation and only forthat reason we will eliminate the dual variable � from the above system. To do this,let B 2 IR(n�m)�n be any matrix su
h that the
olumns of BT form a basis for the nullspa
e of A. Pre-multiplying the se
ond equation of (3.3) by the nonsingular matrix� AT BT �T and remembering that BAT = 0 yields0 = � AB � (AT�+ y �Qx�
) = � AAT�� A(�y +Qx +
)By �BQx� B
 � :Sin
e AAT is nonsingular, � is uniquely determined on
e x and y are known. Hen
e we
an remove the �rst equation of the above system to arrive at the following optimality
onditions F (x; y) := 0� Ax� bBy � BQx� B
XY e 1A = 0; (x; y) � 0 : (3:4)A

ordingly we de�ne the primal-dual stri
t feasibility set as_M := f(x; y) : Ax = b; By �BQx = B
; (x; y) > 0g :Our goal now is to develop an algorithm that(i) su

essively �nds solutions for both (P) and (D),(ii) operates on _M , i.e. we start with stri
tly feasible points for (P) and (D) and alliterates remain stri
tly feasible (this property is the reason why the algorithm is
alled interior point method),(iii) at least partially inherits the ex
ellent lo
al
onvergen
e properties of Newton'smethod.The vehi
le that we use to a
hieve all three goals are so
alled logarithmi
 barriertransformations [2℄. Barrier methods evolved as a means for solving mathemati
alprograms subje
t to inequality
onstraints. A
ting from a stri
tly feasible point, barriermethods seek to minimize an un
onstrained fun
tion formed from the original obje
tiveplus barrier terms whi
h prevent
rossing a boundary. These barriers are imposed by16

3. Introdu
tion to Interior Point Methodsfun
tions whi
h are smooth throughout the feasible region but be
ome inde�nite atboundaries. The natural logarithm is a good
hoi
e to serve as barrier.In our
ase we have both inequality and equality
onstraints so we have to work alittle harder but the prin
iple remains the same so that we get the following barriertransformed problems (�P) and (�D) for (P) and (D), respe
tively:(�P) Minimize 12xTQx+
Tx� � nPi=1 lnxisubje
t to Ax = b ; x > 0 :
(�D) Maximize �12xTQx + bT�+ � nPi=1 ln yisubje
t to AT�+ y �Qx =
 ; y > 0 :The Lagrangian fun
tions asso
iated with (�P) and (�D) are12xTQx +
Tx� � nXi=1 lnxi � �T (Ax� b) (3:5)and � 12xTQx + bT�+ � nXi=1 ln yi � xT (AT�+ y �Qx�
) ; (3:6)respe
tively. Let us look at the �rst order optimality
onditions again. For (3.5) theyare � Ax� bAT�+ �X�1e�Qx�
 � = 0 (3:7)and similarly for (3.6)0� Ax� b�Qx� AT�� y + 2Qx +
�Y �1e�Xe 1A = 0, 0� Ax� bAT�+ y �Qx�
XY e� �e 1A = 0 : (3.8)Together (3.7) and (3.8) provide ne
essary and suÆ
ient
onditions for simultaneousoptimality in (3.5) and (3.6). However we
an get an even more
on
ise des
ription byeliminating redundant equations. Obviously the �rst equations in (3.7) and (3.8) arethe same. Furthermore, if we pre-multiply the third equation of (3.8) by X�1 and plug17

3. Introdu
tion to Interior Point Methodsthe result into the se
ond equation of (3.7) this equation is equal to the se
ond equationof (3.8). Therefore, the equations
hara
terizing simultaneous optimality in (3.5) and(3.6) for a �xed � � 0 are 0� Ax� bAT�+ y �Qx�
XY e� �e 1A = 0 (3:9)and the nonnegativity requirements x; y � 0 .Clearly (3.9) is almost identi
al to (3.3), the only di�eren
e being the �e term onthe right hand side of the third equation. Hen
e if we
hoose � = 0 we get exa
tly(3.3). This already gives us a �rst hint that asymptoti
ally we will have to redu
e �to zero in our algorithm to get optimal solutions for (P) and (D). Also (3.9) is exa
tlythe same as (3.8) so we see that working on primal and dual problem simultaneouslydoes not require more work than working on just one of them.Analogous to (3.3) we
an transform (3.9) to eliminate � whi
h rendersF�(x; y) := 0� Ax� bBy � BQx� B
XY e� �e 1A = 0 : (3:10)It is well known (
f. e.g. [25℄) that (3.10) has a unique solution (x�; y�) for every positive� and that the so
alled
entral path,S
en := f(x�; y�) : � > 0g (3:11)forms a
ontinuous
urve whi
h
onverges to a solution of (3.4), i.e. of (P) and (D) as� tends to zero. IPMs whi
h iterates stay in a
ertain neighborhoodN (
) := f(x; y) 2 _M : xiyi �
 (xT y=n); i = 1; . . . ; ng (3:12)of the
entral path for some
 2 (0; 1℄ are
alled path-following methods. We will seethat this property is essential in our superlinear
onvergen
e analysis.3.2 A Model AlgorithmThe next step is to apply Newton's method to (3.10). More pre
isely let us formulatea
oarse model algorithm [26℄.Algorithm 1Given a stri
tly feasible pair (x0; y0). For k = 0; 1; . . ., doStep 1 Optimality Test: If (xk; yk) satis�es the optimality
riteria ! STOP18

3. Introdu
tion to Interior Point MethodsStep 2 Choose �k 2 [0; 1) and set �k := �k xTk yknStep 3 Compute the Newton dire
tions� �xk�yk � = � �F 0�k(xk; yk)��1 F�k(xk; yk) ;where F 0�k = F 0 is the Ja
obian of F .Step 4 Choose �k 2 (0; 1) and
ompute the steplength�k := ��kmin �X�1k �xk; Y �1k �yk;��k� ;where min(�) refers to the smallest
omponent of all ve
tors in the parentheses.Step 5 Compute the new iterates� xk+1yk+1 � := � xkyk �+ �k � �xk�yk � ;set k := k + 1 and go to Step 1The �rst thing one should noti
e about Algorithm 1 is that there are two importantparameters whi
h
ontrol its behaviour. One is �k whi
h determines the
enteringparameter �k. Sin
e only �k is dire
tly under our
ontrol we will from now on
all �kthe
entering parameter. As we mentioned before we ultimately have to `phase out'�k to get solutions for our original problems (P) and (D). Sin
e we will show belowthat all iterates produ
ed by Algorithm 1 are stri
tly feasible, the term (xTk yk)=nin the de�nition of �k provides a proximity measure towards optimality (
f. (3.4))hen
e making the extent of
entering dependent upon the
loseness to the solutionwhi
h sounds very reasonable. The parameter �k
ontrols the steplength making thealgorithm a damped variant of Newton's method. Its de�nition guarantees that all
omponents of (xk+1; yk+1) will remain stri
tly positive.We will now establish that Algorithm 1 is well de�ned.Proposition 3.1 Let F�(x; y) be de�ned as in (3.10) then it holds that1. F 0�(x; y) = F 0(x; y) is nonsingular for (x; y) > 0.2. If (x0; y0) 2 _M then all iterates produ
ed by Algorithm 1 are stri
tly feasible, i.e.(xk; yk) 2 _M; 8 k � 0. 19

3. Introdu
tion to Interior Point MethodsProof:Ad 1. From (3.4) it holds thatF 0(x; y) = 24 A 0�BQ BY X 35 :So we have to show that24 A 0�BQ BY X 35� uv � = 0� 000 1A) � uv � = � 00 � : (3:13)Remembering that the
olumns of BT form a basis for the null spa
e of A, the �rstequation of (3.13) indi
ates that u = BTw for some w. Using this result and solvingthe third equation for v gives us v = �X�1Y BTw. Plugging the equations for u and vinto the se
ond equation yields�BQBTw � BX�1Y BTw = 0 :Premultiplying this by wT , we get�wTBQBTw � wTBX�1Y BTw = 0 :Now BQBT is positive semi-de�nite and BX�1Y BT is positive de�nite and thereforethe left hand side is zero if and only if w = 0. From the above equations for u and v itnow follows that (uT ; vT) = (0; 0).Ad 2. Given (xk; yk) is feasible, the feasibility of (xk+1; yk+1) is automati
ally guar-anteed by the �rst two de�ning equations of (�xTk ;�yTk) (
f. Step 3 of Algorithm 1)� A�xk�BQ�xk +B�yk � = � 00 � :As mentioned before the stri
t positivity of (xk+1; yk+1) is a
hieved through the
hoi
eof �k. To demonstrate that �k suits this purpose we de�ne�̂k := � 1min �X�1k �xk; Y �1k �yk� : (3:14)In Remark 3.2 below we will show that min(X�1k �xk; Y �1k �yk) < 0 for all k and thusit obviously holds that �k < �̂k. In fa
t �̂k is the steplength for whi
h exa
tly one
omponent of (xk+1; yk+1) be
omes zero. To prove this we have to show that�̂k = min(mini �� [xk℄i[�xk℄i : [�xk℄i < 0� ; minj (� [yk℄j[�yk℄j : [�yk℄j < 0)) :
20

3. Introdu
tion to Interior Point MethodsEquivalently we
an write this as�̂k = min(�maxi � [xk℄i[�xk℄i : [�xk℄i < 0� ; �maxj ([yk℄j[�yk℄j : [�yk℄j < 0)) :Taking re
ipro
als, we
an drop the limitations [�xk℄i ; [�yk℄j < 0 be
ause the positive
omponents of the sear
h dire
tions are not relevant when taking the minimum:�̂k = min8<:��mini � [�xk℄i[xk℄i ���1 ; � minj ([�yk℄j[yk℄j)!�19=; :But this is (3.14) just stated di�erently. 2Remark 3.2 It holds that �̂k > 0; 8 k � 0.Proof: It suÆ
es to show that min(�xk;�yk) < 0. From the third de�ning equationof (�xTk ;�yTk) (
f. Step 3 of Algorithm 1) it follows thatYk�xk +Xk�yk = �XkYke+ �kxTk ykn e : (3:15)Remembering that �k 2 [0; 1) we get0 � �kxTk ykn < max(XkYke)so that at least one
omponent of Yk�xk + Xk�yk has to be negative. This in turnimplies that �xk or �yk must have at least one negative
omponent. 23.3 Superlinear Convergen
eThe reason for the great publi
ity of Karmarkar's method [10℄ was that it was the �rstmethod for solving a linear program with a polynomial
omplexity bound and report-edly 50 times faster solution times than the simplex method at least for some largeproblems. As a result a lot of the subsequent resear
h on IPMs fo
used on
omplexityissues. It soon be
ame evident though that the IPMs with good theoreti
al
omplexitybounds were not the ones that performed well in pra
ti
e. This is true for linear aswell as nonlinear problems. Zhang and Tapia were among the �rst who shed light onthe aspe
t of fast lo
al
onvergen
e whi
h has always been an important issue in
on-tinuous optimization [27, 28℄. It seems that algorithms with a good lo
al
onvergen
e21

3. Introdu
tion to Interior Point Methodsperform better in pra
ti
e [14℄. In Chapter 4 we will present an algorithm whi
h blendsthe often
on
i
ting obje
tives of global and fast lo
al
onvergen
e.For now we will analyze the lo
al
onvergen
e properties of Algorithm 1. Most ofthe results will be useful for the
onvergen
e analysis in the next
hapter as well.To simplify things here and parti
ularly in the next
hapter we adopt the followingnotation: xk(�) := xk + ��xk ; (3.16)yk(�) := yk + ��yk ; (3.17)fk(�) := Xk(�)Yk(�)e ; (3.18)fmink (�) := min (fk(�)) ; (3.19)fmaxk (�) := max (fk(�)) ; (3.20)f avek (�) := �xk(�)Tyk(�)� =n : (3.21)Whenever � = 0, we will drop the argument, e.g. xk � xk(0).Our goal in this se
tion is to prove the following theorem [26℄
on
erning the super-linear
onvergen
e of Algorithm 1. Comparing it to similar results for Newton's method[24℄ it should be noted that it does not require the nonsingularity of F 0(x�; y�).Theorem 3.3 Let f(xk; yk)g be generated by Algorithm 1 and (xk; yk) ! (x�; y�),where (x�; y�) is a solution of (3.4). If(i) stri
t
omplementarity holds at (x�; y�), i.e.[x�℄i = 0) [y�℄i > 0 ; [x�℄i > 0) [y�℄i = 0 ;(ii) the sequen
e �f avek =fmink 	 is bounded,(iii) �k ! 1 and �k ! 0,then the sequen
e fF (xk; yk)g
omponentwise
onverges to zero Q-superlinearly.Remark 3.4 Componentwise Q-superlinear
onvergen
e of a sequen
e implies its su-perlinear
onvergen
e.Proof: Let zk ! z�, then
omponentwise Q-superlinear
onvergen
e means thatlimk!1 j [zk+1℄i � [z�℄i jj [zk℄i � [z�℄i j = 0 for i = 1; . . . ; n :We have to show that this implieslimk!1 k zk+1 � z�kk zk � z�k = 022

3. Introdu
tion to Interior Point Methodsfor some norm. If we
hoose the 1-norm we get0 � k zk+1 � z�k1k zk � z�k1 = maxi=1;...;n j [zk+1℄i � [z�℄i jmaxi=1;...;n j [zk℄i � [z�℄i j :Let i(k + 1) be the index for whi
h the maximum is a
hieved in the numerator, thenthe right hand side of the above inequality
hain is equal toj [zk+1℄i(k+1) � [z�℄i(k+1) jmaxi=1;...;n j [zk℄i � [z�℄i j � j [zk+1℄i(k+1) � [z�℄i(k+1) jj [zk℄i(k+1) � [z�℄i(k+1) j ! 0whi
h implies our
laim. 2Theorem 3.3 is somewhat unsatisfa
tory be
ause it pla
es
onditions on the quantityf avek =fmink whi
h is is not dire
tly under our
ontrol. This gives reason to the
on
ernthat Theorem 3.3 might be a vi
ious
ir
le. However in the next
hapter we will pla
eadditional
onditions on �k and �k whi
h will make assumption (ii) obsolete. Note thatassumption (ii) makes sure that the iterates lie in N (
) (
f. (3.12)) for some suitable
, thus making Algorithm 1 a path-following method.Another
ause for
on
ern is assumption (i) be
ause unlike for LP, a stri
tly
omple-mentary solution may not exist for
onvex QP. Unfortunately though the assumptionthat the QP at least possesses a stri
tly
omplementary solution seems to be essential.In their paper on a slightly di�erent IPM for monotone linear
omplementarity prob-lems (LCP) [1℄, Anstrei
her and Ye give an example of an LCP whi
h does not possessa stri
tly
omplementary solution and for whi
h their IPM
onverges no faster thanlinear. In our numeri
al experiments we always observed superlinear
onvergen
e (
f.Chapter 5), so in pra
ti
e this assumption does not seem overly restri
tive.In order to prove Theorem 3.3 we need the following two lemmas.Lemma 3.5 Let (�xk;�yk) be sear
h dire
tions produ
ed by Algorithm 1. Then itholds that �xTk�yk � 0; 8 k � 0 :Proof: As we had already established in the proof of Proposition 3.1 we have� A�xk�BQ�xk +B�yk � = � 00 � :We will show more generally that for all (u; v) for whi
h(i) Au = 0 and(ii) �BQu +Bv = 0 23

3. Introdu
tion to Interior Point Methodsit holds that uTv � 0.Again we remember that the
olumns of BT form a basis for the null-spa
e of A.Then (i) implies that u = BTw for some w. Plugging this in (ii) yields Bv = BQBTw.Premultiplying this by wT and noting that BQBT is positive semi-de�nite, we get0 � wTBQBTw = wTBv = (BTw)Tv = uTv ;whi
h
ompletes the proof. 2Lemma 3.6 Under the assumptions of Theorem 3.3,limk!1�k = 1 :Proof: De�ne at ea
h iterationpk := X�1k �xk and qk := Y �1k �yk : (3:22)We will show that for every i either [pk℄i ! 0 and [qk℄i ! �1 or [pk℄i ! �1 and[qk℄i ! 0. Re
alling the de�nition of �k in Step 4 of Algorithm 1 and our assumption�k ! 1 it is easily veri�ed that this implies the lemma.To do this it is ne
essary to �rst establish that �k is bounded away from zero. Itfollows from the de�nition of �k that it suÆ
es to show that fpkg and fqkg are bounded.Premultiplying (3.15) by (XkYk)�1 we getpk + qk = �e+ �kTke ; (3:23)where Tk := f avek (XkYk)�1 : (3:24)Multiplying both sides of (3.23) by (XkYk)� 12 and taking the square of the 2-normresults in

(XkYk) 12 pk

22 +

(XkYk) 12 qk

22 + 2�xTk�yk =xTk yk �1� 2�k + �2kf avek eT (XkYk)�1en � : (3.25)Dividing both sides by f avek and using Lemma 3.5 we have

T� 12k pk

22 +

T� 12k pk

22 � n�1� 2�k + �2k eTTken � : (3:26)Sin
e Tk is
losely related to �f avek =fmink 	 whi
h by assumption (ii) is bounded, it iseasy to see that fkTkkg is bounded above and fkT� 12k kg is bounded away from zero.24

3. Introdu
tion to Interior Point MethodsTherefore (3.26) implies that both fpkg and fqkg are bounded. As mentioned abovethis suÆ
es for �k in order to be bounded away from zero.Now we distinguish two
ases. First assume that [x�℄i > 0. An equivalent way ofstating xk+1 and yk+1 using pk and qk isxk+1 = Xk(e+ �kpk) and yk+1 = Yk(e+ �kqk) ; (3:27)whi
h is why 1 = limk!1 [xk+1℄i[xk℄i = limk!1(1 + �k[pk℄i) :This implies [pk℄i ! 0, be
ause f�kg is bounded away from zero. Sin
e f avek =fmink =kTkek1, assumption (ii) together with �k ! 0 applied to (3.23) implieslimk!1(pk + qk) = �e : (3:28)This in turn implies now that [qk℄i ! �1. If on the other hand [x�℄i = 0, then [y�℄i > 0by assumption (i). The same argument as for the �rst
ase, inter
hanging the roles ofpk and qk gives [qk℄i ! 0 and [pk℄i ! �1. 2Now we are ready to prove Theorem 3.3.Proof of Theorem 3.3: LetF1(x; y) = � Ax� bBy � BQx�B
 � and F2(x; y) = XY e :As we have already seen F1(xk; yk) is always zero hen
e we only have to show thatfF2(xk; yk)g
omponentwise
onverges to zero Q-superlinearly. From (3.27) it followsthat X�1k xk+1 = e+ �kpk and Y �1k yk+1 = e + �kqk :Adding the above equationsX�1k xk+1 + Y �1k yk+1 = 2e + �k(pk + qk) ;taking the limit and using (3.28) and Lemma 3.6, we getlimk!1(X�1k xk+1 + Y �1k yk+1) = e : (3:29)Again we will distinguish two
ases. If [x�℄i = 0, then by stri
t
omplementarity,[y�℄i > 0 and [yk+1℄i=[yk℄i ! 1. It follows from (3.29) that [xk+1℄i=[xk℄i ! 0 and hen
e[xk℄i ! 0 Q-superlinearly. Sin
e (3.29) is symmetri
 in x and y we have [yk℄i ! 0Q-superlinearly if [x�℄i > 0 by assumption (i). So for every i we have eitherlimk!1 [xk+1℄i[xk℄i = 0 and limk!1 [yk+1℄i[yk℄i = 125

3. Introdu
tion to Interior Point Methodsor limk!1 [xk+1℄i[xk℄i = 1 and limk!1 [yk+1℄i[yk℄i = 0 :In any
ase, it holds for every i thatlimk!1 [xk+1℄i[yk+1℄i[xk℄i[yk℄i = limk!1 [Xk+1Yk+1e℄i[XkYke℄i = 0whi
h proves our Theorem. 2To solve the diÆ
ulties in our superlinear
onvergen
e analysis mentioned aboveis te
hni
ally quite diÆ
ult and subje
t of the next
hapter. Theorem 3.3 is surelysuÆ
ient to give a �rst idea how parameters should be
hosen in pra
ti
e to get aneÆ
ient algorithm. Moreover it served well to demonstrate whi
h parameters in
uen
ethe behaviour of primal-dual barrier IPMs in general.

26

4. A Globally and SuperlinearlyConvergent Primal-Dual InteriorPoint Method for ConvexQuadrati
 Programming
4.1 AlgorithmIn order to make Algorithm 1 globally and superlinearly
onvergent only by the
hoi
eof parameters whi
h are dire
tly under our
ontrol, we have to modify it somewhat.The following algorithm and the proofs of its global and superlinear
onvergen
e arebased in big parts on [9℄.Algorithm 2Given a stri
tly feasible pair (x0; y0). For k = 0; 1; . . ., doStep 1 Optimality Test: If (xk; yk) satis�es (3.4) ! STOPStep 2 Compute the des
ent dire
tions� �xDk�yDk � = � [F 0(xk; yk)℄�1 F (xk; yk)and the
entering dire
tions� �xCk�yCk � = f avek [F 0(xk; yk)℄�1� 0e � :Step 3 Choose �k 2 [0; 1) by Pro
edure 1 and form the
ombined sear
h dire
tions� �xk�yk � = � �xDk�yDk � + �k � �xCk�yCk � :

27

4. A Globally and Superlinearly Convergent Interior Point MethodStep 4 Choose the steplength �k 2 (0; �̂k) by Pro
edure 2, where �̂k was de�ned in(3.14).Step 5 Compute the new iterates� xk+1yk+1 � := � xkyk � + �k � �xk�yk � ;set k := k + 1 and go to Step 1.Comparing Algorithm 2 with Algorithm 1, we noti
e that the sear
h dire
tions havebeen split into des
ent dire
tions for the total
omplementarity|whi
h for feasibleiterates equals the duality-gap and serves as our measure of
onvergen
e| and
en-tering dire
tions. This was ne
essary be
ause the
hoi
e of �k will depend on des
entand
entering dire
tions. In the IPM literature the des
ent dire
tions are also
alledaÆne or aÆne s
aling dire
tions.The pro
edures for
hoosing �k and �k will be des
ribed below. Proposition 3.1 isappli
able to Algorithm 2 as well, hen
e it is well de�ned.4.2 Choi
es of Parameters4.2.1 Centering ParameterThrough the splitting of the sear
h dire
tions we are in need for more notation. Simi-larly to (3.22) let pDk := X�1k �xDk ; qDk := Y �1k �yDk ;pCk := X�1k �xCk ; qCk := Y �1k �yCk : (4:1)An important quantity in our further analysis is!k := max1�i�n(j[pDk ℄i[qDk ℄ij; j[pDk ℄i[qCk ℄ij; j[pCk ℄i[qDk ℄ij; j[pCk ℄i[qCk ℄ij) : (4:2)For te
hni
al reasons whi
h will be
ome
lear in the
ourse of this
hapter we haveto introdu
e the following set of 2n points (
f. also [27℄)�k := �� [pDk ℄i[pCk ℄i ;� [qDk ℄i[qCk ℄i : i = 1; . . . ; n� (4:3)and de�ne the distan
e from a s
alar � to the set �k asdist(�;�k) := minfj� � &j : & 2 �kg :28

4. A Globally and Superlinearly Convergent Interior Point MethodNow we
an state our pro
edure for
hoosing the
entering parameter �k.Pro
edure 1Given � 2 (0; 1);
 2 (0;min �1=2; fmin0 =f ave0)� ; �l =
2�=(2n); �u � 24n :Step 1 Compute !k a

ording to (4.2).Step 2 Compute �uk = min(�u; �=!k).Step 3 Let �k := min��� : �� 2 � !k(�l + �uk)2 ; !k�uk� ; dist(��;�k) � �k!k8n+ 4�,where �k := �uk � �l.It should be remarked that the
ompli
ated
hoi
e of �k in Step 3 of the abovepro
edure is merely for te
hni
al problems asso
iated with the superlinear
onvergen
eanalysis of Algorithm 2. For pra
ti
al purposes it will suÆ
e to de�ne �k := �uk!k.The following lemma
on�rms that �k is well de�ned and �k 2 (0; 1).Lemma 4.1 Let (xk; yk) and (�xk;�yk) be produ
ed by Algorithm 2, then it holdsthat1. (�xDk)T�yDk � 0 and (�xCk)T�yCk � 0,2. if fmink =f avek �
 then !k � n=
2,3. �uk �
2�n ,4. the set ��� : �� 2 � !k(�l + �uk)2 ; !k�uk� ; dist(��;�k) � �k!k8n+ 4� is nonempty.Remark: As we will see in the next se
tion, fmink =f avek �
 is ensured by the
hoi
eof �k. 2Proof:Ad 1. Analogous to the proof of Lemma 3.5.Ad 2. In analogy to (3.15) it holds thatYk�xDk +Xk�yDk = �XkYke :Multiplying both sides by (XkYk)� 12 and taking the 2-norm results in

(XkYk) 12 pDk

22 +

(XkYk) 12 qDk

22 + 2(�xDk)T�yDk = xTk yk :29

4. A Globally and Superlinearly Convergent Interior Point MethodConsidering 1. and dividing both sides by f avek , we get

T� 12k pDk

22 +

T� 12k qDk

22 � n ;where Tk is the diagonal matrix de�ned in (3.24). Our
hoi
e of
 and our assumptionfmink =f avek �
 now imply��[pDk ℄i�� �rn
 � pn
 and ��[qDk ℄i�� �rn
 � pn
 :For the
entering dire
tions we haveYk�xCk +Xk�yCk = f avek e ;whi
h using the same strategy as above leads to

T� 12k pCk

22 +

T� 12k qCk

22 �

T 12k e

22 � n
 � n :Hen
e we have also ��[pCk ℄i�� � pn
 and ��[qCk ℄i�� � pn
 :The result in 2. follows dire
tly from the de�nition of !k.Ad 3. By 2. we have�uk = min��u; �!k� � min�24n;
2 �n � =
2 �n : (4:4)Ad 4. First we note that by 3. it holds that�k = �uk � �l �
2�2n : (4:5)Hen
e the interval [!k(�l + �uk)=2; !k�uk ℄ of length �k!k=2 is nonempty. Partition thisinterval into 2n + 1 equal sub-intervals of length �k!k=(4n + 2) ea
h. If the interiorof any one of the sub-intervals does not interse
t �k, then the midpoint of this sub-interval will have the required distan
e to �k. Sin
e �k only has 2n points, it
annotinterse
t the interiors of all the 2n+ 1 sub-intervals.This proof illustrates why it is ne
essary for �k to be
hosen from an interval. Oth-erwise it would be impossible to ensure that we
an always �nd a �k whi
h has therequired distan
e from �k. 2From the de�nition of �k in Step 3 of Pro
edure 1 it is now evident that �k is wellde�ned and 0 < �k � �uk!k � � < 1. 30

4. A Globally and Superlinearly Convergent Interior Point Method4.2.2 SteplengthAs we already know from Theorem 3.3 our
hoi
e of steplength has to guarantee thatff avek =fmink g is bounded. It is always bounded below by 1, though. Hen
e it suÆ
es torequire that for � = �k it holds thatfmink (�)f avek (�) �
 ; � > 0 ; (4:6)where
 was already
hosen in Pro
edure 1.Of
ourse we still want to
hoose �k as large as possible. To do so let us for notational
onvenien
e �rst introdu
e the following fun
tionhk(�) = fmink (�)�
 f avek (�) : (4:7)Obviously (4.6) is equivalent to hk(�) � 0 ; � > 0 : (4:8)Sin
e (4.8) is not the only
ondition we will pla
e on �k we de�ne�
k := minf� > 0 : hk(�) = 0g : (4:9)Let us make sure �
k is well de�ned and satis�es (4.6).Lemma 4.2 The quantity �
k is well de�ned and �
k 2 (0; �̂k). Condition (4.6) issatis�ed for all � 2 (0; �
k℄.Proof: The proof is by indu
tion over k. First we note that
 was
hosen to satisfy
 � fmin0 =f ave0 . Now assume
 � fmink =f avek . Then it follows thathk(0) = fmink �
f avek � 0 :On the other hand re
alling (3.14) we havehk(�̂k) = fmink (�̂k)| {z }=0 �
 f avek (�̂k)| {z }>0 < 0In order to establish now that hk(�) has a root in [0; �̂k) it is ne
essary to demonstratethat hk(�) is a
ontinuous fun
tion. Let us take a
loser look at its
omponents:[fk(�)℄i = [xk(�)℄i[yk(�)℄i= [xk℄i[yk℄i + � ([yk℄i[�xk℄i + [xk℄i[�yk℄i) + �2[�xk℄i[�yk℄i(3:15)= [fk℄i � ([fk℄i � �kf avek)� + [�xk℄i[�yk℄i �2 ; (4.10)31

4. A Globally and Superlinearly Convergent Interior Point Methodhen
e fmink (�) is a
ontinuous, pie
ewise quadrati
 fun
tion.f avek (�) = 1n nXi=1 [fk(�)℄i(4:10)= 1n nXi=1 [fk℄i � 1n nXi=1 [fk℄i � �k 1nnf avek !�+ 1n nXi=1 [�xk℄i[�yk℄i �2= f avek (1� (1� �k)�) + �xTk�ykn �2 ; (4.11)so f avek (�) is also a
ontinuous, pie
ewise quadrati
 fun
tion whi
h
ombined with (4.10)leads to the
ontinuity of hk(�) and therefore to a root in [0; �̂k). In
ase h(0) > 0there must be a root in (0; �̂k). If h(0) = 0 then we have,
onsidering (4.10) and (4.11)h0(0+) = �(fmink � �kf avek) +
 (1� �k)f avek= [� (fmink =f avek +
)| {z }=0 +(1�
)�k| {z }>0 ℄ f avek|{z}>0> 0 :Therefore h(�) > 0 for positive but suitably small �. Thus �
k 2 (0; �̂k) is well de�nedand
ondition (4.6) is automati
ally satis�ed for all � 2 (0; �
k℄ by de�nition (4.9). 2Our ultimate goal is to redu
e the duality gap xk(�)Tyk(�). So we will examine howthe
hoi
e of steplength in
uen
es the redu
tion in the duality gap.xk(�)Tyk(�) = xTk yk + �(xTk�yk + yTk�xk) + �2�xTk�yk(3:15)= xTk yk + �(�xTk yk + �kxTk yk) + �2�xTk�yk= xTk yk(1� (1� �k))�+�xTk�yk �2 (4.12)is a quadrati
 fun
tion of � with the se
ond derivative �xTk�yk. We know fromLemma 3.5 that �xTk�yk � 0. If �xTk�yk > 0, the duality gap will rea
h its min-imum at ��k := (1� �k)xTk yk2�xTk�yk (4:13)and if �xTk�yk = 0 it is a de
reasing fun
tion of � and we should take the biggeststeplength otherwisely possible.Taking this into
onsideration, we are now ready to state our pro
edure for
hoosingthe steplength �k (
f. [9℄).Pro
edure 2Given
 from Pro
edure 1.Step 1 Compute �
k a

ording to (4.9) and if �xTk�yk > 0, ��k a

ording to (4.13).32

4. A Globally and Superlinearly Convergent Interior Point MethodStep 2 Let �k := (min(1; �
k; ��k); if �xTk�yk > 0min(1; �
k); otherwise : (4:14)As we have seen above this pro
edure guarantees that �k 2 (0; �̂k), the duality gap isredu
ed as mu
h as possible and the prerequisite (4.6) for superlinear
onvergen
e issatis�ed.4.3 Global Convergen
eFirst though we will analyze the global
onvergen
e of our obje
tive fun
tion, i.e. theduality gap. As was to be expe
ted this on
e again requires some new notation,�k :=
n�xTk�yk �min([�xk℄i[�yk℄i) : (4:15)If we plug �k into equation (4.12) it
omes already
lose to a global
onvergen
eresult xTk+1yk+1 = xTk yk �1� (1� �k)�k + �xTk�ykxTk yk �2k� ;but we still need to show that forÆk := �1� �k � �xTk�ykxTk yk �k��k (4:16)it holds that fÆkg is bounded away from zero and Æk < 1. The latter is trivial
onsideringthat �k 2 (0; 1), �xTk�yk � 0, xTk yk > 0 and �k 2 (0; 1℄. Thus our goal in this se
tionis to prove the following resultTheorem 4.3 Let f(xk; yk)g be generated by Algorithm 2. Then it holds thatxTk+1yk+1 � xTk yk(1� Æk) ;and Æk 2 (Æ; 1), where Æ > 0 is a
onstant independent of k. Hen
e the duality gapglobally
onverges to zero at least at a linear rate.Before we prove Theorem 4.3 we will �rst establish some lemmas that give estimatesof some quantities.Lemma 4.41. Let �k be given by (4.15). It holds that �k � 6!kfmaxk .33

4. A Globally and Superlinearly Convergent Interior Point Method2. Let �
k be given by (4.9). If �k � 0 then �
k � 1; otherwise�
k � (1�
)�kf avek�k :Proof:Ad 1. Note thatj[�xk℄i[�yk℄ij (3:23)= j[xk℄i[pk℄i[yk℄i[qk℄ij� max(XkYke) max1�i�n(j[pk℄i[qk℄ij)= fmaxk max1�i�n(j[pDk ℄i[qDk ℄i + �k[pDk ℄i[qCk ℄i ++�k[pCk ℄i[qDk ℄i + �2k[pCk ℄i[qCk ℄ij)(4:2)� 4fmaxk !k :It follows that �xTk�yk � 4nfmaxk !k (4:17)and therefore �k =
n�xTk�yk �min([�xk℄i[�yk℄i)� 4
fmaxk !k + 4fmaxk !k� 6fmaxk !k ;be
ause we
hose
 � 1=2.Ad 2. Let � 2 [0; 1℄. Then we have[fk(�)℄i (4:10)= [fx℄i(1� �) + �kf avek � + [�xk℄i[�yk℄i �2� fmink (1� �) + �kf avek �+min([�xk℄i[�yk℄i)�2and therefore, re
alling (4.11)[fk(�)℄i �
f avek (�) � (fmink �
f avek)| {z }�0 (1� �)| {z }�0 +(1�
)�kf avek �� �k�2� (1�
)�kf avek �� �k�2 : (4.18)Sin
e we assumed that � 2 [0; 1℄ it follows now
onsidering (4.7) that if �k � 0, hk(�)has no root in (0; 1). Hen
e �
k � 1.On the other hand if �k > 0 the right hand side of (4.18) has a unique positive rootin �� = (1�
)�kf avek�kand it is greater than zero for all � 2 (0; ��). It follows from (4.18) that hk(�) > 0 for� 2 (0; ��). So if �
k < 1 by (4.9) �
k must be greater than or equal to ��. 234

4. A Globally and Superlinearly Convergent Interior Point MethodLemma 4.5 Let (xk; yk), (�xk;�yk) and �
k be generated by Algorithm 2.1. There exists a
onstant � > 0, su
h thatmin(1; �
k) � �n2 : (4:19)2. It holds that �xTk�ykxTk yk � 14
 : (4:20)Proof:Ad 1. By Lemma 4.4 (2.), it obviously suÆ
es to
onsider the
ase where �k > 0 forwhi
h followsmin(1; �
k) � min�1; (1�
)�kf avek6!kfmaxk � ; by Lemma 4:4;� min�1; �l12n� ; sin
e
 � 12 ; �k � �l!k and fmaxkf avek � n ;= min�1;
2�24n2� ; sin
e �l =
2�2n :Thus, � :=
2�24 (4:21)is a suitable
hoi
e.Ad 2. Using previous results we get4�xTk�yk �

X� 12k Y 12k �xk �X 12k Y � 12k �yk

22 + 4�xTk�yk=

(XkYk) 12pk

22 +

(XkYk) 12 qk

22 + 2�xTk�yk(3:25)= xTk yk �1� 2�k + �2kf avek eT (XkYk)�1en �(4:6)� xTk yk �1� 2�k + �2k
 � :Re
alling �k < 1 it now follows that�xTk�ykxTk yk � 14 �1� 2�k + �2k
 �= 14 �(1� �k)2 + �2k (
�1 � 1)�� 14
 ; 35

4. A Globally and Superlinearly Convergent Interior Point Methodwhi
h
ompletes the proof. 2The pre
eding lemmas are helpful in getting a better understanding of our
hoi
e of�k. From the proof of Lemma 4.4 (1.) we see how the de�nition of !k
ame about andthe proof of Lemma 4.5 (1.) illustrates that !k has to be part of �k in order to get auniform lower bound on �
k. We again emphasize that this far it would have suÆ
edto
hoose �k = �uk!k.Proof of Theorem 4.3: In our analysis we will use the following two fun
tions of �Æk(�) := �1� �k � �xTk�ykxTk yk ��� (4:22)and �Æ(�) := �1� � � 14
 ��� : (4:23)Using (4.20) and the fa
t that �k < �, we see that for � � 0 it holds that Æk(�) � �Æ(�).We will �rst demonstrate that�k = argmax fÆk(�) : � 2 [0;min(1; �
k)℄g : (4:24)The derivatives of Æk(�) areÆ0k(�) = 1� �k � 2 �xTk�ykxTk yk �and Æ00k(�) = �2 �xTk�ykxTk yk :Hen
e only if �xTk�yk > 0, Æk(�) has a unique maximum in ��k and for � < ��k, Æk(�)is an in
reasing fun
tion of �. For this
ase (4.24) now follows from de�nition (4.14)of �k. If �xTk�yk = 0, Æk(�) is an in
reasing fun
tion of � altogether and (4.24) againfollows from (4.14).Therefore we have for all � 2 [0;min(1; �
k)℄,Æk = Æk(�k) � Æk(�) � �Æ(�) : (4:25)If we de�ne � as in (4.21) then (4.19) implies that (4.25) holds for � = �=n2. Hen
ewe get Æk � Æ := �Æ(�=n2) = �1� � � �4
n2� �n2whi
h
ompletes the proof and this se
tion. 236

4. A Globally and Superlinearly Convergent Interior Point Method4.4 Superlinear Convergen
eFor the superlinear
onvergen
e analysis we will make use of the results of the pre
eding
hapter. One of the assumptions of Theorem 3.3 was that the sequen
e ff avek =fmink g bebounded. This is ensured by our
hoi
e of �k. Looking at the proof of Theorem 3.3it is evident that the assumption �k ! 1
an be repla
ed by �k ! 1 whi
h is moremeaningful in our
ase.However, to make our superlinear
onvergen
e result even more general, we will �rstshow that it is not ne
essary to require that (xk; yk)
onverges to a stri
tly
omple-mentary solution of (P). For x 2 IRn we de�neI+(x) := fi : xi > 0gand note that for any solution (x̂; ŷ) of the optimality
onditions (3.4) of our problem(P) it holds that I+(x̂) \ I+(ŷ) = ; : (4:26)If (3.4) has a stri
tly
omplementary solution (x�; y�) we have on top of thisI+(x�) [I+(y�) = f1; . . . ; ng : (4:27)The following result is based in big parts on G�uler [8℄.Lemma 4.6 Let (xk; yk) be generated by Algorithm 2. Assume (3.4) has a stri
tly
omplementary solution (x�; y�). Then1. for every solution (x̂; ŷ) of (3.4) it holds thatI+(x̂) � I+(x�) and I+(ŷ) � I+(y�) ;2. for every limit point (x1; y1) of the sequen
e f(xk; yk)g it holds that (x1; y1) solves(3.4) and I+(x1) = I+(x�) and I+(y1) = I+(y�) ;i.e. every limit point is a stri
tly
omplementary solution of (3.4).Proof:Ad 1. First note that by the positive semi-de�niteness of Q for any x1; x2 2 IRn0 � (x1 + x2)TQ(x1 + x2)= xT1Qx1 + xT2Qx2 + 2xT1Qx2and thus 2xT1Qx2 � xT1Qx1 + xT2Qx2 :37

4. A Globally and Superlinearly Convergent Interior Point MethodRe
alling the equivalent optimality
onditions (3.3) it now follows0 = xT� y� + x̂T ŷ= xT� (�AT�� +Qx� +
) + x̂T (�AT �̂+Qx̂ +
)= �bT�� + xT�Qx� +
Tx� � bT �̂+ x̂TQx̂ +
T x̂� �bT �̂+ xT�Qx̂ +
T x̂� bT�� + x̂TQx� +
Tx�= xT� ŷ + x̂Ty� ;for some ��; �̂. Sin
e (x�; y�); (x̂; ŷ) � 0 the result follows immediately.Ad 2. From Theorem 4.3 it follows that for all kxTk yk � xT0 y0 :Using this estimate and pro
eeding similarly to 1. we getxTk y0 + xT0 yk � xTk yk + xT0 y0 � 2xT0 y0and hen
e [xk℄i � 2xT0 y0[y0℄i and [yk℄i � 2xT0 y0[x0℄i :Consequently the sequen
e f(xk; yk)g is bounded and therefore it has at least one limitpoint. Considering that xTk yk ! 0, every limit point has to satisfy xT1y1 = 0 and thusevery limit point solves (3.4).By 1. it remains to be shown thatI+(x�) � I+(x1) and I+(y�) � I+(y1) :Re
alling xT� y� = 0, for every k we havexT� yk + xTk y� � xTk yk + xT� y� = xTk yk, Pi2I+(x�)[x�℄i[yk℄i + Pi2I+(y�)[xk℄i[y�℄i � xTk ykWe see from (4.26) and (4.27) that for every i, either i 2 I+(x�) or i 2 I+(y�). Ifi 2 I+(x�), xTk yk � [x�℄i[yk℄i = [fk℄i [x�℄i[xk℄i � fmink [x�℄i[xk℄i) [xk℄i � nfminkf avek [x�℄i (4:6)� n
 [x�℄i) [x1℄i � n
 [x�℄i > 0) I+(x�) � I+(x1) :38

4. A Globally and Superlinearly Convergent Interior Point MethodThe
ase i 2 I+(y�) is treated analogously. 2In view of Lemma 4.6 it would be very ni
e now of
ourse if we
ould get a super-linear
onvergen
e result without having to assume the
onvergen
e of the iterationsequen
e f(xk; yk)g at all. However, unfortunately we were unable to prove the follow-ing Theorem without this assumption. An improvement in
omparison to Theorem 3.3and Theorem 5.2 in [9℄ though is that we no longer need to assume the
onvergen
e off(xk; yk)g to a stri
tly
omplementary solution, but we merely need
onvergen
e. Theproof of Theorem 4.7 will also give a �nal explanation for our
hoi
e of �k.Theorem 4.7 Let f(xk; yk)g be generated by Algorithm 2. Assume that (3.4) hasa stri
tly
omplementary solution and that (xk; yk) ! (x�; y�). Then the sequen
efXkYkeg
omponentwise
onverges to zero Q-superlinearly.Proof: As we have already explained we
an use the results of Theorem 3.3. ByLemma 4.6, (x�; y�) is a stri
tly
omplementary solution of (3.4). Hen
e all that is leftfor us to show is that �k ! 0 and �k ! 1.We �rst prove �k ! 0. Sin
e �uk is bounded, by the de�nition of �k in Step 3 ofPro
edure 1 it suÆ
es to show !k ! 0.Let [x�℄i > 0. Then
learly1 = limk!1 [xk+1℄i[xk℄i = limk!1(1 + �k[pk℄i) :In order for this to imply that [pk℄i ! 0 we still need that �k is bounded away fromzero. The answer gives us Lemma 4.5, be
ausemin(1; �
k) � �nand furthermore �xTk�ykxTk yk � 14
indi
ates that ��k = (1� �k)xTk yk2�xTk�yk � 2(1� �)
 :Hen
e by the de�nition of �k we see that it is bounded away from zero.If on the other hand [x�℄i = 0, then [y�℄i > 0 by stri
t
omplementarity. Pro
eedinganalogue to above we get [qk℄i ! 0. As a result for ea
h i,either [pk℄i = [pDk ℄i + �k[pCk ℄i ! 0 or [qk℄i = [qDk ℄i + �k[qCk ℄i ! 0 : (4:28)This is where the reason for our
hoi
e of �k lies. Even though we have (4.28), we
annot guarantee that if, say [pk℄i ! 0 this also holds for [pDk ℄i and [pCk ℄i. A

ordingly39

4. A Globally and Superlinearly Convergent Interior Point Methodwe have to make sure that �k stays far enough from �[pDk ℄i=[pCk ℄i. Hopefully our
hoi
eof parameters is fully transparent to the reader now.The proof of !k ! 0 is by
ontradi
tion. Suppose the opposite. Then, there mustexist a subsequen
e f!k(j)g � f!kg whi
h is bounded away from zero sin
e !k � 0.The de�nition of �k and (4.5) then imply that fdist(�k(j);�k(j))g is bounded away fromzero.Assume [pk℄i ! 0. Then, we
laim that f[pCk(j)℄ig ! 0. If this was not true then therewould be a subsequen
e f[pCk(l)℄ig � f[pCk(j)℄ig for whi
h fj[pCk(l)℄ijg is bounded away fromzero. Sin
e [pk℄i ! 0 this must also hold for every subsequen
e and thus also for [pk(l)℄iso that we have[pk(l)℄i = [pDk(l)℄i + �k(l)[pCk(l)℄i = [pCk(l)℄i [pDk(l)℄i[pCk(l)℄i + �k(l)!! 0 :Considering that fj[pCk(l)℄ijg is bounded away from zero, this implies[pDk(l)℄i[pCk(l)℄i + �k(l) ! 0 ;whi
h
ontradi
ts the fa
t that fdist(�k(l);�k(l))g � fdist(�k(j);�k(j))g is bounded awayfrom zero. Therefore f[pCk(j)℄ig ! 0. In view of (4.28) this indi
ates that f[pDk(j)℄ig ! 0,as well.The
ase where [qk℄i ! 0
an be treated analogously. Consequently for ea
h i, either[pDk ℄i and [pCk ℄i or [qDk ℄i and [qCk ℄i
onverge to zero. In the proof of Lemma 4.1 we showedthat all these sequen
es are bounded and therefore by de�nition (4.2) of !k it followsthat !k(j) ! 0. This
ontradi
ts our hypothesis that f!k(j)g is bounded away fromzero. Hen
e !k ! 0 and ergo �k ! 0.In order to prove �k ! 1 we have to distinguish two
ases. If �xTk�yk = 0, then�k = min(1; �
k). From Lemma 4.4,
 < 1=2 and fmaxk =f avek � n it follows that�
k � �l + �uk24n :Sin
e �uk = min(�u; �=!k), !k ! 0 and �u � 24n, we have for k suÆ
iently large�l + �uk � �uk = �u � 24n :Consequently �k = 1 for k suÆ
iently large in this
ase.Note that we did not use �xTk�yk = 0 to get this result. If �xTk�yk > 0 we have�k = min(1; �
k; ��k) and so all we need to show is that ��k � 1 for k suÆ
iently large.40

4. A Globally and Superlinearly Convergent Interior Point MethodThis
an be seen from ��k = (1� �k)xTk yk2�xTk�yk� (1� �)xTk yk2�xTk�yk ; sin
e �k < �� (1� �)f avek8!kfmaxk ; by (4:17)� 1� �8n!k ; sin
e f avekfmaxk � 1n :Now in view of !k ! 0 it follows that for k suÆ
iently large ��k � 1 and
onsequently�k = 1. 2

41

5. Implementation
It is a well known fa
t in numeri
al mathemati
s that in pra
ti
e many things aredi�erent, e.g. the algorithms with good theoreti
al
onvergen
e properties and thealgorithms that perform well in pra
ti
e frequently have very little in
ommon. Onthe other hand to get a pra
ti
al algorithm it is often ne
essary to �nd solutions forproblems that do not exist in theory due to idealizing assumptions. These are themain reasons why we dedi
ate a lot of spa
e to the topi
 of implementing IPMs forportfolio optimization problems. We will present two algorithms that performed bestin our numeri
al experiments. As we will see their
hoi
e of parameters is
onsistentwith Theorem 3.3.All algorithms were implemented in the ex
ellent, high-performan
e numeri

ompu-tation pa
kage Matlab 4.0 by The MathWorks, In
., Nati
k, Mass. All subroutineslisted in the Appendix are written in the ma
ro-language of Matlab.
5.1 The Models in Pra
ti
eThe Models that we will
onsider are models (MV3) and (MV30) from Chapter 2 withbox
onstraints and sla
k variable xs for model (MV3).
(PMV) Minimize xTf xfsubje
t to (I � 1keeT)Pxp � xf = 01keTPxp � xs = �eTxp = 10 � xp � up0 � xs � 1�1 � xf � 143

5. Implementationand
(PMV0) Minimize xTf xfsubje
t to Pxp � xf = �eeTxf = 0eTxp = 10 � xp � up�1 � xf � 1 ;for some upper bounds ve
tor up 2 IRn. Remember that xp 2 IRn, xf 2 IRk andP 2 IRk�n. We have to in
lude these upper bounds on xp, be
ause we want to avoidthe situation where the weight of
ertain assets in the solution-portfolio be
omes toobig hen
e making the portfolio too sus
eptible to
u
tuations in the pri
es of thoseassets. We will typi
ally
hoose up = Ce, where C is a s
alar whi
h of
ourse dependson n. It is also pra
ti
ally
onvenient to express the free variable xf as one with in�nitebox
onstraints. We
hose not to in
lude any other additional linear
onstraints be
ausethose
onstraints are mostly situation spe
i�
. Plus it is very easy to extend our modelsto in
lude them without having to
hange any part of our algorithms.In order to make our models more
on
ise we de�ne for (PMV)the (n+ 1 + k)� (n+ 1 + k)-matrixQ := 24 0 0 00 0 00 0 I 35 ; (5:1)the (k + 2)� (n + 1 + k)-matrixA := 24 (I � 1keeT)P 0 �I1keTP �1 0eT 0 0 35 ; (5:2)the (k + 2)-ve
tor b := 0� 0�e1 1A (5:3)and the (n+ 1 + k)-ve
torsx := 0� xpxsxf 1A ; l := 0� 00�1 1A ; u := 0� up11 1A : (5:4)

44

5. ImplementationNow (PMV) is equivalent to(PQP) Minimize 12xTQxsubje
t to Ax = bl � x � u :Similarly, for (PMV0), we de�nethe (n + k)� (n+ k)-matrix Q0 := 24 0 00 00 I 35 ; (5:5)the (k + 2)� (n+ k)-matrix A0 := 24 P �I0 eTeT 0 35 ; (5:6)the (k + 2)-ve
tor b0 := 0� �e01 1A (5:7)and the (n+ k)-ve
torsx0 := � xpxf � ; l0 := � 0�1 � ; u0 := � up1 � : (5:8)A

ordingly (PMV0) is equivalent to(PQP0) Minimize 12x0TQ0x0subje
t to A0x0 = b0l0 � x0 � u0 :These notations enable us to treat (PQP) and (PQP0) as identi
al for the most part.Hen
e from now on we will work only with (PQP).In the implementation the models are being generated by the subroutine mvtosta(mean varian
e to standard model) whi
h is listed in the Appendix. It only requiresP , � and up as input data and due to the stru
ture of Q we
an make good use ofMatlab's sparse data type [22℄.If up is empty it is uniformly set to in�nity. If it is shorter than xp, say of lengthi, then only the �rst i
omponents of xp are treated as bounded, while the remaining
omponents have in�nite bounds. 45

5. ImplementationWe de�ne m and �n as the number of rows and
olumns of A, respe
tively. The �rstorder optimality
onditions of (PQP) are (
f. (3.3))G0(x; y; z; �) := 0BBB� Ax� bAT�+ y � z �QxSlY e� 0eSuZe� 0e
1CCCA = 0; l � x � u0 � y0 � z ; (5:9)where Sl := X �L and Su := U �X. Theoreti
ally it is of
ourse impossible to satisfythe last two equations, be
ause of the in�nite bounds. In pra
ti
e however we set [yk℄iand [zk℄i to zero for all k if li = �1 or ui =1, respe
tively. This method has provenmore e�e
tive in our numeri
al experiments than the variable splitting te
hnique knownfrom the simplex method (
f. also [23℄).5.2 Pure Primal-Dual AlgorithmThe algorithm des
ribed in this se
tion is implemented in the subroutine pd ipm whi
his also listed in the Appendix. In essen
e the algorithm follows the s
heme of Algo-rithm 1 ex
ept that we do not require (x0; y0) to be stri
tly feasible and the
enteringparameter �k and the steplength �k are
omputed by spe
ial pro
edures whi
h willbe des
ribed below. Of
ourse the termination
riteria have to be also di�erent to suitpra
ti
al
onsiderations.5.2.1 InitializationThere are two
he
ks that are performed at the very beginning. First the algorithmmakes sure that the dimensions of the input data mat
h. Then it
he
ks if the
onstraintmatrix A has full (row-)rank. If any of the
he
ks fail, the algorithm stops with anerror message. Currently there is no prepro
essor in
luded that removes redundantequations.Unlike the theoreti
al algorithms in Chapters 3 and 4, the algorithm does not requirean initial stri
tly feasible solution but will use one if one is given by the user. Instead ithas proven far more eÆ
ient [13℄ to
ompute initial values for x, y, z and � su
h that thebox
onstraints are satis�ed and the other
onstraints are approximately satis�ed andthen start from this infeasible point. There have been �rst e�orts to establish theoreti
al
onvergen
e results for these so
alled infeasible IPMs, e.g. [26, 29℄, whi
h indi
atethat very similar
hoi
es of parameters as for Algorithm 2 are adequate. However our
hoi
e of parameters is in
uen
ed by the more pra
ti
ally oriented works of Lustig etal. [4, 2, 13℄. 46

5. ImplementationThe default pro
edure for
omputing the initial points was partly motivated by theone in [14℄.Pro
edure 3Given �� > 0.Step 1 Compute �x0 := AT (AAT)�1b and �P := �� k�x0k1=n.Step 2 For i = 1; . . . ; n, set [x0℄i := (ui � li)=2, if ui � li <= 2�P or else[x0℄i := 8><>: ui � �P ; if ui � [�x0℄i < �Pli + �P ; if [�x0℄i � li < �P[x0℄i ; otherwise:Step 3 Set �0 := 0. Compute �0 := Qx0 +
 and �D := �� k�0k1=n.Step 4 For i = 1; . . . ; n, set [y0℄i := 0, if li = �1 or else[y0℄i := � [�0℄i ; if [�0℄i > �D�D ; otherwise;and [z0℄i := 0, if ui =1 or else[z0℄i := � �[�0℄i ; if [�0℄i < ��D�D ; otherwise:The
omputation of the pseudoinverse of A in Step 1 is possible, be
ause we havemade sure that A has full row-rank. Overall, Pro
edure 3
omputes initial values x0,y0 and z0 whi
h are at least a
ertain threshold �P for x0 and �D for y0 and z0 awayfrom the relevant boundaries. The user
an in
uen
e this threshold value by
hangingthe s
aling parameter ��. After extensive testing it seems that �� = :3 is a good universal
hoi
e.On the other it is attempted to keep the norm of the initial infeasibility or residual,i.e. kr0k2 :=

� Ax0 � bAT�0 + y0 � z0 �Qx0 �

2 ;as small as possible.5.2.2 Computation of Centering ParameterOur pro
edure for
omputing the
entering parameter �k was motivated by the ones inthe primal-dual algorithms for linear-programming des
ribed in [13, 14℄. In the
ase ofinfeasible starting points, �k must play the important role of a feasibility parameter.This means that �k should be large as long as primal and dual feasibility have not been47

5. Implementationattained yet, be
ause the
entering dire
tions point from the
urrent iterates away fromthe boundary into the interior of the feasible region. Hen
e more
entering will allowfor larger steps before the nonnegativity
onstraints restri
t the steplength. Of
ourseanother result of this te
hnique is that the emphasis on attaining feasibility is greaterthan on attaining optimality. However, from our numeri
al experiments we feel thatthis has no signi�
ant negative e�e
t on the eÆ
ien
y of the algorithm.Our pro
edure for
omputing �k is as follows.Pro
edure 4Given � > 0, � > 0, � := � �n2 ; if n � 5000;�n3=2 ; if n > 5000; (5:10)and M := � � max(Q; b) ; (5:11)where max(Q; b) refers to the largest
omponent of both items in the parenthesis and� is the same that is being used in the termination
riteria.Step 1 If primal and dual feasibility has been attained, i.e.kAxk � bk11 + kxkk1 < � and kAT�k + yk � zk �Qxk �
k11 + kxkk1 + kykk1 + kzkk1 + k�kk1 < � ;then �k := (xk � l)Tyk + (u� xk)T zk� ;otherwise �k := xTkQxk � bT�k � lT yk + uT zk +Mkrkk1=kr0k1�where like above rk is the residual of primal and dual
onstraints at the k-thstep.This pro
edure merits an explanation. First it is apparent that for feasible iterates�k is similar to the one in Algorithm 1 with �k = n=�. Thus �k is a
onstant ratherthan
onverging to zero. This works mu
h better in pra
ti
e than for instan
e
hoosing�k as the minimum of duality gap and say :99, in whi
h
ase the
entering parameter
onverges to zero mu
h slower than for our
hoi
e.When feasibility has not been a
hieved yet, we obviously have to
ompute the du-ality gap as the di�eren
e between primal and dual obje
tive fun
tion sin
e the total
omplementarity no longer equals the duality gap. In this
aseM
ontrols the in
uen
ethe degree of infeasibility has on �k. The bigger M , the larger �k will be
hosen when48

5. Implementationthe degree of infeasibility is still high. M takes into a

ount the s
aling of the problemand
an be
ontrolled by the user by adjusting the parameter �. We
hoose � = :45.Sin
e we are dealing with a very homogeneous
lass of problems there is no needto adjust any of the parameters involved in the
omputation of �k. For an interestingdis
ussion about this topi
 for the
ase of LP see [13℄.5.2.3 Computation of Sear
h Dire
tionsDue to the infeasible start, the system de�ning the sear
h dire
tions in our
ase isof
ourse also di�erent from the feasible
ase when the upper part of the right handside is zero. We still pro
eed similarly as in Algorithm 1 though and de�ne the sear
hdire
tions as solutions to the systemG0�k(xk; yk; zk; �k)0BB� �xk�yk�zk��k 1CCA = �G�k(xk; yk; zk; �k) ;where G� was de�ned in (5.9). Dropping the index k for notational
onvenien
e, this isequivalent to0BB� A 0 0 0�Q I �I ATY Sl 0 0�Z 0 Su 0 1CCA0BB� �x�y�z�� 1CCA = 0BB� b� Ax�AT�� y + z +Qx�e� SlY e�e� SuZe 1CCA : (5:12)If we set 0BB� p1p2p3p4 1CCA := 0BB� b� Ax�AT�� y + z +Qx�e� SlY e�e� SuZe 1CCA ; (5:13)we
an
ompute the solutions to (5.12) dire
tly by0BBB� ���x�y�z
1CCCA = 0BBB� (AH�1AT)�1 �AH�1(p2 � S�1l p3 + S�1u p4) + p1�H�1(�p2 + S�1l p3 � S�1u p4 + AT��)S�1l (p3 � Y�x)S�1u (p4 + Z�x)

1CCCA (5:14)with H := Q + S�1l Y + S�1u Z. When
omputing S�1l and S�1u , the diagonal elementsasso
iated with in�nite bounds are set to zero.The
omputation of the sear
h dire
tions, in parti
ular of (AH�1AT)�1 uses up mostof the
omputation time in ea
h iteration. Fortunately H is a diagonal-matrix and as49

5. Implementationsu
h easy to invert. Moreover the in
reasingly ill
ondition of H whi
h is an inherentproperty of all IPMs does not pose a problem in pra
ti
e. It is worth noting thoughthat H
an only be inverted when xk, yk and zk are not too
lose to their respe
tivebound whi
h is why the starting points are made to meet this requirement.Re
alling (5.2) and (5.6) we see that A unfortunately is mostly dense. Our a
tualstrategy therefore is to
ompute the
holesky fa
tors of AH�1AT and then solve thede�ning equation for �� by forward and ba
kward substitution. The quantities that areneeded several times are just
omputed on
e and then stored in temporary variables.All diagonal matri
es needed in the
omputation are stored as sparse matri
es again[22℄.It should be remarked that Monteiro and Adler [19℄ devise an updating s
heme forthe
holesky fa
tors of AH�1AT whi
h exploits the fa
t that only diagonal elements ofH
hange at ea
h iteration. This redu
es the bound on the number of operations periteration [7℄ from O(n3) to O(n2:5). We did not implement this s
heme be
ause we feelthat it would not have a signi�
ant e�e
t on the performan
e of the algorithm.5.2.4 Computation of SteplengthOur
hoi
e of steplength in pra
ti
e is not limited by te
hni
al theoreti
al
onsidera-tions. The vast majority of pra
ti
al IPM implementations (e.g. [15, 23℄) use a slightlysmaller steplength than the maximal possible, i.e. in order for xk, yk and zk to staystri
tly within their respe
tive limits.We
ompute the maximal possible steplengths separately for primal (�̂P) and dual(�̂D) variables. For simpli
ity we will drop the index k again.�̂P = min�mini ��xi � li�xi : �xi < 0� ; mini �ui � xi�xi : �xi > 0�� (5:15)and �̂D = min�mini �� yi�yi : �yi < 0� ; mini �� zi�zi : �zi < 0�� : (5:16)For LP it has proven very eÆ
ient to use di�erent step sizes for primal and dualvariables [13, 15℄ and there is also no reason for
on
ern from a theoreti
al point ofview against this te
hnique, be
ause in LP there are no primal variables in the dual
onstraints and vi
e versa. In QP this is di�erent however sin
e we have the term Qxin the dual
onstraints, hen
e when we take di�erent steplengths the next iterate mayviolate these
onstraints. Therefore a theoreti
ally
orre
t
hoi
e of steplength wouldbe � := (
�min(�̂P ; �̂D) ; if min(�P ; �D) � 1 ;1 ; otherwise50

5. Implementationwith typi
ally
� := :99995.After extensive testing with various
hoi
es of steplengths, in
luding the extreme
aseof di�erent steplengths for all variables |whi
h did not work for one single problem bythe way| it be
ame evident that when using di�erent steplengths for primal and dualvariables we never a
hieved a slower but in most
ases a
onsiderably faster
onvergen
ethan for the
ase when the same steplength was used for all variables. Moreover in most
ases the iterates be
ame feasible after less steps. This will
ertainly not always be the
ase and espe
ially not for all
onvex QP but sin
e it worked so well we stu
k with thete
hnique.Consequently our pro
edure for
omputing the steplengths and for updating theiterates is the following.Pro
edure 5Given
� := :99995,Step 1 Compute �̂Pk and �̂Dk by (5.15) and (5.16), respe
tively.Step 2 Compute�Pk := (
��̂Pk ; if
��̂Pk � 1 ;1 ; otherwise and �Dk := (
��̂Dk ; if
��̂Dk � 1 ;1 ; otherwise:Step 3 Update the iterates by xk xk + �Pk�xkyk yk + �Dk �ykzk zk + �Dk �zk�k �k + �Dk ��kand set k k + 1.5.2.5 Termination CriteriaDue to the above
hoi
e of steplengths we
annot solely rely on the duality-gap astermination
riterion, but we also have to make sure that the iterates are still \suÆ-
iently" feasible. Therefore the algorithm terminates if for the total
omplementarityit holds that (xk � l)Tyk + (u� xk)T zk < �and for the relative infeasibility krkk11 + kxkk1 + kykk1 + kzkk1 + k�kk1 < � ;51

5. Implementationwith
urrently � = 10�7. This
hoi
e of � is mainly to allow performan
e
omparisonswith other implementations. In most situations the algorithm
onverges also for smaller�. Sin
e we did not in
lude a me
hanism for dete
ting infeasible or ill-posed problemsthe alternative termination
riterion is that a given maximal number of iterations hasbeen rea
hed. Currently this number is 100 whi
h is reasonable be
ause typi
ally thealgorithm terminates after less than 20 iterations. Unsolvable problems usually givethemselves away by
ausing numeri
al diÆ
ulties after about 20 iterations be
ause oneof the obje
tive values tends to in�nity.5.3 Predi
tor-Corre
tor AlgorithmRe
ently it has be
ome evident through several publi
ations e.g. [15, 3, 14, 29, 1℄ toname only a few that Mehrotra's predi
tor-
orre
tor algorithm [18℄ and variants of it
learly dominate the �eld of IPMs as far as pra
ti
al eÆ
ien
y and lo
al
onvergen
eis
on
erned. This was reason enough to in
lude an implementation of this method inour numeri
al experiments. To tell it right away, our results fully support the goodreputation, but before we look at the results we will give a brief des
ription of themethod and our implementation of it.5.3.1 MotivationIn motivating the predi
tor-
orre
tor algorithm, we will follow the very neat des
riptionin [14℄.The basi
 idea behind this IPM is to use the \expensive"
holesky fa
torization ofAH�1AT that is needed in the
omputation of the sear
h dire
tions, twi
e in everystep and thereby gain extra information about the
entral path through the
urrentiterates to the optimal solution.This is a
hieved by �rst solving (5.12) for the aÆne dire
tions, i.e.0BB� A 0 0 0�Q I �I ATY Sl 0 0�Z 0 Su 0 1CCA0BB� �x̂�ŷ�ẑ��̂ 1CCA = 0BB� b� Ax�AT�� y + z +Qx�SlY e�SuZe 1CCA : (5:17)This is
alled the predi
tor step.Similarly to Algorithm 2 these dire
tions are then used to determine the
enteringparameter �. Analogous to (5.15) and (5.16), let �̂P be the minimum of the primaland dual maximal possible steplengths if the predi
tor dire
tions were used and�P := min(1; :99995 �̂P) :52

5. ImplementationThen the new total
omplementarity after a step in the predi
tor dire
tions isĝ := (x + �P�x̂� l)T (y + �P�ŷ) + (u� x� �P�x̂)T (z + �P�ẑ)and � is
omputed by � := � ĝ(x� l)T y + (u� x)T z�2 ĝn : (5:18)Sin
e the predi
tor dire
tions are des
ent dire
tions for the total
omplementarity the�rst fra
tion will always be smaller than 1. Moreover it will be small when good progress
an be made in the predi
tor dire
tions and large when these dire
tions promise littleimprovement due to a small possible stepsize whi
h usually indi
ates the need for more
entering. The se
ond fra
tion is exa
tly �k from Algorithm 1.Next, in the
orre
tor step, the a
tual sear
h dire
tions are
omputed as solutionsto 0BB� A 0 0 0�Q I �I ATY Sl 0 0�Z 0 Su 0 1CCA0BB� �x�y�z�� 1CCA = 0BB� b� Ax�AT�� y + z +Qx�e� SlY e��X̂�Ŷ�e� SuZe +�X̂�Ẑ 1CCA : (5:19)Clearly all that has
hanged in
omparison to the pure primal-dual algorithm (
f.(5.12)) are the
orre
tor terms ��X̂�Ŷ and �X̂�Ẑ on the right hand side. The
omputation of step size and the pro
edures for updating the iterates are the same asin the pure primal-dual algorithm.So the extra work that has to be done for the predi
tor-
orre
tor algorithm is theba
ksolve to
ompute the predi
tor dire
tions and the ratio test to determine �P .But what is gained? We will show that one step of the predi
tor-
orre
tor algorithmapproximately
ombines one step in the predi
tor or aÆne dire
tion and from thereone step of the pure primal-dual algorithm.Note that we
an write the sear
h dire
tions as�x = �x̂ +
x�y = �ŷ +
y�z = �ẑ +
z�� = ��̂+
� ;where the
orre
tion terms satisfy0BB� A 0 0 0�Q I �I ATY Sl 0 0�Z 0 Su 0 1CCA0BB�
x
y
z
� 1CCA = 0BB� b� Ax�AT�� y + z +Qx�e��X̂�Ŷ�e+�X̂�Ẑ 1CCA : (5:20)
53

5. ImplementationNote further that (X +�X̂ � L)(Y +�Ŷ)e= (Sl +�X̂)(Y +�Ŷ)e= SlY e+ Y�x̂ + Sl�ŷ| {z }=0 by (5:17) +�X̂�Ŷand similarly (U �X ��X̂)(Z +�Ẑ)e = ��X̂�Ẑ :Thus (5.20) de�nes pure primal-dual sear
h dire
tions from the point x+�x̂, y+�ŷ,z +�ẑ, � + ��̂ that would result from a full step in the predi
tor dire
tions, ex
eptthat the terms �x̂, �ŷ, �ẑ have not been added to the diagonal matri
es on the lefthand side. That means that instead of using the Ja
obian at the point resulting froma full step in the aÆne dire
tions, the Ja
obian at the
urrent point x; y; z; � is beingused.Despite the approximation this te
hnique produ
es ex
ellent sear
h dire
tions fre-quently leading to a
onsiderably smaller number of total iterations. A logi
al extensionof this approa
h is to attempt to use one matrix fa
torization even more often. Therehas been some resear
h in this dire
tion [3, 2℄ whi
h indi
ates that the number ofiterations often
an be redu
ed even more with more \
orre
ting".5.3.2 ImplementationThe predi
tor-
orre
tor algorithm is implemented in the subroutine p
 ipm whi
h
anbe found in the Appendix.In a

ordan
e with the brief des
ription of the algorithm above, the implementationis very similar to the one of the pure primal-dual algorithm. The initialization pro
edureis the same as in 5.2.1, ex
ept that we set �� = 1, be
ause for reasons given below it isdesirable to keep farther away from the boundaries.The
omputation of the sear
h dire
tions and the
entering parameter is a

ordingto the des
ription above, with a little di�eren
e. Our a
tual pro
edure for
omputing� is as follows.Pro
edure 6Given �� := :7 .Step 1 If primal or dual feasibility has not been attained andkrkk1(xk � l)Tyk + (u� xk)T zk > 103 ;then set �k := �� and skip Step 2.54

5. ImplementationStep 2 If (xk � l)Tyk + (u � xk)T zk < 1 and primal and dual feasibility has beenattained, then �k := (xk � l)Tyk + (u� xk)T zk� ;otherwise
ompute �k by (5.18) but with separate steplengths for primal anddual variables in
omputing ĝ.The se
ond step was partly motivated by [14℄, i.e. when the iterates are
lose toan optimal solution we use the same
entering parameter as in the pure primal-dualalgorithm to avoid potentially numeri
ally unstable systems.The �rst step has proven to be essential, be
ause before it was in
luded the algorithmmostly did not
onverge. This happens when the starting points are too
lose to theirbounds whi
h sometimes
annot be avoided due to small upper bounds. Then it oftenhappened in our experiments that the �rst fra
tion in (5.18) was
lose to 1 but these
ond fra
tion was too small for this to have a signi�
ant e�e
t on �k. Consequentlythe algorithm got
aught in the erroneous assumption that it was already
lose to asolution and perpetually
hose �k mu
h too small. As a remedy we had to in
lude ame
hanism that also takes into a

ount the infeasibility. The heuristi
 in Step 1 withthe user-
ontrollable parameter �� has proven to serve this purpose very well. Typi
allyit only a�e
ts the �rst step. Lustig et al. [14℄ work around this problem by not requiringxk to initially satisfy the upper bound but allowing it to iterate to bound feasibilityand hen
e
hoosing large initial points.For the same pra
ti
al reasons given in 5.2.4 we
ompute ĝ with separate steplengthsfor primal and dual variables. The
omputation of the a
tual steplengths, the updatings
heme for the iterates and the termination
riteria are the same as for the pure primal-dual algorithm.5.4 Numeri
al ResultsAll numeri
al experiments were
arried out on a DEC Alpha workstation runningOSF/1 with the numeri

omputation software pa
kage Matlab 4.0. Although theMatlab optimization toolbox
ontains a QP solver we did not use it for performan
e
omparisons be
ause its performan
e was too poor on our problems.Three sets of test data, i.e. three matri
es P , from the Tokyo Sto
k Ex
hange Marketwere most generously provided by Messrs. Ken-i
hi Suzuki and Hiroshi Konno from theTokyo Institute of Te
hnology. They have been used in the numeri
al experiments in[11, 21℄ before. The test set
alled r8912
ontains 60 monthly rates of return (January1985 { De
ember 1989) for the sto
ks in
luded in the Nikkei225 index. The test set
alled r9012
ontains the same kind of data for the period January 1986 { De
ember1990. The test set
alled tsem
ontains the same data but for all 1064 sto
ks traded55

5. Implementationin the Tokyo Sto
k Ex
hange Market for the 152 months between January 1980 andAugust 1982. The sets
alled tsem1, tsem2 and tsem3 are the subsets P (1 : 60; 1 : 225),P (61 : 200; 226 : 450) and P (93 : 152; 451 : 675) of tsem, respe
tively.Besides the real world data we also used 3 randomly generated data sets. The Mat-lab routine that was used to generate the data sets is
alled randprob and
an befound in the Appendix. The size of the sets is 60 � 225 for rand1 and rand2 and60�2500 for rand3. The sets were generated by rand1: randprob(60,225,2,11.5,0,0),rand2: randprob(60,225,-2,1,8,0) and rand3: randprob(60,2500,-2,1,8,0). Thesets rand2 and rand3 were deliberately
hosen to be almost infeasible for our
hoi
e of� = 2 and up = :03e, to see how the algorithms behave.In all tests the required rate of return was � = 2:0. The
olumns in Tables 5.1 and5.2 have the following meanings: `Model' refers to the two models we are
onsidering,where `�' means model (PQP) and `=' means model (PQP0). An `M' in this
olumnindi
ates that the regular MV-model (MV2) with the a

ording equality or inequality
onstraint was used. `Bound' refers to the upper bound up and the a
tual value in
olumn `Bound' is the uniform upper bound on all
omponents of xp. Obviously the`Solver'
olumn gives the algorithm that was used, where PC stands for the predi
tor-
orre
tor algorithm and PD for the pure primal-dual algorithm. `Total # Steps' is thenumber of steps the algorithm needed to rea
h optimality and `Infeasible # Steps' is thenumber of steps the algorithm needed until primal and dual feasibility was rea
hed. Asalready mentioned, the `CPU Times' were a
hieved on a DEC Alpha workstation and
omputed by the built-in Matlab fun
tion
putime. The
olumn `1-Norm Residual'lists the 1-norm of the last residual ve
tor rk. To de
ide whether a sto
k was in or outthe solution portfolio, i.e. if the
orresponding
omponent of xp was zero or not, weused the
onvergen
e toleran
e �. All
omponents of xp smaller than � were assumed tobe zero. Of
ourse there are more reliable and yet inexpensive ways to de
ide this butthey are not within the s
ope of this thesis. For more information about identifyingzero
omponents we refer the interested reader to [5℄.It should be remarked that the built-in QP solver of Matlab was used to dete
tinfeasible problems.Even though our implementations are only resear
h
odes, they still exhibit quite agood performan
e, as
an be seen in Tables 5.1 and 5.2. The results are de�nitely betterthan the ones reported in [11℄ and [21℄ where the same kind of data was used. The lastthree entries of Table 5.2
learly demonstrate that our algorithms even �nd solutionsfor nearly infeasible problems in still an a

eptable amount of time. On the other handthere is no doubt that there is still room for improvement in our implementations.An important remark
on
erning the results of data set rand1 is that the fa
t thatthere are 225 sto
ks in the solution does not
ontradi
t the result at the end of Chap-ter 2. A

ording to this result there exists a solution of model (MV3) su
h that thereare no more than 62 sto
ks in the solution portfolio. Unfortunately the algorithmdid not �nd one of these solutions in this
ase. Hen
e we will have to do some extra56

5. Implementation
omputations, i.e. solve an easy LP to identify a solution with the desired properties.The results of our experiments support the
lear dominan
e of the predi
tor-
orre
toralgorithm. It only got beat on
e by the pure primal-dual algorithm, as far as the totalnumber of iterations and the CPU-time is
on
erned, and this might even be due to aweakness in our implementation.As far as the models are
on
erned, the six examples we in
luded are suÆ
ient todemonstrate that the
ompa
t models (PQP) and (PQP0) are
learly mu
h faster tosolve than the regular MV-model (MV2).A �nal remark has to be made regarding Matlab's spdiags routine. When
alledwith an empty �rst argument, e.g. spdiags([℄,0,0,0) it produ
es an error messagewhile one would expe
t it to simply return an empty matrix. This somewhat unpre-di
table behavior
auses trouble when
alling pd ipm or p
 ipm with empty lower orupper bounds on the design variable. Thus instead of programming around this \bug"we de
ided to rather \�x" the spdiags routine in su
h a way that it now returns anempty result when
alled with an empty �rst argument.

57

5. ImplementationTable 5.1: Numeri
al Results IData Model Bound Solver Total Infeasible CPU 1-Norm # Sto
ks in# Steps # Steps Time Residual solutionr8912 `=' 1 PC 10 8 4.67 1.11E-12 28r8912 `=' 1 PD 15 11 6.05 4.31E-12 28r8912 M `=' 1 PC 14 2 49.03 2.11E-15 28r8912 M `=' 1 PD 23 5 79.15 3.78E-15 28r8912 `�' 1 PC 10 9 4.68 4.93E-12 32r8912 `�' 1 PD 16 7 6.38 4.39E-13 32r8912 `=' .03 PC 11 10 5.07 1.06E-11 42r8912 `=' .03 PD 16 13 6.40 9.39E-14 42r8912 `�' .03 PC 12 7 5.35 8.01E-13 48r8912 `�' .03 PD 19 13 7.45 9.17E-13 48r9012 `=' 1 PC 11 10 5.03 1.14E-10 21r9012 `=' 1 PD 14 7 5.77 1.77E-12 21r9012 `�' 1 PC 11 10 5.08 5.08E-11 21r9012 `�' 1 PD 14 7 5.72 1.35E-12 21r9012 `=' .03 PC 14 10 6.13 2.14E-13 45r9012 `=' .03 PD 18 12 7.05 1.97E-12 45r9012 `�' .03 PC 14 11 6.18 2.09E-12 45r9012 `�' .03 PD 18 12 7.08 2.38E-12 45r9012 M `�' .03 PC 12 1 43.87 1.55E-15 45r9012 M `�' .03 PD 24 3 86.12 5.55E-16 45tsem1 `=' 1 PC 10 8 4.68 1.80E-12 29tsem1 `=' 1 PD 15 5 6.02 1.79E-11 29tsem1 `�' 1 PC 10 8 4.70 2.17E-12 29tsem1 `�' 1 PD 15 5 6.07 2.54E-11 29tsem1 `=' .03 PC 9 8 4.30 1.93E-11 40tsem1 `=' .03 PD 16 11 6.47 4.53E-14 40tsem1 `�' .03 PC 9 8 4.37 7.17E-11 40tsem1 `�' .03 PD 16 11 6.38 1.49E-11 40tsem2 `=' 1 PC 10 8 4.67 1.83E-11 32tsem2 `=' 1 PD 15 9 6.02 1.50E-11 32tsem2 `�' 1 PC 11 8 5.08 4.31E-10 36tsem2 `�' 1 PD 17 10 6.77 7.09E-10 36tsem2 `=' .03 PC 11 9 5.05 1.65E-11 48tsem2 `=' .03 PD 16 11 6.45 1.58E-12 48tsem2 `�' .03 PC 10 8 4.72 6.25E-11 47tsem2 `�' .03 PD 16 10 6.38 8.88E-12 4758

5. ImplementationTable 5.2: Numeri
al Results IIData Model Bound Solver Total Infeasible CPU 1-Norm # Sto
ks in# Steps # Steps Time Residual solutiontsem3 `=' 1 PC 17 13 7.27 2.56E-14 10tsem3 `=' 1 PD 20 15 7.78 2.02E-14 10tsem3 `�' 1 PC 17 13 7.23 4.13E-14 10tsem3 `�' 1 PD 20 15 7.85 4.60E-14 10tsem3 M `�' 1 PC 16 5 58.33 1.55E-15 10tsem3 M `�' 1 PD 20 5 71.73 1.33E-15 10tsem3 `=' .03 Infeasible Problemtsem3 `�' .03 Infeasible Problemrand1 `=' 1 PC 7 3 3.58 1.11E-15 225rand1 `=' 1 PD 14 5 5.83 1.55E-14 225rand1 `�' 1 PC 7 3 3.50 1.55E-14 225rand1 `�' 1 PD 14 5 5.77 2.00E-15 225rand1 `=' .03 PC 7 3 3.55 9.99E-16 225rand1 `=' .03 PD 13 4 5.45 6.66E-16 225rand1 `�' .03 PC 7 3 3.53 5.00E-15 225rand1 `�' .03 PD 13 4 5.48 1.78E-15 225rand2 `=' 1 PC 13 10 5.77 8.81E-12 6rand2 `=' 1 PD 12 7 5.05 1.91E-12 6rand2 `�' 1 PC 12 9 5.50 1.21E-11 6rand2 `�' 1 PD 18 8 7.12 1.03E-11 6rand2 `=' .03 Infeasible Problemrand2 `�' .03 Infeasible Problemtsem `=' 1 PC 12 10 128.1 1.42E-11 36tsem `=' 1 PD 16 11 156.6 3.77E-10 36tsem `�' 1 PC 12 10 126.6 4.31E-12 36tsem `�' 1 PD 16 11 159.3 6.09E-10 36tsem `�' .03 PC 17 12 169.2 1.60E-09 49tsem `�' .03 PD 21 13 196.3 1.88E-09 49rand3 `=' 1 PC 26 6 102.2 7.56E-12 33rand3 `=' 1 PD 33 9 118.1 7.30E-10 34rand3 `�' 1 PC 23 7 89.9 1.17E-11 33rand3 `�' 1 PD 32 6 113.2 1.39E-09 34rand3 `� .03 Infeasible Problemrand3 `�' .04 PC 33 13 126.4 1.44E-11 37rand3 `�' .04 PD 44 16 154.6 1.49E-11 37
59

6. Con
lusions and SummaryIn this thesis we demonstrated that by transforming a MV model into a separable QPand by applying IPMs to this separable representation, Markowitz' model and hen
ealso most models based on it now
an be solved in a very pra
ti
al amount of timeeven for large problems.The transformation itself makes the model generation very easy by using histori
aldata and permits to solve the MV model in usually 10% of the time that would beneeded to solve the regular MV model. At the same time the algorithms that we im-plemented generally �nd solution portfolios with a very manageable number of assets.Even if they don't it only requires a little extra work to �nd su
h a solution as itsexisten
e is guaranteed by the separable representation.We have seen that the behavior of the presented primal-dual IPM is mainly
on-trolled by the
entering and the steplength parameters and that it required a substan-tial amount of work to �nd
hoi
es of these parameters whi
h guarantee the global andsuperlinear
onvergen
e of the duality gap. On the other hand the numeri
al experi-ments have shown that in pra
ti
e the
hoi
es of parameters do not have to be restri
tedso narrowly to get pra
ti
ally eÆ
ient algorithms. Very interesting, espe
ially from apra
ti
al point of view is the possibility of starting with infeasible iterates and yetto a
hieve reliable fast
onvergen
e in all solvable
ases that we tested. A fairly newapproa
h might be the way we deal with free variables in pra
ti
e, i.e. to treat themas variables with in�nite lower and upper bounds whi
h works very well.From our and the
ited results it is save to say that at this time the di�erent variantsof Mehrotra's predi
tor-
orre
tor IPM o�er the best pra
ti
al eÆ
ien
y. The
itedsour
es seem to support its dominan
e over all other IPMs also in theory.Considering that portfolio models are used in a variety of areas, more professionalversions of the presented portfolio optimization methods have the potential of beingin
luded in a wide range of software pa
kages in the future.
61

Appendix

A. Listings of Routines
A.1 Model Generator: mvtostafun
tion [H,
,A,b,lboundx,uboundx℄ = mvtosta(P,alpha,uboundx,whi
h)% MVTOSTA% [H,
,A,b,lboundx,uboundx℄ = mvtosta(P,alpha,uboundx,whi
h)% transforms the values of a problem given in the form of a Mean-% Varian
e model with
ompa
t fa
torization of the
ovarian
e-% matrix into a standard QP-model with lower and upper bounds on% (possibly just parts of) the design variable x:%% Min x'Hx+
'x%% s.t Ax=b , lboundx<=x<=uboundx%% Due to the size and stru
ture of the problems
onsidered the fun
tion% takes advantage of the sparse matrix type: H and
 are returned% as sparse matri
es.[k,n℄ = size(P);% First handle missing argumentsif nargin < 3 uboundx=[℄;endif whi
h == '1' % Regular
aselboundx = zeros(n,1);A = [[P ; zeros(1,n) ; ones(1,n)℄ [-eye(k); ones(1,k);zeros(1,k)℄℄;b = [alpha*ones(k,1);0;1℄;H = [sparse(n,k+n);sparse(k,n) speye(k)℄;
 = sparse(n+k,1);elseif whi
h == '2' % >=
onstraint for alphalboundx = zeros(n+1,1);A = [[(eye(k)-(1/k)*ones(k))*P ; 1/k*ones(1,k)*P ; ones(1,n)℄ ...[zeros(k,1);-1;0℄ [-eye(k); zeros(2,k)℄℄;b = [sparse(k,1);alpha;1℄;H = [sparse(n+1,k+n+1);sparse(k,n+1) speye(k)℄;
 = sparse(n+k+1,1);elseif whi
h == '3' % Point on the effi
ient frontierlboundx = zeros(n,1);A = [[(eye(k)-(1/k)*ones(k))*P ; ones(1,n)℄ [-eye(k); zeros(1,k)℄℄;65

A. Listings of Routinesb = [sparse(k,1);1℄;H = [sparse(n,k+n);sparse(k,n) speye(k)℄;
 = [-alpha/k*P'*ones(k,1);sparse(k,1)℄;endA.2 Pure Primal-Dual Algorithm: pd ipmfun
tion [xstar,ystar,zstar,lambda℄=pd_ipm(A,H,b,
,lboundx,uboundx,x0,maxit,tol)% [xstar,ystar,zstar,lambda℄=pd_ipm(A,H,b,
,lboundx,uboundx,x0,y0,maxit,tol)%% Primal-Dual Interior Point Method Quadrati
 Optimization%% pd_ipm solves
onvex Quadrati
 Programs%% Minimize 1/2 x'*H*x +
'*x subje
t to A*x == b, lboundx <= x <= uboundx%% using a primal-dual interior point method.%% H must be positive semi-definite and A must have full rank.%% The user has the option of in
orporating lower and upper bounds on x, using% lboundx and uboundx, respe
tively. If lboundx or uboundx are shorter than x,% the remainig
omponents of x are assumed to be unbounded in the respe
tive% dire
tion.%% A starting value x0
an be given but it has to satisfy the box-
onstraints.%% The default maximal number of iterations is 100 and
an be adjusted by setting% maxit.%% The default termination toleran
e is 1E-7 and
an be adjusted by setting tol.%% The routine returns the solution xstar and the lagrangian multipliers, where% ystar is asso
iated with lboundx, zstar is asso
iated with uboundx and lambda% is asso
iated with the equality
onstraints.% First set a
ouple of default values% defmaxit = 100; % Default value for the maximum number of iterationsdeftol = 1e-7; % Default toleran
e for obje
tive value and residualsthreshold_s
ale = .3; % This is used for x0 and y0xi = .45; % Only an initial value used for sigmak,% the
entering parameteralpha_s
ale=.99995; % Used for
omputation of alphak% Determine dimensions of the problem% [m n℄ = size(A);if (size(H)~=[n,n℄)|(size(b)~=[m,1℄)|(size(
)~=[n,1℄)| ...(size(uboundx,1)>n)|(size(lboundx,1)>n)error('Dimensions mismat
h !!!'); 66

A. Listings of Routinesendnu
str=size(uboundx,1); % Number of upper-
onstrained variablesnufree = n-nu
str;nl
str=size(lboundx,1); % Number of lower-
onstrained variablesnlfree = n-nl
str;if n <= 5000 %phi = n^2; % phi and max_b
H are used in the
al
ulation ofelse % sigmak, the
entering parameterphi = n^(1.5); %
f. Lustig, Marsten, Shannoend %% Determine if A has full rank% if rank(A) < m , error('A does not have full row-rank'); end% If no toleran
e is given use default% if nargin < 9, tol = deftol;% If no limit on iterations is given use default value% if nargin < 8, maxit = defmaxit;% If no starting-point is given
ompute one by default pro
edure% if nargin < 7xk = A'/(A*A')*b; % This is legitimate sin
e we know that A has full row-rank% and it's mu
h faster than pinv(A)*b !!!threshold=norm(xk,1)/n*threshold_s
ale;for i = 1:min([nl
str,nu
str℄)if uboundx(i)-lboundx(i) < 2*thresholdxk(i) = (uboundx(i)-lboundx(i))/2;elseif xk(i)-lboundx(i) < thresholdxk(i) = lboundx(i)+threshold;elseif uboundx(i)-xk(i) < thresholdxk(i) = uboundx(i) - threshold;end;end;end;end;if nl
str < nu
strfor i = nl
str+1:nu
strif uboundx(i) - xk(i) < thresholdxk(i) = uboundx(i)-threshold;end;end;elsefor i = nu
str+1:nl
strif xk(i)-lboundx(i) < thresholdxk(i) = lboundx(i) + threshold;67

A. Listings of Routinesend;end;end;elsexk=x0;end,end,endlambdak=zeros(m,1);yk=
+H*xk;threshold=norm(yk,1)/n*threshold_s
ale;if threshold == 0 , threshold = threshold_s
ale; endzk = yk;temp = (zk<=0);zk=abs(zk).*temp;yk=zk.*(~temp);yk(nl
str+1:n)=zeros(nlfree,1);zk(nu
str+1:n)=zeros(nufree,1);temp = yk(1:nl
str) < threshold;yk([temp;zeros(nlfree,1)℄) = threshold * ones(nnz(temp),1);temp = zk(1:nu
str) < threshold;zk([temp;zeros(nufree,1)℄) = threshold * ones(nnz(temp),1);% Pi
k global parameters based on x0 and y0% fk1 = ([xk(1:nl
str)-lboundx;zeros(nlfree,1)℄).*yk;fk2 = ([uboundx-xk(1:nu
str);zeros(nufree,1)℄).*zk;obje
tive1=sum(fk1);obje
tive2=sum(fk2);obje
tive=obje
tive1+obje
tive2;residual = [A*xk-b;A'*lambdak-H*xk+yk-zk-
℄;k=0;
onverged=0;x_feasible=0;yz_feasible=0;dxyk=zeros(3*n+m,1); % Allo
ate spa
e !!!M = xi*phi*max([max(max(H));b;
℄); % For sigmakresidual0 = norm(residual,1);% Start iteration%while (~
onverged) & (k <= maxit)% Here the
entering parameter is
omputed%if x_feasible & yz_feasiblesigmak = obje
tive / phi;elsesigmak = (
'*xk+xk'*H*xk-b'*lambdak+uboundx'*zk(1:nu
str)- ...lboundx'*yk(1:nl
str)+ M*(norm(residual,1)/residual0))/ phi;end;
68

A. Listings of Routines% Compute the sear
h dire
tions% dxyk = [dxkN dxkC% dykN dykC% dzkN dzkC% lambda ℄% Slinv=spdiags([(-lboundx+xk(1:nl
str)).^(-1);zeros(nlfree,1)℄,0,n,n);Suinv=spdiags([(uboundx-xk(1:nu
str)).^(-1);zeros(nufree,1)℄,0,n,n);SlinvYk=spdiags(Slinv*yk,0,n,n);SuinvZk=spdiags(Suinv*zk,0,n,n);Ginv=H+SlinvYk+SuinvZk;if k == 0if
ondest(Ginv) > 1e12H_ill = 1;disp('Warning: H is ill-
onditioned !!!');elseH_ill = 0;end;end;if H_illGinv=Ginv+5*max(max(Ginv))*eps*speye(n);endGinv=inv(
hol(Ginv)); % This seems to be numeri
ally more stable thanGinv=Ginv*Ginv'; % inv(H+SlinvYk+SuinvZk) !R
hol=
hol(A*Ginv*A');temp1=Slinv*(-fk1+sigmak*ones(n,1));temp2=Suinv*(-fk2+sigmak*ones(n,1));temp3=temp1-temp2-(-residual(m+1:m+n));dxyk(3*n+1:3*n+m)=R
hol\(R
hol'\(-A*Ginv*temp3+(-residual(1:m))));dxyk(1:n)=Ginv*(temp3+A'*dxyk(3*n+1:3*n+m,:));dxyk(n+1:2*n)=temp1-SlinvYk*dxyk(1:n,:);dxyk(2*n+1:3*n)=temp2+SuinvZk*dxyk(1:n,:);% Compute alphak, the step-length% minimum = min([Slinv*dxyk(1:n,1);-Suinv*dxyk(1:n,1)℄);if minimum < 0alphak_p=min([(-alpha_s
ale/minimum);1℄);elsealphak_p=1;end;minimum = min([spdiags(yk(1:nl
str).^(-1),0,nl
str,nl
str)* ...dxyk(n+1:n+nl
str,1); ...spdiags(zk(1:nu
str).^(-1),0,nu
str,nu
str)* ...dxyk(2*n+1:2*n+nu
str,1)℄);if minimum < 0alphak_d=min([(-alpha_s
ale/minimum);1℄);elsealphak_d=1;end;% if alphak_p < alphak_d% alphak_d = alphak_d 69

A. Listings of Routines% else% alphak_p = alphak_d% end;% Compute the new iterates% xk = xk + alphak_p * dxyk(1:n,1);yk = yk + alphak_d * dxyk(n+1:2*n,1);zk = zk + alphak_d * dxyk(2*n+1:3*n,1);lambdak = lambdak + alphak_d * dxyk(3*n+1:3*n+m,1);% In
rease k the iteration parameter and display it% k = k+1;disp([num2str(k) ' steps
ompleted'℄);% Test sequen
e for
onvergen
e rate%
o = (obje
tive + max(abs(residual)))^1;% Update quantities% fk1 = ([xk(1:nl
str)-lboundx;zeros(nlfree,1)℄).*yk;fk2 = ([uboundx-xk(1:nu
str);zeros(nufree,1)℄).*zk;obje
tive1=sum(fk1);obje
tive2=sum(fk2);obje
tive=obje
tive1+obje
tive2;residual = [A*xk-b;A'*lambdak-H*xk+yk-zk-
℄;% Test sequen
e for
onvergen
e rate%
o = obje
tive + max(abs(residual)) /
o;disp(['
o = ' num2str(
o)℄);% Feasibility test% if ~x_feasible & norm(residual(1:m),1)/(1+norm(xk,1))<=toldisp(['xk feasible after ' num2str(k) ' steps.'℄);x_feasible=1;endif ~yz_feasible & norm(residual(m+1:m+n),1)/ ...(1+norm([xk;lambdak;yk;zk℄,1))<=toldisp(['yk & zk feasible after ' num2str(k) ' steps.'℄);yz_feasible=1;end% Optimality test% if (abs(obje
tive)<tol) & norm(residual,1)/ ...(1+norm([xk;lambdak;yk;zk℄,1))<tol
onverged = 1;endend
70

A. Listings of Routinesif k > maxitdisp(['No solution after ' num2str(maxit) ' steps !!!'℄);disp('Last iterates were:');elsedisp(['Solution found after ' num2str(k) ' steps.'℄);endxstar = xk; ystar = yk; zstar=zk; lambda=lambdak;A.3 Predi
tor-Corre
tor Algorithm: p
 ipmfun
tion [xstar,ystar,zstar,lambda℄=p
_ipm(A,H,b,
,lboundx,uboundx,x0,maxit,tol)% [xstar,ystar,zstar,lambda℄=p
_ipm(A,H,b,
,lboundx,uboundx,x0,y0,maxit,tol)%% Predi
tor-Corre
tor Interior Point Method Quadrati
 Optimization%% p
_ipm solves
onvex Quadrati
 Programs%% Minimize 1/2 x'*H*x +
'*x subje
t to A*x == b, lboundx <= x <= uboundx%% using a predi
tor-
orre
tor interior point method.%% H must be positive semi-definite and A must have full rank.%% The user has the option of in
orporating lower and upper bounds on x, using% lboundx and uboundx, respe
tively. If lboundx or uboundx are shorter than x,% the remainig
omponents of x are assumed to be unbounded in the respe
tive% dire
tion.%% A starting value x0
an be given but it has to satisfy the box-
onstraints.%% The default maximal number of iterations is 100 and
an be adjusted by setting% maxit.%% The default termination toleran
e is 1E-7 and
an be adjusted by setting tol.%% The routine returns the solution xstar and the lagrangian multipliers, where% ystar is asso
iated with lboundx, zstar is asso
iated with uboundx and lambda% is asso
iated with the equality
onstraints.% First set a
ouple of default values% defmaxit = 100; % Default value for the maximum number of iterationsdeftol = 1e-7; % Default toleran
e for obje
tive value and residualsthreshold_s
ale = 1; % This is used for x0 and y0sigma_s
ale=.7; % This used as
entering parameter% if residual >> obje
tivealpha_s
ale=.99995; % Used for
omputation of alphak% Determine dimensions of the problem% [m n℄ = size(A); 71

A. Listings of Routinesif (size(H)~=[n,n℄)|(size(b)~=[m,1℄)|(size(
)~=[n,1℄)| ...(size(uboundx,1)>n)|(size(lboundx,1)>n)error('Dimensions mismat
h !!!');endnu
str=size(uboundx,1); % Number of upper-
onstrained variablesnufree = n-nu
str;nl
str=size(lboundx,1); % Number of lower-
onstrained variablesnlfree = n-nl
str;if n <= 5000 %phi = n^2; % phi is used in the
al
ulation ofelse % sigmak, the
entering parameterphi = n^(1.5); %
f. Lustig, Marsten, Shannoend %% Determine if A has full rank% if rank(A) < m , error('A does not have full row-rank'); end% If no toleran
e is given use default% if nargin < 9, tol = deftol;% If no limit on iterations is given use default value% if nargin < 8, maxit = defmaxit;% If no starting-point is given
ompute one by default pro
edure% if nargin < 7xk = A'/(A*A')*b; % This is legitimate sin
e we know that A has full row-rank% and it's mu
h faster than pinv(A)*b !!!threshold=norm(xk,1)/n*threshold_s
ale;for i = 1:min([nl
str,nu
str℄)if uboundx(i)-lboundx(i) < 2*thresholdxk(i) = (uboundx(i)-lboundx(i))/2;elseif xk(i)-lboundx(i) < thresholdxk(i) = lboundx(i)+threshold;elseif uboundx(i)-xk(i) < thresholdxk(i) = uboundx(i) - threshold;end;end;end;end;if nl
str < nu
strfor i = nl
str+1:nu
strif uboundx(i) - xk(i) < thresholdxk(i) = uboundx(i)-threshold;end;end;elsefor i = nu
str+1:nl
str 72

A. Listings of Routinesif xk(i)-lboundx(i) < thresholdxk(i) = lboundx(i) + threshold;end;end;end;elsexk=x0;end,end,end% Compute initial values for y, z and lambda based on x% lambdak=zeros(m,1);yk=
+H*xk;threshold=norm(yk,1)/n*threshold_s
ale;if threshold == 0 , threshold = threshold_s
ale; endzk = yk;temp = (zk<=0);zk=abs(zk).*temp;yk=zk.*(~temp);yk(nl
str+1:n)=zeros(nlfree,1);zk(nu
str+1:n)=zeros(nufree,1);temp = yk(1:nl
str) < threshold;yk([temp;zeros(nlfree,1)℄) = threshold * ones(nnz(temp),1);temp = zk(1:nu
str) < threshold;zk([temp;zeros(nufree,1)℄) = threshold * ones(nnz(temp),1);% Pi
k global parameters based on x0 and y0% fk1 = ([xk(1:nl
str)-lboundx;zeros(nlfree,1)℄).*yk;fk2 = ([uboundx-xk(1:nu
str);zeros(nufree,1)℄).*zk;obje
tive1=sum(fk1);obje
tive2=sum(fk2);obje
tive=obje
tive1+obje
tive2;residual = [A*xk-b;A'*lambdak-H*xk+yk-zk-
℄;k=0;
onverged=0;x_feasible=0;yz_feasible=0;dxyk=zeros(3*n+m,1); % Allo
ate spa
e !!!% Start iteration%while (~
onverged) & (k <= maxit)% Compute the sear
h dire
tions% dxyk = [dxkN dxkC% dykN dykC% dzkN dzkC% lambda ℄% Slinv=spdiags([(-lboundx+xk(1:nl
str)).^(-1);zeros(nlfree,1)℄,0,n,n);73

A. Listings of RoutinesSuinv=spdiags([(uboundx-xk(1:nu
str)).^(-1);zeros(nufree,1)℄,0,n,n);SlinvYk=spdiags(Slinv*yk,0,n,n);SuinvZk=spdiags(Suinv*zk,0,n,n);Ginv=H+SlinvYk+SuinvZk;if k == 0if
ondest(Ginv) > 1e12H_ill = 1;disp('Warning: H is ill-
onditioned !!!');elseH_ill = 0;end;end;if H_illGinv=Ginv+5*max(max(Ginv))*eps*speye(n);endGinv=inv(
hol(Ginv)); % This seems to be numeri
ally more stable thanGinv=Ginv*Ginv'; % inv(H+SlinvYk+SuinvZk) !R
hol=
hol(A*Ginv*A');% First
ompute the predi
tor step% temp1=Slinv*(-fk1);temp2=Suinv*(-fk2);temp3=temp1-temp2-(-residual(m+1:m+n));dxyk(3*n+1:3*n+m)=R
hol\(R
hol'\(-A*(Ginv*temp3)-residual(1:m)));dxyk(1:n)=Ginv*(temp3+A'*dxyk(3*n+1:3*n+m));dxyk(n+1:2*n)=temp1-SlinvYk*dxyk(1:n);dxyk(2*n+1:3*n)=temp2+SuinvZk*dxyk(1:n);% Here the
entering parameter is
omputed% if ~(x_feasible & yz_feasible) & norm(residual,1) / obje
tive > 1e3sigmak = sigma_s
ale;elseif obje
tive < 1 & x_feasible & yz_feasiblesigmak = obje
tive / phi;elseminimum = min([Slinv*dxyk(1:n,1);-Suinv*dxyk(1:n,1)℄);if minimum < 0alphak_p=min([(-alpha_s
ale/minimum);1℄);elsealphak_p=1;end;minimum = min([spdiags(yk(1:nl
str).^(-1),0,nl
str,nl
str)* ...dxyk(n+1:n+nl
str); ...spdiags(zk(1:nu
str).^(-1),0,nu
str,nu
str)* ...dxyk(2*n+1:2*n+nu
str)℄);if minimum < 0alphak_d=min([(-alpha_s
ale/minimum);1℄);elsealphak_d=1;end;g_hat1=([xk(1:nl
str)-lboundx+alphak_p*dxyk(1:nl
str);...zeros(nlfree,1)℄)'* (yk+alphak_d*dxyk(n+1:2*n));74

A. Listings of Routinesg_hat2=([uboundx-xk(1:nu
str)-alphak_p*dxyk(1:nu
str);...zeros(nufree,1)℄)'* (zk+alphak_d*dxyk(2*n+1:3*n));sigmak=((g_hat1+g_hat2)/obje
tive)^2 * ((g_hat1+g_hat2)/n);end;end;disp(['sigmak = ' num2str(sigmak)℄);% Now the
entered
orre
tor step% temp1=Slinv*(sigmak*ones(n,1)-fk1-dxyk(1:n).*dxyk(n+1:2*n));temp2=Suinv*(sigmak*ones(n,1)-fk2+dxyk(1:n).*dxyk(2*n+1:3*n));temp3=temp1-temp2-(-residual(m+1:m+n));dxyk(3*n+1:3*n+m,:)=R
hol\(R
hol'\(-A*(Ginv*temp3)-residual(1:m)));dxyk(1:n)=Ginv*(temp3+A'*dxyk(3*n+1:3*n+m));dxyk(n+1:2*n)=temp1-SlinvYk*dxyk(1:n);dxyk(2*n+1:3*n)=temp2+SuinvZk*dxyk(1:n);% Compute alphak, the step-length% minimum = min([Slinv*dxyk(1:n,1);-Suinv*dxyk(1:n,1)℄);if minimum < 0alphak_p=min([(-alpha_s
ale/minimum);1℄);elsealphak_p=1;end;minimum = min([spdiags(yk(1:nl
str).^(-1),0,nl
str,nl
str)* ...dxyk(n+1:n+nl
str,1); ...spdiags(zk(1:nu
str).^(-1),0,nu
str,nu
str)* ...dxyk(2*n+1:2*n+nu
str,1)℄);if minimum < 0alphak_d=min([(-alpha_s
ale/minimum);1℄);elsealphak_d=1;end;% Compute the new iterates% xk = xk + alphak_p * dxyk(1:n,1);yk = yk + alphak_d * dxyk(n+1:2*n,1);zk = zk + alphak_d * dxyk(2*n+1:3*n,1);lambdak = lambdak + alphak_d * dxyk(3*n+1:3*n+m,1);% In
rease k the iteration parameter and display it% k = k+1;disp([num2str(k) ' steps
ompleted'℄);% Test sequen
e for
onvergen
e rate%
o = (obje
tive + max(abs(residual)))^1;
75

A. Listings of Routines% Update quantities% fk1 = ([xk(1:nl
str)-lboundx;zeros(nlfree,1)℄).*yk;fk2 = ([uboundx-xk(1:nu
str);zeros(nufree,1)℄).*zk;obje
tive1=sum(fk1);obje
tive2=sum(fk2);obje
tive=obje
tive1+obje
tive2;residual = [A*xk-b;A'*lambdak-H*xk+yk-zk-
℄;% Test sequen
e for
onvergen
e rate%
o = obje
tive + max(abs(residual)) /
o;disp(['
o = ' num2str(
o)℄);% Feasibility test% if ~x_feasible & norm(residual(1:m),1)/(1+norm(xk,1))<=toldisp(['xk feasible after ' num2str(k) ' steps.'℄);x_feasible=1;endif ~yz_feasible & norm(residual(m+1:m+n),1)/(1+norm([xk;lambdak;yk;zk℄,1))<=toldisp(['yk & zk feasible after ' num2str(k) ' steps.'℄);yz_feasible=1;end% Optimality test% if (abs(obje
tive)< tol) & norm(residual,1)/(1+norm([xk;lambdak;yk;zk℄,1))<tol
onverged = 1;endendif k > maxitdisp(['No solution after ' num2str(maxit) ' steps !!!'℄);disp('Last iterates were:');elsedisp(['Solution found after ' num2str(k) ' steps.'℄);endxstar = xk; ystar = yk; zstar=zk; lambda=lambdak;A.4 Data Generator: randprobfun
tion P = randprob(samples,variables,mu,sigma,r_mu,r_sigma)% RANDPROB%% P = randprob(samples,variables,mu,sigma,r_mu,r_sigma)%%
reates a test-matrix for portfolio optimization of the size samples by% variables. It imitates a matrix that
ontains #samples samples of% #variables variables, for whi
h the expe
ted values of the variables are%
ontained in an interval of length r_mu with its
enter at mu and the76

A. Listings of Routines% standard-deviations of the variables are
ontained in an interval of% length r_sigma with its
enter at sigma.% It
reates a different matrix ea
h time it is invoked.randn('seed',sum(100*
lo
k));P = randn(samples,variables);Exp = rand(variables,1)*r_mu + (mu - r_mu/2) * ones(variables,1);Std = rand(variables,1)*r_sigma + (sigma - r_sigma/2) * ones(variables,1);P = P*diag(Std) + ones(samples,variables)*diag(Exp);

77

Bibliography[1℄ Anstrei
her, K. M., Y. Ye (1993) \On quadrati
 and O(pnL)
onvergen
eof a predi
tor-
orre
tor algorithm for LCP." Mathemati
al Programming 62, 537{551.[2℄ Carpenter, T. (1992) Pra
ti
al Interior Point Methods for Quadrati
 Program-ming. Dissertation, Department of Civil Engineering and Operations Resear
h,Prin
eton University, Prin
eton.[3℄ Carpenter, T., I. Lustig, J. Mulvey and D. Shanno (1993) \Higher{order predi
tor{
orre
tor interior point methods with appli
ation to quadrati
obje
tives." SIAM Journal on Opimization 3, 696{725.[4℄ Carpenter, T., I. Lustig, J. Mulvey and D. Shanno (1993) \Separablequadrati
 programming via a primal{dual interior point method and its use in asequential pro
edure." ORSA Journal on Computing 5, 182{191.[5℄ El-Bakry, A.S., R.A. Tapia and Y. Zhang (1994) \A study of indi
atorsfor identifying zero variables for interior point methods." SIAM Review 36, 45{72.[6℄ Elton, E. J. and M. J. Gruber (1987) Modern Portfolio Theory and Invest-ment Analysis (3rd Edition). John Wiley & Sons, In
., New York.[7℄ Gill, P., W. Murray and M. Wright (1991) Numeri
al linear algebra andoptimization. Addison{Wesley Publishing Company, Redwood City.[8℄ G�uler, O. and Y. Ye (1993) \Convergen
e behavior of interior{point algo-rithms." Mathemati
al Programming 60, 215{228.[9℄ Ji, J., F. Potra, R. Tapia and Y. Zhang (1991) \An interior{point methodfor linear
omplementarity problems with polynomial
omplexity and superlin-ear
onvergen
e." Te
hni
al Report TR91-23, Dept. Mathemati
al S
ien
es, Ri
eUniversity, Houston.[10℄ Karmarkar, N. (1984) \A new polynomial-time algorithm for linear program-ming." Combinatori
a 4, 373{395. 79

Bibliography[11℄ Konno, H. and K. Suzuki (1992) \A fast algorithm for solving large s
alemean-varian
e models by
ompa
t fa
torization of
ovarian
e matri
es." Journalof the Operations Resear
h So
iety of Japan 35, 93{104.[12℄ Krengel, U. (1988) Einf�uhrung in die Wahrs
heinli
hkeitstheorie und Statistik.Friedr. Vieweg & Sohn, Brauns
hweig{Wiesbaden.[13℄ Lustig, I., R. Marsten and D. Shanno (1991) \Computational experien
ewith a primal{dual interior point method for linear programming." Linear Algebraand its Appi
ations 152, 191{222.[14℄ Lustig, I., R. Marsten and D. Shanno (1992) \On implementing Mehro-tra's predi
tor{
orre
tor interior{point method for linear programming." SIAMJournal on Optimization 2, 435{449.[15℄ Lustig, I., R. Marsten and D. Shanno (1994) \Interior point methods forlinear programming: Computational state of the art." ORSA Journal on Comput-ing 6, 1{14.[16℄ Markowitz, H. M. (1959) Portfolio Sele
tion: EÆ
ient Diversi�
ation of In-vestments. John Wiley & Sons, New York.[17℄ Markowitz, H. M. and A. Perold (1981) \Sparsity and pie
ewise linearityin large s
ale portfolio optimization problems." In Sparse Matri
es and Their Uses,89{108, I. S. Du� (ed.), A
ademi
 Press, New York.[18℄ Mehrotra, S. (1992) \On the implementation of a primal{dual interior pointmethod." SIAM Journal on Optimization 2, 575{601.[19℄ Monteiro, D. C., I. Adler (1989) \Interior path following primal{dual al-gorithms. Part II: Convex quadrati
 programming." Mathemati
al Programming44, 43{66.[20℄ Sharpe, W. F. (1964) \Capital Asset Pri
es: A Theory of Market Equilibriumunder Conditions of Risk." The Journal of Finan
e 19, 425{442.[21℄ Takehara, H. (1992) \An interior point algorithm for large-s
ale portfolio op-timization." Annals of Operations Resear
h, to appear.[22℄ The MathWorks, In
. (2/1993) Matlab User's Guide. The MathWorks,In
., Nati
k.[23℄ Vanderbei, R. (1992) \LOQO User's Manual." Program in Statisti
s & Oper-ations Resear
h, Prin
eton University, Prin
eton.[24℄ Werner, J. (1992) Numeris
he Mathematik 1/2. Friedr. Vieweg & Sohn,Brauns
hweig{Wiesbaden. 80

Bibliography[25℄ Werner, J. (1993) Ni
htlineare Optimierung. Vorlesungsskript, Institut f�ur Nu-meris
he und Angewandte Mathematik, Georg{August{Universit�at, G�ottingen.[26℄ Zhang, Y., R. Tapia and F. Potra (1993) \On the superlinear
onvergen
eof interior point algorithms for a general
lass of problems." SIAM Journal onOptimization 3, 413{422.[27℄ Zhang, Y. and R. Tapia (1993) \A superlinearly
onvergent polynomialprimal{dual interior point algorithm for linear programming." SIAM Journal onOptimization 3, 118{133.[28℄ Zhang, Y., R. Tapia and J. Dennis (1992) \On the superlinear and quadrati

onvergen
e of primal{dual interior point linear programming algorithms." SIAMJournal on Optimization 2, 304{324.[29℄ Zhang, Y. (1991) \On the Convergen
e of a Class of Infeasible Interior-PointMethods for the Horizontal Linear Complementarity Problem." Resear
h Report92-07, Dept. of Mathemati
s and Statisti
s, University of Maryland BaltimoreCounty, Baltimore.

81

