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1. IntrodutionIn 1959 Harry M. Markowitz laid the foundation for modern portfolio1 theory withthe introdution of his mean-variane (MV) model [16℄. From a mathematial point ofview it is nothing more than a onvex quadrati program (QP) with a matrix in theobjetive funtion that is usually ompletely dense. This irumstane often makes itdiÆult to solve large MV models. In fat it is diÆult even to generate the model asthis involves the estimation of a great number of parameters.As a result the MV model was not used very muh in pratie throughout the 1960sand '70s. Instead other {simpli�ed{ models that were based on the MV model butmuh easier to solve, suh as CAPM [20℄ gained inreasing popularity. The drawbakof ourse was, that beause of the idealisti, simplifying assumptions these modelsimposed, their results ould be used only as a �rst order approximation. The searhfor more reliable models produed the multiple fator and the index mathing models(f. [6℄) whih require onsiderably more omputational work than CAPM but due tothe inreasing performane of omputers that seemed to be aeptable.The next leap forward in large sale portfolio optimization was again marked byMarkowitz together with Perold through the appearane of their paper [17℄ in 1981, inwhih they used a senario model to generate a sparse representation of an MV model,i.e. with a sparse matrix in the objetive funtion of the QP. This together with sparsematrix tehniques made it possible for the �rst time to solve a large sale MV modelin an eÆient amount of time.In Chapter 2 of this thesis we will show how to transform an MV model, i.e. aQP with a dense matrix, into a separable QP, i.e. a QP with an ultimately sparsediagonal matrix. We will demonstrate that this sparse representation an be solvedvery eÆiently. At the same time we will show how one an alleviate the problem ofmodel generation by using readily available historial data. This has the nie side e�etof produing portfolios with a manageable number of assets.Chapter 3 ontains a brief introdution to a fairly new approah for solving QPs,namely interior point methods (IPMs), whih beame popular in 1984 through an oftenited paper by Karmarkar [10℄. IPMs have been proven to be often superior to other1The word portfolio has its origin in the frenh word portefeuille whih means wallet or briefase.9



1. IntrodutionQP solvers espeially for large problems [2℄ and they are partiularly well suited formaking use of sparsity. We will present a model algorithm for whih the duality gapsuperlinearly onverges to zero under ertain assumptions.Chapter 4 provides a more spei� primal-dual algorithm for whih the duality gapis globally and superlinearly onvergent. These theoretial onvergene results requirequite some tehnialities.In Chapter 5 we will show that these tehnialities are not entirely neessary inorder to get a pratially eÆient algorithm. The implementations of two establishedpratial IPMs are desribed in detail, together with some tehniques that make IPMswork well in pratie. The very promising results of our numerial experiments withtest data from the Tokyo Stok Exhange Market indiate that there is a big potentialin this approah to large sale portfolio optimization.
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2. Portfolio Optimization
2.1 The Mean-Variane ModelConsider an investor with a given budget who an hoose among n risky asset types Si,i = 1; . . . ; n to invest her money. Let xi be the rate of money to be invested in Si outof the total budget (normalized to 1) and Ri a random variable representing the rateof return of Si (per period). Further we de�ne ~ri := E[Ri℄, where E[�℄ is the expetedvalue and ~vij := ov[Ri; Rj℄. Then the total expeted return of a portfolio x is givenby ~rTx and the total variane, whih is being used as the measure of risk is given byxT ~V x.In its original form [16℄ the MV model intends to �nd all eÆient portfolios �x, i.e.all portfolios for whih(i) �x 2 M := fx 2 IRn : eTx = 1; x � 0g, where eT := (1; . . . ; 1)(ii) 8x 2M with ~rTx > ~rT �x it holds that xT ~V x > �xT ~V x(iii) 8x 2M with xT ~V x < �xT ~V x it holds that ~rTx < ~rT �x.The eÆient portfolios an also be obtained by solving the following onvex para-metri optimization problem
(EF) Minimize xT ~V x� � ~rTxsubjet to eTx = 1x � 08� 2 [ 0;1):The onvexity is due to the fat that ~V is a ovariane matrix and as suh the expetedvalue of a quadrati. 11



2. Portfolio OptimizationIn most situations it is not neessary to ompute all eÆient portfolios but it suÆesto ompute the portfolio with minimum risk for a given required total rate of return� (f. [11℄) whih leads to the following model(MV1) Minimize xT ~V xsubjet to ~rTx � �eTx = 1x � 0 :Sometimes [21℄ the �rst onstraint appears as an equality rather than an inequalitywhih usually does not make muh di�erene beause a higher return normally alsofores a higher risk. We hose the above formulation beause it is more exible anddoes not require substantially more work to solve.Pratial appliations frequently require additional onstraints, like linear institu-tional onstraints or transation osts. Sine their only e�et from a theoretial pointof view is the enlargement of the model we will not inlude them here. In parts theywill be overed together with the implementation issues in hapter 5.2.2 A Separable RepresentationAs was mentioned before, there are two major problems assoiated with model (MV1)espeially for large n. The �rst is to obtain the required data ~r and ~V and the seondis the solution itself sine the ovariane-matrix ~V will usually be ompletely dense.This means that even sophistiated hard- and software will take quite a long time tosolve the model if it involves several thousand assets.Lukily a solution to the �rst problem almost automatially brings one for the seondproblem as well [11℄. Consider a disrete payo�-matrix P 2 IRk�n that ontains kindependent samples of the random variables Ri, i = 1; . . . ; n , e.g. the realized returnsof the most reent k periods over the n assets. This data will in most ases be readilyavailable. Then we get unbiased estimators [12℄ r and V for ~r and ~V , respetively asr := 1kP T e (2:1)and vij := 1k � 1 kXl=1 (pli � ri)(plj � rj), V = 1k � 1P T (I � 1keeT )P ; (2.2)12



2. Portfolio Optimizationwhere I is the k� k identity matrix. Substituting ~r and ~V by the above estimators in(MV1) yields(MV2) Minimize 1k�1xTP T (I � 1keeT )Pxsubjet to 1keTPx � �eTx = 1x � 0whih is equivalent to the separable program
(MV3) Minimize xTf xfsubjet to (I � 1keeT )Pxp � xf = 01keTPxp � �eTxp = 1xp � 0; xf free.For the ase when then the �rst onstraint in model (MV2) is an equality onstraintwe get an even simpler separable representation [21℄
(MV30) Minimize xTf xfsubjet to Pxp � xf = �eeTxf = 0eTxp = 1xp � 0; xf free.So what did we gain from all these transformations? Let us ompare models (MV1)and (MV3). Obviously model (MV3) ontains k more design variables [xf ℄1; . . . ; [xf ℄kand k more onstraints. (Note that here and later we will sometimes {where neessaryto avoid double subsripts{ denote the omponents of a vetor x by [x℄i.) On the otherhand the (k+ n)� (k+n) matrix in the objetive funtions is muh more sparse than~V with only k non-zeros that lie on the main diagonal. The �rst hint that this is agood bargain gives us the fat that k is always muh smaller than n. Partiularly inhapter 5 we will see that the sparsity of Q saves a lot more omputational time thanhas to be sari�ed for the additional variables and onstraints.A nie side-e�et of model (MV3) is that it has a solution suh that at most k + 2omponents of x�p are non-zero. This is very relevant in pratie beause it is desirableto have a portfolio with a manageable number of assets [11℄. It is straightforwardto prove this property: Let (x�p; x�f ) 2 IRn+k be an optimal solution of (MV3). Now13



2. Portfolio Optimizationonsider the linear system 0BBB� (I � 1keeT )Pxp = x�f1keTPxp � �eTxp = 1xp � 0
1CCCA (2:3)This system has a feasible solution x�p and hene also a basi feasible solution x̂p [24℄with at most k + 2 non-zero omponents beause the rank of the system is less thanor equal to k + 2. Obviously (x̂p; x�f) is also an optimal solution of (MV3).Evidently model (MV3) an be transformed into a standard form onvex QP usingslak variables and variable splitting. We will not use this transformation in pratiebeause it leads to a onsiderable enlargement of the model but it is important forestablishing the onvergene results in the following hapter.
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3. Introdution to Interior PointMethods
3.1 Logarithmi Barrier TransformationsConsider the standard form QP [2℄(P) Minimize 12xTQx + Txsubjet to Ax = bx � 0where x 2 IRn, Q 2 IRn�n and A 2 IRm�n, m < n. As usual for IPMs we assume thatrank(A) = m (3:1)and _MP := fx : Ax = b; x > 0g 6= ; : (3:2)Additionally we assume that Q is at least positive semi-de�nite hene making (P) aonvex problem.For an obvious reason all x 2 _MP are alled interior or stritly feasible points for(P). As we will see later, we an obtain far more e�etive algorithms by working onprimal and dual problems simultaneously. Hene we will now also onsider the dual ofproblem (P)(D) Maximize �12xTQx + bT�subjet to AT�+ y �Qx = y � 0where just like for the primal it is assumed that_MD := f(x; y; �) : AT�+ y �Qx = ; y > 0g 6= ; :15



3. Introdution to Interior Point MethodsLet us quikly review the �rst order neessary and suÆient onditions for simulta-neous optimality of (P) and (D):0� Ax� bAT�+ y �Qx� XY e 1A = 0; (x; y) � 0 (3:3)where here and subsequently we will use the onvention thatX := diag(x) and similarlyfor Y and other apitalized vetor names. In order to simplify notation and only forthat reason we will eliminate the dual variable � from the above system. To do this,let B 2 IR(n�m)�n be any matrix suh that the olumns of BT form a basis for the nullspae of A. Pre-multiplying the seond equation of (3.3) by the nonsingular matrix� AT BT �T and remembering that BAT = 0 yields0 = � AB � (AT�+ y �Qx� ) = � AAT�� A(�y +Qx + )By �BQx� B � :Sine AAT is nonsingular, � is uniquely determined one x and y are known. Hene wean remove the �rst equation of the above system to arrive at the following optimalityonditions F (x; y) := 0� Ax� bBy � BQx� BXY e 1A = 0; (x; y) � 0 : (3:4)Aordingly we de�ne the primal-dual strit feasibility set as_M := f(x; y) : Ax = b; By �BQx = B; (x; y) > 0g :Our goal now is to develop an algorithm that(i) suessively �nds solutions for both (P) and (D),(ii) operates on _M , i.e. we start with stritly feasible points for (P) and (D) and alliterates remain stritly feasible (this property is the reason why the algorithm isalled interior point method),(iii) at least partially inherits the exellent loal onvergene properties of Newton'smethod.The vehile that we use to ahieve all three goals are so alled logarithmi barriertransformations [2℄. Barrier methods evolved as a means for solving mathematialprograms subjet to inequality onstraints. Ating from a stritly feasible point, barriermethods seek to minimize an unonstrained funtion formed from the original objetiveplus barrier terms whih prevent rossing a boundary. These barriers are imposed by16



3. Introdution to Interior Point Methodsfuntions whih are smooth throughout the feasible region but beome inde�nite atboundaries. The natural logarithm is a good hoie to serve as barrier.In our ase we have both inequality and equality onstraints so we have to work alittle harder but the priniple remains the same so that we get the following barriertransformed problems (�P) and (�D) for (P) and (D), respetively:(�P) Minimize 12xTQx+ Tx� � nPi=1 lnxisubjet to Ax = b ; x > 0 :
(�D) Maximize �12xTQx + bT�+ � nPi=1 ln yisubjet to AT�+ y �Qx =  ; y > 0 :The Lagrangian funtions assoiated with (�P) and (�D) are12xTQx + Tx� � nXi=1 lnxi � �T (Ax� b) (3:5)and � 12xTQx + bT�+ � nXi=1 ln yi � xT (AT�+ y �Qx� ) ; (3:6)respetively. Let us look at the �rst order optimality onditions again. For (3.5) theyare � Ax� bAT�+ �X�1e�Qx�  � = 0 (3:7)and similarly for (3.6)0� Ax� b�Qx� AT�� y + 2Qx + �Y �1e�Xe 1A = 0, 0� Ax� bAT�+ y �Qx� XY e� �e 1A = 0 : (3.8)Together (3.7) and (3.8) provide neessary and suÆient onditions for simultaneousoptimality in (3.5) and (3.6). However we an get an even more onise desription byeliminating redundant equations. Obviously the �rst equations in (3.7) and (3.8) arethe same. Furthermore, if we pre-multiply the third equation of (3.8) by X�1 and plug17



3. Introdution to Interior Point Methodsthe result into the seond equation of (3.7) this equation is equal to the seond equationof (3.8). Therefore, the equations haraterizing simultaneous optimality in (3.5) and(3.6) for a �xed � � 0 are 0� Ax� bAT�+ y �Qx� XY e� �e 1A = 0 (3:9)and the nonnegativity requirements x; y � 0 .Clearly (3.9) is almost idential to (3.3), the only di�erene being the �e term onthe right hand side of the third equation. Hene if we hoose � = 0 we get exatly(3.3). This already gives us a �rst hint that asymptotially we will have to redue �to zero in our algorithm to get optimal solutions for (P) and (D). Also (3.9) is exatlythe same as (3.8) so we see that working on primal and dual problem simultaneouslydoes not require more work than working on just one of them.Analogous to (3.3) we an transform (3.9) to eliminate � whih rendersF�(x; y) := 0� Ax� bBy � BQx� BXY e� �e 1A = 0 : (3:10)It is well known (f. e.g. [25℄) that (3.10) has a unique solution (x�; y�) for every positive� and that the so alled entral path,Sen := f(x�; y�) : � > 0g (3:11)forms a ontinuous urve whih onverges to a solution of (3.4), i.e. of (P) and (D) as� tends to zero. IPMs whih iterates stay in a ertain neighborhoodN () := f(x; y) 2 _M : xiyi �  (xT y=n); i = 1; . . . ; ng (3:12)of the entral path for some  2 (0; 1℄ are alled path-following methods. We will seethat this property is essential in our superlinear onvergene analysis.3.2 A Model AlgorithmThe next step is to apply Newton's method to (3.10). More preisely let us formulatea oarse model algorithm [26℄.Algorithm 1Given a stritly feasible pair (x0; y0). For k = 0; 1; . . ., doStep 1 Optimality Test: If (xk; yk) satis�es the optimality riteria ! STOP18



3. Introdution to Interior Point MethodsStep 2 Choose �k 2 [ 0; 1) and set �k := �k xTk yknStep 3 Compute the Newton diretions� �xk�yk � = � �F 0�k(xk; yk)��1 F�k(xk; yk) ;where F 0�k = F 0 is the Jaobian of F .Step 4 Choose �k 2 (0; 1) and ompute the steplength�k := ��kmin �X�1k �xk; Y �1k �yk;��k� ;where min(�) refers to the smallest omponent of all vetors in the parentheses.Step 5 Compute the new iterates� xk+1yk+1 � := � xkyk �+ �k � �xk�yk � ;set k := k + 1 and go to Step 1The �rst thing one should notie about Algorithm 1 is that there are two importantparameters whih ontrol its behaviour. One is �k whih determines the enteringparameter �k. Sine only �k is diretly under our ontrol we will from now on all �kthe entering parameter. As we mentioned before we ultimately have to `phase out'�k to get solutions for our original problems (P) and (D). Sine we will show belowthat all iterates produed by Algorithm 1 are stritly feasible, the term (xTk yk)=nin the de�nition of �k provides a proximity measure towards optimality (f. (3.4))hene making the extent of entering dependent upon the loseness to the solutionwhih sounds very reasonable. The parameter �k ontrols the steplength making thealgorithm a damped variant of Newton's method. Its de�nition guarantees that allomponents of (xk+1; yk+1) will remain stritly positive.We will now establish that Algorithm 1 is well de�ned.Proposition 3.1 Let F�(x; y) be de�ned as in (3.10) then it holds that1. F 0�(x; y) = F 0(x; y) is nonsingular for (x; y) > 0.2. If (x0; y0) 2 _M then all iterates produed by Algorithm 1 are stritly feasible, i.e.(xk; yk) 2 _M; 8 k � 0. 19



3. Introdution to Interior Point MethodsProof:Ad 1. From (3.4) it holds thatF 0(x; y) = 24 A 0�BQ BY X 35 :So we have to show that24 A 0�BQ BY X 35� uv � = 0� 000 1A) � uv � = � 00 � : (3:13)Remembering that the olumns of BT form a basis for the null spae of A, the �rstequation of (3.13) indiates that u = BTw for some w. Using this result and solvingthe third equation for v gives us v = �X�1Y BTw. Plugging the equations for u and vinto the seond equation yields�BQBTw � BX�1Y BTw = 0 :Premultiplying this by wT , we get�wTBQBTw � wTBX�1Y BTw = 0 :Now BQBT is positive semi-de�nite and BX�1Y BT is positive de�nite and thereforethe left hand side is zero if and only if w = 0. From the above equations for u and v itnow follows that (uT ; vT ) = (0; 0).Ad 2. Given (xk; yk) is feasible, the feasibility of (xk+1; yk+1) is automatially guar-anteed by the �rst two de�ning equations of (�xTk ;�yTk ) (f. Step 3 of Algorithm 1)� A�xk�BQ�xk +B�yk � = � 00 � :As mentioned before the strit positivity of (xk+1; yk+1) is ahieved through the hoieof �k. To demonstrate that �k suits this purpose we de�ne�̂k := � 1min �X�1k �xk; Y �1k �yk� : (3:14)In Remark 3.2 below we will show that min(X�1k �xk; Y �1k �yk) < 0 for all k and thusit obviously holds that �k < �̂k. In fat �̂k is the steplength for whih exatly oneomponent of (xk+1; yk+1) beomes zero. To prove this we have to show that�̂k = min(mini �� [xk℄i[�xk℄i : [�xk℄i < 0� ; minj (� [yk℄j[�yk℄j : [�yk℄j < 0)) :
20



3. Introdution to Interior Point MethodsEquivalently we an write this as�̂k = min(�maxi � [xk℄i[�xk℄i : [�xk℄i < 0� ; �maxj ( [yk℄j[�yk℄j : [�yk℄j < 0)) :Taking reiproals, we an drop the limitations [�xk℄i ; [�yk℄j < 0 beause the positiveomponents of the searh diretions are not relevant when taking the minimum:�̂k = min8<:��mini � [�xk℄i[xk℄i ���1 ; � minj ( [�yk℄j[yk℄j )!�19=; :But this is (3.14) just stated di�erently. 2Remark 3.2 It holds that �̂k > 0; 8 k � 0.Proof: It suÆes to show that min(�xk;�yk) < 0. From the third de�ning equationof (�xTk ;�yTk ) (f. Step 3 of Algorithm 1) it follows thatYk�xk +Xk�yk = �XkYke+ �kxTk ykn e : (3:15)Remembering that �k 2 [0; 1) we get0 � �kxTk ykn < max(XkYke)so that at least one omponent of Yk�xk + Xk�yk has to be negative. This in turnimplies that �xk or �yk must have at least one negative omponent. 23.3 Superlinear ConvergeneThe reason for the great publiity of Karmarkar's method [10℄ was that it was the �rstmethod for solving a linear program with a polynomial omplexity bound and report-edly 50 times faster solution times than the simplex method at least for some largeproblems. As a result a lot of the subsequent researh on IPMs foused on omplexityissues. It soon beame evident though that the IPMs with good theoretial omplexitybounds were not the ones that performed well in pratie. This is true for linear aswell as nonlinear problems. Zhang and Tapia were among the �rst who shed light onthe aspet of fast loal onvergene whih has always been an important issue in on-tinuous optimization [27, 28℄. It seems that algorithms with a good loal onvergene21



3. Introdution to Interior Point Methodsperform better in pratie [14℄. In Chapter 4 we will present an algorithm whih blendsthe often oniting objetives of global and fast loal onvergene.For now we will analyze the loal onvergene properties of Algorithm 1. Most ofthe results will be useful for the onvergene analysis in the next hapter as well.To simplify things here and partiularly in the next hapter we adopt the followingnotation: xk(�) := xk + ��xk ; (3.16)yk(�) := yk + ��yk ; (3.17)fk(�) := Xk(�)Yk(�)e ; (3.18)fmink (�) := min (fk(�)) ; (3.19)fmaxk (�) := max (fk(�)) ; (3.20)f avek (�) := �xk(�)Tyk(�)� =n : (3.21)Whenever � = 0, we will drop the argument, e.g. xk � xk(0).Our goal in this setion is to prove the following theorem [26℄ onerning the super-linear onvergene of Algorithm 1. Comparing it to similar results for Newton's method[24℄ it should be noted that it does not require the nonsingularity of F 0(x�; y�).Theorem 3.3 Let f(xk; yk)g be generated by Algorithm 1 and (xk; yk) ! (x�; y�),where (x�; y�) is a solution of (3.4). If(i) strit omplementarity holds at (x�; y�), i.e.[x�℄i = 0) [y�℄i > 0 ; [x�℄i > 0) [y�℄i = 0 ;(ii) the sequene �f avek =fmink 	 is bounded,(iii) �k ! 1 and �k ! 0,then the sequene fF (xk; yk)g omponentwise onverges to zero Q-superlinearly.Remark 3.4 Componentwise Q-superlinear onvergene of a sequene implies its su-perlinear onvergene.Proof: Let zk ! z�, then omponentwise Q-superlinear onvergene means thatlimk!1 j [zk+1℄i � [z�℄i jj [zk℄i � [z�℄i j = 0 for i = 1; . . . ; n :We have to show that this implieslimk!1 k zk+1 � z�kk zk � z�k = 022



3. Introdution to Interior Point Methodsfor some norm. If we hoose the 1-norm we get0 � k zk+1 � z�k1k zk � z�k1 = maxi=1;...;n j [zk+1℄i � [z�℄i jmaxi=1;...;n j [zk℄i � [z�℄i j :Let i(k + 1) be the index for whih the maximum is ahieved in the numerator, thenthe right hand side of the above inequality hain is equal toj [zk+1℄i(k+1) � [z�℄i(k+1) jmaxi=1;...;n j [zk℄i � [z�℄i j � j [zk+1℄i(k+1) � [z�℄i(k+1) jj [zk℄i(k+1) � [z�℄i(k+1) j ! 0whih implies our laim. 2Theorem 3.3 is somewhat unsatisfatory beause it plaes onditions on the quantityf avek =fmink whih is is not diretly under our ontrol. This gives reason to the onernthat Theorem 3.3 might be a viious irle. However in the next hapter we will plaeadditional onditions on �k and �k whih will make assumption (ii) obsolete. Note thatassumption (ii) makes sure that the iterates lie in N () (f. (3.12)) for some suitable, thus making Algorithm 1 a path-following method.Another ause for onern is assumption (i) beause unlike for LP, a stritly omple-mentary solution may not exist for onvex QP. Unfortunately though the assumptionthat the QP at least possesses a stritly omplementary solution seems to be essential.In their paper on a slightly di�erent IPM for monotone linear omplementarity prob-lems (LCP) [1℄, Anstreiher and Ye give an example of an LCP whih does not possessa stritly omplementary solution and for whih their IPM onverges no faster thanlinear. In our numerial experiments we always observed superlinear onvergene (f.Chapter 5), so in pratie this assumption does not seem overly restritive.In order to prove Theorem 3.3 we need the following two lemmas.Lemma 3.5 Let (�xk;�yk) be searh diretions produed by Algorithm 1. Then itholds that �xTk�yk � 0; 8 k � 0 :Proof: As we had already established in the proof of Proposition 3.1 we have� A�xk�BQ�xk +B�yk � = � 00 � :We will show more generally that for all (u; v) for whih(i) Au = 0 and(ii) �BQu +Bv = 0 23



3. Introdution to Interior Point Methodsit holds that uTv � 0.Again we remember that the olumns of BT form a basis for the null-spae of A.Then (i) implies that u = BTw for some w. Plugging this in (ii) yields Bv = BQBTw.Premultiplying this by wT and noting that BQBT is positive semi-de�nite, we get0 � wTBQBTw = wTBv = (BTw)Tv = uTv ;whih ompletes the proof. 2Lemma 3.6 Under the assumptions of Theorem 3.3,limk!1�k = 1 :Proof: De�ne at eah iterationpk := X�1k �xk and qk := Y �1k �yk : (3:22)We will show that for every i either [pk℄i ! 0 and [qk℄i ! �1 or [pk℄i ! �1 and[qk℄i ! 0. Realling the de�nition of �k in Step 4 of Algorithm 1 and our assumption�k ! 1 it is easily veri�ed that this implies the lemma.To do this it is neessary to �rst establish that �k is bounded away from zero. Itfollows from the de�nition of �k that it suÆes to show that fpkg and fqkg are bounded.Premultiplying (3.15) by (XkYk)�1 we getpk + qk = �e+ �kTke ; (3:23)where Tk := f avek (XkYk)�1 : (3:24)Multiplying both sides of (3.23) by (XkYk)� 12 and taking the square of the 2-normresults in (XkYk) 12 pk22 + (XkYk) 12 qk22 + 2�xTk�yk =xTk yk �1� 2�k + �2kf avek eT (XkYk)�1en � : (3.25)Dividing both sides by f avek and using Lemma 3.5 we haveT� 12k pk22 + T� 12k pk22 � n�1� 2�k + �2k eTTken � : (3:26)Sine Tk is losely related to �f avek =fmink 	 whih by assumption (ii) is bounded, it iseasy to see that fkTkkg is bounded above and fkT� 12k kg is bounded away from zero.24



3. Introdution to Interior Point MethodsTherefore (3.26) implies that both fpkg and fqkg are bounded. As mentioned abovethis suÆes for �k in order to be bounded away from zero.Now we distinguish two ases. First assume that [x�℄i > 0. An equivalent way ofstating xk+1 and yk+1 using pk and qk isxk+1 = Xk(e+ �kpk) and yk+1 = Yk(e+ �kqk) ; (3:27)whih is why 1 = limk!1 [xk+1℄i[xk℄i = limk!1(1 + �k[pk℄i) :This implies [pk℄i ! 0, beause f�kg is bounded away from zero. Sine f avek =fmink =kTkek1, assumption (ii) together with �k ! 0 applied to (3.23) implieslimk!1(pk + qk) = �e : (3:28)This in turn implies now that [qk℄i ! �1. If on the other hand [x�℄i = 0, then [y�℄i > 0by assumption (i). The same argument as for the �rst ase, interhanging the roles ofpk and qk gives [qk℄i ! 0 and [pk℄i ! �1. 2Now we are ready to prove Theorem 3.3.Proof of Theorem 3.3: LetF1(x; y) = � Ax� bBy � BQx�B � and F2(x; y) = XY e :As we have already seen F1(xk; yk) is always zero hene we only have to show thatfF2(xk; yk)g omponentwise onverges to zero Q-superlinearly. From (3.27) it followsthat X�1k xk+1 = e+ �kpk and Y �1k yk+1 = e + �kqk :Adding the above equationsX�1k xk+1 + Y �1k yk+1 = 2e + �k(pk + qk) ;taking the limit and using (3.28) and Lemma 3.6, we getlimk!1(X�1k xk+1 + Y �1k yk+1) = e : (3:29)Again we will distinguish two ases. If [x�℄i = 0, then by strit omplementarity,[y�℄i > 0 and [yk+1℄i=[yk℄i ! 1. It follows from (3.29) that [xk+1℄i=[xk℄i ! 0 and hene[xk℄i ! 0 Q-superlinearly. Sine (3.29) is symmetri in x and y we have [yk℄i ! 0Q-superlinearly if [x�℄i > 0 by assumption (i). So for every i we have eitherlimk!1 [xk+1℄i[xk℄i = 0 and limk!1 [yk+1℄i[yk℄i = 125



3. Introdution to Interior Point Methodsor limk!1 [xk+1℄i[xk℄i = 1 and limk!1 [yk+1℄i[yk℄i = 0 :In any ase, it holds for every i thatlimk!1 [xk+1℄i[yk+1℄i[xk℄i[yk℄i = limk!1 [Xk+1Yk+1e℄i[XkYke℄i = 0whih proves our Theorem. 2To solve the diÆulties in our superlinear onvergene analysis mentioned aboveis tehnially quite diÆult and subjet of the next hapter. Theorem 3.3 is surelysuÆient to give a �rst idea how parameters should be hosen in pratie to get aneÆient algorithm. Moreover it served well to demonstrate whih parameters inuenethe behaviour of primal-dual barrier IPMs in general.
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4. A Globally and SuperlinearlyConvergent Primal-Dual InteriorPoint Method for ConvexQuadrati Programming
4.1 AlgorithmIn order to make Algorithm 1 globally and superlinearly onvergent only by the hoieof parameters whih are diretly under our ontrol, we have to modify it somewhat.The following algorithm and the proofs of its global and superlinear onvergene arebased in big parts on [9℄.Algorithm 2Given a stritly feasible pair (x0; y0). For k = 0; 1; . . ., doStep 1 Optimality Test: If (xk; yk) satis�es (3.4) ! STOPStep 2 Compute the desent diretions� �xDk�yDk � = � [F 0(xk; yk)℄�1 F (xk; yk)and the entering diretions� �xCk�yCk � = f avek [F 0(xk; yk)℄�1� 0e � :Step 3 Choose �k 2 [ 0; 1) by Proedure 1 and form the ombined searh diretions� �xk�yk � = � �xDk�yDk � + �k � �xCk�yCk � :
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4. A Globally and Superlinearly Convergent Interior Point MethodStep 4 Choose the steplength �k 2 (0; �̂k) by Proedure 2, where �̂k was de�ned in(3.14).Step 5 Compute the new iterates� xk+1yk+1 � := � xkyk � + �k � �xk�yk � ;set k := k + 1 and go to Step 1.Comparing Algorithm 2 with Algorithm 1, we notie that the searh diretions havebeen split into desent diretions for the total omplementarity|whih for feasibleiterates equals the duality-gap and serves as our measure of onvergene| and en-tering diretions. This was neessary beause the hoie of �k will depend on desentand entering diretions. In the IPM literature the desent diretions are also alledaÆne or aÆne saling diretions.The proedures for hoosing �k and �k will be desribed below. Proposition 3.1 isappliable to Algorithm 2 as well, hene it is well de�ned.4.2 Choies of Parameters4.2.1 Centering ParameterThrough the splitting of the searh diretions we are in need for more notation. Simi-larly to (3.22) let pDk := X�1k �xDk ; qDk := Y �1k �yDk ;pCk := X�1k �xCk ; qCk := Y �1k �yCk : (4:1)An important quantity in our further analysis is!k := max1�i�n(j[pDk ℄i[qDk ℄ij; j[pDk ℄i[qCk ℄ij; j[pCk ℄i[qDk ℄ij; j[pCk ℄i[qCk ℄ij) : (4:2)For tehnial reasons whih will beome lear in the ourse of this hapter we haveto introdue the following set of 2n points (f. also [27℄)�k := �� [pDk ℄i[pCk ℄i ;� [qDk ℄i[qCk ℄i : i = 1; . . . ; n� (4:3)and de�ne the distane from a salar � to the set �k asdist(�;�k) := minfj� � &j : & 2 �kg :28



4. A Globally and Superlinearly Convergent Interior Point MethodNow we an state our proedure for hoosing the entering parameter �k.Proedure 1Given � 2 (0; 1);  2 (0;min �1=2; fmin0 =f ave0 )� ; �l = 2�=(2n); �u � 24n :Step 1 Compute !k aording to (4.2).Step 2 Compute �uk = min(�u; �=!k).Step 3 Let �k := min��� : �� 2 � !k(�l + �uk)2 ; !k�uk� ; dist(��;�k) � �k!k8n+ 4�,where �k := �uk � �l.It should be remarked that the ompliated hoie of �k in Step 3 of the aboveproedure is merely for tehnial problems assoiated with the superlinear onvergeneanalysis of Algorithm 2. For pratial purposes it will suÆe to de�ne �k := �uk!k.The following lemma on�rms that �k is well de�ned and �k 2 (0; 1).Lemma 4.1 Let (xk; yk) and (�xk;�yk) be produed by Algorithm 2, then it holdsthat1. (�xDk )T�yDk � 0 and (�xCk )T�yCk � 0,2. if fmink =f avek �  then !k � n=2,3. �uk � 2�n ,4. the set ��� : �� 2 � !k(�l + �uk)2 ; !k�uk� ; dist(��;�k) � �k!k8n+ 4� is nonempty.Remark: As we will see in the next setion, fmink =f avek �  is ensured by the hoieof �k. 2Proof:Ad 1. Analogous to the proof of Lemma 3.5.Ad 2. In analogy to (3.15) it holds thatYk�xDk +Xk�yDk = �XkYke :Multiplying both sides by (XkYk)� 12 and taking the 2-norm results in(XkYk) 12 pDk 22 + (XkYk) 12 qDk 22 + 2(�xDk )T�yDk = xTk yk :29



4. A Globally and Superlinearly Convergent Interior Point MethodConsidering 1. and dividing both sides by f avek , we getT� 12k pDk 22 + T� 12k qDk 22 � n ;where Tk is the diagonal matrix de�ned in (3.24). Our hoie of  and our assumptionfmink =f avek �  now imply��[pDk ℄i�� �rn � pn and ��[qDk ℄i�� �rn � pn :For the entering diretions we haveYk�xCk +Xk�yCk = f avek e ;whih using the same strategy as above leads toT� 12k pCk 22 + T� 12k qCk 22 � T 12k e22 � n � n :Hene we have also ��[pCk ℄i�� � pn and ��[qCk ℄i�� � pn :The result in 2. follows diretly from the de�nition of !k.Ad 3. By 2. we have�uk = min��u; �!k� � min�24n; 2 �n � = 2 �n : (4:4)Ad 4. First we note that by 3. it holds that�k = �uk � �l � 2�2n : (4:5)Hene the interval [!k(�l + �uk)=2; !k�uk ℄ of length �k!k=2 is nonempty. Partition thisinterval into 2n + 1 equal sub-intervals of length �k!k=(4n + 2) eah. If the interiorof any one of the sub-intervals does not interset �k, then the midpoint of this sub-interval will have the required distane to �k. Sine �k only has 2n points, it annotinterset the interiors of all the 2n+ 1 sub-intervals.This proof illustrates why it is neessary for �k to be hosen from an interval. Oth-erwise it would be impossible to ensure that we an always �nd a �k whih has therequired distane from �k. 2From the de�nition of �k in Step 3 of Proedure 1 it is now evident that �k is wellde�ned and 0 < �k � �uk!k � � < 1. 30



4. A Globally and Superlinearly Convergent Interior Point Method4.2.2 SteplengthAs we already know from Theorem 3.3 our hoie of steplength has to guarantee thatff avek =fmink g is bounded. It is always bounded below by 1, though. Hene it suÆes torequire that for � = �k it holds thatfmink (�)f avek (�) �  ; � > 0 ; (4:6)where  was already hosen in Proedure 1.Of ourse we still want to hoose �k as large as possible. To do so let us for notationalonveniene �rst introdue the following funtionhk(�) = fmink (�)�  f avek (�) : (4:7)Obviously (4.6) is equivalent to hk(�) � 0 ; � > 0 : (4:8)Sine (4.8) is not the only ondition we will plae on �k we de�ne�k := minf� > 0 : hk(�) = 0g : (4:9)Let us make sure �k is well de�ned and satis�es (4.6).Lemma 4.2 The quantity �k is well de�ned and �k 2 (0; �̂k). Condition (4.6) issatis�ed for all � 2 (0; �k℄.Proof: The proof is by indution over k. First we note that  was hosen to satisfy � fmin0 =f ave0 . Now assume  � fmink =f avek . Then it follows thathk(0) = fmink � f avek � 0 :On the other hand realling (3.14) we havehk(�̂k) = fmink (�̂k)| {z }=0 � f avek (�̂k)| {z }>0 < 0In order to establish now that hk(�) has a root in [0; �̂k) it is neessary to demonstratethat hk(�) is a ontinuous funtion. Let us take a loser look at its omponents:[fk(�)℄i = [xk(�)℄i[yk(�)℄i= [xk℄i[yk℄i + � ([yk℄i[�xk℄i + [xk℄i[�yk℄i) + �2[�xk℄i[�yk℄i(3:15)= [fk℄i � ([fk℄i � �kf avek )� + [�xk℄i[�yk℄i �2 ; (4.10)31



4. A Globally and Superlinearly Convergent Interior Point Methodhene fmink (�) is a ontinuous, pieewise quadrati funtion.f avek (�) = 1n nXi=1 [fk(�)℄i(4:10)= 1n nXi=1 [fk℄i � 1n nXi=1 [fk℄i � �k 1nnf avek !�+ 1n nXi=1 [�xk℄i[�yk℄i �2= f avek (1� (1� �k)�) + �xTk�ykn �2 ; (4.11)so f avek (�) is also a ontinuous, pieewise quadrati funtion whih ombined with (4.10)leads to the ontinuity of hk(�) and therefore to a root in [0; �̂k). In ase h(0) > 0there must be a root in (0; �̂k). If h(0) = 0 then we have, onsidering (4.10) and (4.11)h0(0+) = �(fmink � �kf avek ) +  (1� �k)f avek= [� (fmink =f avek + )| {z }=0 +(1� )�k| {z }>0 ℄ f avek|{z}>0> 0 :Therefore h(�) > 0 for positive but suitably small �. Thus �k 2 (0; �̂k) is well de�nedand ondition (4.6) is automatially satis�ed for all � 2 (0; �k℄ by de�nition (4.9). 2Our ultimate goal is to redue the duality gap xk(�)Tyk(�). So we will examine howthe hoie of steplength inuenes the redution in the duality gap.xk(�)Tyk(�) = xTk yk + �(xTk�yk + yTk�xk) + �2�xTk�yk(3:15)= xTk yk + �(�xTk yk + �kxTk yk) + �2�xTk�yk= xTk yk(1� (1� �k))�+�xTk�yk �2 (4.12)is a quadrati funtion of � with the seond derivative �xTk�yk. We know fromLemma 3.5 that �xTk�yk � 0. If �xTk�yk > 0, the duality gap will reah its min-imum at ��k := (1� �k)xTk yk2�xTk�yk (4:13)and if �xTk�yk = 0 it is a dereasing funtion of � and we should take the biggeststeplength otherwisely possible.Taking this into onsideration, we are now ready to state our proedure for hoosingthe steplength �k (f. [9℄).Proedure 2Given  from Proedure 1.Step 1 Compute �k aording to (4.9) and if �xTk�yk > 0, ��k aording to (4.13).32



4. A Globally and Superlinearly Convergent Interior Point MethodStep 2 Let �k := ( min(1; �k; ��k); if �xTk�yk > 0min(1; �k); otherwise : (4:14)As we have seen above this proedure guarantees that �k 2 (0; �̂k), the duality gap isredued as muh as possible and the prerequisite (4.6) for superlinear onvergene issatis�ed.4.3 Global ConvergeneFirst though we will analyze the global onvergene of our objetive funtion, i.e. theduality gap. As was to be expeted this one again requires some new notation,�k := n�xTk�yk �min([�xk℄i[�yk℄i) : (4:15)If we plug �k into equation (4.12) it omes already lose to a global onvergeneresult xTk+1yk+1 = xTk yk �1� (1� �k)�k + �xTk�ykxTk yk �2k� ;but we still need to show that forÆk := �1� �k � �xTk�ykxTk yk �k��k (4:16)it holds that fÆkg is bounded away from zero and Æk < 1. The latter is trivial onsideringthat �k 2 (0; 1), �xTk�yk � 0, xTk yk > 0 and �k 2 (0; 1℄. Thus our goal in this setionis to prove the following resultTheorem 4.3 Let f(xk; yk)g be generated by Algorithm 2. Then it holds thatxTk+1yk+1 � xTk yk(1� Æk) ;and Æk 2 (Æ; 1), where Æ > 0 is a onstant independent of k. Hene the duality gapglobally onverges to zero at least at a linear rate.Before we prove Theorem 4.3 we will �rst establish some lemmas that give estimatesof some quantities.Lemma 4.41. Let �k be given by (4.15). It holds that �k � 6!kfmaxk .33



4. A Globally and Superlinearly Convergent Interior Point Method2. Let �k be given by (4.9). If �k � 0 then �k � 1; otherwise�k � (1� )�kf avek�k :Proof:Ad 1. Note thatj[�xk℄i[�yk℄ij (3:23)= j[xk℄i[pk℄i[yk℄i[qk℄ij� max(XkYke) max1�i�n(j[pk℄i[qk℄ij)= fmaxk max1�i�n(j[pDk ℄i[qDk ℄i + �k[pDk ℄i[qCk ℄i ++�k[pCk ℄i[qDk ℄i + �2k[pCk ℄i[qCk ℄ij)(4:2)� 4fmaxk !k :It follows that �xTk�yk � 4nfmaxk !k (4:17)and therefore �k = n�xTk�yk �min([�xk℄i[�yk℄i)� 4fmaxk !k + 4fmaxk !k� 6fmaxk !k ;beause we hose  � 1=2.Ad 2. Let � 2 [ 0; 1℄. Then we have[fk(�)℄i (4:10)= [fx℄i(1� �) + �kf avek � + [�xk℄i[�yk℄i �2� fmink (1� �) + �kf avek �+min([�xk℄i[�yk℄i)�2and therefore, realling (4.11)[fk(�)℄i � f avek (�) � (fmink � f avek )| {z }�0 (1� �)| {z }�0 +(1� )�kf avek �� �k�2� (1� )�kf avek �� �k�2 : (4.18)Sine we assumed that � 2 [ 0; 1℄ it follows now onsidering (4.7) that if �k � 0, hk(�)has no root in (0; 1). Hene �k � 1.On the other hand if �k > 0 the right hand side of (4.18) has a unique positive rootin �� = (1� )�kf avek�kand it is greater than zero for all � 2 (0; ��). It follows from (4.18) that hk(�) > 0 for� 2 (0; ��). So if �k < 1 by (4.9) �k must be greater than or equal to ��. 234



4. A Globally and Superlinearly Convergent Interior Point MethodLemma 4.5 Let (xk; yk), (�xk;�yk) and �k be generated by Algorithm 2.1. There exists a onstant � > 0, suh thatmin(1; �k) � �n2 : (4:19)2. It holds that �xTk�ykxTk yk � 14 : (4:20)Proof:Ad 1. By Lemma 4.4 (2.), it obviously suÆes to onsider the ase where �k > 0 forwhih followsmin(1; �k) � min�1; (1� )�kf avek6!kfmaxk � ; by Lemma 4:4;� min�1; �l12n� ; sine  � 12 ; �k � �l!k and fmaxkf avek � n ;= min�1; 2�24n2� ; sine �l = 2�2n :Thus, � := 2�24 (4:21)is a suitable hoie.Ad 2. Using previous results we get4�xTk�yk � X� 12k Y 12k �xk �X 12k Y � 12k �yk22 + 4�xTk�yk= (XkYk) 12pk22 + (XkYk) 12 qk22 + 2�xTk�yk(3:25)= xTk yk �1� 2�k + �2kf avek eT (XkYk)�1en �(4:6)� xTk yk �1� 2�k + �2k � :Realling �k < 1 it now follows that�xTk�ykxTk yk � 14 �1� 2�k + �2k �= 14 �(1� �k)2 + �2k (�1 � 1)�� 14 ; 35



4. A Globally and Superlinearly Convergent Interior Point Methodwhih ompletes the proof. 2The preeding lemmas are helpful in getting a better understanding of our hoie of�k. From the proof of Lemma 4.4 (1.) we see how the de�nition of !k ame about andthe proof of Lemma 4.5 (1.) illustrates that !k has to be part of �k in order to get auniform lower bound on �k. We again emphasize that this far it would have suÆedto hoose �k = �uk!k.Proof of Theorem 4.3: In our analysis we will use the following two funtions of �Æk(�) := �1� �k � �xTk�ykxTk yk ��� (4:22)and �Æ(�) := �1� � � 14 ��� : (4:23)Using (4.20) and the fat that �k < �, we see that for � � 0 it holds that Æk(�) � �Æ(�).We will �rst demonstrate that�k = argmax fÆk(�) : � 2 [ 0;min(1; �k)℄g : (4:24)The derivatives of Æk(�) areÆ0k(�) = 1� �k � 2 �xTk�ykxTk yk �and Æ00k(�) = �2 �xTk�ykxTk yk :Hene only if �xTk�yk > 0, Æk(�) has a unique maximum in ��k and for � < ��k, Æk(�)is an inreasing funtion of �. For this ase (4.24) now follows from de�nition (4.14)of �k. If �xTk�yk = 0, Æk(�) is an inreasing funtion of � altogether and (4.24) againfollows from (4.14).Therefore we have for all � 2 [ 0;min(1; �k)℄,Æk = Æk(�k) � Æk(�) � �Æ(�) : (4:25)If we de�ne � as in (4.21) then (4.19) implies that (4.25) holds for � = �=n2. Henewe get Æk � Æ := �Æ(�=n2) = �1� � � �4n2� �n2whih ompletes the proof and this setion. 236



4. A Globally and Superlinearly Convergent Interior Point Method4.4 Superlinear ConvergeneFor the superlinear onvergene analysis we will make use of the results of the preedinghapter. One of the assumptions of Theorem 3.3 was that the sequene ff avek =fmink g bebounded. This is ensured by our hoie of �k. Looking at the proof of Theorem 3.3it is evident that the assumption �k ! 1 an be replaed by �k ! 1 whih is moremeaningful in our ase.However, to make our superlinear onvergene result even more general, we will �rstshow that it is not neessary to require that (xk; yk) onverges to a stritly omple-mentary solution of (P). For x 2 IRn we de�neI+(x) := fi : xi > 0gand note that for any solution (x̂; ŷ) of the optimality onditions (3.4) of our problem(P) it holds that I+(x̂) \ I+(ŷ) = ; : (4:26)If (3.4) has a stritly omplementary solution (x�; y�) we have on top of thisI+(x�) [ I+(y�) = f1; . . . ; ng : (4:27)The following result is based in big parts on G�uler [8℄.Lemma 4.6 Let (xk; yk) be generated by Algorithm 2. Assume (3.4) has a stritlyomplementary solution (x�; y�). Then1. for every solution (x̂; ŷ) of (3.4) it holds thatI+(x̂) � I+(x�) and I+(ŷ) � I+(y�) ;2. for every limit point (x1; y1) of the sequene f(xk; yk)g it holds that (x1; y1) solves(3.4) and I+(x1) = I+(x�) and I+(y1) = I+(y�) ;i.e. every limit point is a stritly omplementary solution of (3.4).Proof:Ad 1. First note that by the positive semi-de�niteness of Q for any x1; x2 2 IRn0 � (x1 + x2)TQ(x1 + x2)= xT1Qx1 + xT2Qx2 + 2xT1Qx2and thus 2xT1Qx2 � xT1Qx1 + xT2Qx2 :37



4. A Globally and Superlinearly Convergent Interior Point MethodRealling the equivalent optimality onditions (3.3) it now follows0 = xT� y� + x̂T ŷ= xT� (�AT�� +Qx� + ) + x̂T (�AT �̂+Qx̂ + )= �bT�� + xT�Qx� + Tx� � bT �̂+ x̂TQx̂ + T x̂� �bT �̂+ xT�Qx̂ + T x̂� bT�� + x̂TQx� + Tx�= xT� ŷ + x̂Ty� ;for some ��; �̂. Sine (x�; y�); (x̂; ŷ) � 0 the result follows immediately.Ad 2. From Theorem 4.3 it follows that for all kxTk yk � xT0 y0 :Using this estimate and proeeding similarly to 1. we getxTk y0 + xT0 yk � xTk yk + xT0 y0 � 2xT0 y0and hene [xk℄i � 2xT0 y0[y0℄i and [yk℄i � 2xT0 y0[x0℄i :Consequently the sequene f(xk; yk)g is bounded and therefore it has at least one limitpoint. Considering that xTk yk ! 0, every limit point has to satisfy xT1y1 = 0 and thusevery limit point solves (3.4).By 1. it remains to be shown thatI+(x�) � I+(x1) and I+(y�) � I+(y1) :Realling xT� y� = 0, for every k we havexT� yk + xTk y� � xTk yk + xT� y� = xTk yk, Pi2I+(x�)[x�℄i[yk℄i + Pi2I+(y�)[xk℄i[y�℄i � xTk ykWe see from (4.26) and (4.27) that for every i, either i 2 I+(x�) or i 2 I+(y�). Ifi 2 I+(x�), xTk yk � [x�℄i[yk℄i = [fk℄i [x�℄i[xk℄i � fmink [x�℄i[xk℄i) [xk℄i � nfminkf avek [x�℄i (4:6)� n [x�℄i) [x1℄i � n [x�℄i > 0) I+(x�) � I+(x1) :38



4. A Globally and Superlinearly Convergent Interior Point MethodThe ase i 2 I+(y�) is treated analogously. 2In view of Lemma 4.6 it would be very nie now of ourse if we ould get a super-linear onvergene result without having to assume the onvergene of the iterationsequene f(xk; yk)g at all. However, unfortunately we were unable to prove the follow-ing Theorem without this assumption. An improvement in omparison to Theorem 3.3and Theorem 5.2 in [9℄ though is that we no longer need to assume the onvergene off(xk; yk)g to a stritly omplementary solution, but we merely need onvergene. Theproof of Theorem 4.7 will also give a �nal explanation for our hoie of �k.Theorem 4.7 Let f(xk; yk)g be generated by Algorithm 2. Assume that (3.4) hasa stritly omplementary solution and that (xk; yk) ! (x�; y�). Then the sequenefXkYkeg omponentwise onverges to zero Q-superlinearly.Proof: As we have already explained we an use the results of Theorem 3.3. ByLemma 4.6, (x�; y�) is a stritly omplementary solution of (3.4). Hene all that is leftfor us to show is that �k ! 0 and �k ! 1.We �rst prove �k ! 0. Sine �uk is bounded, by the de�nition of �k in Step 3 ofProedure 1 it suÆes to show !k ! 0.Let [x�℄i > 0. Then learly1 = limk!1 [xk+1℄i[xk℄i = limk!1(1 + �k[pk℄i) :In order for this to imply that [pk℄i ! 0 we still need that �k is bounded away fromzero. The answer gives us Lemma 4.5, beausemin(1; �k) � �nand furthermore �xTk�ykxTk yk � 14indiates that ��k = (1� �k)xTk yk2�xTk�yk � 2(1� �) :Hene by the de�nition of �k we see that it is bounded away from zero.If on the other hand [x�℄i = 0, then [y�℄i > 0 by strit omplementarity. Proeedinganalogue to above we get [qk℄i ! 0. As a result for eah i,either [pk℄i = [pDk ℄i + �k[pCk ℄i ! 0 or [qk℄i = [qDk ℄i + �k[qCk ℄i ! 0 : (4:28)This is where the reason for our hoie of �k lies. Even though we have (4.28), weannot guarantee that if, say [pk℄i ! 0 this also holds for [pDk ℄i and [pCk ℄i. Aordingly39



4. A Globally and Superlinearly Convergent Interior Point Methodwe have to make sure that �k stays far enough from �[pDk ℄i=[pCk ℄i. Hopefully our hoieof parameters is fully transparent to the reader now.The proof of !k ! 0 is by ontradition. Suppose the opposite. Then, there mustexist a subsequene f!k(j)g � f!kg whih is bounded away from zero sine !k � 0.The de�nition of �k and (4.5) then imply that fdist(�k(j);�k(j))g is bounded away fromzero.Assume [pk℄i ! 0. Then, we laim that f[pCk(j)℄ig ! 0. If this was not true then therewould be a subsequene f[pCk(l)℄ig � f[pCk(j)℄ig for whih fj[pCk(l)℄ijg is bounded away fromzero. Sine [pk℄i ! 0 this must also hold for every subsequene and thus also for [pk(l)℄iso that we have[pk(l)℄i = [pDk(l)℄i + �k(l)[pCk(l)℄i = [pCk(l)℄i [pDk(l)℄i[pCk(l)℄i + �k(l)!! 0 :Considering that fj[pCk(l)℄ijg is bounded away from zero, this implies[pDk(l)℄i[pCk(l)℄i + �k(l) ! 0 ;whih ontradits the fat that fdist(�k(l);�k(l))g � fdist(�k(j);�k(j))g is bounded awayfrom zero. Therefore f[pCk(j)℄ig ! 0. In view of (4.28) this indiates that f[pDk(j)℄ig ! 0,as well.The ase where [qk℄i ! 0 an be treated analogously. Consequently for eah i, either[pDk ℄i and [pCk ℄i or [qDk ℄i and [qCk ℄i onverge to zero. In the proof of Lemma 4.1 we showedthat all these sequenes are bounded and therefore by de�nition (4.2) of !k it followsthat !k(j) ! 0. This ontradits our hypothesis that f!k(j)g is bounded away fromzero. Hene !k ! 0 and ergo �k ! 0.In order to prove �k ! 1 we have to distinguish two ases. If �xTk�yk = 0, then�k = min(1; �k). From Lemma 4.4,  < 1=2 and fmaxk =f avek � n it follows that�k � �l + �uk24n :Sine �uk = min(�u; �=!k), !k ! 0 and �u � 24n, we have for k suÆiently large�l + �uk � �uk = �u � 24n :Consequently �k = 1 for k suÆiently large in this ase.Note that we did not use �xTk�yk = 0 to get this result. If �xTk�yk > 0 we have�k = min(1; �k; ��k) and so all we need to show is that ��k � 1 for k suÆiently large.40



4. A Globally and Superlinearly Convergent Interior Point MethodThis an be seen from ��k = (1� �k)xTk yk2�xTk�yk� (1� �)xTk yk2�xTk�yk ; sine �k < �� (1� �)f avek8!kfmaxk ; by (4:17)� 1� �8n!k ; sine f avekfmaxk � 1n :Now in view of !k ! 0 it follows that for k suÆiently large ��k � 1 and onsequently�k = 1. 2
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5. Implementation
It is a well known fat in numerial mathematis that in pratie many things aredi�erent, e.g. the algorithms with good theoretial onvergene properties and thealgorithms that perform well in pratie frequently have very little in ommon. Onthe other hand to get a pratial algorithm it is often neessary to �nd solutions forproblems that do not exist in theory due to idealizing assumptions. These are themain reasons why we dediate a lot of spae to the topi of implementing IPMs forportfolio optimization problems. We will present two algorithms that performed bestin our numerial experiments. As we will see their hoie of parameters is onsistentwith Theorem 3.3.All algorithms were implemented in the exellent, high-performane numeri ompu-tation pakage Matlab 4.0 by The MathWorks, In., Natik, Mass. All subroutineslisted in the Appendix are written in the maro-language of Matlab.
5.1 The Models in PratieThe Models that we will onsider are models (MV3) and (MV30) from Chapter 2 withbox onstraints and slak variable xs for model (MV3).
(PMV) Minimize xTf xfsubjet to (I � 1keeT )Pxp � xf = 01keTPxp � xs = �eTxp = 10 � xp � up0 � xs � 1�1 � xf � 143



5. Implementationand
(PMV0) Minimize xTf xfsubjet to Pxp � xf = �eeTxf = 0eTxp = 10 � xp � up�1 � xf � 1 ;for some upper bounds vetor up 2 IRn. Remember that xp 2 IRn, xf 2 IRk andP 2 IRk�n. We have to inlude these upper bounds on xp, beause we want to avoidthe situation where the weight of ertain assets in the solution-portfolio beomes toobig hene making the portfolio too suseptible to utuations in the pries of thoseassets. We will typially hoose up = Ce, where C is a salar whih of ourse dependson n. It is also pratially onvenient to express the free variable xf as one with in�nitebox onstraints. We hose not to inlude any other additional linear onstraints beausethose onstraints are mostly situation spei�. Plus it is very easy to extend our modelsto inlude them without having to hange any part of our algorithms.In order to make our models more onise we de�ne for (PMV)the (n+ 1 + k)� (n+ 1 + k)-matrixQ := 24 0 0 00 0 00 0 I 35 ; (5:1)the (k + 2)� (n + 1 + k)-matrixA := 24 (I � 1keeT )P 0 �I1keTP �1 0eT 0 0 35 ; (5:2)the (k + 2)-vetor b := 0� 0�e1 1A (5:3)and the (n+ 1 + k)-vetorsx := 0� xpxsxf 1A ; l := 0� 00�1 1A ; u := 0� up11 1A : (5:4)
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5. ImplementationNow (PMV) is equivalent to(PQP) Minimize 12xTQxsubjet to Ax = bl � x � u :Similarly, for (PMV0), we de�nethe (n + k)� (n+ k)-matrix Q0 := 24 0 00 00 I 35 ; (5:5)the (k + 2)� (n+ k)-matrix A0 := 24 P �I0 eTeT 0 35 ; (5:6)the (k + 2)-vetor b0 := 0� �e01 1A (5:7)and the (n+ k)-vetorsx0 := � xpxf � ; l0 := � 0�1 � ; u0 := � up1 � : (5:8)Aordingly (PMV0) is equivalent to(PQP0) Minimize 12x0TQ0x0subjet to A0x0 = b0l0 � x0 � u0 :These notations enable us to treat (PQP) and (PQP0) as idential for the most part.Hene from now on we will work only with (PQP).In the implementation the models are being generated by the subroutine mvtosta(mean variane to standard model) whih is listed in the Appendix. It only requiresP , � and up as input data and due to the struture of Q we an make good use ofMatlab's sparse data type [22℄.If up is empty it is uniformly set to in�nity. If it is shorter than xp, say of lengthi, then only the �rst i omponents of xp are treated as bounded, while the remainingomponents have in�nite bounds. 45



5. ImplementationWe de�ne m and �n as the number of rows and olumns of A, respetively. The �rstorder optimality onditions of (PQP) are (f. (3.3))G0(x; y; z; �) := 0BBB� Ax� bAT�+ y � z �QxSlY e� 0eSuZe� 0e
1CCCA = 0; l � x � u0 � y0 � z ; (5:9)where Sl := X �L and Su := U �X. Theoretially it is of ourse impossible to satisfythe last two equations, beause of the in�nite bounds. In pratie however we set [yk℄iand [zk℄i to zero for all k if li = �1 or ui =1, respetively. This method has provenmore e�etive in our numerial experiments than the variable splitting tehnique knownfrom the simplex method (f. also [23℄).5.2 Pure Primal-Dual AlgorithmThe algorithm desribed in this setion is implemented in the subroutine pd ipm whihis also listed in the Appendix. In essene the algorithm follows the sheme of Algo-rithm 1 exept that we do not require (x0; y0) to be stritly feasible and the enteringparameter �k and the steplength �k are omputed by speial proedures whih willbe desribed below. Of ourse the termination riteria have to be also di�erent to suitpratial onsiderations.5.2.1 InitializationThere are two heks that are performed at the very beginning. First the algorithmmakes sure that the dimensions of the input data math. Then it heks if the onstraintmatrix A has full (row-)rank. If any of the heks fail, the algorithm stops with anerror message. Currently there is no preproessor inluded that removes redundantequations.Unlike the theoretial algorithms in Chapters 3 and 4, the algorithm does not requirean initial stritly feasible solution but will use one if one is given by the user. Instead ithas proven far more eÆient [13℄ to ompute initial values for x, y, z and � suh that thebox onstraints are satis�ed and the other onstraints are approximately satis�ed andthen start from this infeasible point. There have been �rst e�orts to establish theoretialonvergene results for these so alled infeasible IPMs, e.g. [26, 29℄, whih indiatethat very similar hoies of parameters as for Algorithm 2 are adequate. However ourhoie of parameters is inuened by the more pratially oriented works of Lustig etal. [4, 2, 13℄. 46



5. ImplementationThe default proedure for omputing the initial points was partly motivated by theone in [14℄.Proedure 3Given �� > 0.Step 1 Compute �x0 := AT (AAT )�1b and �P := �� k�x0k1=n.Step 2 For i = 1; . . . ; n, set [x0℄i := (ui � li)=2, if ui � li <= 2�P or else[x0℄i := 8><>: ui � �P ; if ui � [�x0℄i < �Pli + �P ; if [�x0℄i � li < �P[x0℄i ; otherwise:Step 3 Set �0 := 0. Compute �0 := Qx0 +  and �D := �� k�0k1=n.Step 4 For i = 1; . . . ; n, set [y0℄i := 0, if li = �1 or else[y0℄i := � [�0℄i ; if [�0℄i > �D�D ; otherwise;and [z0℄i := 0, if ui =1 or else[z0℄i := � �[�0℄i ; if [�0℄i < ��D�D ; otherwise:The omputation of the pseudoinverse of A in Step 1 is possible, beause we havemade sure that A has full row-rank. Overall, Proedure 3 omputes initial values x0,y0 and z0 whih are at least a ertain threshold �P for x0 and �D for y0 and z0 awayfrom the relevant boundaries. The user an inuene this threshold value by hangingthe saling parameter ��. After extensive testing it seems that �� = :3 is a good universalhoie.On the other it is attempted to keep the norm of the initial infeasibility or residual,i.e. kr0k2 := � Ax0 � bAT�0 + y0 � z0 �Qx0 �2 ;as small as possible.5.2.2 Computation of Centering ParameterOur proedure for omputing the entering parameter �k was motivated by the ones inthe primal-dual algorithms for linear-programming desribed in [13, 14℄. In the ase ofinfeasible starting points, �k must play the important role of a feasibility parameter.This means that �k should be large as long as primal and dual feasibility have not been47



5. Implementationattained yet, beause the entering diretions point from the urrent iterates away fromthe boundary into the interior of the feasible region. Hene more entering will allowfor larger steps before the nonnegativity onstraints restrit the steplength. Of ourseanother result of this tehnique is that the emphasis on attaining feasibility is greaterthan on attaining optimality. However, from our numerial experiments we feel thatthis has no signi�ant negative e�et on the eÆieny of the algorithm.Our proedure for omputing �k is as follows.Proedure 4Given � > 0, � > 0, � := � �n2 ; if n � 5000;�n3=2 ; if n > 5000; (5:10)and M := � � max(Q; b) ; (5:11)where max(Q; b) refers to the largest omponent of both items in the parenthesis and� is the same that is being used in the termination riteria.Step 1 If primal and dual feasibility has been attained, i.e.kAxk � bk11 + kxkk1 < � and kAT�k + yk � zk �Qxk � k11 + kxkk1 + kykk1 + kzkk1 + k�kk1 < � ;then �k := (xk � l)Tyk + (u� xk)T zk� ;otherwise �k := xTkQxk � bT�k � lT yk + uT zk +Mkrkk1=kr0k1�where like above rk is the residual of primal and dual onstraints at the k-thstep.This proedure merits an explanation. First it is apparent that for feasible iterates�k is similar to the one in Algorithm 1 with �k = n=�. Thus �k is a onstant ratherthan onverging to zero. This works muh better in pratie than for instane hoosing�k as the minimum of duality gap and say :99, in whih ase the entering parameteronverges to zero muh slower than for our hoie.When feasibility has not been ahieved yet, we obviously have to ompute the du-ality gap as the di�erene between primal and dual objetive funtion sine the totalomplementarity no longer equals the duality gap. In this aseM ontrols the inuenethe degree of infeasibility has on �k. The bigger M , the larger �k will be hosen when48



5. Implementationthe degree of infeasibility is still high. M takes into aount the saling of the problemand an be ontrolled by the user by adjusting the parameter �. We hoose � = :45.Sine we are dealing with a very homogeneous lass of problems there is no needto adjust any of the parameters involved in the omputation of �k. For an interestingdisussion about this topi for the ase of LP see [13℄.5.2.3 Computation of Searh DiretionsDue to the infeasible start, the system de�ning the searh diretions in our ase isof ourse also di�erent from the feasible ase when the upper part of the right handside is zero. We still proeed similarly as in Algorithm 1 though and de�ne the searhdiretions as solutions to the systemG0�k(xk; yk; zk; �k)0BB� �xk�yk�zk��k 1CCA = �G�k(xk; yk; zk; �k) ;where G� was de�ned in (5.9). Dropping the index k for notational onveniene, this isequivalent to0BB� A 0 0 0�Q I �I ATY Sl 0 0�Z 0 Su 0 1CCA0BB� �x�y�z�� 1CCA = 0BB� b� Ax�AT�� y + z +Qx�e� SlY e�e� SuZe 1CCA : (5:12)If we set 0BB� p1p2p3p4 1CCA := 0BB� b� Ax�AT�� y + z +Qx�e� SlY e�e� SuZe 1CCA ; (5:13)we an ompute the solutions to (5.12) diretly by0BBB� ���x�y�z
1CCCA = 0BBB� (AH�1AT )�1 �AH�1(p2 � S�1l p3 + S�1u p4) + p1�H�1(�p2 + S�1l p3 � S�1u p4 + AT��)S�1l (p3 � Y�x)S�1u (p4 + Z�x)

1CCCA (5:14)with H := Q + S�1l Y + S�1u Z. When omputing S�1l and S�1u , the diagonal elementsassoiated with in�nite bounds are set to zero.The omputation of the searh diretions, in partiular of (AH�1AT )�1 uses up mostof the omputation time in eah iteration. Fortunately H is a diagonal-matrix and as49



5. Implementationsuh easy to invert. Moreover the inreasingly ill ondition of H whih is an inherentproperty of all IPMs does not pose a problem in pratie. It is worth noting thoughthat H an only be inverted when xk, yk and zk are not too lose to their respetivebound whih is why the starting points are made to meet this requirement.Realling (5.2) and (5.6) we see that A unfortunately is mostly dense. Our atualstrategy therefore is to ompute the holesky fators of AH�1AT and then solve thede�ning equation for �� by forward and bakward substitution. The quantities that areneeded several times are just omputed one and then stored in temporary variables.All diagonal matries needed in the omputation are stored as sparse matries again[22℄.It should be remarked that Monteiro and Adler [19℄ devise an updating sheme forthe holesky fators of AH�1AT whih exploits the fat that only diagonal elements ofH hange at eah iteration. This redues the bound on the number of operations periteration [7℄ from O(n3) to O(n2:5). We did not implement this sheme beause we feelthat it would not have a signi�ant e�et on the performane of the algorithm.5.2.4 Computation of SteplengthOur hoie of steplength in pratie is not limited by tehnial theoretial onsidera-tions. The vast majority of pratial IPM implementations (e.g. [15, 23℄) use a slightlysmaller steplength than the maximal possible, i.e. in order for xk, yk and zk to staystritly within their respetive limits.We ompute the maximal possible steplengths separately for primal (�̂P ) and dual(�̂D) variables. For simpliity we will drop the index k again.�̂P = min�mini ��xi � li�xi : �xi < 0� ; mini �ui � xi�xi : �xi > 0�� (5:15)and �̂D = min�mini �� yi�yi : �yi < 0� ; mini �� zi�zi : �zi < 0�� : (5:16)For LP it has proven very eÆient to use di�erent step sizes for primal and dualvariables [13, 15℄ and there is also no reason for onern from a theoretial point ofview against this tehnique, beause in LP there are no primal variables in the dualonstraints and vie versa. In QP this is di�erent however sine we have the term Qxin the dual onstraints, hene when we take di�erent steplengths the next iterate mayviolate these onstraints. Therefore a theoretially orret hoie of steplength wouldbe � := ( �min(�̂P ; �̂D) ; if min(�P ; �D) � 1 ;1 ; otherwise50



5. Implementationwith typially � := :99995.After extensive testing with various hoies of steplengths, inluding the extreme aseof di�erent steplengths for all variables |whih did not work for one single problem bythe way| it beame evident that when using di�erent steplengths for primal and dualvariables we never ahieved a slower but in most ases a onsiderably faster onvergenethan for the ase when the same steplength was used for all variables. Moreover in mostases the iterates beame feasible after less steps. This will ertainly not always be thease and espeially not for all onvex QP but sine it worked so well we stuk with thetehnique.Consequently our proedure for omputing the steplengths and for updating theiterates is the following.Proedure 5Given � := :99995,Step 1 Compute �̂Pk and �̂Dk by (5.15) and (5.16), respetively.Step 2 Compute�Pk := ( ��̂Pk ; if ��̂Pk � 1 ;1 ; otherwise and �Dk := ( ��̂Dk ; if ��̂Dk � 1 ;1 ; otherwise:Step 3 Update the iterates by xk  xk + �Pk�xkyk  yk + �Dk �ykzk  zk + �Dk �zk�k  �k + �Dk ��kand set k  k + 1.5.2.5 Termination CriteriaDue to the above hoie of steplengths we annot solely rely on the duality-gap astermination riterion, but we also have to make sure that the iterates are still \suÆ-iently" feasible. Therefore the algorithm terminates if for the total omplementarityit holds that (xk � l)Tyk + (u� xk)T zk < �and for the relative infeasibility krkk11 + kxkk1 + kykk1 + kzkk1 + k�kk1 < � ;51



5. Implementationwith urrently � = 10�7. This hoie of � is mainly to allow performane omparisonswith other implementations. In most situations the algorithm onverges also for smaller�. Sine we did not inlude a mehanism for deteting infeasible or ill-posed problemsthe alternative termination riterion is that a given maximal number of iterations hasbeen reahed. Currently this number is 100 whih is reasonable beause typially thealgorithm terminates after less than 20 iterations. Unsolvable problems usually givethemselves away by ausing numerial diÆulties after about 20 iterations beause oneof the objetive values tends to in�nity.5.3 Preditor-Corretor AlgorithmReently it has beome evident through several publiations e.g. [15, 3, 14, 29, 1℄ toname only a few that Mehrotra's preditor-orretor algorithm [18℄ and variants of itlearly dominate the �eld of IPMs as far as pratial eÆieny and loal onvergeneis onerned. This was reason enough to inlude an implementation of this method inour numerial experiments. To tell it right away, our results fully support the goodreputation, but before we look at the results we will give a brief desription of themethod and our implementation of it.5.3.1 MotivationIn motivating the preditor-orretor algorithm, we will follow the very neat desriptionin [14℄.The basi idea behind this IPM is to use the \expensive" holesky fatorization ofAH�1AT that is needed in the omputation of the searh diretions, twie in everystep and thereby gain extra information about the entral path through the urrentiterates to the optimal solution.This is ahieved by �rst solving (5.12) for the aÆne diretions, i.e.0BB� A 0 0 0�Q I �I ATY Sl 0 0�Z 0 Su 0 1CCA0BB� �x̂�ŷ�ẑ��̂ 1CCA = 0BB� b� Ax�AT�� y + z +Qx�SlY e�SuZe 1CCA : (5:17)This is alled the preditor step.Similarly to Algorithm 2 these diretions are then used to determine the enteringparameter �. Analogous to (5.15) and (5.16), let �̂P be the minimum of the primaland dual maximal possible steplengths if the preditor diretions were used and�P := min(1; :99995 �̂P) :52



5. ImplementationThen the new total omplementarity after a step in the preditor diretions isĝ := (x + �P�x̂� l)T (y + �P�ŷ) + (u� x� �P�x̂)T (z + �P�ẑ)and � is omputed by � := � ĝ(x� l)T y + (u� x)T z�2 ĝn : (5:18)Sine the preditor diretions are desent diretions for the total omplementarity the�rst fration will always be smaller than 1. Moreover it will be small when good progressan be made in the preditor diretions and large when these diretions promise littleimprovement due to a small possible stepsize whih usually indiates the need for moreentering. The seond fration is exatly �k from Algorithm 1.Next, in the orretor step, the atual searh diretions are omputed as solutionsto 0BB� A 0 0 0�Q I �I ATY Sl 0 0�Z 0 Su 0 1CCA0BB� �x�y�z�� 1CCA = 0BB� b� Ax�AT�� y + z +Qx�e� SlY e��X̂�Ŷ�e� SuZe +�X̂�Ẑ 1CCA : (5:19)Clearly all that has hanged in omparison to the pure primal-dual algorithm (f.(5.12)) are the orretor terms ��X̂�Ŷ and �X̂�Ẑ on the right hand side. Theomputation of step size and the proedures for updating the iterates are the same asin the pure primal-dual algorithm.So the extra work that has to be done for the preditor-orretor algorithm is thebaksolve to ompute the preditor diretions and the ratio test to determine �P .But what is gained? We will show that one step of the preditor-orretor algorithmapproximately ombines one step in the preditor or aÆne diretion and from thereone step of the pure primal-dual algorithm.Note that we an write the searh diretions as�x = �x̂ + x�y = �ŷ + y�z = �ẑ + z�� = ��̂+ � ;where the orretion terms satisfy0BB� A 0 0 0�Q I �I ATY Sl 0 0�Z 0 Su 0 1CCA0BB� xyz� 1CCA = 0BB� b� Ax�AT�� y + z +Qx�e��X̂�Ŷ�e+�X̂�Ẑ 1CCA : (5:20)
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5. ImplementationNote further that (X +�X̂ � L)(Y +�Ŷ )e= (Sl +�X̂)(Y +�Ŷ )e= SlY e+ Y�x̂ + Sl�ŷ| {z }=0 by (5:17) +�X̂�Ŷand similarly (U �X ��X̂)(Z +�Ẑ)e = ��X̂�Ẑ :Thus (5.20) de�nes pure primal-dual searh diretions from the point x+�x̂, y+�ŷ,z +�ẑ, � + ��̂ that would result from a full step in the preditor diretions, exeptthat the terms �x̂, �ŷ, �ẑ have not been added to the diagonal matries on the lefthand side. That means that instead of using the Jaobian at the point resulting froma full step in the aÆne diretions, the Jaobian at the urrent point x; y; z; � is beingused.Despite the approximation this tehnique produes exellent searh diretions fre-quently leading to a onsiderably smaller number of total iterations. A logial extensionof this approah is to attempt to use one matrix fatorization even more often. Therehas been some researh in this diretion [3, 2℄ whih indiates that the number ofiterations often an be redued even more with more \orreting".5.3.2 ImplementationThe preditor-orretor algorithm is implemented in the subroutine p ipm whih anbe found in the Appendix.In aordane with the brief desription of the algorithm above, the implementationis very similar to the one of the pure primal-dual algorithm. The initialization proedureis the same as in 5.2.1, exept that we set �� = 1, beause for reasons given below it isdesirable to keep farther away from the boundaries.The omputation of the searh diretions and the entering parameter is aordingto the desription above, with a little di�erene. Our atual proedure for omputing� is as follows.Proedure 6Given �� := :7 .Step 1 If primal or dual feasibility has not been attained andkrkk1(xk � l)Tyk + (u� xk)T zk > 103 ;then set �k := �� and skip Step 2.54



5. ImplementationStep 2 If (xk � l)Tyk + (u � xk)T zk < 1 and primal and dual feasibility has beenattained, then �k := (xk � l)Tyk + (u� xk)T zk� ;otherwise ompute �k by (5.18) but with separate steplengths for primal anddual variables in omputing ĝ.The seond step was partly motivated by [14℄, i.e. when the iterates are lose toan optimal solution we use the same entering parameter as in the pure primal-dualalgorithm to avoid potentially numerially unstable systems.The �rst step has proven to be essential, beause before it was inluded the algorithmmostly did not onverge. This happens when the starting points are too lose to theirbounds whih sometimes annot be avoided due to small upper bounds. Then it oftenhappened in our experiments that the �rst fration in (5.18) was lose to 1 but theseond fration was too small for this to have a signi�ant e�et on �k. Consequentlythe algorithm got aught in the erroneous assumption that it was already lose to asolution and perpetually hose �k muh too small. As a remedy we had to inlude amehanism that also takes into aount the infeasibility. The heuristi in Step 1 withthe user-ontrollable parameter �� has proven to serve this purpose very well. Typiallyit only a�ets the �rst step. Lustig et al. [14℄ work around this problem by not requiringxk to initially satisfy the upper bound but allowing it to iterate to bound feasibilityand hene hoosing large initial points.For the same pratial reasons given in 5.2.4 we ompute ĝ with separate steplengthsfor primal and dual variables. The omputation of the atual steplengths, the updatingsheme for the iterates and the termination riteria are the same as for the pure primal-dual algorithm.5.4 Numerial ResultsAll numerial experiments were arried out on a DEC Alpha workstation runningOSF/1 with the numeri omputation software pakage Matlab 4.0. Although theMatlab optimization toolbox ontains a QP solver we did not use it for performaneomparisons beause its performane was too poor on our problems.Three sets of test data, i.e. three matries P , from the Tokyo Stok Exhange Marketwere most generously provided by Messrs. Ken-ihi Suzuki and Hiroshi Konno from theTokyo Institute of Tehnology. They have been used in the numerial experiments in[11, 21℄ before. The test set alled r8912 ontains 60 monthly rates of return (January1985 { Deember 1989) for the stoks inluded in the Nikkei225 index. The test setalled r9012 ontains the same kind of data for the period January 1986 { Deember1990. The test set alled tsem ontains the same data but for all 1064 stoks traded55



5. Implementationin the Tokyo Stok Exhange Market for the 152 months between January 1980 andAugust 1982. The sets alled tsem1, tsem2 and tsem3 are the subsets P (1 : 60; 1 : 225),P (61 : 200; 226 : 450) and P (93 : 152; 451 : 675) of tsem, respetively.Besides the real world data we also used 3 randomly generated data sets. The Mat-lab routine that was used to generate the data sets is alled randprob and an befound in the Appendix. The size of the sets is 60 � 225 for rand1 and rand2 and60�2500 for rand3. The sets were generated by rand1: randprob(60,225,2,11.5,0,0),rand2: randprob(60,225,-2,1,8,0) and rand3: randprob(60,2500,-2,1,8,0). Thesets rand2 and rand3 were deliberately hosen to be almost infeasible for our hoie of� = 2 and up = :03e, to see how the algorithms behave.In all tests the required rate of return was � = 2:0. The olumns in Tables 5.1 and5.2 have the following meanings: `Model' refers to the two models we are onsidering,where `�' means model (PQP) and `=' means model (PQP0). An `M' in this olumnindiates that the regular MV-model (MV2) with the aording equality or inequalityonstraint was used. `Bound' refers to the upper bound up and the atual value inolumn `Bound' is the uniform upper bound on all omponents of xp. Obviously the`Solver' olumn gives the algorithm that was used, where PC stands for the preditor-orretor algorithm and PD for the pure primal-dual algorithm. `Total # Steps' is thenumber of steps the algorithm needed to reah optimality and `Infeasible # Steps' is thenumber of steps the algorithm needed until primal and dual feasibility was reahed. Asalready mentioned, the `CPU Times' were ahieved on a DEC Alpha workstation andomputed by the built-in Matlab funtion putime. The olumn `1-Norm Residual'lists the 1-norm of the last residual vetor rk. To deide whether a stok was in or outthe solution portfolio, i.e. if the orresponding omponent of xp was zero or not, weused the onvergene tolerane �. All omponents of xp smaller than � were assumed tobe zero. Of ourse there are more reliable and yet inexpensive ways to deide this butthey are not within the sope of this thesis. For more information about identifyingzero omponents we refer the interested reader to [5℄.It should be remarked that the built-in QP solver of Matlab was used to detetinfeasible problems.Even though our implementations are only researh odes, they still exhibit quite agood performane, as an be seen in Tables 5.1 and 5.2. The results are de�nitely betterthan the ones reported in [11℄ and [21℄ where the same kind of data was used. The lastthree entries of Table 5.2 learly demonstrate that our algorithms even �nd solutionsfor nearly infeasible problems in still an aeptable amount of time. On the other handthere is no doubt that there is still room for improvement in our implementations.An important remark onerning the results of data set rand1 is that the fat thatthere are 225 stoks in the solution does not ontradit the result at the end of Chap-ter 2. Aording to this result there exists a solution of model (MV3) suh that thereare no more than 62 stoks in the solution portfolio. Unfortunately the algorithmdid not �nd one of these solutions in this ase. Hene we will have to do some extra56



5. Implementationomputations, i.e. solve an easy LP to identify a solution with the desired properties.The results of our experiments support the lear dominane of the preditor-orretoralgorithm. It only got beat one by the pure primal-dual algorithm, as far as the totalnumber of iterations and the CPU-time is onerned, and this might even be due to aweakness in our implementation.As far as the models are onerned, the six examples we inluded are suÆient todemonstrate that the ompat models (PQP) and (PQP0) are learly muh faster tosolve than the regular MV-model (MV2).A �nal remark has to be made regarding Matlab's spdiags routine. When alledwith an empty �rst argument, e.g. spdiags([℄,0,0,0) it produes an error messagewhile one would expet it to simply return an empty matrix. This somewhat unpre-ditable behavior auses trouble when alling pd ipm or p ipm with empty lower orupper bounds on the design variable. Thus instead of programming around this \bug"we deided to rather \�x" the spdiags routine in suh a way that it now returns anempty result when alled with an empty �rst argument.
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5. ImplementationTable 5.1: Numerial Results IData Model Bound Solver Total Infeasible CPU 1-Norm # Stoks in# Steps # Steps Time Residual solutionr8912 `=' 1 PC 10 8 4.67 1.11E-12 28r8912 `=' 1 PD 15 11 6.05 4.31E-12 28r8912 M `=' 1 PC 14 2 49.03 2.11E-15 28r8912 M `=' 1 PD 23 5 79.15 3.78E-15 28r8912 `�' 1 PC 10 9 4.68 4.93E-12 32r8912 `�' 1 PD 16 7 6.38 4.39E-13 32r8912 `=' .03 PC 11 10 5.07 1.06E-11 42r8912 `=' .03 PD 16 13 6.40 9.39E-14 42r8912 `�' .03 PC 12 7 5.35 8.01E-13 48r8912 `�' .03 PD 19 13 7.45 9.17E-13 48r9012 `=' 1 PC 11 10 5.03 1.14E-10 21r9012 `=' 1 PD 14 7 5.77 1.77E-12 21r9012 `�' 1 PC 11 10 5.08 5.08E-11 21r9012 `�' 1 PD 14 7 5.72 1.35E-12 21r9012 `=' .03 PC 14 10 6.13 2.14E-13 45r9012 `=' .03 PD 18 12 7.05 1.97E-12 45r9012 `�' .03 PC 14 11 6.18 2.09E-12 45r9012 `�' .03 PD 18 12 7.08 2.38E-12 45r9012 M `�' .03 PC 12 1 43.87 1.55E-15 45r9012 M `�' .03 PD 24 3 86.12 5.55E-16 45tsem1 `=' 1 PC 10 8 4.68 1.80E-12 29tsem1 `=' 1 PD 15 5 6.02 1.79E-11 29tsem1 `�' 1 PC 10 8 4.70 2.17E-12 29tsem1 `�' 1 PD 15 5 6.07 2.54E-11 29tsem1 `=' .03 PC 9 8 4.30 1.93E-11 40tsem1 `=' .03 PD 16 11 6.47 4.53E-14 40tsem1 `�' .03 PC 9 8 4.37 7.17E-11 40tsem1 `�' .03 PD 16 11 6.38 1.49E-11 40tsem2 `=' 1 PC 10 8 4.67 1.83E-11 32tsem2 `=' 1 PD 15 9 6.02 1.50E-11 32tsem2 `�' 1 PC 11 8 5.08 4.31E-10 36tsem2 `�' 1 PD 17 10 6.77 7.09E-10 36tsem2 `=' .03 PC 11 9 5.05 1.65E-11 48tsem2 `=' .03 PD 16 11 6.45 1.58E-12 48tsem2 `�' .03 PC 10 8 4.72 6.25E-11 47tsem2 `�' .03 PD 16 10 6.38 8.88E-12 4758



5. ImplementationTable 5.2: Numerial Results IIData Model Bound Solver Total Infeasible CPU 1-Norm # Stoks in# Steps # Steps Time Residual solutiontsem3 `=' 1 PC 17 13 7.27 2.56E-14 10tsem3 `=' 1 PD 20 15 7.78 2.02E-14 10tsem3 `�' 1 PC 17 13 7.23 4.13E-14 10tsem3 `�' 1 PD 20 15 7.85 4.60E-14 10tsem3 M `�' 1 PC 16 5 58.33 1.55E-15 10tsem3 M `�' 1 PD 20 5 71.73 1.33E-15 10tsem3 `=' .03 Infeasible Problemtsem3 `�' .03 Infeasible Problemrand1 `=' 1 PC 7 3 3.58 1.11E-15 225rand1 `=' 1 PD 14 5 5.83 1.55E-14 225rand1 `�' 1 PC 7 3 3.50 1.55E-14 225rand1 `�' 1 PD 14 5 5.77 2.00E-15 225rand1 `=' .03 PC 7 3 3.55 9.99E-16 225rand1 `=' .03 PD 13 4 5.45 6.66E-16 225rand1 `�' .03 PC 7 3 3.53 5.00E-15 225rand1 `�' .03 PD 13 4 5.48 1.78E-15 225rand2 `=' 1 PC 13 10 5.77 8.81E-12 6rand2 `=' 1 PD 12 7 5.05 1.91E-12 6rand2 `�' 1 PC 12 9 5.50 1.21E-11 6rand2 `�' 1 PD 18 8 7.12 1.03E-11 6rand2 `=' .03 Infeasible Problemrand2 `�' .03 Infeasible Problemtsem `=' 1 PC 12 10 128.1 1.42E-11 36tsem `=' 1 PD 16 11 156.6 3.77E-10 36tsem `�' 1 PC 12 10 126.6 4.31E-12 36tsem `�' 1 PD 16 11 159.3 6.09E-10 36tsem `�' .03 PC 17 12 169.2 1.60E-09 49tsem `�' .03 PD 21 13 196.3 1.88E-09 49rand3 `=' 1 PC 26 6 102.2 7.56E-12 33rand3 `=' 1 PD 33 9 118.1 7.30E-10 34rand3 `�' 1 PC 23 7 89.9 1.17E-11 33rand3 `�' 1 PD 32 6 113.2 1.39E-09 34rand3 `� .03 Infeasible Problemrand3 `�' .04 PC 33 13 126.4 1.44E-11 37rand3 `�' .04 PD 44 16 154.6 1.49E-11 37
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6. Conlusions and SummaryIn this thesis we demonstrated that by transforming a MV model into a separable QPand by applying IPMs to this separable representation, Markowitz' model and henealso most models based on it now an be solved in a very pratial amount of timeeven for large problems.The transformation itself makes the model generation very easy by using historialdata and permits to solve the MV model in usually 10% of the time that would beneeded to solve the regular MV model. At the same time the algorithms that we im-plemented generally �nd solution portfolios with a very manageable number of assets.Even if they don't it only requires a little extra work to �nd suh a solution as itsexistene is guaranteed by the separable representation.We have seen that the behavior of the presented primal-dual IPM is mainly on-trolled by the entering and the steplength parameters and that it required a substan-tial amount of work to �nd hoies of these parameters whih guarantee the global andsuperlinear onvergene of the duality gap. On the other hand the numerial experi-ments have shown that in pratie the hoies of parameters do not have to be restritedso narrowly to get pratially eÆient algorithms. Very interesting, espeially from apratial point of view is the possibility of starting with infeasible iterates and yetto ahieve reliable fast onvergene in all solvable ases that we tested. A fairly newapproah might be the way we deal with free variables in pratie, i.e. to treat themas variables with in�nite lower and upper bounds whih works very well.From our and the ited results it is save to say that at this time the di�erent variantsof Mehrotra's preditor-orretor IPM o�er the best pratial eÆieny. The itedsoures seem to support its dominane over all other IPMs also in theory.Considering that portfolio models are used in a variety of areas, more professionalversions of the presented portfolio optimization methods have the potential of beinginluded in a wide range of software pakages in the future.
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Appendix





A. Listings of Routines
A.1 Model Generator: mvtostafuntion [H,,A,b,lboundx,uboundx℄ = mvtosta(P,alpha,uboundx,whih)% MVTOSTA% [H,,A,b,lboundx,uboundx℄ = mvtosta(P,alpha,uboundx,whih)% transforms the values of a problem given in the form of a Mean-% Variane model with ompat fatorization of the ovariane-% matrix into a standard QP-model with lower and upper bounds on% (possibly just parts of) the design variable x:%% Min x'Hx+'x%% s.t Ax=b , lboundx<=x<=uboundx%% Due to the size and struture of the problems onsidered the funtion% takes advantage of the sparse matrix type: H and  are returned% as sparse matries.[k,n℄ = size(P);% First handle missing argumentsif nargin < 3 uboundx=[℄;endif whih == '1' % Regular aselboundx = zeros(n,1);A = [[P ; zeros(1,n) ; ones(1,n)℄ [-eye(k); ones(1,k);zeros(1,k)℄℄;b = [alpha*ones(k,1);0;1℄;H = [sparse(n,k+n);sparse(k,n) speye(k)℄; = sparse(n+k,1);elseif whih == '2' % >= onstraint for alphalboundx = zeros(n+1,1);A = [[(eye(k)-(1/k)*ones(k))*P ; 1/k*ones(1,k)*P ; ones(1,n)℄ ...[zeros(k,1);-1;0℄ [-eye(k); zeros(2,k)℄℄;b = [sparse(k,1);alpha;1℄;H = [sparse(n+1,k+n+1);sparse(k,n+1) speye(k)℄; = sparse(n+k+1,1);elseif whih == '3' % Point on the effiient frontierlboundx = zeros(n,1);A = [[(eye(k)-(1/k)*ones(k))*P ; ones(1,n)℄ [-eye(k); zeros(1,k)℄℄;65



A. Listings of Routinesb = [sparse(k,1);1℄;H = [sparse(n,k+n);sparse(k,n) speye(k)℄; = [-alpha/k*P'*ones(k,1);sparse(k,1)℄;endA.2 Pure Primal-Dual Algorithm: pd ipmfuntion [xstar,ystar,zstar,lambda℄=pd_ipm(A,H,b,,lboundx,uboundx,x0,maxit,tol)% [xstar,ystar,zstar,lambda℄=pd_ipm(A,H,b,,lboundx,uboundx,x0,y0,maxit,tol)%% Primal-Dual Interior Point Method Quadrati Optimization%% pd_ipm solves onvex Quadrati Programs%% Minimize 1/2 x'*H*x + '*x subjet to A*x == b, lboundx <= x <= uboundx%% using a primal-dual interior point method.%% H must be positive semi-definite and A must have full rank.%% The user has the option of inorporating lower and upper bounds on x, using% lboundx and uboundx, respetively. If lboundx or uboundx are shorter than x,% the remainig omponents of x are assumed to be unbounded in the respetive% diretion.%% A starting value x0 an be given but it has to satisfy the box-onstraints.%% The default maximal number of iterations is 100 and an be adjusted by setting% maxit.%% The default termination tolerane is 1E-7 and an be adjusted by setting tol.%% The routine returns the solution xstar and the lagrangian multipliers, where% ystar is assoiated with lboundx, zstar is assoiated with uboundx and lambda% is assoiated with the equality onstraints.% First set a ouple of default values% defmaxit = 100; % Default value for the maximum number of iterationsdeftol = 1e-7; % Default tolerane for objetive value and residualsthreshold_sale = .3; % This is used for x0 and y0xi = .45; % Only an initial value used for sigmak,% the entering parameteralpha_sale=.99995; % Used for omputation of alphak% Determine dimensions of the problem% [m n℄ = size(A);if (size(H)~=[n,n℄)|(size(b)~=[m,1℄)|(size()~=[n,1℄)| ...(size(uboundx,1)>n)|(size(lboundx,1)>n)error('Dimensions mismath !!!'); 66



A. Listings of Routinesendnustr=size(uboundx,1); % Number of upper-onstrained variablesnufree = n-nustr;nlstr=size(lboundx,1); % Number of lower-onstrained variablesnlfree = n-nlstr;if n <= 5000 %phi = n^2; % phi and max_bH are used in the alulation ofelse % sigmak, the entering parameterphi = n^(1.5); % f. Lustig, Marsten, Shannoend %% Determine if A has full rank% if rank(A) < m , error('A does not have full row-rank'); end% If no tolerane is given use default% if nargin < 9, tol = deftol;% If no limit on iterations is given use default value% if nargin < 8, maxit = defmaxit;% If no starting-point is given ompute one by default proedure% if nargin < 7xk = A'/(A*A')*b; % This is legitimate sine we know that A has full row-rank% and it's muh faster than pinv(A)*b !!!threshold=norm(xk,1)/n*threshold_sale;for i = 1:min([nlstr,nustr℄)if uboundx(i)-lboundx(i) < 2*thresholdxk(i) = (uboundx(i)-lboundx(i))/2;elseif xk(i)-lboundx(i) < thresholdxk(i) = lboundx(i)+threshold;elseif uboundx(i)-xk(i) < thresholdxk(i) = uboundx(i) - threshold;end;end;end;end;if nlstr < nustrfor i = nlstr+1:nustrif uboundx(i) - xk(i) < thresholdxk(i) = uboundx(i)-threshold;end;end;elsefor i = nustr+1:nlstrif xk(i)-lboundx(i) < thresholdxk(i) = lboundx(i) + threshold;67



A. Listings of Routinesend;end;end;elsexk=x0;end,end,endlambdak=zeros(m,1);yk=+H*xk;threshold=norm(yk,1)/n*threshold_sale;if threshold == 0 , threshold = threshold_sale; endzk = yk;temp = (zk<=0);zk=abs(zk).*temp;yk=zk.*(~temp);yk(nlstr+1:n)=zeros(nlfree,1);zk(nustr+1:n)=zeros(nufree,1);temp = yk(1:nlstr) < threshold;yk([temp;zeros(nlfree,1)℄) = threshold * ones(nnz(temp),1);temp = zk(1:nustr) < threshold;zk([temp;zeros(nufree,1)℄) = threshold * ones(nnz(temp),1);% Pik global parameters based on x0 and y0% fk1 = ([xk(1:nlstr)-lboundx;zeros(nlfree,1)℄).*yk;fk2 = ([uboundx-xk(1:nustr);zeros(nufree,1)℄).*zk;objetive1=sum(fk1);objetive2=sum(fk2);objetive=objetive1+objetive2;residual = [A*xk-b;A'*lambdak-H*xk+yk-zk-℄;k=0;onverged=0;x_feasible=0;yz_feasible=0;dxyk=zeros(3*n+m,1); % Alloate spae !!!M = xi*phi*max([max(max(H));b;℄); % For sigmakresidual0 = norm(residual,1);% Start iteration%while (~onverged) & (k <= maxit)% Here the entering parameter is omputed%if x_feasible & yz_feasiblesigmak = objetive / phi;elsesigmak = ('*xk+xk'*H*xk-b'*lambdak+uboundx'*zk(1:nustr)- ...lboundx'*yk(1:nlstr)+ M*(norm(residual,1)/residual0))/ phi;end;
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A. Listings of Routines% Compute the searh diretions% dxyk = [ dxkN dxkC% dykN dykC% dzkN dzkC% lambda ℄% Slinv=spdiags([(-lboundx+xk(1:nlstr)).^(-1);zeros(nlfree,1)℄,0,n,n);Suinv=spdiags([( uboundx-xk(1:nustr)).^(-1);zeros(nufree,1)℄,0,n,n);SlinvYk=spdiags(Slinv*yk,0,n,n);SuinvZk=spdiags(Suinv*zk,0,n,n);Ginv=H+SlinvYk+SuinvZk;if k == 0if ondest(Ginv) > 1e12H_ill = 1;disp('Warning: H is ill-onditioned !!!');elseH_ill = 0;end;end;if H_illGinv=Ginv+5*max(max(Ginv))*eps*speye(n);endGinv=inv(hol(Ginv)); % This seems to be numerially more stable thanGinv=Ginv*Ginv'; % inv(H+SlinvYk+SuinvZk) !Rhol=hol(A*Ginv*A');temp1=Slinv*(-fk1+sigmak*ones(n,1));temp2=Suinv*(-fk2+sigmak*ones(n,1));temp3=temp1-temp2-(-residual(m+1:m+n));dxyk(3*n+1:3*n+m)=Rhol\(Rhol'\(-A*Ginv*temp3+(-residual(1:m))));dxyk(1:n)=Ginv*(temp3+A'*dxyk(3*n+1:3*n+m,:));dxyk(n+1:2*n)=temp1-SlinvYk*dxyk(1:n,:);dxyk(2*n+1:3*n)=temp2+SuinvZk*dxyk(1:n,:);% Compute alphak, the step-length% minimum = min([Slinv*dxyk(1:n,1);-Suinv*dxyk(1:n,1)℄);if minimum < 0alphak_p=min([(-alpha_sale/minimum);1℄);elsealphak_p=1;end;minimum = min([spdiags(yk(1:nlstr).^(-1),0,nlstr,nlstr)* ...dxyk(n+1:n+nlstr,1); ...spdiags(zk(1:nustr).^(-1),0,nustr,nustr)* ...dxyk(2*n+1:2*n+nustr,1)℄);if minimum < 0alphak_d=min([(-alpha_sale/minimum);1℄);elsealphak_d=1;end;% if alphak_p < alphak_d% alphak_d = alphak_d 69



A. Listings of Routines% else% alphak_p = alphak_d% end;% Compute the new iterates% xk = xk + alphak_p * dxyk(1:n,1);yk = yk + alphak_d * dxyk(n+1:2*n,1);zk = zk + alphak_d * dxyk(2*n+1:3*n,1);lambdak = lambdak + alphak_d * dxyk(3*n+1:3*n+m,1);% Inrease k the iteration parameter and display it% k = k+1;disp([num2str(k) ' steps ompleted'℄);% Test sequene for onvergene rate% o = (objetive + max(abs(residual)))^1;% Update quantities% fk1 = ([xk(1:nlstr)-lboundx;zeros(nlfree,1)℄).*yk;fk2 = ([uboundx-xk(1:nustr);zeros(nufree,1)℄).*zk;objetive1=sum(fk1);objetive2=sum(fk2);objetive=objetive1+objetive2;residual = [A*xk-b;A'*lambdak-H*xk+yk-zk-℄;% Test sequene for onvergene rate% o = objetive + max(abs(residual)) / o;disp(['o = ' num2str(o)℄);% Feasibility test% if ~x_feasible & norm(residual(1:m),1)/(1+norm(xk,1))<=toldisp(['xk feasible after ' num2str(k) ' steps.'℄);x_feasible=1;endif ~yz_feasible & norm(residual(m+1:m+n),1)/ ...(1+norm([xk;lambdak;yk;zk℄,1))<=toldisp(['yk & zk feasible after ' num2str(k) ' steps.'℄);yz_feasible=1;end% Optimality test% if (abs(objetive)<tol) & norm(residual,1)/ ...(1+norm([xk;lambdak;yk;zk℄,1))<tolonverged = 1;endend
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A. Listings of Routinesif k > maxitdisp(['No solution after ' num2str(maxit) ' steps !!!'℄);disp('Last iterates were:');elsedisp(['Solution found after ' num2str(k) ' steps.'℄);endxstar = xk; ystar = yk; zstar=zk; lambda=lambdak;A.3 Preditor-Corretor Algorithm: p ipmfuntion [xstar,ystar,zstar,lambda℄=p_ipm(A,H,b,,lboundx,uboundx,x0,maxit,tol)% [xstar,ystar,zstar,lambda℄=p_ipm(A,H,b,,lboundx,uboundx,x0,y0,maxit,tol)%% Preditor-Corretor Interior Point Method Quadrati Optimization%% p_ipm solves onvex Quadrati Programs%% Minimize 1/2 x'*H*x + '*x subjet to A*x == b, lboundx <= x <= uboundx%% using a preditor-orretor interior point method.%% H must be positive semi-definite and A must have full rank.%% The user has the option of inorporating lower and upper bounds on x, using% lboundx and uboundx, respetively. If lboundx or uboundx are shorter than x,% the remainig omponents of x are assumed to be unbounded in the respetive% diretion.%% A starting value x0 an be given but it has to satisfy the box-onstraints.%% The default maximal number of iterations is 100 and an be adjusted by setting% maxit.%% The default termination tolerane is 1E-7 and an be adjusted by setting tol.%% The routine returns the solution xstar and the lagrangian multipliers, where% ystar is assoiated with lboundx, zstar is assoiated with uboundx and lambda% is assoiated with the equality onstraints.% First set a ouple of default values% defmaxit = 100; % Default value for the maximum number of iterationsdeftol = 1e-7; % Default tolerane for objetive value and residualsthreshold_sale = 1; % This is used for x0 and y0sigma_sale=.7; % This used as entering parameter% if residual >> objetivealpha_sale=.99995; % Used for omputation of alphak% Determine dimensions of the problem% [m n℄ = size(A); 71



A. Listings of Routinesif (size(H)~=[n,n℄)|(size(b)~=[m,1℄)|(size()~=[n,1℄)| ...(size(uboundx,1)>n)|(size(lboundx,1)>n)error('Dimensions mismath !!!');endnustr=size(uboundx,1); % Number of upper-onstrained variablesnufree = n-nustr;nlstr=size(lboundx,1); % Number of lower-onstrained variablesnlfree = n-nlstr;if n <= 5000 %phi = n^2; % phi is used in the alulation ofelse % sigmak, the entering parameterphi = n^(1.5); % f. Lustig, Marsten, Shannoend %% Determine if A has full rank% if rank(A) < m , error('A does not have full row-rank'); end% If no tolerane is given use default% if nargin < 9, tol = deftol;% If no limit on iterations is given use default value% if nargin < 8, maxit = defmaxit;% If no starting-point is given ompute one by default proedure% if nargin < 7xk = A'/(A*A')*b; % This is legitimate sine we know that A has full row-rank% and it's muh faster than pinv(A)*b !!!threshold=norm(xk,1)/n*threshold_sale;for i = 1:min([nlstr,nustr℄)if uboundx(i)-lboundx(i) < 2*thresholdxk(i) = (uboundx(i)-lboundx(i))/2;elseif xk(i)-lboundx(i) < thresholdxk(i) = lboundx(i)+threshold;elseif uboundx(i)-xk(i) < thresholdxk(i) = uboundx(i) - threshold;end;end;end;end;if nlstr < nustrfor i = nlstr+1:nustrif uboundx(i) - xk(i) < thresholdxk(i) = uboundx(i)-threshold;end;end;elsefor i = nustr+1:nlstr 72



A. Listings of Routinesif xk(i)-lboundx(i) < thresholdxk(i) = lboundx(i) + threshold;end;end;end;elsexk=x0;end,end,end% Compute initial values for y, z and lambda based on x% lambdak=zeros(m,1);yk=+H*xk;threshold=norm(yk,1)/n*threshold_sale;if threshold == 0 , threshold = threshold_sale; endzk = yk;temp = (zk<=0);zk=abs(zk).*temp;yk=zk.*(~temp);yk(nlstr+1:n)=zeros(nlfree,1);zk(nustr+1:n)=zeros(nufree,1);temp = yk(1:nlstr) < threshold;yk([temp;zeros(nlfree,1)℄) = threshold * ones(nnz(temp),1);temp = zk(1:nustr) < threshold;zk([temp;zeros(nufree,1)℄) = threshold * ones(nnz(temp),1);% Pik global parameters based on x0 and y0% fk1 = ([xk(1:nlstr)-lboundx;zeros(nlfree,1)℄).*yk;fk2 = ([uboundx-xk(1:nustr);zeros(nufree,1)℄).*zk;objetive1=sum(fk1);objetive2=sum(fk2);objetive=objetive1+objetive2;residual = [A*xk-b;A'*lambdak-H*xk+yk-zk-℄;k=0;onverged=0;x_feasible=0;yz_feasible=0;dxyk=zeros(3*n+m,1); % Alloate spae !!!% Start iteration%while (~onverged) & (k <= maxit)% Compute the searh diretions% dxyk = [ dxkN dxkC% dykN dykC% dzkN dzkC% lambda ℄% Slinv=spdiags([(-lboundx+xk(1:nlstr)).^(-1);zeros(nlfree,1)℄,0,n,n);73



A. Listings of RoutinesSuinv=spdiags([( uboundx-xk(1:nustr)).^(-1);zeros(nufree,1)℄,0,n,n);SlinvYk=spdiags(Slinv*yk,0,n,n);SuinvZk=spdiags(Suinv*zk,0,n,n);Ginv=H+SlinvYk+SuinvZk;if k == 0if ondest(Ginv) > 1e12H_ill = 1;disp('Warning: H is ill-onditioned !!!');elseH_ill = 0;end;end;if H_illGinv=Ginv+5*max(max(Ginv))*eps*speye(n);endGinv=inv(hol(Ginv)); % This seems to be numerially more stable thanGinv=Ginv*Ginv'; % inv(H+SlinvYk+SuinvZk) !Rhol=hol(A*Ginv*A');% First ompute the preditor step% temp1=Slinv*(-fk1);temp2=Suinv*(-fk2);temp3=temp1-temp2-(-residual(m+1:m+n));dxyk(3*n+1:3*n+m)=Rhol\(Rhol'\(-A*(Ginv*temp3)-residual(1:m)));dxyk(1:n)=Ginv*(temp3+A'*dxyk(3*n+1:3*n+m));dxyk(n+1:2*n)=temp1-SlinvYk*dxyk(1:n);dxyk(2*n+1:3*n)=temp2+SuinvZk*dxyk(1:n);% Here the entering parameter is omputed% if ~(x_feasible & yz_feasible) & norm(residual,1) / objetive > 1e3sigmak = sigma_sale;elseif objetive < 1 & x_feasible & yz_feasiblesigmak = objetive / phi;elseminimum = min([Slinv*dxyk(1:n,1);-Suinv*dxyk(1:n,1)℄);if minimum < 0alphak_p=min([(-alpha_sale/minimum);1℄);elsealphak_p=1;end;minimum = min([spdiags(yk(1:nlstr).^(-1),0,nlstr,nlstr)* ...dxyk(n+1:n+nlstr); ...spdiags(zk(1:nustr).^(-1),0,nustr,nustr)* ...dxyk(2*n+1:2*n+nustr)℄);if minimum < 0alphak_d=min([(-alpha_sale/minimum);1℄);elsealphak_d=1;end;g_hat1=([xk(1:nlstr)-lboundx+alphak_p*dxyk(1:nlstr);...zeros(nlfree,1)℄)'* (yk+alphak_d*dxyk(n+1:2*n));74



A. Listings of Routinesg_hat2=([uboundx-xk(1:nustr)-alphak_p*dxyk(1:nustr);...zeros(nufree,1)℄)'* (zk+alphak_d*dxyk(2*n+1:3*n));sigmak=((g_hat1+g_hat2)/objetive)^2 * ((g_hat1+g_hat2)/n);end;end;disp(['sigmak = ' num2str(sigmak)℄);% Now the entered orretor step% temp1=Slinv*(sigmak*ones(n,1)-fk1-dxyk(1:n).*dxyk(n+1:2*n));temp2=Suinv*(sigmak*ones(n,1)-fk2+dxyk(1:n).*dxyk(2*n+1:3*n));temp3=temp1-temp2-(-residual(m+1:m+n));dxyk(3*n+1:3*n+m,:)=Rhol\(Rhol'\(-A*(Ginv*temp3)-residual(1:m)));dxyk(1:n)=Ginv*(temp3+A'*dxyk(3*n+1:3*n+m));dxyk(n+1:2*n)=temp1-SlinvYk*dxyk(1:n);dxyk(2*n+1:3*n)=temp2+SuinvZk*dxyk(1:n);% Compute alphak, the step-length% minimum = min([Slinv*dxyk(1:n,1);-Suinv*dxyk(1:n,1)℄);if minimum < 0alphak_p=min([(-alpha_sale/minimum);1℄);elsealphak_p=1;end;minimum = min([spdiags(yk(1:nlstr).^(-1),0,nlstr,nlstr)* ...dxyk(n+1:n+nlstr,1); ...spdiags(zk(1:nustr).^(-1),0,nustr,nustr)* ...dxyk(2*n+1:2*n+nustr,1)℄);if minimum < 0alphak_d=min([(-alpha_sale/minimum);1℄);elsealphak_d=1;end;% Compute the new iterates% xk = xk + alphak_p * dxyk(1:n,1);yk = yk + alphak_d * dxyk(n+1:2*n,1);zk = zk + alphak_d * dxyk(2*n+1:3*n,1);lambdak = lambdak + alphak_d * dxyk(3*n+1:3*n+m,1);% Inrease k the iteration parameter and display it% k = k+1;disp([num2str(k) ' steps ompleted'℄);% Test sequene for onvergene rate% o = (objetive + max(abs(residual)))^1;
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A. Listings of Routines% Update quantities% fk1 = ([xk(1:nlstr)-lboundx;zeros(nlfree,1)℄).*yk;fk2 = ([uboundx-xk(1:nustr);zeros(nufree,1)℄).*zk;objetive1=sum(fk1);objetive2=sum(fk2);objetive=objetive1+objetive2;residual = [A*xk-b;A'*lambdak-H*xk+yk-zk-℄;% Test sequene for onvergene rate% o = objetive + max(abs(residual)) / o;disp(['o = ' num2str(o)℄);% Feasibility test% if ~x_feasible & norm(residual(1:m),1)/(1+norm(xk,1))<=toldisp(['xk feasible after ' num2str(k) ' steps.'℄);x_feasible=1;endif ~yz_feasible & norm(residual(m+1:m+n),1)/(1+norm([xk;lambdak;yk;zk℄,1))<=toldisp(['yk & zk feasible after ' num2str(k) ' steps.'℄);yz_feasible=1;end% Optimality test% if (abs(objetive)< tol) & norm(residual,1)/(1+norm([xk;lambdak;yk;zk℄,1))<tolonverged = 1;endendif k > maxitdisp(['No solution after ' num2str(maxit) ' steps !!!'℄);disp('Last iterates were:');elsedisp(['Solution found after ' num2str(k) ' steps.'℄);endxstar = xk; ystar = yk; zstar=zk; lambda=lambdak;A.4 Data Generator: randprobfuntion P = randprob(samples,variables,mu,sigma,r_mu,r_sigma)% RANDPROB%% P = randprob(samples,variables,mu,sigma,r_mu,r_sigma)%% reates a test-matrix for portfolio optimization of the size samples by% variables. It imitates a matrix that ontains #samples samples of% #variables variables, for whih the expeted values of the variables are% ontained in an interval of length r_mu with its enter at mu and the76



A. Listings of Routines% standard-deviations of the variables are ontained in an interval of% length r_sigma with its enter at sigma.% It reates a different matrix eah time it is invoked.randn('seed',sum(100*lok));P = randn(samples,variables);Exp = rand(variables,1)*r_mu + (mu - r_mu/2) * ones(variables,1);Std = rand(variables,1)*r_sigma + (sigma - r_sigma/2) * ones(variables,1);P = P*diag(Std) + ones(samples,variables)*diag(Exp);
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