## A-posteriori Fehleranalysis für singulär gestörte elliptische Randwertprobleme

Diplomarbeit

vorgelegt von Marcus Looft aus Frankfurt a. M.

angefertigt am Institut für Numerische und Angewandte Mathematik der Georg-August-Universität zu Göttingen 1999

## Inhaltsverzeichnis

| In            | halts                                                          | verzeichnis                                | i  |  |  |
|---------------|----------------------------------------------------------------|--------------------------------------------|----|--|--|
| Ei            | nleit                                                          | ung                                        | 1  |  |  |
| 1             | Funktionenräume                                                |                                            |    |  |  |
|               | 1.1                                                            | Bezeichnungen und Notationen               | 3  |  |  |
|               | 1.2                                                            | Klassische Funktionenräume                 | 4  |  |  |
|               | 1.3                                                            | Verallgemeinerte Funktionenräume           | 7  |  |  |
|               | 1.4                                                            | Eigenschaften verallgemeinerter Funktionen | 11 |  |  |
| <b>2</b>      | Polynomiale Interpolation in Sobolev-Räumen                    |                                            |    |  |  |
|               | 2.1                                                            | Quotientenräume                            | 17 |  |  |
|               | 2.2                                                            | Interpolationsabschätzungen                | 21 |  |  |
|               | 2.3                                                            | Affine Transformationen                    | 22 |  |  |
|               | 2.4                                                            | Inverse Ungleichungen                      | 24 |  |  |
|               | 2.5                                                            | Interpolationstheorie konformer FE-Räume   | 26 |  |  |
| 3             | Singulär gestörte Diffusions-Konvektions-Reaktions-Gleichungen |                                            |    |  |  |
|               | 3.1                                                            | Problemstellung                            | 31 |  |  |
|               | 3.2                                                            | Schwache Formulierung                      | 32 |  |  |
|               | 3.3                                                            | Konstruktion eines konformen FE-Raumes     | 36 |  |  |
|               | 3.4                                                            | Diskretisierung                            | 40 |  |  |
| 4             | A-posteriori Fehleranalysis                                    |                                            |    |  |  |
|               | 4.1                                                            | Analysis für die oberen Abschätzungen      | 41 |  |  |
|               | 4.2                                                            | Analysis für die unteren Abschätzungen     | 46 |  |  |
|               | 4.3                                                            | A-posteriori-Fehlerschätzung               | 52 |  |  |
| 5             | $\mathbf{Zus}$                                                 | ammenfassung                               | 61 |  |  |
| Sy            | mbo                                                            | lverzeichnis                               | 63 |  |  |
| A             | Abbildungsverzeichnis                                          |                                            |    |  |  |
| $\mathbf{Li}$ | Literaturverzeichnis                                           |                                            |    |  |  |

## Einleitung

Bei der Lösung von partiellen Differentialgleichungen mit Hilfe von Finite-Element-Methoden (FEM) spielt der Rechenaufwand eine maßgebliche Rolle. Daher möchte man Verfahren entwickeln, die bei vorgegebener Toleranz des Diskretisierungsfehlers unter möglichst geringem Rechenaufwand eine Lösung mit einer gewünschten Genauigkeit liefern. Falls diese Verfahren nur von den gegebenen Daten und den in jedem Schritt berechneten Größen abhängen, nennt man sie *adaptive Verfahren*.

Eine spezielle Klasse von adaptiven Verfahren verwendet a-posteriori Fehlerschätzer. Diese sollen entstandene Fehler in gewisser Weise *lokalisieren*. Ein sehr effizientes adaptives Verfahren könnte darin bestehen, bei einer gegebenen Anfangszerlegung des Gebietes mit Hilfe eines Fehlerschätzers den Fehler zu lokalisieren und die Zerlegung lokal entsprechend zu verfeinern oder zu vergröbern. Ein solches Vorgehen würde bei einer gegebenen Anfangszerlegung des Lösungsgebietes den Rechenaufwand in jedem Berechnungsschritt angemessen klein halten. Der Aufwand von Vorüberlegungen zu dem jeweiligen Problem könnte gering gehalten werden.

Die Entwicklung von Fehlerschätzern geht zurück auf eine Arbeit von Babuška und Rheinboldt (vgl. [BR78]) und wurde etwas später wieder aufgenommen von Bank und Weiser (vgl. [BW85]). Mittlerweile haben eine größere Anzahl von Autoren zu diesem Thema beigetragen, so daß Fehlerschätzer zunehmend Verbreitung finden. Sie sind mit unterschiedlichem Erfolg bei den verschiedensten Problemen bis hin zu nichtlinearen Differentialgleichungen wie dem Navier-Stokes-Problem durch Rannacher, Verfürth u. a. angewandt worden. Ihre praktische Implementierung ist als kritisch zu bewerten, da sie den Fehler häufig nur bis auf Konstanten schätzen. In diesen Konstanten stecken unter Umständen viele wesentliche Größen geometrischer und algebraisch-analytischer Art. Es wäre sehr wünschenswert, mehr über diese Konstanten zu wissen.

Ziel dieser Arbeit ist es, einen Fehlerschätzer für den Diskretisierungsfehler der schwachen Formulierung des folgenden singulär gestörten linearen Randwertproblems 2. Ordnung zu entwickeln.

(1) 
$$\begin{aligned} -\varepsilon \Delta u + \vec{a} \cdot \nabla u + bu &= f & \text{ in } \Omega, \\ u &= 0 & \text{ auf } \Gamma_D, \\ \varepsilon \nabla u \cdot \vec{n} + \zeta u &= g & \text{ auf } \Gamma_R. \end{aligned}$$

Differentialgleichungen dieses Typs werden aufgrund ihrer Bedeutung bei chemischen Prozessen auch als *Diffusions-Konvektions-Reaktions-Gleichungen* bezeichnet.

Die Arbeit ist in vier Kapitel unterteilt.

Im ersten Kapitel werden funktionalanalytische Hilfsmittel wie angepaßte Funktionenräume eingeführt sowie einige ihrer Eigenschaften angegeben, unter anderem ein Identifikationssatz für Polynome und eine Dichtheitsaussage.

Das zweite Kapitel ist der polynomialen Interpolationstheorie in Sobolev-Räumen gewidmet. Der erste Schwerpunkt ist eine Interpolationsaussage für polynom-erhaltende Operatoren aus [Cia78] und eine daraus abgeleitete lokale Interpolationsabschätzung. Dies mündet in Interpolationsabschätzungen für einen in Kapitel 4 definierten Interpolationsoperator. Der zweite Schwerpunkt ist eine inverse Ungleichung für endlichdimensionale Räume, die für die untere Fehlerabschätzung des Fehlerschätzers in Kapitel 4 benötigt wird.

Im dritten Kapitel wird die eigentliche Problemstellung (1) erklärt und eine schwache Formulierung des Ausgangsproblems hergeleitet. Eine numerische Lösung soll mittels einer SUPG-Diskretisierung auf einem konformen Finite-Element-Raum erfolgen.

Das vierte Kapitel beschäftigt sich schließlich mit der Analysis für die a-posteriori Abschätzungen des Fehlers. Wichtige Hilfsmittel sind dabei die Interpolationsabschätzungen und inverse Ungleichungen aus Kapitel 2 sowie Spursätze und Blasenfunktionen. Es wird eine globale obere und eine lokale und globale untere Abschätzung des Fehlers durch den Fehlerschätzer hergeleitet. Das erste Hauptresultat ist eine untere Fehlerschätzung durch den

**Satz 1:** Seien die Daten  $\underline{a}, b \in W^{m,2}(\Omega)$  und  $\zeta, f, g \in W^{m,2}(\partial \Omega)$  und

$$\underline{\widetilde{a}} := \Pi(\underline{a}), \quad \overline{b} := \Pi(b), \quad \overline{\zeta} := \Pi(\zeta), \quad \overline{f} := \Pi(f), \quad \overline{g} := \Pi(g)$$

geeignete Interpolierende, so daß für  $u = \underline{a}, b, \zeta, f, g$  gelte

$$||u - \Pi u||_{L^2} \leq C h^m |u|_{W^{m,2}},$$

dann gilt

$$\begin{split} \widetilde{\eta_{R}} &\leq C \max_{T \in \mathcal{T}_{h}} \left\{ 1 + \alpha_{T} \|b\|_{L^{\infty}(T)} + \varepsilon^{-\frac{1}{2}} \alpha_{T} \|\underline{a}\|_{L^{\infty}(T)} + \varepsilon^{-\frac{1}{4}} \alpha_{T}^{\frac{1}{2}} \|\zeta\|_{L^{2}(\partial T)} \right\} \|\|u - u_{h}\|\| \\ &+ h^{m} \left( \varepsilon^{-\frac{1}{4}} \min\{h^{\frac{1}{2}} \varepsilon^{-\frac{1}{4}}, 1\} \|u_{h}\|_{L^{\infty}(\partial \mathcal{T}_{h})} + \min\{h \varepsilon^{-\frac{1}{2}}, 1\} \|u_{h}\|_{W^{1,\infty}(\Omega)} \right), \\ \widetilde{\eta_{R,T}} &\leq C \left( 1 + \alpha_{T} \|b\|_{L^{\infty}(\widetilde{\omega}_{T})} + \varepsilon^{-\frac{1}{2}} \alpha_{T} \|\underline{a}\|_{L^{\infty}(\widetilde{\omega}_{T})} + \varepsilon^{-\frac{1}{4}} \alpha_{T}^{\frac{1}{2}} \|\zeta\|_{L^{2}(\partial T)} \right) \||u - u_{h}\||_{\widetilde{\omega}_{T}} \\ &+ h_{T}^{m} \left( \varepsilon^{-\frac{1}{4}} \alpha_{E}^{\frac{1}{2}} \|u_{h}\|_{L^{\infty}(\partial T)} + \alpha_{T} \|u_{h}\|_{W^{1,\infty}(\widetilde{\omega}_{T})} \right). \end{split}$$

Falls T nicht am Rand  $\Gamma_R$  liegt, d.h. falls  $T \cap \Gamma_R = \emptyset$  gilt, entfällt der Term  $\|\zeta\|_{L^{\infty}(\partial T)}$  in der letzten Abschätzung. Die Größen  $\widetilde{\eta_R}$  und  $\widetilde{\eta_{R,T}}$  sind Fehlerschätzer die mit den Daten  $\widetilde{\underline{a}}, \widetilde{b}, \widetilde{\zeta}, \widetilde{f}, \widetilde{g}$  gebildet wurden.

und das zweite Hauptresultat ist eine obere Fehlerschätzung durch den

**Satz 2:** Sei  $\mathcal{T}_h$  eine Familie von zulässigen Zerlegungen von  $\Omega$  und  $u_h$  die eindeutigen Lösungen der SUPG-Diskretisierung aus Definition 3.16, dann erfüllt der Fehlerschätzer  $\eta_R$  die Abschätzungen

$$|||u - u_h||| \leq C \eta_R$$

# Kapitel 1 Funktionenräume

In diesem Kapitel werden an die Problemstellung angepaßte Funktionenräume eingeführt und ihre für die weiteren Betrachtungen wichtigsten Eigenschaften ohne Beweis zitiert. An den Stellen, wo es nötig wurde, eigene Aussagen zu treffen, wurden diese mit einem kurzen Beweis versehen. Die in diesem Kapitel eingeführten Bezeichnungen und Notationen behalten in den übrigen Kapiteln ihre Gültigkeit.

## 1.1 Bezeichnungen und Notationen

Die Differentialgleichungen in dieser Arbeit werden auf dem  $\mathbb{R}^n$  erklärt.

**Definition 1.1 (Euklidischer Raum)** Sei  $\mathbb{R}^n := \mathbb{R} \times ... \times \mathbb{R}$  der euklidische Raum der Dimension n. Vektoren  $(x_1, ..., x_n) \in \mathbb{R}^n$  werden mit x, y, z bezeichnet.

Auf diesem Raum sind in natürlicher Weise das folgende Skalarprodukt und die folgenden Normen erklärt.

Definition 1.2 (Euklidisches Skalarprodukt) Das euklidische Skalarprodukt

$$\begin{array}{cccc} \cdot ): & \mathbb{R}^n \times \mathbb{R}^n & \longrightarrow & \mathbb{R} \\ & & (x,y) & \longmapsto & \sum_{i=1}^n x_i y_i \end{array}$$

wird mit  $x \cdot y := (x, y)$  bezeichnet.

**Definition 1.3 (Normen auf dem**  $\mathbb{R}^n$ ) Set 0 , dann sind

(·,

$$\begin{array}{rccc} \cdot \parallel_p : & \mathbb{R}^n & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \|x\|_p := \left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}} \end{array}$$

Normen auf dem  $\mathbb{R}^n$ .

Der Begriff des Gebietes ist zur Definition von Funktionenräumen erforderlich.

**Definition 1.4 (Gebiete im**  $\mathbb{R}^n$ ) Ein Gebiet ist eine offene und zusammenhängende Menge im  $\mathbb{R}^n$ . Im Folgenden wird unter einem Gebiet  $\Omega$  stets ein beschränktes Gebiet mit Rand  $\partial \Omega := \overline{\Omega} \setminus \Omega$  verstanden.

## 1.2 Klassische Funktionenräume

Die im klassischen Sinn differenzierbaren Funktionen reichen für die Lösbarkeitstheorie von allgemeinen Differentialgleichungen nicht aus. Dennoch sind sie die Grundbausteine der modernen Funktionenräume. Der erste Abschnitt dient dazu, sie kurz einzuführen und partielle Ableitungen auf ihnen als Vorstufe von allgemeineren Differentialoperatoren zu definieren. Aus diesem Grund werden zuerst die glatten Funktionen eingeführt, auf denen man ohne Schwierigkeiten Ableitungen beliebiger Ordnung erklären kann.

**Definition 1.5 (glatte Funktionen)** Sei  $\Omega$  ein Gebiet, dann wird mit  $\mathcal{C}^{\infty}(\Omega)$  der Raum der auf  $\Omega$  beliebig oft stetig partiell differenzierbaren reellen Funktionen bezeichnet.

**Definition 1.6 (partielle Ableitungen)** Sei  $u \in C^{\infty}(\Omega)$ , dann heißen für alle Multiindices  $\alpha \in \mathbb{N}^n$ 

$$D^{\alpha}u := \frac{\partial^{\|\alpha\|_1}}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}} u$$

partielle Ableitungen von  $u \in \mathcal{C}^{\infty}(\Omega)$  der Ordnung  $\|\alpha\|_1$ .

Die Funktionenräume mit den angenehmsten Eigenschaften sind die glatten Funktionen mit kompaktem Träger. Diese werden durch ein System von Halbnormen zu einem lokalkonvexen topologischen Vektorraum. Die zugehörigen topologischen Dualräume werden als Distributionenräume bezeichnet. Distributionen können dazu dienen, verallgemeinerte Funktionen zu definieren. Den entscheidenden Beitrag zu dieser Theorie hat *L. Schwartz* in [Sch66] "*Théorie des distributions*" geliefert. Wichtige Vertreter der glatten Funktionen mit kompaktem Träger sind die *Sobolevschen Mittelungsfunktionen*, mit denen man *Lebesgue-integrierbare Funktionen* approximieren kann.

**Definition 1.7 (Träger einer Funktion)** Der Träger einer vektorwertigen Funktion u auf dem  $\mathbb{R}^n$  ist definiert durch

$$\operatorname{supp} u := \overline{\{x \in \mathbb{R}^n \mid u(x) \neq 0\}}.$$

Ein wichtiger Unterraum von  $\mathcal{C}^{\infty}(\Omega)$  wird in der folgenden Definition erklärt.

**Definition 1.8 (Funktionen mit kompaktem Träger)** Der Raum der beliebig oft stetig partiell differenzierbaren reellen Funktion auf  $\Omega$  mit kompaktem Träger in  $\Omega$  wird mit

$$\mathcal{C}_0^{\infty}(\Omega) := \{ \varphi \in \mathcal{C}^{\infty}(\Omega) \mid \operatorname{supp} \varphi \subseteq \Omega \}$$

bezeichnet.

Eine weitere wichtige Klasse von Funktionen sind die *Hölder-Räume*. Mit ihrer Hilfe kann eine Klassifizierung der Randglätte von Gebieten vorgenommen werden. Weiterhin kann mit ihrer Hilfe gezeigt werden, daß verallgemeinert differenzierbare Funktionen bis zu einer gewissen Ordnung auch klassisch differenzierbar sind. Diese Aussage wird im *Sobolevschen Einbettungssatz* (Satz 1.3) formuliert. **Definition 1.9** Set  $m \in \mathbb{N}$ , dann ist

$$\mathcal{C}^{m}(\Omega) := \{ \varphi : \Omega \to \mathbb{R} \mid D^{\alpha} \varphi \in \mathcal{C}^{0}(\Omega) \text{ für alle } \|\alpha\|_{1} \leq m \}$$

derRaum der m-fach stetig partiell differenzierbaren reellen Funktionen auf  $\Omega.$  Weiterhin ist

$$\mathcal{C}^{m}(\overline{\Omega}) := \{ \varphi \in \mathcal{C}^{m}(\Omega) \mid D^{\alpha}\varphi \text{ ist stetig fortsetzbar auf } \overline{\Omega} \text{ für alle } \|\alpha\|_{1} \leq m \}$$

der Unterraum aller Funktionen aus  $\mathcal{C}^m(\Omega)$  mit stetig auf  $\overline{\Omega}$  fortsetzbaren Ableitungen bis zur Ordnung m.

**Definition 1.10 (Hölder-Räume)** Seien  $0 < \lambda \leq 1$  und  $m \in \mathbb{N}$ , dann ist

$$\mathcal{C}^{m,\lambda}(\overline{\Omega}) := \{ \varphi \in \mathcal{C}^m(\overline{\Omega}) \mid \sum_{\|\alpha\|_1 \le m} \sup_{x \in \overline{\Omega}} |D^{\alpha}\varphi(x)| + \sum_{\|\alpha\|_1 = m} \sup_{x,y \in \overline{\Omega}} \frac{|D^{\alpha}\varphi(x) - D^{\alpha}\varphi(y)|}{|x - y|^{\lambda}} < \infty \}.$$

Für  $\lambda = 0$  definiert man

$$\mathcal{C}^{m,0}(\overline{\Omega}) := \mathcal{C}^m(\overline{\Omega}).$$

**Lemma 1.1** Für  $0 < \lambda \leq 1$  und  $m \in \mathbb{N}$  sind die Räume  $\mathcal{C}^{m,\lambda}(\overline{\Omega})$  Banach-Räume bezüglich der Normen

$$\|\varphi\|_{\mathcal{C}^{m}(\overline{\Omega})} := \sum_{\|\alpha\|_{1} \le m} \sup_{x \in \overline{\Omega}} |D^{\alpha}\varphi(x)| \quad f\ddot{u}r \ \lambda = 0 \quad und$$

$$\|\varphi\|_{\mathcal{C}^{m,\lambda}(\overline{\Omega})} := \|\varphi\|_{\mathcal{C}^m(\overline{\Omega})} + \sum_{\|\alpha\|_1 = m} \sup_{x,y \in \mathbb{R}^n} \frac{|D^{\alpha}\varphi(x) - D^{\alpha}\varphi(y)|}{|x - y|^{\lambda}} \quad f\ddot{u}r \ 0 < \lambda \le 1.$$

Beweis. Vgl. [Alt99], Kapitel 1, Abschnitte 1.5 und 1.6.

Nun werden die klassischen Differentialoperatoren eingeführt. Diese lassen sich auch auf Mannigfaltigkeiten als Differentiale auf dem de Rham Komplex der Differential-Formen einführen (vgl. [Jän93]). Sehr viele physikalische und dynamische Prozesse lassen sich bereits sehr gut durch Differentialgleichungen 2. Ordnung beschreiben. Die wichtigsten Differentialoperatoren 1. und 2. Ordnung sind die Operatoren Gradient, Divergenz und der Laplace-Operator.

**Definition 1.11 (Gradient)** Seien  $U \subseteq \mathbb{R}^n$  eine offene Menge und  $m \ge 1$ , dann heißt der Differentialoperator 1. Ordnung

$$\nabla: \quad \mathcal{C}^m(U) \quad \longrightarrow \quad \bigoplus_{i=1}^n \mathcal{C}^{m-1}(U)$$
$$u \quad \longmapsto \quad \left(\frac{\partial u}{\partial x_1}, ..., \frac{\partial u}{\partial x_n}\right)$$

Gradient.  $\nabla$  wird auch häufig als grad geschrieben.

**Definition 1.12 (Divergenz)** Seien  $U \subseteq \mathbb{R}^n$  eine offene Menge und  $m \ge 1$ , dann heißt der Differentialoperator 1. Ordnung

$$\nabla \cdot : \bigoplus_{i=1}^{n} \mathcal{C}^{m}(U) \longrightarrow \mathcal{C}^{m-1}(U)$$
$$(u_{1}, ..., u_{n}) \longmapsto \sum_{i=1}^{n} \frac{\partial u_{i}}{\partial x_{i}}$$

Divergenz.  $\nabla \cdot$  wird auch häufig als div geschrieben.

**Definition 1.13 (Laplace-Operator)** Seien  $U \subseteq \mathbb{R}^n$  eine offene Menge und  $m \geq 2$ , dann heißt der Differentialoperator 2. Ordnung

$$\begin{array}{rccc} \Delta : & \mathcal{C}^m(U) & \longrightarrow & \mathcal{C}^{m-2}(U) \\ & u & \longmapsto & \sum\limits_{i=1}^n \frac{\partial^2 u}{\partial x_i^2} \end{array}$$

Laplace-Operator.

**Bemerkung 1.1** Es gilt offensichtlich  $\nabla \cdot \nabla = \Delta$ .

#### Randglätte des Gebietes $\Omega$

Die meisten Eigenschaften der verallgemeinerten sowie der klassischen Funktionenräume hängen stark von der Geometrie der zugrundeliegenden Gebiete ab. Eine wichtige Rolle spielt die Beschaffenheit des Randes, von welcher die Fortsetzbarkeit von Funktionen in starkem Maße abhängt.

Die folgenden Definitionen dienen zur Beschreibung der Randglätte von Gebieten  $\Omega$ . Eine ausführliche Darstellung findet man in [Wlo82], Kapitel I, § 2.3.

**Definition 1.14 ((m, \lambda)-Diffeomorphismus)** Seien  $\Omega, \Upsilon$  Gebiete,  $0 \leq \lambda \leq 1$  und  $m \in \mathbb{N}$ , dann heißt die Bijektion

$$egin{array}{rcl} \Phi:&\Omega&\longrightarrow&\Upsilon\ &x&\longmapsto&\Phi(x)=(\Phi_1(x),...,\Phi_n(x)) \end{array}$$

mit der Eigenschaft, daß für alle  $i \in \{1, ..., n\}$  gilt

$$\begin{aligned}
\Phi_i &\in \mathcal{C}^{m,\lambda}(\overline{\Omega}) \quad und \\
\Phi_i^{-1} &\in \mathcal{C}^{m,\lambda}(\overline{\Upsilon}),
\end{aligned}$$

 $(m, \lambda)$ -Diffeomorphismus.

**Definition 1.15 ((m, \lambda) Glattheit)** Sei  $\Omega$  ein Gebiet.  $\Omega$  wird (m,  $\lambda$ )-glatt genannt, falls es zu jedem  $x \in \partial \Omega$  eine offene Umgebung  $U_x$  und einen (m,  $\lambda$ )-Diffeomorphismus zwischen  $U_x$  und dem Einheitswürfel  $W_n$  gibt, d. h.

$$\Phi_x: U_x \leftrightarrow W_n = \{x \mid -1 < x_i < 1, \ i = 1, ..., n\},\$$

der die folgenden Eigenschaften besitzt:

- $U_x \cap \partial \Omega \stackrel{\Phi_x}{\leftrightarrow} W_{n-1} = W_n(x_n = 0), \ d. \ h. \ U_x \cap \partial \Omega \ wird \ eineindeutig \ auf \ die \ Mittelebene in \ W_n \ abgebildet.$
- $U_x \cap \Omega \stackrel{\Phi_x}{\leftrightarrow} W_n^+ = W_n(x_n > 0), d. h. U_x \cap \Omega$  wird eineindeutig in die obere Halbebene von  $W_n$  abgebildet.
- $U_x \cap \Omega^c \stackrel{\Phi_x}{\leftrightarrow} W_n^- = W_n(x_n < 0), d. h. U_x \cap \Omega^c$  wird eineindeutig in die untere Halbebene von  $W_n$  abgebildet.

**Definition 1.16 (Lipschitz-Rand)** Speziell wird ein (0,1)-glattes Gebiet als Lipschitzstetig berandet bezeichnet.

**Bemerkung 1.2** Es gibt noch andere Eigenschaften von Gebietsrändern wie zum Beispiel Segment- und Kegeleigenschaften, welche durch die  $(m, \lambda)$ -Glattheit impliziert werden.

## **1.3** Verallgemeinerte Funktionenräume

Die für die späteren Aussagen wichtigsten Funktionenräume sind die Sobolev-Räume. Mit ihnen läßt sich die Lösbarkeitstheorie von Differentialgleichungen wesentlich erweitern. Ihre Bedeutung liegt in der Existenz von verallgemeinerten Ableitungen. Aus diesem Grund kommen sie als Lösungsräume von Differentialgleichungen in einem verallgemeinerten (schwachen) Sinn in Frage. Trotz ihrer Allgemeinheit teilen sie sehr viele Eigenschaften der klassischen Funktionenräume. Das liegt hauptsächlich daran, daß sie bis auf eine Ausnahme ( $W^{m,\infty}$ ) aus einer Vervollständigung der klassischen Räume hervorgehen. So erfüllen sie zum Beispiel die Produktregel und die Regel der partiellen Integration. Außerdem sind sie bis zu einer gewissen Ordnung auch klassisch differenzierbar und sie besitzen Randwerte, sogenannte Spuren, was sie für Randwertprobleme sehr nützlich macht.

Es stellt sich immer mehr heraus, daß die moderne Integrationstheorie ein geeignetes Mittel ist, den Begriff der Differenzierbarkeit zu verallgemeinern. Aus diesem Grund wird zunächst kurz auf die Maßtheorie eingegangen, um die *Lebesgue-integrierbaren* Funktionen als 0. Stufe der Sobolev-Räume einführen zu können. Für eine umfangreiche Darstellung der Maßtheorie wird auf [Els96] verwiesen.

**Definition 1.17 (\sigma-Algebren)** Sei M eine beliebige Menge und  $\mathcal{A}$  ein System von Teilmengen mit den Eigenschaften

- $M \in \mathcal{A}$ ,
- $A \in \mathcal{A} \Rightarrow M \setminus A \in \mathcal{A}$  und
- $\{A_n\}_{i\in\mathbb{N}}\subseteq\mathcal{A}\Rightarrow\bigcup_{i\in\mathbb{N}}A_n\in\mathcal{A},\$

dann heißt  $\mathcal{A}$   $\sigma$ -Algebra auf M.

**Bemerkung 1.3** i) Ist  $M' \subseteq M$  und  $\mathcal{A}$  eine  $\sigma$ -Algebra auf M, dann ist

$$M' \bigcap \mathcal{A} := \{ M' \cap A \mid A \in \mathcal{A} \}$$

eine  $\sigma$ -Algebra auf M' und heißt Spur von  $\mathcal{A}$  in M'.

ii) Der Durchschnitt beliebig vieler  $\sigma$ -Algebren ist wieder eine  $\sigma$ -Algebra.

**Definition 1.18 (Maße)** Eine Funktion  $\mu : \mathcal{A} \to \mathbb{R}^+_0 \cup \{\infty\}$  heißt Maß auf der  $\sigma$ -Algebra  $\mathcal{A}$ , falls gilt

- $\mu(\emptyset) = 0$  und
- für eine disjunkte Familie  $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$  gilt die  $\sigma$ -Additivität

$$\mu(\bigcup_{i\in\mathbb{N}}A_i)=\sum_{i\in\mathbb{N}}\mu(A_i).$$

**Definition 1.19 (Borelsche \sigma-Algebra)** Sei  $M = \mathbb{R}^n$ , dann heißt der Durchschnitt  $\mathcal{B}$ aller  $\sigma$ -Algebren, der die Quader

$$Q := \{ x \in [a, b[ \mid a_i \le x_i < b_i, \text{ für alle } i \in \{1, ..., n\}, a \le b \}$$

enthält, Borelsche  $\sigma$ -Algebra.

 $\mathcal{B}$  enthält damit auch alle offenen und abgeschlossenen Mengen.

**Satz 1.1 (Lebesgue-Maß)** Es gibt genau ein Maß  $\mu : \mathcal{B} \to \mathbb{R}^+_0 \cup \{\infty\}$ , welches den Quadern Q ihren elementaren Flächeninhalt zuordnet, d. h.

$$\mu([a,b[)=\prod_{i=1}^n(b_i-a_i).$$

Dieses Maß wird als Lebesgue-Maß bezeichnet.

Beweis. Vgl. [Els96], Kapitel II, §§ 4,5.

**Definition 1.20 (Meßbarkeit)** Seien  $\mathcal{A}, \mathcal{B} \sigma$ -Algebren auf A bzw. B, dann heißt eine Abbildung

$$T: A \longrightarrow B$$

meßbar, falls für alle  $b \in \mathcal{B}$  gilt  $T^{-1}(b) \in \mathcal{A}$ .

Man ist nun in der Lage, die Lebesgue-integrierbaren Funktionen zu definieren. Dazu sei  $\int (\cdot) dx$  das Lebesgue-Integral über dem Lebesgue-Maß  $\mu$  auf der Borelschen  $\sigma$ -Algebra  $\mathcal{B}$  des  $\mathbb{R}^n$ .

**Definition 1.21** Auf dem Raum  $M := \{u : \mathbb{R}^n \to \mathbb{R} \mid u \text{ ist meßbar}\}$  der meßbaren Funktionen gibt es eine Äquivalenzrelation

$$u \sim v \Leftrightarrow \mu(\{x \mid u(x) - v(x) \neq 0\}) = 0 \Leftrightarrow u = v f. \ddot{u}.$$

Der Quotientenraum  $L := M / \sim der \ddot{A}quivalenzklassen besteht aus Funktionen, die bis$ auf eine Menge vom Maß Null (d. h. f. ü.) definiert sind.

Der so definierte Quotientenraum ist der Grundraum der Sobolev-Räume. Die Lebesgueintegrierbaren Funktionen können in diesem Zusammenhang als Sobolev-Funktionen 0. Ordnung aufgefaßt werden. Sie besitzen noch keine verallgemeinerten Ableitungen. **Lemma 1.2 (Lebesgue-Räume)** Sei  $\Omega$  ein nicht notwendig beschränktes Gebiet im  $\mathbb{R}^n$ , dann sind die folgenden Räume für  $1 \leq p < \infty$ 

$$L^{p}(\Omega) := \left\{ u \in L \mid \|u\|_{L^{p}(\Omega)} := \left( \int_{\Omega} |u(x)|^{p} dx \right)^{\frac{1}{p}} < \infty \right\}$$

und für  $p = \infty$ 

$$L^{\infty}(\Omega) := \{ u \in L \mid \|u\|_{L^{\infty}(\Omega)} := \inf_{\mu(N)=0} \sup_{x \in \Omega \setminus N} |u(x)| < \infty \}$$

Banach-Räume bezüglich der entsprechenden Normen. Speziell sind für p = 2 die Räume sogar Hilbert-Räume mit dem Skalarprodukt

$$(u,v)_{L^2(\Omega)} := \int_{\Omega} u v \, dx.$$

Beweis. Vgl. [Ada75], Kapitel II, Satz 2.10.

**Bemerkung 1.4** Man kann mit Hilfe von Mittelungsfunktionen zeigen, daß für  $1 \le p < \infty$  die Räume  $C_0^{\infty}(\Omega)$  dicht in  $L^p(\Omega)$  liegen, vgl. [Ada75], Kapitel II, Satz 2.13 oder [Alt99], Kapitel 2, Satz 2.14 3).

Für die Definition der höheren Sobolev-Räume benötigt man den Begriff der schwachen Ableitung von lokal integrierbaren Funktionen. Die schwachen Ableitungen lassen sich auch als Distributionen auf  $\mathcal{C}_0^{\infty}(\Omega)$  einführen.

Definition 1.22 Die Funktionen aus

 $L^{1}_{loc}(\Omega) := \{ u \in L \mid u \in L^{1}(A) \text{ für alle } A \subseteq \Omega \text{ mit } A \text{ kompakt} \}$ 

 $hei\beta en$  lokal integrierbar.

**Proposition 1.1** Seien  $\Omega$  ein nicht notwendig beschränktes Gebiet und  $u \in L^1_{loc}(\Omega)$  mit  $\int_{\Omega} u(x) \varphi(x) dx = 0$  für alle  $\varphi \in C_0^{\infty}(\Omega)$ , dann ist u = 0 f. ü. in  $\Omega$ .

Beweis. Vgl. [Ada75], Kapitel III, Lemma 3.26.

**Definition 1.23 (Schwache Ableitung)** Eine Funktion  $D^{\alpha}u \in L^{1}_{loc}(\Omega)$  heißt schwache Ableitung von  $u \in L^{1}_{loc}(\Omega)$ , falls für alle  $\varphi \in C^{\infty}_{0}(\Omega)$  gilt

$$\int_{\Omega} u(x) D^{\alpha} \varphi(x) dx = (-1)^{\|\alpha\|_1} \int_{\Omega} D^{\alpha} u(x) \varphi(x) dx.$$

Für schwache Ableitungen gelten die folgenden Aussagen.

**Korollar 1.1** i) Sei  $D^{\alpha}u$  schwache Ableitung von u und gelte u = v f.  $\ddot{u}$ , dann existiert  $D^{\alpha}v$  und es folgt  $D^{\alpha}u = D^{\alpha}v$  f.  $\ddot{u}$ .

ii) Seien  $D^{\alpha}u$  schwache Ableitung von u und  $D^{\alpha}v$  schwache Ableitung von v, dann ist  $D^{\alpha}(\mu u + \nu v) = \mu D^{\alpha}u + \nu D^{\alpha}v$  f. ü.

iii) Sei  $\varphi \in \mathcal{C}^m(\Omega)$ , dann stimmen die klassischen Ableitungen bis zur Ordnung m f.ü. mit den schwachen Ableitungen bis zur Ordnung m überein.

Jetzt können die höheren Sobolev-Räume definiert werden.

**Lemma 1.3 (Sobolev-Räume)** Sei  $\Omega$  ein nicht notwendig beschränktes Gebiet. Seien weiterhin  $m \in \mathbb{N}$  und  $1 \leq p \leq \infty$ , dann sind die Räume

$$W^{m,p}(\Omega) := \{ u \in L^p(\Omega) \mid D^{\alpha}u \in L^p(\Omega) \text{ für alle } \|\alpha\|_1 \le m \}$$

bezüglich der Normen

$$\|u\|_{W^{m,p}(\Omega)} := \left(\sum_{k=1}^{m} |u|_{W^{k,p}(\Omega)}^{p}\right)^{\frac{1}{p}}$$

mit

$$u|_{W^{k,p}(\Omega)} := \left(\sum_{\|\alpha\|_1=k} \|D^{\alpha}u\|_{L^p(\Omega)}^p\right)^{\frac{1}{p}}$$

 $f \ddot{u} r \ 1 \leq p < \infty \ und$ 

$$\|u\|_{W^{m,\infty}(\Omega)} := \sum_{0 \le k \le m} |u|_{W^{m,\infty}(\Omega)}$$

mit

$$u|_{W^{k,\infty}(\Omega)} := \sum_{\|\alpha\|_1=k} \|D^{\alpha}u\|_{L^{\infty}(\Omega)}$$

für  $p = \infty$  Banach-Räume.

Beweis. Vgl. [Ada75], Kapitel III, Satz 3.2.

**Bemerkung 1.5** i) Für  $1 \leq p < \infty$  sind die Räume  $W^{m,p}(\Omega)$  die Vervollständigungen von  $\mathcal{C}^{\infty}(\Omega)$  bezüglich der Normen  $\|\cdot\|_{m,p}$  (vgl. [Ada75], Kapitel III, Satz 3.16 oder [Alt99], Kapitel 2, Satz 2.23).

ii) Da es sich bei den Räumen  $W^{m,p}(\Omega)$  um Quotientenräume handelt, sind die Elemente Äquivalenzklassen von Funktionen. Repräsentanten einer Klasse stimmen f. ü. überein. Mit der Bezeichnung  $u \in W^{m,p}(\Omega)$  ist daher gemeint, daß die Funktion u als Repräsentant einer Klasse in diesem Raum enthalten ist.

iii) Die Ausdrücke  $|\cdot|_{W^{k,p}(\Omega)}$  sind für  $k \leq m$  Halbnormen auf  $W^{m,p}(\Omega)$  und werden im weiteren Verlauf stark an Bedeutung gewinnen.

## 1.4 Eigenschaften verallgemeinerter Funktionen

In diesem Abschnitt werden die für die späteren Anwendungen wichtigsten Eigenschaften der Sobolevräume angegeben. Die in dieser Arbeit am Häufigsten benutzten Ungleichungen sind die *Youngsche* und die *Höldersche Ungleichung*.

**Lemma 1.4 (Young)** Seien die Zahlen  $\mu_1, ..., \mu_n$  positiv mit Summe 1, so gilt für nichtnegative Zahlen  $a_1, ..., a_n$  die Ungleichung

$$a_1^{\mu_1} \cdot \ldots \cdot a_n^{\mu_n} \leq \mu_1 a_1 + \ldots + \mu_n a_n.$$

Ein Spezialfall ist die Ungleichung des geometrischen und arithmetischen Mittels mit  $\mu_1 = \dots = \mu_n = n^{-1}$ .

Beweis. Vgl. [Heu81], Kapitel VII, 59.1.

Verallgemeinerte Funktionen kann man *a-priori* nicht miteinander multiplizieren, da es sich bei ihnen nicht um punktweise definierte Funktionen handelt. In einem verallgemeinerten Sinn ist dies jedoch unter gewissen Voraussetzungen möglich. Das folgende Lemma gibt für die Räume  $L^p(\Omega)$  darüber Auskunft und wird als Höldersche Ungleichung bezeichnet.

**Lemma 1.5 (Hölder)** Seien  $\Omega \subset \mathbb{R}^n$  ein nicht notwendig beschränktes Gebiet und  $1 \leq p, q \leq \infty$  mit  $\mu := p^{-1} + q^{-1} \leq 1$ , dann gibt es eine stetige Multiplikation

$$\begin{array}{rcl} \text{Mult}: & L^p(\Omega) \times L^q(\Omega) & \longrightarrow & L^{\frac{1}{\mu}}(\Omega) \\ & & (u,v) & \longmapsto & u \cdot v, \end{array}$$

d. h.  $L^p \cdot L^q \subseteq L^{\frac{1}{\mu}}$ .

Beweis. Vgl. [Alt99], Kapitel 1, Lemma 1.14.

Lemma 1.6 (Hölder für Reihen) Seien p > 1 und  $\mu := p^{-1} + q^{-1} = 1$ . Sind die Reihen

$$\sum_{k=1}^{\infty} |a_k|^p \quad und \quad \sum_{k=1}^{\infty} |b_k|^q$$

konvergent, so gilt

$$\sum_{k=1}^{\infty} |a_k b_k| \le \left( \sum_{k=1}^{\infty} |a_k|^p \right)^{\frac{1}{p}} \left( \sum_{k=1}^{\infty} |b_k|^q \right)^{\frac{1}{q}} < \infty.$$

Beweis. Man benutze das Lemma 1.5 in einer diskreten Form, indem man aus den Folgen  $a_k$  und  $b_k$  Treppenfunktionen in  $\mathbb{R}$  macht.

Das Lemma 1.5 behält unter leichten Einschränkungen seine Gültigkeit, wenn man statt der Räume  $L^p(\Omega)$  und  $L^q(\Omega)$  die Räume  $W^{m,p}(\Omega)$  und  $W^{m,q}(\Omega)$  einsetzt. Dies wird in dem folgenden Lemma deutlich, in welchem eine verallgemeinerte Produktregel für Sobolev-Funktionen angegeben wird.

**Lemma 1.7 (Produktregel)** Sei  $\Omega$  ein nicht notwendigerweise beschränktes Gebiet. Weiterhin seien  $u \in W^{m,p}(\Omega)$  und  $v \in W^{m,q}(\Omega)$  mit  $\mu := p^{-1} + q^{-1} \leq 1$  und wenigstens p oder q nicht unendlich, so ist  $uv \in W^{m,\frac{1}{\mu}}(\Omega)$  und die schwachen Ableitungen berechnen sich nach der klassischen Produktregel.

Speziell gilt für m = 1 und für alle  $i \in \{1, ..., n\}$ 

$$\frac{\partial}{\partial x_i}(u\,v) = u\,\frac{\partial}{\partial x_i}v + v\frac{\partial}{\partial x_i}u.$$

Beweis Für  $\mu = 1$  vgl. [Alt99], Kapitel 2, Abschnitt 2.15.

Beweis. Es wird der Beweis für m = 1 geführt, induktiv folgt daraus der Beweis für m > 1. Sei ohne Einschränkung  $p < \infty$ , dann läßt sich u durch glatte Funktionen  $u_k \in C^{\infty}(\Omega)$  approximieren (vgl. Bemerkung 1.5). Damit gilt aufgrund der klassischen Produktregel für differenzierbare Funktionen für alle  $i \in \{1, ..., n\}$ 

$$\int_{\Omega} u_k \, v \, \frac{\partial}{\partial x_i} \varphi \, dx = -\int_{\Omega} \varphi \left( v \frac{\partial}{\partial x_i} u_k + u_k \frac{\partial}{\partial x_i} v \right) \, dx \quad \text{für alle } \varphi \in \mathcal{C}_0^\infty(\Omega),$$

also gilt für  $k \to \infty$ 

$$\int_{\Omega} u \, v \, \frac{\partial}{\partial x_i} \varphi \, dx = -\int_{\Omega} \varphi \left( v \frac{\partial}{\partial x_i} u + u \frac{\partial}{\partial x_i} v \right) \, dx \quad \text{für alle } \varphi \in \mathcal{C}_0^{\infty}(\Omega).$$

Es folgt aus Proposition 1.1, daß

$$\frac{\partial}{\partial x_i}(uv) = v\frac{\partial}{\partial x_i}u + u\frac{\partial}{\partial x_i}v$$

f.ü. gilt. Mit Hilfe der Hölderschen Ungleichung aus Lemma 1.5 gilt außerdem  $uv \in W^{m,\frac{1}{\mu}}(\Omega)$ . Damit ist das Lemma bewiesen.

An dieser Stelle soll abschließend noch der Satz von Fubini zitiert werden.

**Lemma 1.8 (Fubini)** Sei eine reellwertige Funktion u auf einer Menge  $X \times Y \subseteq \mathbb{R}^n \times \mathbb{R}^m$ meßbar bezüglich des Produktmaßes  $\mu_n \cdot \mu_m$  und seien X,Y meßbar bezüglich  $\mu_n, \mu_m$ . Existiere eines der folgenden Integrale

$$I_{1} = \int_{X \times Y \subseteq \mathbb{R}^{n+m}} |u(x, y)| \, dx \, dy,$$

$$I_{2} = \int_{Y \subseteq \mathbb{R}^{m}} \left( \int_{X \subseteq \mathbb{R}^{n}} |u(x, y)| \, dx \right) \, dy,$$

$$I_{3} = \int_{X \subseteq \mathbb{R}^{n}} \left( \int_{Y \subseteq \mathbb{R}^{m}} |u(x, y)| \, dy \right) \, dx$$

und ist endlich, so folgt

- $I_1 = I_2 = I_3$
- $\int_{X \subset \mathbb{R}^n} u(x, \cdot) dx \in L^1(Y),$

- $\int_{Y \subset \mathbb{R}^m} u(\cdot, y) \, dy \in L^1(X),$
- $u(\cdot, y) \in L^1(X)$  fast überall in  $Y \subseteq \mathbb{R}^m$  und
- $u(x, \cdot) \in L^1(Y)$  fast überall in  $X \subseteq \mathbb{R}^n$ .

Beweis. Vgl. [Els96], Kapitel V, Satz 2.1.

Es wurde schon bemerkt, daß Sobolev-Funktionen unter geeigneten geometrischen Voraussetzungen an den Gebietsrand auf diesem sinnvolle Werte besitzen können. Um diese Aussage zu präzisieren, wird an dieser Stelle ein sogenannter *Spuroperator* definiert. Mit diesem läßt sich dann auch eine verallgemeinerte partielle Integration für Sobolev-Funktionen angeben.

**Satz 1.2 (Spuroperator)** Sei  $\Omega$  ein Gebiet mit Lipschitz-stetigem Rand, dann gibt es genau einen stetigen Operator

$$\operatorname{Sp}: W^{1,p}(\Omega) \longrightarrow L^p(\partial\Omega)$$

mit  $\operatorname{Sp}(\varphi) = \varphi|_{\partial\Omega}$  für alle  $\varphi \in \mathcal{C}^1(\Omega)$ .

Beweis. Vgl. [Alt99], Anhang 6.6.

Das folgende Lemma macht eine Dichtheitsaussage bei Nullrandbedingungen auf einem kompakten Teilrand von Lipschitz-stetig berandeten Gebieten.

**Lemma 1.9 (Dichtheit)** Seien  $\Omega$  ein Gebiet mit Lipschitz-stetigem Rand,  $\Gamma \subseteq \partial \Omega$  kompakt und der Raum  $W_{\Gamma}^{1,2}(\Omega)$  definiert durch

$$W^{1,2}_{\Gamma}(\Omega) := \{ v \in W^{1,2}(\Omega) \mid \mathrm{Sp}(v)|_{\Gamma} = 0 \text{ f. } \ddot{\mathrm{u}} \},\$$

dann ist der Raum

$$\mathcal{C}^{\infty}_{\Gamma}(\Omega) := \{ \varphi \in C^{\infty}(\Omega) \mid \varphi|_{\Gamma} = 0 \}$$

dicht in  $W^{1,2}_{\Gamma}(\Omega)$ .

Beweis. Man überdeckt  $\Gamma$  durch offene Mengen und vervollständigt diese zu einer offenen Überdeckung  $\mathcal{U}$  von  $\Omega$ . Mit Hilfe einer Zerlegung der Eins auf  $\mathcal{U}$  approximiert man dann eine Funktion  $u \in W^{1,2}_{\Gamma}(\Omega)$  durch Funktionen aus  $\mathcal{C}^{\infty}_{\Gamma}(\Omega)$ . Das folgende Lemma ist eine verallgemeinerte Version der partiellen Integration.

**Lemma 1.10 (particle Integration)** Sei  $\Omega$  ein Gebiet mit Lipschitz-stetigem Rand und  $\vec{n}$  der f. $\vec{u}$ . existierende äußere Normaleneinheitsvektor. Sei  $u \in W^{1,p}(\Omega)$  und  $v \in W^{1,q}(\Omega)$  mit  $p^{-1} + q^{-1} = 1$ , dann gelten für alle  $i \in \{1, ..., n\}$ 

i) 
$$\int_{\Omega} \frac{\partial u}{\partial x_i} \, dx = \int_{\partial \Omega} \operatorname{Sp}(u) \, n_i \, ds,$$

und

*ii)* 
$$\int_{\Omega} \left( v \frac{\partial u}{\partial x_i} + \frac{\partial v}{\partial x_i} u \right) dx = \int_{\partial \Omega} \operatorname{Sp}(uv) n_i ds.$$

Beweis. Vgl. [Alt99], Anhang 6, Satz 6.8.

Bemerkung 1.6 In den folgenden Anwendungen wird der Spuroperator Sp weggelassen.

Es werden Einbettungssätze von Sobolev-Räumen in Hölder-Räume und Einbettungssätze von Sobolev-Räumen in Sobolev-Räume für Lipschitz-stetige berandete Gebiete angegeben. Eine ausführliche Darstellung kann in [Alt99] gefunden werden. Um die Sätze in ihrer ursprünglichen Anwendbarkeit etwas zu erweitern, wird zunächst eine Proposition vorausgeschickt.

**Proposition 1.2** Seien  $\Omega$  ein beschränktes Gebiet und  $m \in \mathbb{N}$  sowie  $1 \leq p < \infty$ , dann ist die Einbettung

$$Id: W^{m,\infty}(\Omega) \hookrightarrow W^{m,p}(\Omega)$$

stetig.

Beweis. Für alle Multiindices  $\alpha$  mit  $\|\alpha\|_1 \leq m$  gilt

$$\|D^{\alpha}u\|_{L^{p}(\Omega)}^{p} = \int_{\Omega} |D^{\alpha}u|^{p} dx \leq \mu(\Omega) \|D^{\alpha}u\|_{L^{\infty}(\Omega)}^{p}.$$

**Satz 1.3**  $(W^{k,p}(\Omega) \hookrightarrow \mathcal{C}^{m,\lambda}(\overline{\Omega}))$  Set  $\Omega$  ein Lipschitz-stetig berandetes Gebiet. Seien weiterhin  $k, m \in \mathbb{N}$  und  $1 \leq p < \infty$  sowie  $0 \leq \lambda \leq 1$  mit

$$k - \frac{n}{p} \ge m + \lambda,$$

dann existiert eine stetige Einbettung

$$Id: W^{k,p}(\Omega) \hookrightarrow \mathcal{C}^{m,\lambda}(\overline{\Omega}).$$

Gilt in der obigen Bedingung die Ungleichheit, so ist Id sogar kompakt.

Beweis. Vgl. [Alt99], Kapitel 8, Satz 8.13.

Satz 1.4  $(W^{m_1,p_1}(\Omega) \hookrightarrow W^{m_2,p_2}(\Omega))$  Sei  $\Omega$  ein Lipschitz-stetig berandetes Gebiet. Seien weiterhin  $m_1, m_2 \in \mathbb{N}$  und  $1 \leq p_1, p_2 < \infty$  mit

$$m_1 - \frac{n}{p_1} \ge m_2 - \frac{n}{p_2}$$

so existiert eine stetige Einbettung

$$Id: W^{m_1,p_1}(\Omega) \hookrightarrow W^{m_2,p_2}(\Omega).$$

Gilt in der obigen Bedingung die Ungleichheit, so ist Id sogar kompakt.

Beweis. Vgl. [Alt99], Kapitel 8, Satz 8.9.

**Bemerkung 1.7** In den Sätzen 1.3 und 1.4 kann aufgrund von Proposition 1.2 auch  $p = \infty$  bzw.  $p_1 = \infty$  gesetzt werden.

**Definition 1.24 (Raum der Polynome vom Grad** m)  $\mathbb{P}_m(\Omega)$  bezeichne den Raum der Polynome vom Grad m auf  $\Omega$ , d. h.

$$\mathbb{P}_m(\Omega) := \left\{ \sum_{\|\alpha\|_1 \le m} b_\alpha x_1^{a_1} \cdot \ldots \cdot x_n^{a_n} \, \middle| \, \alpha = (a_1, \ldots, a_n) \in \mathbb{N}^n, \, b_\alpha \in \mathbb{R}, \, x = (x_1, \ldots, x_n) \in \Omega \right\}.$$

Das folgende Lemma wird im Kapitel 2 für die Interpolationsaussagen benötigt. Die Aussage findet sich zum Beispiel in [Cia78]. Da ein Beweis dort nicht angegeben ist und nach verzweifelter Suche in der Literatur nicht gefunden wurde, wird diese Aussage mit Beweis angegeben.

**Satz 1.5 (Identifikationssatz)** Sei  $\Omega$  ein Lipschitz-stetig berandetes Gebiet. Seien weiterhin  $k \in \mathbb{N}$  und  $1 \leq p \leq \infty$ . Sei  $v \in W^{k,p}(\Omega)$ , dann gilt

$$v \in \mathbb{P}_{k-1}(\Omega) \iff |v|_{W^{k,p}(\Omega)} = 0,$$

d. h.  $\mathbb{P}_{k-1}(\Omega)$  ist der Nullraum der Halbnorm  $|\cdot|_{W^{k,p}(\Omega)}$ .

Beweis.  $\Rightarrow$  ist offensichtlich.

 $\leftarrow$ Aus  $|v|_{W^{k,p}(\Omega)} = 0$  folgt mit Korollar 1.1, daß  $|v|_{W^{m,p}(\Omega)} = 0$  für alle  $m \ge k$  gilt. Damit ist  $v \in W^{m,p}(\Omega)$  für alle  $m \ge k$ . Aufgrund des Einbettungssatzes Satz 1.3 folgt somit

$$v \in \mathcal{C}^{\infty}(\Omega).$$

Also kann die Taylorformel im  $\mathbb{R}^n$  angewendet werden (siehe zum Beispiel [For84]). Damit gibt es für alle  $b \in \Omega$  eine Kugelumgebung  $B_{\delta}(b)$ , so daß für alle  $x \in B_{\delta}(b)$  ein  $\Theta \in [0, 1]$  existiert mit

$$v(x) = \sum_{\|\alpha\|_1 \le k-1} \frac{D^{\alpha} v(b)}{\alpha!} (x-b)^{\alpha} + \sum_{\|\alpha\|_1 = k} \underbrace{\frac{D^{\alpha} v(\Theta x + (1-\Theta)b)}{\alpha!}}_{=0} (x-b)^{\alpha}.$$

Es folgt also  $v \in \mathbb{P}_{k-1}$  auf Zusammenhangskomponenten. Da  $\Omega$  zusammenhängend ist, folgt daraus die Behauptung.  $\Box$ 

## Kapitel 2

## Polynomiale Interpolation in Sobolev-Räumen

In diesem Kapitel wird ein allgemeines Resultat über polynomiale Approximation in Sobolev-Räumen dargestellt. Für die Vorgehensweise ist dabei die Darstellung in [Cia78] über Interpolationstheorie wesentlich. Grundlegende Konzepte sind die Konstruktionen von Quotientenräumen über den Nullräumen von Halbnormen. Dieses Vorgehen erzeugt in natürlicher Weise normierte Räume bezüglich der Halbnorm, welche auf dem Quotienten schon eine Norm ist. Anwendungen dieser Konstruktionen sind polynomiale Interpolationsabschätzungen und sogenannte inverse Ungleichungen. In beiden Fällen kann man mit Hilfe von affinen Transformationen Abschätzungen ableiten, welche vom Elementdurchmesser h abhängen.

Die im Folgenden auftretenden Gebiete sind, falls nicht ausdrücklich anders erwähnt, beschränkte, Lipschitz-stetig berandete Teilgebiete des  $\mathbb{R}^n$ .

## 2.1 Quotientenräume

In diesem Abschnitt werden die wesentlichen Begriffe Quotientenraum und Quotientennorm sowie darauf induzierte Abbildungen dargestellt.

**Lemma 2.1 (Quotientenräume)** Seien  $(A, \|\cdot\|_A)$  ein normierter Raum und  $B \subseteq A$ ein abgeschlossener Unterraum, dann ist der Quotientenraum

$$A/B := \{ \dot{a} := a + B \mid a \in A \}$$

zusammen mit der Norm

$$\overline{\|\dot{a}\|} := \inf_{a \in \dot{a}} \|a\|_A$$

ein normierter Raum  $(A/B, \overline{\|\cdot\|})$ .

 $(A/B, \overline{\|\cdot\|})$  ist vollständig, falls  $(A, \|\cdot\|_A)$  vollständig ist.

Beweis. Siehe [Yos80].

Korollar 2.1 (Projektion) Mit der Quotientennorm wird die Projektion

$$P: (A, \|\cdot\|_A) \longrightarrow (A/B, \overline{\|\cdot\|})$$
$$a \longmapsto \dot{a} = a + B$$

stetig, und es gilt  $||P|| \leq 1$ .

Beweis. Es ist

$$\|Pa\| = \overline{\|\dot{a}\|} = \inf_{a \in \dot{a}} \|a\| \le \|a\|.$$

Stetige lineare Abbildungen auf normierten Räumen lassen sich über Quotienten nach abgeschlossenen Teilräumen des Kerns *faktorisieren*.

**Proposition 2.1 (Abgeschlossenheit der Nebenklassen)** Seien  $(A, \|\cdot\|_A)$  ein normierter Raum,  $B \subseteq A$  ein abgeschlossener Unterraum und A/B der Quotientenraum, dann gibt es in jeder Klasse à ein Element a', so daß gilt

$$\|a'\| = \overline{\|\dot{a}\|} = \inf_{a \in \dot{a}} \|a\|.$$

Beweis. Die Addition in einem normierten Raum ist stetig, damit sind die Nebenklassen  $\dot{a} = a + B$  abgeschlossen.

**Lemma 2.2 (Faktorisierung)** Seien  $(A, \|\cdot\|_A)$  und  $(C, \|\cdot\|_C)$  zwei normierte Räume und  $B \subseteq A$  ein abgeschlossener Unterraum. Weiterhin sei  $(A/B, \|\cdot\|)$  der Quotientenraum von A über B. Sei

$$L: A \longrightarrow C$$

ein stetiger linearer Operator mit  $B \subseteq Ker(L)$ , dann existiert ein stetiger linearer Operator  $\overline{L}: A/B \longrightarrow C$ , der das Diagramm



kommutativ macht. In diesem Fall sagt man auch: L faktorisiert über P mittels  $\overline{L}$ . Es gilt  $||\overline{L}|| \leq ||L||$ .

Beweis. Man definiert die Abbildung  $\overline{L}$  durch

$$\overline{L}: A/B \longrightarrow C$$

$$\dot{a} = a + B \longmapsto L(a)$$

Es ist noch zu zeigen, daß  $\overline{L}$  wohldefiniert und stetig ist.

• Wohldefiniertheit: Seien  $a, a' \in \dot{a}$ , dann gibt es ein  $b \in B$ , so daß a' = a + b. Daraus folgt

$$L(a') = L(a) + L(b) = L(a),$$

denn  $b \in Ker(L)$ .

• Stetigkeit: Es gilt mit  $a' \in \dot{a}$  wie in Proposition 2.1

$$\|\overline{L}(\dot{a})\|_{C} = \|L(a')\|_{C} \le \|L\| \|a'\|_{A} = \|L\| \inf_{a \in \dot{a}} \|a\|_{A} = \|L\| \overline{\|\dot{a}\|}.$$

Diese Ungleichung impliziert  $\overline{\|\overline{L}\|} \leq \|L\|$ .

## Der Quotientenraum $W^{m+1}/\mathbb{P}_m$

Lemma 2.3 (Der Quotientenraum  $W^{m+1}/\mathbb{P}_m$ ) Seien  $\Omega \subseteq \mathbb{R}^n$  ein nicht notwendig beschränktes Gebiet,  $1 \leq p \leq \infty$  und  $m \in \mathbb{N} \cup \{0\}$ . Sei weiterhin  $(W^{m+1,p}(\Omega), \|\cdot\|_{m+1,p})$ der Banach-Raum der bis zur Ordnung (m+1) verallgemeinert differenzierbaren Funktionen aus  $L^p(\Omega)$ , dann existiert

$$Q := W^{m+1,p}(\Omega) / \mathbb{P}_m(\Omega) = \{ \dot{v} = v + \mathbb{P}_m(\Omega) \mid v \in W^{m+1,p}(\Omega) \}$$

und ist ein Banach-Raum mit der Quotientennorm

$$\overline{\|\dot{v}\|}_{m+1,p} := \inf_{v \in \dot{v}} \|v\|_{m+1,p}$$

Beweis.  $\mathbb{P}_m(\Omega)$  ist endlichdimensional und damit abgeschlossen. Folglich ist Q ein normierter Raum bezüglich der Quotientennorm. Mit  $W^{m+1,p}(\Omega)$  ist auch Q ein Banach-Raum.

## Äquivalente Normen auf $W^{m+1}/\mathbb{P}_m$

In diesem Abschnitt wird bewiesen, daß für  $1 \leq p \leq \infty$  und  $m \in \mathbb{N} \cup \{0\}$  bereits die Halbnorm  $|\cdot|_{m+1}$  eine zur Quotientennorm äquivalente Norm auf  $W^{m+1}(\Omega)/\mathbb{P}_m(\Omega)$  ist. Zunächst wird gezeigt, daß  $|\cdot|_{m+1}$  eine Norm auf  $W^{m+1}(\Omega)/\mathbb{P}_m(\Omega)$  ist. Darauffolgend wird bewiesen, daß diese Norm äquivalent zur Quotientennorm ist.

**Lemma 2.4** Seien  $1 \le p \le \infty$  und  $m \in \mathbb{N} \cup \{0\}$ , dann ist  $|\cdot|_{m+1,p}$  eine Norm auf  $W^{m+1,p}(\Omega)/\mathbb{P}_m(\Omega)$ .

Beweis. Jede Halbnorm  $|\cdot|$  auf einem Raum X ist auf dem Quotienten X/N nach dem Nullraum  $N := \{x \in X \mid |x| = 0\}$  schon eine Norm, vgl. [Rud73], Kapitel 1, Satz 1.43. Aufgrund des Identifikationssatzes 1.5 ist daher  $|\cdot|_{m+1,p}$  sogar eine Norm. Damit ist

$$|\dot{v}|_{m+1,p} := |v|_{m+1,p} \quad \text{mit } v \in \dot{v}$$

wohldefiniert und eine Norm auf  $W^{m+1,p}(\Omega)/\mathbb{P}_m(\Omega)$ .

**Lemma 2.5** Seien  $1 \le p \le \infty$  und  $m \in \mathbb{N} \cup \{0\}$ , dann gilt für alle  $\dot{v} \in W^{m+1,p}(\Omega)/\mathbb{P}_m(\Omega)$ 

$$\overline{|\dot{v}|}_{m+1,p} \leq \overline{\|\dot{v}\|}_{m+1,p}$$

Beweis. Es gilt offensichtlich

$$\overline{|\dot{v}|}_{m+1,p} = \inf_{v \in \dot{v}} |v|_{m+1,p} \le \inf_{v \in \dot{v}} ||v||_{m+1,p} = \overline{||\dot{v}||}_{m+1,p}.$$

**Lemma 2.6** Seien  $1 \leq p \leq \infty$  und  $m \in \mathbb{N} \cup \{0\}$ , dann existiert eine Konstante C > 0, so daß für alle  $\dot{v} \in W^{m+1}(\Omega)/\mathbb{P}_m(\Omega)$  gilt

$$\overline{\|\dot{v}\|}_{m+1,p} \le C \,\overline{|\dot{v}|}_{m+1,p}.$$

Beweis. Seien  $N := \dim (\mathbb{P}_m(\Omega))$  und  $P = \{p_1, ..., p_N\}$  eine Basis von  $\mathbb{P}_m(\Omega)$ , dann kann man mit Hilfe des Satzes von Hahn und Banach eine duale Basis  $F = \{F_1, ..., F_N\}$  zu P von stetigen Funktionalen auf  $W^{m+1,p}(\Omega)$  finden, d.h.

$$F_i(p_j) = \delta_{ij}.$$

Definiere den Projektionsoperator P durch

$$P: W^{m+1,p}(\Omega) \longrightarrow \mathbb{P}_m(\Omega)$$
$$v \longmapsto Pv := \sum_{i=1}^N F_i(v)p_i,$$

dann folgt

(2.1) 
$$F_i(v - Pv) = 0$$
 für alle  $i \in \{1, ..., N\}.$ 

Es ist also hinreichend, zu zeigen, daß für alle  $v \in W^{m+1,p}(\Omega)$  gilt

(2.2) 
$$\|v\|_{m+1,p} \le C\left(|v|_{m+1,p} + \sum_{i=1}^{N} |F_i(v)|\right),$$

denn für alle  $\dot{v} \in W^{m+1}(\Omega) / \mathbb{P}_m(\Omega)$  folgt dann

$$\overline{\|v\|}_{m+1,p} = \inf_{q \in \mathbb{P}_m} \|v+q\|_{m+1,p} \leq \|v-Pv\|_{m+1,p}$$

$$\stackrel{(2.2)}{\leq} C\left(|v-Pv|_{m+1,p} + \sum_{i=1}^N |F_i(v-Pv)|\right)$$

$$\stackrel{(2.1)}{=} C |v|_{m+1,p}.$$

Angenommen, (2.2) ist falsch, dann gibt es eine Folge  $\{v_l\} \subseteq W^{m+1,p}(\Omega)$  mit

(2.3) 
$$||v_l||_{m+1,p} = 1$$
 und  $\lim_{l \to \infty} \left( |v_l|_{m+1,p} + \sum_{i=1}^N |F_i(v_l)| \right) = 0.$ 

Aufgrund von Satz 1.4 für  $1 \leq p < \infty$  und von Satz 1.3 für  $p = \infty$  ist die Einbettung  $Id: W^{m+1,p}(\Omega) \hookrightarrow W^{m,p}(\Omega)$  kompakt, da  $\Omega$  als Lipschitz-stetig berandet vorausgesetzt ist.  $v_l$  ist beschränkt, also kann man in  $W^{m,p}(\Omega)$  eine gegen ein  $v \in W^{m,p}(\Omega)$  konvergierende Teilfolge  $I(v_{l(k)})$  finden. Diese wird im Folgenden auch mit  $v_l$  bezeichnet. Es gilt also

$$\lim_{l \to \infty} \|v_l - v\|_{m,p} = 0$$

Somit ist  $v_l$  eine Cauchy-Folge bezüglich  $\|\cdot\|_{m,p}$ . Aufgrund der Annahme (2.3) gilt

$$\lim_{l \to \infty} |v_l|_{m+1,p} = 0$$

damit ist  $v_l$  auch eine Cauchy-Folge bezüglich  $\|\cdot\|_{m+1,p}$ . Da  $W^{m+1,p}(\Omega)$  vollständig ist, folgt

$$\lim_{l \to \infty} \|v_l - v\|_{m+1,p} = 0$$

Nach Voraussetzung (2.3) gilt

$$|v|_{m+1,p} = \lim_{l \to \infty} |v_l|_{m+1,p} = 0.$$

Aus dem Identifikationssatz 1.5 folgt dann, daß  $v \in \mathbb{P}_m(\Omega)$ . Außerdem gilt wegen der Annahme 2.3 für alle  $i \in \{1, ..., N\}$ 

$$F_i(v) = F_i(\lim_{l \to \infty} v_l) \stackrel{\text{Stet.}}{=} \lim_{l \to \infty} F_i(v_l) \stackrel{(2.3)}{=} 0.$$

Da F eine duale Basis zu P ist, folgt also  $v \equiv 0$ . Das steht im Widerspruch zur Annahme (2.3), denn  $||v_l||_{m+1,p} = 1$ . Also gilt die Behauptung, und das Lemma ist bewiesen.  $\Box$ 

## 2.2 Interpolationsabschätzungen für polynom-erhaltende Operatoren

In diesem Abschnitt wird das wesentliche Resultat von [Cia78] vorgestellt, welches das Kernstück der polynomialen Interpolationstheorie in Sobolev-Räumen ist. Aus diesem wird mit Hilfe von affinen Transformationen eine von dem Gebietsdurchmesser h abhängige Interpolationsabschätzung abgeleitet.

**Satz 2.1 (Interpolationstheorem)** Seien  $W^{m+1,p}(\Omega)$  und  $W^{k,q}(\Omega)$  Sobolev-Räume mit der Eigenschaft, daß

$$Id: W^{m+1,p}(\Omega) \hookrightarrow W^{k,q}(\Omega)$$

eine stetige Einbettung ist. Sei weiterhin

$$\Pi: W^{m+1,p}(\Omega) \longrightarrow W^{k,q}(\Omega)$$

ein stetiger Operator mit der Eigenschaft

$$\Pi\Big|_{\mathbb{P}_m(\Omega)} = Id,$$

dann gibt es eine von  $\Omega$  abhängige Konstante C, so daß für alle  $v \in W^{m+1,p}(\Omega)$  gilt

 $|(Id - \Pi)v|_{k,q} \leq C ||Id - \Pi|| |v|_{m+1,p}.$ 

Beweis. Es gilt offensichtlich

$$\mathbb{P}_m(\Omega) \subseteq Ker(Id - \Pi).$$

Es faktorisiert also  $Id - \Pi$  über  $W^{m+1,p}(\Omega)/\mathbb{P}_m(\Omega)$ , und somit ist

$$\overline{Id - \Pi}: \quad W^{m+1,p}(\Omega) / \mathbb{P}_m(\Omega) \quad \longrightarrow \quad W^{k,q}(\Omega) \\ \dot{v} = v + \mathbb{P}_m(\Omega) \quad \longmapsto \quad (Id - \Pi)v$$

stetig. Daraus folgt

$$\begin{aligned} |(Id - \Pi)v|_{k,q} &\leq \|(Id - \Pi)v\|_{k,q} \leq \frac{\operatorname{Stet.}}{\|\overline{Id - \Pi}\|} \frac{\|v\|}{\|v\|_{m+1,p}} \\ &\leq \|Id - \Pi\| \frac{\|v\|_{m+1,p}}{\|\overline{v}\|_{m+1,p}} \leq C \|Id - \Pi\| \|v\|_{m+1,p}. \end{aligned}$$

## 2.3 Affine Transformationen

**Definition 2.1 (Affine Äquivalenz)** Seien  $\Omega$  und  $\hat{\Omega}$  Gebiete im  $\mathbb{R}^n$ .  $\Omega$  heißt affin äquivalent zu  $\hat{\Omega}$ , falls es eine bijektive affine Abbildung

$$\begin{array}{rccc} \mathrm{Tr}: & \mathbb{R}^n & \longrightarrow & \mathbb{R}^n \\ & x & \longmapsto & Ax+c & (A \in \mathbb{R}^{n \times n} \ invertierbar) \end{array}$$

gibt mit  $\operatorname{Tr}(\hat{\Omega}) = \Omega$ .

Es werden im Folgenden die Zuordnungen

$$\hat{\Omega} \ni \hat{x} \quad \stackrel{\text{Tr}}{\longleftrightarrow} \quad x \in \text{Tr}(\hat{\Omega}) 
(\hat{v} : \hat{\Omega} \to \mathbb{R}) \quad \longleftrightarrow \quad (v = \hat{v} \circ \text{Tr}^{-1} : \Omega \to \mathbb{R})$$

verwendet. Damit gilt  $v(x) = \hat{v}(\operatorname{Tr}^{-1}x) = \hat{v}(\hat{x}).$ 

### Funktionenräume unter affinen Transformationen

**Satz 2.2 (Transformationseigenschaften)** Sei  $\Omega$  affin äquivalent zu  $\hat{\Omega}$ . Seien  $m \in \mathbb{N} \cup \{0\}$ und  $1 \leq p \leq \infty$ , dann gelten die folgenden Beziehungen

$$W^{m,p}(\hat{\Omega}) \ni \hat{v} \iff v \in W^{m,p}(\Omega)$$
  
$$|\hat{v}|_{m,p} \leq C ||A||^m |det(A)|^{-\frac{1}{p}} |v|_{m,p}$$
  
$$|v|_{m,p} \leq C ||A^{-1}||^m |det(A)|^{\frac{1}{p}} ||\hat{v}||_{m,p}.$$

Die Konstante C hängt von dem Gebiet  $\Omega$  ab.

Der *Beweis* kann über Transformationsregeln für Integrale und partielle Ableitungen geführt werden. Siehe z. B. [Cia78].

### Geometrische Schranken

Um die Matrixnorm von A durch geometrische Größen beschreiben zu können, benötigt man noch die folgende Definition.

**Definition 2.2 (Umkreis- und Inkreisdurchmesser von \Omega)** Seien  $\Omega$  ein Gebiet im  $\mathbb{R}^n$  und  $S \subseteq \Omega$  Sphären, dann heißen

$$h := \inf_{S \supseteq \Omega} \{ \operatorname{diam}(S) \} \quad und \quad \varrho := \sup_{S \subseteq \Omega} \{ \operatorname{diam}(S) \},$$

Umkreis- und Inkreisdurchmesser von  $\Omega$ .

Lemma 2.7 (Abschätzung der Matrixnorm) Sei  $\Omega$  affin äquivalent zu  $\hat{\Omega}$ , dann gilt

$$\|A\| \le \frac{h}{\hat{\varrho}} \quad und \quad \|A^{-1}\| \le \frac{\hat{h}}{\varrho}.$$

Beweis. Exemplarisch für A zeigt man

$$\|A\| = \frac{1}{\hat{\varrho}} \sup_{\|\xi\| = \hat{\varrho}} \|A\xi\|$$

Ist  $\xi$  ein Vektor der Länge  $\hat{\rho}$ , so gibt es  $\hat{y}, \hat{z} \in \hat{\Omega}$  mit  $\xi = \hat{y} - \hat{z}$ . Also ist  $A\xi = \text{Tr}(\hat{y}) - \text{Tr}(\hat{z}) \in \Omega$  und damit  $||A\xi|| \leq h$ . Daraus folgt schließlich

$$\|A\| \leq \frac{n}{\hat{\varrho}}.$$

**Lemma 2.8 (Abschätzung der Funktionaldeterminante)** Sei  $\Omega$  affin äquivalent zu  $\hat{\Omega}$ , dann gilt für die Transformationsmatrix A

$$\det(A) = \frac{\mu(\Omega)}{\mu(\hat{\Omega})}.$$

Damit kann man die vom Durchmesser h abhängige Abschätzung

$$\det(A) \le \left(\frac{h}{\hat{\varrho}}\right)^n \le C h^n$$

mit  $C := \hat{\varrho}^{-n}$  angeben.

Beweis. Aufgrund der Transformationsregeln für Integrale gilt

$$\mu(\Omega) = \int_{\Omega} 1 \, dx = \int_{\hat{\Omega}} 1 \, d\operatorname{Tr}(\hat{x})$$
$$= \int_{\hat{\Omega}} \det(A) \, d\hat{x} = \det(A) \, \mu(\hat{\Omega}).$$

Im Folgenden wird eine von den geometrischen Größen von  $\Omega$  abhängige Interpolationsabschätzung vorgestellt. Diese wird hergeleitet durch eine affine Transformation auf ein Referenzelement  $\hat{\Omega}$ .

Satz 2.3 (Abschätzung über Referenzelement) Sei  $\Omega$  affin äquivalent zu einem festen Referenzgebiet  $\hat{\Omega}$  und seien die Voraussetzungen von Satz 2.1 erfüllt, dann gilt die folgende Interpolationsabschätzung für alle  $v \in W^{m+1,p}(\Omega)$ 

$$|(Id - \Pi)v|_{k,q} \le C \frac{h^{m+1}}{\varrho^k} h^{\frac{n}{q} - \frac{n}{p}} |v|_{m+1,p}.$$

Beweis. Aufgrund der affinen Transformation  $Tr^{-1}$  gilt mit Satz 2.2

$$|(Id - \Pi)v|_{k,q} \leq C ||A^{-1}||^k |\det(A)|^{\frac{1}{q}} |(Id - \Pi)\hat{v}|_{k,q}$$

Mit Hilfe der Interpolationsabschätzung für  $\Pi$  folgt aus Satz 2.1

$$|(Id - \Pi)\hat{v}|_{k,q} \leq C ||Id - \Pi|| |\hat{v}|_{m+1,p}.$$

Schließlich gilt mit Satz 2.2 unter Benutzung der affinen Transformation Tr

$$|\hat{v}|_{m+1,p} \leq C ||A||^{m+1} |det(A)|^{-\frac{1}{p}} |v|_{m+1,p}.$$

Zusammensetzen der drei Abschätzungen ergibt

$$\begin{aligned} |(Id - \Pi)v|_{k,q} &\leq C \, \|A^{-1}\|^k \, \|A\|^{m+1} \, |det(A)|^{\frac{1}{q} - \frac{1}{p}} \, |v|_{m+1,p} \\ &\leq C \left(\frac{\hat{h}}{\varrho}\right)^k \left(\frac{h}{\hat{\varrho}}\right)^{m+1} |det(A)|^{\frac{1}{q} - \frac{1}{p}} \, |v|_{m+1,p}. \end{aligned}$$

Faßt man alle  $\hat{\Omega}$ -Größen als konstant auf, so erhält man schließlich

$$|(Id - \Pi)v|_{k,q} \le C \frac{h^{m+1}}{\varrho^k} h^{\frac{n}{q} - \frac{n}{p}} |v|_{m+1,p}.$$

| E |  |  |
|---|--|--|
|   |  |  |
| L |  |  |
|   |  |  |

## 2.4 Inverse Ungleichungen

Man kann die Interpolationsabschätzungen aus Satz 2.3 unter einem entsprechenden Verlust von h-Potenzen auf endlichdimensionalen Unterräumen umkehren. Um die folgende inverse Ungleichung bei Finite-Element-Methoden sinnvoll nutzen zu können, muß man sich die Voraussetzungen des folgenden Lemmas als fixiert denken.

**Lemma 2.9 (Inverse Ungleichung)** Sei  $\hat{\Omega}$  ein Gebiet. Seien  $m + 1 \ge k \ge 0$  und

$$Id: W^{m+1,p}(\hat{\Omega}) \hookrightarrow W^{k,q}(\hat{\Omega})$$

eine stetige Einbettung. Ist  $\hat{P} \subseteq W^{m+1,p}(\hat{\Omega}) \subseteq W^{k,q}(\hat{\Omega})$  ein endlichdimensionaler Unterraum, dann gibt es eine Konstante  $C(\hat{P}, \hat{\Omega}, m, k, p, q)$ , so daß für alle  $p \in \hat{P}$  gilt

$$|p|_{m+1,p} \leq C(P, \hat{\Omega}) |p|_{k,q}.$$

Bemerkung 2.1 Für die Existenz einer stetigen Einbettung ist nach Satz 1.4 hinreichend, daß

$$m+1-\frac{n}{p} \geq k-\frac{n}{q}$$

gilt.

Beweis. Jede Halbnorm  $|\cdot|$  auf einem Raum X ist auf dem Quotienten X/N nach dem Nullraum  $N := \{x \in X \mid |x| = 0\}$  schon eine Norm, vgl. [Rud73], Kapitel 1, Satz 1.43. Es ist also  $\hat{P}/N$  mit  $N := \{x \in \hat{P} \mid |x|_{k,q} = 0\}$  ein endlichdimensionaler Vektorraum mit der Norm  $|\cdot|_{k,q}$ . Außerdem gilt wegen Korollar 1.1 mit  $m + 1 \ge k$ 

$$|p|_{k,q} = 0 \implies |p|_{m+1,p} = 0.$$

Daraus folgt, daß die Halbnorm  $|\cdot|_{m+1,p}$  auch über dem Quotienten  $\hat{P}/N$  fakorisiert und somit gleich der Quotientenhalbnorm

$$\overline{|\dot{p}|}_{m+1,p} := \inf_{p \in \dot{p}} |p|_{m+1,p} = |p|_{m+1,p} \quad \text{für alle } p \in \dot{p}$$

ist. Aufgrund der Normäquivalenz auf dem endlichdimensionalen Quotientenraum  $\hat{P}/N$  folgt, daß die Quotientennorm  $\overline{\|\cdot\|}_{m+1,p}$  äquivalent zur Norm  $\overline{|\cdot|}_{k,q}$  ist. Es gilt speziell

$$\overline{\|\cdot\|}_{m+1,p} \leq C(\hat{P},\hat{\Omega},m,k,p,q)\overline{|\cdot|}_{k,q}.$$

Also ergibt sich insgesamt

$$\begin{split} |p|_{m+1,p} &= \overline{|\dot{p}|}_{m+1,p} \leq \overline{||\dot{p}||}_{m+1,p} \leq C(\hat{P}, \hat{\Omega}, m, k, p, q) \overline{|\dot{p}|}_{k,q} \\ &\leq C(\hat{P}, \hat{\Omega}, m, k, p, q) |p|_{k,q}. \end{split}$$

Das nächste Korollar ist wesentlich für inverse Abschätzungen bei Finite-Element-Methoden. Die Konstante C hängt nicht von h ab, falls die lokalen endlichdimensionalen Räume P invariant unter dem Operator Einschränkung und unter affinen Transformationen sind. Es muß also garantiert sein, daß man die lokalen Räume immer in einen festen endlichdimensionalen Referenzraum  $\hat{P}$  abbilden kann. Die Polynomräume sind invariant unter Einschränkung und affinen Transformationen, deshalb wird das nächste Korollar speziell für diese Räume angegeben.

**Korollar 2.2 (Inverse Ungleichung über Referenzelement)** Sei  $\Omega$  affin äquivalent zu einem festen Referenzgebiet  $\hat{\Omega}$ . Seien weiterhin  $m + 1 \ge k \ge 0$  und  $\mathbb{P}_l(\Omega)$  der Raum der Polynome vom Grad l sowie

$$Id: W^{m+1,p}(\Omega) \hookrightarrow W^{k,q}(\Omega)$$

eine stetige Einbettung, so gilt

$$|p|_{m+1,p} \leq C(\Omega, l, m, k, p, q) \frac{h^k}{\varrho^{m+1}} h^{\frac{n}{p} - \frac{n}{q}} |p|_{k,q}.$$

Der *Beweis* erfolgt durch eine Transformation auf das Referenzgebiet  $\hat{\Omega}$  wie in Beweis von Satz 2.3.

### 2.5 Interpolationstheorie konformer FE-Räume

In diesem Abschnitt werden die Interpolationsaussagen aus dem ersten Teil des Kapitels auf Finite-Element-Räume angewendet. Zunächst werden Interpolationsoperatoren auf Finite-Element-Räumen eingeführt. Anschließend werden Bedingungen angegeben, unter welchen die Ergebnisse aus dem ersten Abschnitt anwendbar sind, um lokale und globale Interpolationsabschätzungen machen zu können.

Die auftretenden Gebiete bzw. Teilgebiete werden wieder als Lipschitz-stetig berandet vorausgesetzt. Alle vorkommenden Operatoren werden als linear und stetig vorausgesetzt.

### Finite-Element-Räume

Es wird hier die Definition von [Cia78] in einer globalen Fassung verwendet. In [Cia78] ist eine lokale Definition angegeben. Der Vorteil einer globalen Betrachtung besteht darin, daß man keine Zusammensetzung der lokalen Grössen vornehmen muß und sich somit nicht um das Problem der Wohldefiniertheit zu kümmern braucht.

**Definition 2.3 (Finite-Element-Räume)** Seien  $\Omega$  ein Gebiet und V ein Banach-Raum von reellwertigen Funktionen über  $\Omega$ . Seien  $P \subseteq V$  ein endlichdimensionaler Teilraum der Dimension N und  $\Sigma = \{F_1, ..., F_N\}$  eine N-elementige Menge von stetigen Funktionalen auf V. Dann wird das Tupel  $(\Omega, V, P, \Sigma)$  konformer Finite-Element-Raum genannt.

**Bemerkung 2.2** Im Folgenden werden konforme Finite-Element-Räume auch durch die Abkürzung *FE-Raum* gekennzeichnet.

**Definition 2.4 (Interpolationsoperatoren)** Sei  $(\Omega, V, P, \Sigma)$  ein FE-Raum und seien  $\{P_1, ..., P_N\}$  Funktionen aus P, dann läßt sich ein Operator II definieren durch

$$\begin{aligned} \Pi : & V & \longrightarrow & P \\ & v & \longmapsto & \sum_{i=1}^N F_i(v) P_i \end{aligned}$$

 $\Pi$  heißt Interpolationsoperator über  $(\Omega, V, P, \Sigma)$ .

**Bemerkung 2.3** i) Der Operator II hängt von der Wahl der Funktionen aus P ab! ii) Der Operator ist wohldefiniert, weil  $\{P_1, ..., P_N\} \subseteq P$  sind, und stetig, weil die Funktionale  $\Sigma$  stetig sind. Insgesamt ergibt sich

$$\begin{aligned} \|\Pi v\| &\leq \sum_{i=1}^{N} |F_i(v)| \|P_i\| \stackrel{\text{Stet.}}{\leq} \sum_{i=1}^{N} \|F_i\| \|v\| \|P_i\| \\ &\leq \sum_{i=1}^{N} \|F_i\| \|P_i\| \|v\|. \end{aligned}$$

iii) Jede stetige lineare Abbildung  $L: V \to P$  läßt sich wie in Definition 2.4 darstellen.  $\diamond$ 

**Lemma 2.10 (Projektionseigenschaft)** Seien  $(\Omega, V, P, \Sigma)$  ein FE-Raum und die stetigen Funktionale  $\Sigma = \{F_1, ..., F_N\}$  über V dual zu einer Basis  $\{P_1, ..., P_N\}$  von P, d. h.

$$F_i(P_j) = \delta_{ij}.$$

Der Interpolationsoperator  $\Pi$  sei definiert durch

$$\Pi: V \longrightarrow P$$
$$v \longmapsto \sum_{i=1}^{N} F_i(v) P_i,$$

dann ist  $\Pi$  ein Projektionsoperator von V nach P und es gilt

$$\Pi|_{P} = Id.$$

Beweis. Es genügt  $\Pi|_P = Id$  zu zeigen , denn dann ist

$$\Pi^2(v) = \Pi(\Pi v) = \Pi(v).$$

Es gilt  $p = \sum F_j(p)P_j = \prod p$  für alle  $p \in P$ , denn  $p = \lambda_1 P_1 + \ldots + \lambda_N P_N$  und  $F_j(p) = \lambda_j$  für alle  $j \in \{1, \ldots, N\}$ , da  $\Sigma$  dual zur Basis  $\{P_1, \ldots, P_N\}$  von P ist.  $\Box$ 

**Lemma 2.11 (Duale Basen)** Seien  $(V, \|\cdot\|)$  ein normierter Raum und  $P \subseteq V$  ein endlichdimensionaler Unterraum, dann gibt es zu jeder Basis  $\{P_1, ..., P_N\}$  von P ein duale Basis  $F = \{F_1, ..., F_N\}$  von stetigen Funktionalen auf V.

Der Beweis folgt sofort mit dem Satz von Hahn und Banach.

**Korollar 2.3 (Projektionsoperatoren)** Zu jedem endlichdimensionalen Ansatzraum  $P \subseteq V$  und jeder Basis  $\{P_1, ..., P_N\}$  von P gibt es einen Interpolationsoperator, der eine Projektion auf P ist.

**Bemerkung 2.4** Dies ist nur ein Existenzaussage, die aber scheinbar keine allgemeine Interpolationstheorie zuläßt, weil man nichts über die Funktionale F aussagen kann. Die Funktionale hängen stark von der Basis  $\{P_1, ..., P_N\}$  und dem Raum V ab. Insbesondere weiß man, a priori, nichts über den Träger der Funktionale F.

#### Interpolationseigenschaften

Im Folgenden werden hinreichende Kriterien angeben, um lokale Abschätzungen angeben zu können. Lokal heißt in diesem Sinn, daß eine Interpolationsaussage auf den Teilgebieten T einer Zerlegung des Gebietes  $\Omega = \bigcup_{T \in \mathcal{T}} T$  angegeben werden kann.

**Definition 2.5 (Affine Zerlegungen)** Eine Zerlegung  $\Omega = \bigcup_{T \in \mathcal{T}_h} T$  des Gebietes  $\Omega$  in affin äquivalente Teilgebiete T heißt affine Zerlegung.

Eine wesentliche Eigenschaft für die Anwendbarkeit der Interpolationsaussagen aus Kapitel 2 auf Interpolationsoperatoren über FE-Räumen ist die folgende Eigenschaft.

**Definition 2.6 (Lokalität)** Seien  $(\Omega, W^{m+1,p}(\Omega), P, \Sigma)$  ein FE-Raum und  $\Omega = \bigcup_{\substack{T \in \mathcal{T}_h \\ \Pi \text{ über}}} T$ eine zugehörige Zerlegung des Gebietes  $\Omega$ . Ein Interpolationsoperator  $\Pi$  über  $(\Omega, W^{m+1,p}(\Omega), P, \Sigma)$  heißt lokal, wenn es lokale Operatoren

$$\Pi_T: W^{m+1,p}(T) \longrightarrow \mathbb{R}$$

gibt, so daß für alle  $T \in \mathcal{T}_h$  gilt

 $\Pi\big|_T = \Pi_T$ 

gilt.

**Lemma 2.12 (Zerlegbarkeit)** Sei der Operator  $\Pi$  lokal, dann gilt für alle  $v \in V$ 

$$\|\Pi v\|_{W^{m+1,p}(\Omega)}^2 = \sum_{T \in \mathcal{T}_h} \|\Pi_T v\|_{W^{m+1,p}(T)}^2.$$

**Bemerkung 2.5** Der Einbettungsoperator  $Id: W^{m+1,p}(\Omega) \hookrightarrow W^{k,q}(\Omega)$  aus Satz 1.4 ist ebenfalls lokal im obigen Sinne, also gilt insbesondere

$$\|(Id - \Pi)v\|^2_{W^{m+1,p}(\Omega)} = \sum_{T \in \mathcal{T}_h} \|(Id_T - \Pi_T)v\|^2_{W^{m+1,p}(T)}.$$

**Satz 2.4 (Lokale Interpolationsaussage)** Die folgenden Voraussetzungen sind hinreichend für lokale Interpolationsabschätzungen wie die in Satz 2.3 bei FE-Methoden.

- $(\Omega, W^{m+1,p}(\Omega), P, \Sigma)$  sei ein FE-Raum über einer affinen Zerlegung von  $\Omega = \bigcup_{T \in \mathcal{T}_h} T$ .
- Der Interpolationsoperator  $\Pi$  sei über  $(\Omega, V, P, \Sigma)$  lokal wie in Definition 2.6, d. h. für alle  $T \in \mathcal{T}_h$  gebe es stetige Operatoren  $\Pi_T$ , so da $\beta$

$$\Pi|_T = \Pi_T$$

• Die lokalen Operatoren  $\Pi_T$  mögen die Voraussetzungen von Satz 2.1 bezüglich T erfüllen.

Unter diesen Voraussetzungen gilt für alle  $v \in W^{m+1,p}(\Omega)$  und für alle  $T \in \mathcal{T}_h$ 

$$|(Id_T - \Pi_T)v|_{W^{k,q}(T)} \leq C \frac{h_T^{m+1}}{\varrho_T^k} h_T^{\frac{n}{q} - \frac{n}{p}} |v|_{W^{m+1,p}(T)}$$

Beweis. Die Voraussetzungen sind hinreichend aufgrund der vorangegangenen Sätze.  $\Box$ 

**Bemerkung 2.6** Die wesentliche Forderung ist in diesem Fall die Lokalität des Interpolationsoperators. Da der Interpolationsoperator über den Funktionalen  $\Sigma$  eine Projektion in den Ansatzraum P bewirkt, ist dies eine Forderung an den Ansatzraum P und die Funktionale  $\Sigma$ . Diese müssen ebenfalls in einer geeigneten Weise lokal sein. Diese Voraussetzung ist erfüllt bei Lagrange- bzw. Hermite-Ansatzräumen und hinreichender Regularität des Lösungsraumes  $W^{m,p}(\Omega)$ , z.B.  $W^{m,p}(\Omega) \hookrightarrow C^0$ . In diesem Fall sind die Diracschen Delta-Distributionen (auch Punkt-Distributionen genannt) im Dualraum von V. Im Fall von  $W^{m,2}(\Omega)$  und  $\Omega \in \mathbb{R}^3$  bedeutet dies aufgrund der Sobolevschen Einbettungssätze gerade

$$m > \frac{3}{2} \Rightarrow m > 1.$$

Schwache Lösungen u von PDGLn zweiter Ordnung mit dominanten Termen 1. Ordnung sind häufig "nur" in  $W^{1,2}$  enthalten (fehlende Regularität). Da in diesem Fall die Punkt-Distributionen nicht in  $(W^{1,2})^*$  enthalten sind, sind speziellere Interpolationsoperatoren erforderlich, die über eine lokale  $L^2$ -Mittelung in den Ansatzraum abbilden. Leider erfüllen diese dann nur noch eine quasi-lokale Abschätzung, d. h. man kann den Interpolationsfehler auf einem Element T nur über eine Umgebung von T gegen eine Norm der Lösung u abschätzen. Ein solcher Operator wird zusammen mit dem zugehörigen konformen FE-Raum in den Kapiteln 3 und 4 vorgestellt.

Eine umfangreiche Übersicht über die möglichen FE-Räume und deren Anwendungen findet sich bei ([Cia78], Kap. 2. u. 3.). Es wird an dieser Stelle nicht näher darauf eingegangen.

In diesem Abschnitt soll nur noch kurz auf das globale Konvergenzverhalten in Abhängigkeit von der Gitterfeinheit h bei der FE-Interpolation eingegangen werden.

Korollar 2.4 (Globale Interpolationsaussage) Seien die Vorraussetzungen von Satz 2.4 erfüllt, dann gilt die globale Interpolationsabschätzung

$$|(Id-\Pi)v|_{W^{k,q}(\Omega)} \leq C \max_{T\in\mathcal{T}_h} \left\{ \frac{h_T^{m+1}}{\varrho_T^k} h_T^{\frac{n}{q}-\frac{n}{p}} \right\} |v|_{W^{m+1,p}(\Omega)}.$$

Beweis. Es gilt

$$\|(Id-\Pi)v\|^2_{W^{k,q}(\Omega)} = \sum_{T\in\mathcal{T}_h} \|(Id_T-\Pi_T)v\|^2_{W^{k,q}(T)}.$$

Durch Abschätzung der lokalen Terme ergibt sich dann die Behauptung.

## Kapitel 3

## Singulär gestörte Diffusions-Konvektions-Reaktions-Gleichungen

In diesem Kapitel wird die Klasse von Differentialgleichungen vorgestellt für die eine a-posteriori Fehleranalysis angestrebt wird. Es handelt sich dabei um singulär gestörte Randwertprobleme 2. Ordnung mit gemischten Dirichlet- und Robin-Randbedingungen. Es wird die schwache Formulierung hergeleitet und mit Hilfe der Lax-Milgram-Theorie eine Existenz- und Eindeutigkeitsaussage unter den üblichen Voraussetzungen angegeben. Die Diskretisierung erfolgt mit der SUPG-Methode auf einem Finite-Element-Raum mit Dreieckszerlegung und stetigen stückweise affin-linearen Ansatzfunktionen.

## 3.1 Problemstellung

Betrachtet werden singulär gestörte Diffusions-Konvektions-Reaktionsgleichungen mit gemischten Dirichlet- und Robin-Randbedingungen des Typs

(3.1) 
$$\begin{array}{c} -\varepsilon\Delta u + \underline{a}\cdot\nabla u + bu = f & \text{in }\Omega, \\ u = 0 & \text{auf }\Gamma_D, \\ \varepsilon\nabla u\cdot\vec{n} + \zeta u = g & \text{auf }\Gamma_R \end{array} \right\}$$

mit den Daten:

- $\Omega \subseteq \mathbb{R}^n$  ist ein Lipschitz-stetig berandetes Gebiet mit Rand  $\partial \Omega = \Gamma_D \cup \Gamma_R$ , wobei  $\Gamma_D \cap \Gamma_R = \emptyset$  gelten soll.  $\Gamma_D$  wird als kompakt angenommen.
- $\vec{n}$  ist der fast überall definierte äußere Normaleneinheitsvektor an  $\partial \Omega$ .  $\nabla u \cdot \vec{n}$  ist die Richtungsableitung von u in Richtung des Normaleneinheitsvektors.
- $0 < \varepsilon \ll 1$  ist ein singulärer Störungsparameter.
- $\underline{a}: \Omega \to \mathbb{R}^n$  ist ein Strömungsfeld.
- $b: \Omega \to \mathbb{R}$  ist ein Skalarfeld.

 $-\varepsilon \Delta u$  ist der Diffusionsterm,  $\underline{a} \cdot \nabla u$  ist der Konvektionsterm und  $b \cdot u - f$  ist ein linearisierter Reaktionsterm.

**Bemerkung 3.1** Die im Problem (3.1) vorkommenden Randbedingungen sind gemischte Dirichlet- und Robin-Randbedingungen. Sie treten in dieser Form an den Rändern von Teilgebieten bei einer Gebietszerlegung (DDM=Domain-Decomposition-Method) auf. Es wird in diesem Zusammenhang auf [Ott99] verwiesen.

### 3.2 Schwache Formulierung

Man versteht unter einer schwachen Lösung von (3.1) eine Lösung im distributiven Sinn. Man leitet aus (3.1) eine Variationsgleichung der Form

(3.2) Gesucht 
$$u \in X$$
, so daß  $B(u, v) = F(v) \quad \forall v \in X$ 

ab. Dabei ist B eine stetige Bilinearform und F ein stetiges lineares Funktional auf einem Hilbert-Raum X.

**Definition 3.1 (X-Elliptizität)** Sei  $(X, \|\cdot\|_X)$  ein Hilbert-Raum. Eine Bilinearform  $B: X \times X \to \mathbb{R}$  auf X heißt X-elliptisch (oder auch strikt koerzitiv), falls eine Konstante  $\gamma > 0$  existiert mit

$$B(v,v) \geq \gamma \|v\|_X^2 \quad \forall v \in X.$$

**Bemerkung 3.2 (Lax-Milgram)** i) Ist  $B(\cdot, \cdot)$  strikt koerzitiv, so liefert der Satz von Riesz die Existenz und Eindeutigkeit der Lösung u von 3.2 (Lax-Milgram Theorie). ii) Für die oberen a-posteriori Abschätzungen nach Verfürth braucht man die X-Elliptizität der Bilinearform B.

Der Lösungsraum für die schwache Formulierung des Problems (3.1) wird in der folgenden Definition eingeführt.

**Definition 3.2 (Lösungsraum)** Seien  $\Omega$  und  $\Gamma_D \subseteq \partial \Omega$  wie im Problem (3.1), dann wird mit Hilfe des Spuroperators Sp aus Satz 1.2 der Sobolev-Raum

$$X := W^{1,2}_{\Gamma_D}(\Omega) := \{ v \in W^{1,2}(\Omega) \mid \operatorname{Sp}(v) \big|_{\Gamma_D} = 0 \}$$

mit der entsprechenden Norm

$$\|\cdot\| := \|\cdot\|_{W^{1,2}(\Omega)}$$

eingeführt.

**Bemerkung 3.3** i) Der Spuroperator Sp ist stetig und  $\{0\} \in W^{1,2}(\partial\Omega)$  abgeschlossen, also ist  $W^{1,2}_{\Gamma_D}(\Omega)$  abgeschlossen und somit ein Banachraum. ii) Der Raum

$$\mathcal{C}^{\infty}_{\Gamma_{D}}(\Omega) := \{ \varphi \in \mathcal{C}^{\infty}(\Omega) \mid \varphi \big|_{\Gamma_{D}} = 0 \}$$

ist aufgrund von Lemma 1.9 dicht in dem Lösungsraum X und wird auch als Testraum der schwachen Formulierung 3.4 bezeichnet.  $\diamond$
Eine dem Problem (3.1) angepaßte Norm ist eine mit  $\varepsilon$  gewichtete Norm, die sogenannte *Energienorm*.

**Definition 3.3 (Energienorm)** Set  $\varepsilon > 0$ . Für alle  $v \in W^{1,2}(\Omega)$  set

$$|||v||| := \sqrt{\varepsilon ||\nabla v||_{L^2(\Omega)}^2 + ||v||_{L^2(\Omega)}^2}$$

mit

$$\|\nabla v\|_{L^{2}(\Omega)}^{2} := |v|_{W^{1,2}(\Omega)} = \left(\sum_{i=1}^{n} \int_{\Omega} \left(\frac{\partial v}{\partial x_{i}}\right)^{2} dx\right)^{\frac{1}{2}}.$$

Die so definierte Norm wird als Energienorm bezeichnet. Ist  $\Upsilon \subset \Omega$  ein Teilgebiet, so wird die Einschränkung der Energienorm auf Funktionen  $u \in W^{1,2}(\Upsilon)$  mit  $|||u|||_{\Upsilon}$  bezeichnet.

**Lemma 3.1 (Normäquivalenz)** Sei  $\varepsilon > 0$ . Die Energienorm  $||| \cdot |||$  ist äquivalent zur Norm  $|| \cdot ||_{W^{1,2}}$  und es gilt explizit

$$\begin{aligned} \| \cdot \|_{W^{1,2}(\Omega)} &\leq C_{\varepsilon} \| \| \cdot \| \\ \| \| \cdot \| &\leq c_{\varepsilon} \| \cdot \|_{W^{1,2}(\Omega)} \end{aligned}$$

mit  $C_{\varepsilon} = \max\{\varepsilon^{-\frac{1}{2}}, 1\}$  und  $c_{\varepsilon} = \max\{\varepsilon^{\frac{1}{2}}, 1\}.$ 

Der Beweis ergibt sich durch einfaches Nachrechnen.

Um eine schwache Formulierung für das Problem abzuleiten, muß gewährleistet sein, daß für alle  $u \in W_{\Gamma_D}^{1,2}(\Omega)$  die Funktionen  $\underline{a} \cdot \nabla u$  und bu aus  $L^2(\Omega)$  sind. Es ist wegen Lemma 1.5 hinreichend und im Allgemeinen wahrscheinlich auch notwendig, daß  $\underline{a} \in (L^{\infty}(\Omega))^n$  und  $b \in L^{\infty}(\Omega)$  ist. Um ein wohlformuliertes Problem zu erhalten, wird im Folgenden von dieser Voraussetzung ausgegangen. Damit ist es jetzt möglich, das Variationsproblem (3.2) d. h. die schwache Formulierung von (3.1) anzugeben. Man multipliziert (3.1) mit einer Testfunktion aus  $\mathcal{C}_{\Gamma_D}^{\infty}(\Omega)$  und integriert über  $\Omega$ . So ergibt sich

$$-\varepsilon \int_{\Omega} \Delta u \, v \, dx + \int_{\Omega} (\underline{a} \cdot \nabla u + bu) v \, dx = \int_{\Omega} f \, v \, dx.$$

Durch partielle Integration erhält man mit Lemma 1.10

$$-\varepsilon \left( \int_{\Gamma_R} \nabla u \cdot \vec{n} \, v \, ds - \int_{\Omega} \nabla u \, \nabla v \, dx \right) + \int_{\Omega} \left( \underline{a} \cdot \nabla u + bu \right) \, v \, dx = \int_{\Omega} f \, v \, dx.$$

Einarbeiten der Randbedingungen liefert

$$\varepsilon \int_{\Omega} \nabla u \nabla v \, dx + \int_{\Omega} \left( \underline{a} \cdot \nabla u + bu \right) v \, dx + \int_{\Gamma_R} \zeta \, u \, v \, ds = \int_{\Omega} f \, v \, dx + \int_{\Gamma_R} g \, v \, ds$$

**Definition 3.4 (Schwache Formulierung)** Sei  $\underline{a} \in (L^{\infty}(\Omega))^n$  und  $b \in L^{\infty}(\Omega)$ , dann sind die Bilinearform B und das Funktional F für alle  $u, v \in W^{1,2}_{\Gamma_D}(\Omega)$  definiert als

$$\begin{array}{lll} B(u,v) &:= & \varepsilon (\nabla u, \nabla v)_{L^2(\Omega)} + (\underline{a} \cdot \nabla u + b \, u, v)_{L^2(\Omega)} + (\zeta u, v)_{L^2(\Gamma_R)} & und \\ F(v) &:= & (f,v)_{L^2(\Omega)} + (g,v)_{L^2(\Gamma_R)}. \end{array}$$

Die schwache Formulierung des Problems (3.1) wird damit gegeben durch Finde  $u \in W^{1,2}_{\Gamma_D}(\Omega)$ , so daß für alle  $v \in W^{1,2}_{\Gamma_D}(\Omega)$  gilt B(u,v) = F(v).

Die folgenden Lemmata zeigen die X-Elliptizität und Stetigkeit der Bilinearform B und die Stetigkeit des Funktionals F. Somit sind die Voraussetzungen der Lax-Milgram-Theorie erfüllt und es folgt die Existenz und Eindeutigkeit der Lösung aus Definition 3.4.

Lemma 3.2 (X-Elliptizität von B) Unter den Voraussetzungen

(3.3)  $\underline{a} \in (W^{1,\infty}(\Omega))^n,$ 

(3.4) 
$$-\frac{1}{2}\nabla \cdot \underline{a} + b \ge \gamma > 0 \quad und$$

$$(3.5) \qquad \underline{a} \cdot \vec{n} + 2\zeta \ge 0 \quad auf \ \Gamma_R$$

ist die Bilinearform B  $W^{1,2}_{\Gamma_D}(\Omega)$ -elliptisch. Genauer gilt für alle  $v \in W^{1,2}_{\Gamma_D}(\Omega)$ 

$$B(v,v) \ge \min\{\gamma,1\} |||v|||^2$$

Beweis. Zunächst kann man B in zwei Bilinearformen aufspalten, d. h.  $B(u, v) = a_1(u, v) + a_2(u, v)$  mit

$$a_1(u,v) = \varepsilon \int_{\Omega} \nabla u \cdot \nabla v \, dx \quad \text{und} \quad a_2(u,v) = \int_{\Omega} (\underline{a} \cdot \nabla u + b \, u) \, v \, dx + \int_{\Gamma_R} \zeta \, u \, v \, ds.$$

Jetzt schätzt man beide Terme ab. Für den elliptischen Hauptteil ergibt sich

$$a_1(v,v) = \varepsilon \int_{\Omega} \nabla v \cdot \nabla v \, dx = \varepsilon \|\nabla v\|_{L^2(\Omega)}^2$$

Für den Term niederer Ordnung ergibt sich

$$\begin{aligned} a_{2}(v,v) &= \int_{\Omega} (\underline{a} \cdot \nabla v) \, v \, dx + \int_{\Omega} b \, v^{2} dx + \int_{\Gamma_{R}} \zeta \, v^{2} \, ds \\ &\stackrel{(3.3)}{=} \underbrace{\frac{1}{2} \left( \int_{\partial \Omega} \underline{a} \cdot \vec{n} \, v^{2} \, ds - \int_{\Omega} \nabla \cdot \underline{a} \, v^{2} \, dx \right) + \int_{\Omega} b \, v^{2} \, dx + \int_{\Gamma_{R}} \zeta \, v^{2} \, ds \\ \stackrel{v|_{\Gamma_{D}}=0}{=} \underbrace{\frac{1}{2} \int_{\Gamma_{R}} \underbrace{(\underline{a} \cdot \vec{n} + 2\zeta)}_{\geq 0 \text{ wegen } (3.5)} v^{2} \, ds + \int_{\Omega} \underbrace{(b - \frac{1}{2} \nabla \cdot \underline{a})}_{\geq \gamma > 0 \text{ wegen } (3.4)} v^{2} \, dx \\ &\geq \gamma \|v\|_{L^{2}(\Omega)}^{2}. \end{aligned}$$

Daraus folgt dann

$$B(v,v) \geq \varepsilon \|\nabla v\|_{L^{2}(\Omega)}^{2} + \gamma \|v\|_{L^{2}(\Omega)}^{2} \geq \min\{\gamma,1\} \|\|v\|\|^{2}$$

**Lemma 3.3 (Stetigkeit von B)** Unter den Voraussetzungen  $\underline{a} \in (L^{\infty}(\Omega))^n$ ,  $b \in L^{\infty}(\Omega)$ und  $\zeta \in L^{\infty}(\Gamma_R)$  ist B stetig auf  $W^{1,2}_{\Gamma_D}(\Omega)$  und es gilt für alle  $u, v \in W^{1,2}_{\Gamma_D}(\Omega)$ 

$$B(v,w) \leq (1 + \|b\|_{L^{\infty}(\Omega)} + \varepsilon^{-1} \|\underline{a}\|_{L^{\infty}(\Omega)} + \|\zeta\|_{L^{\infty}(\Gamma_{R})}) \|\|v\|\| \|w\||.$$

Beweis. Für alle  $u, v \in W^{1,2}_{\Gamma_D}(\Omega)$  gilt

$$B(u,v) = \varepsilon(\nabla u, \nabla v)_{L^{2}(\Omega)} + (\underline{a} \cdot \nabla u + b \, u, v)_{L^{2}(\Omega)} + (\zeta u, v)_{L^{2}(\Gamma_{R})}$$

$$(3.6) \qquad \stackrel{\text{Hölder}}{\leq} \varepsilon \|\nabla u\|_{L^{2}(\Omega)} \|\nabla v\|_{L^{2}(\Omega)} + \|\underline{a}\|_{L^{\infty}(\Omega)} \|\nabla u\|_{L^{2}(\Omega)} \|v\|_{L^{2}(\Omega)} + \|b\|_{L^{\infty}(\Omega)} \|u\|_{L^{2}(\Omega)} + \|\zeta\|_{L^{\infty}(\Gamma_{R})} \|u\|_{L^{2}(\Gamma_{R})} \|v\|_{L^{2}(\Gamma_{R})}$$

$$\stackrel{\text{Young}}{\leq} \left(1 + \|b\|_{L^{\infty}(\Omega)} + \varepsilon^{-\frac{1}{2}} \|\underline{a}\|_{L^{\infty}(\Omega)} + \|\zeta\|_{L^{\infty}(\Gamma_{R})}\right) \||u\|| \|v\||.$$

**Lemma 3.4 (Stetigkeit von F)** Unter den Voraussetzungen  $f \in L^2(\Omega)$ ,  $g \in L^2(\Gamma_R)$ ist F stetig auf  $W^{1,2}_{\Gamma_D}(\Omega)$ , und es gilt für alle  $v \in W^{1,2}_{\Gamma_D}(\Omega)$ 

 $F(v) \leq (\|f\|_{L^{2}(\Omega)} + \|g\|_{L^{2}(\Gamma_{R})})\|v\|_{L^{2}(\Omega)}.$ 

Beweis. Es gilt für alle  $v \in W^{1,2}_{\Gamma_D}(\Omega)$ 

$$F(v) = (f, v)_{L^{2}(\Omega)} + (g, v)_{L^{2}(\Gamma_{R})}$$
  
Hölder  

$$\leq \|f\|_{L^{2}(\Omega)} \|v\|_{L^{2}(\Omega)} + \|g\|_{L^{2}(\Gamma_{R})} \|v\|_{L^{2}(\Gamma_{R})}$$
  
Spurab.  

$$\leq C \left(\|f\|_{L^{2}(\Omega)} + \|g\|_{L^{2}(\Gamma_{R})}\right) \|v\|_{L^{2}(\Omega)}.$$

|  |  | L |
|--|--|---|
|  |  | L |
|  |  |   |

#### 3.3 Konstruktion eines konformen FE-Raumes

In diesem Abschnitt wird ein konformer FE-Raum für die Diskretisierung des Pro blems (3.1) vorgestellt. Dabei wird die Zerlegung des Gebietes  $\Omega \subseteq \mathbb{R}^n$  in *n*-Simplizes *T* erfolgen. Der Ansatzraum  $X_h^1$  wird aus stetigen und auf den Teilgebieten *T* affin-linearen Ansatzfunktionen bestehen, die auf dem Dirchlet-Rand  $\Gamma_D$  verschwinden. Dadurch ist sichergestellt, daß der Ansatzraum ein Unterraum von  $W_{\Gamma_D}^{1,2}(\Omega)$  ist.

#### Zerlegung eines Gebietes

Das Gebiet  $\Omega \subseteq \mathbb{R}^n$  wird ausgehend von einem Referenzelement  $\hat{T}$  vollständig in affinäquivalente Elemente der Form

$$\Omega = \bigcup_{T \in \mathcal{T}} T, \quad T \text{ ist n-Simplex}$$

zerlegt (Vorzugsweise wähle n = 2 oder n = 3). Die Zerlegung  $\mathcal{T}$  ist somit eine affine Familie. Um einen konformen Ansatzraum aus affin-linearen Funktionen auf den Elementen



Abbildung 3.1: Zerlegung des Gebietes  $\Omega$ 

konstruieren zu können, muß garantiert werden, daß sich die Funktionen an den Kanten stetig zusammensetzen. Dazu ist es notwendig, keine sogenannten hängenden Knoten zu erzeugen, d. h. nicht mehrere Elemente an einer Kante angrenzen zu lassen.

**Definition 3.5 (Zulässigkeit)** Eine Zerlegung  $\mathcal{T}$  von  $\Omega \subseteq \mathbb{R}^3$  heißt zulässig, wenn je zwei Elemente entweder

- eine gemeinsame Seite oder
- eine gemeinsame Kante oder
- einen gemeinsamen Punkt haben oder
- disjunkt sind.

Eine Verallgemeinerung auf  $\mathbb{R}^n$  ist leicht möglich, wird hier aber aus Gründen der Anschaulichkeit nicht durchgeführt. Finite-Element-Methoden bestehen im Wesentlichen aus einer wiederholten Abfolge von Verfeinerungen einer Zerlegung und Lösen der diskreten Probleme. Mit Hilfe von Interpolationsabschätzungen und des Lemmas von Céa kann man unter günstigen Voraussetzungen zeigen, daß sich der Fehler der diskreten Lösung zur kontinuierlichen Lösung mit h verkleinert. Aus diesem Grund spricht man von Familien von Zerlegungen  $\mathcal{T}_h$ , die mit der Gitterfeinheit h indiziert werden. Dabei ist  $h := \max_{T \in \mathcal{T}_h} \{h_T\}$  das Maximum der Elementdurchmesser.

Um die Abschätzungen des Kapitels 2 sinnvoll nutzen zu können, muß man fordern, daß der Umkreisdurchmesser h durch den Inkreisdurchmesser  $\rho$  beschränkt bleibt. Dies ist gleichbedeutend damit, daß die Elemente der Zerlegungen nicht entarten. Zur Festlegung dieses Sachverhalts dient die folgende Definition

**Definition 3.6 (Regularität)** Eine Familie  $\mathcal{T}_h$  heißt regulär, falls eine Konstante C existiert, so daß für alle  $\mathcal{T}_h$  gilt

$$\sup_{T\in\mathcal{T}_h}\frac{h_T}{\varrho_T}\leq C.$$

Für die praktische Berechnung ist es sinnvoll, die minimale Kantenlänge als  $\rho_T$  und die maximale Kantenlänge als  $h_T$  zu setzen.



Abbildung 3.2: In- und Umkreisdurchmesser von T

**Definition 3.7 (Kantenmenge)** Sei  $\mathcal{T}_h$  eine Zerlegung des Gebietes  $\Omega$ , dann bezeichnet  $\mathcal{E}_h$  die Menge aller Kanten.  $\mathcal{E}_h$  besteht aus den inneren Kanten  $\mathcal{E}_I$  und den äußeren Kanten  $\mathcal{E}_D$  des Dirichlet-Randes und  $\mathcal{E}_R$  des Robin-Randes. Insgesamt gilt damit

$$\mathcal{E}_h = \mathcal{E}_I \cup \mathcal{E}_D \cup \mathcal{E}_R.$$

Für die kommenden Berechnungen wird angenommen, daß die Zerlegung verträglich mit den Randbedingungen ist, d. h. daß sich die Kanten der Zerlegung  $\mathcal{T}_h$  eindeutig in diese Kategorien einteilen lassen.

**Definition 3.8 (Eckpunkte)** Die Menge aller Eckpunkte einer Zerlegung  $\mathcal{T}_h$  wird mit  $N_h$  bezeichnet.  $N_h$  setzt sich aus den inneren Koten  $N_I$  und den äußeren Knoten  $N_D$  des Dirichlet-Randes und  $N_R$  des Robin-Randes zusammen. Die Eckpunkte, die an einer Grenze zwischen dem Dirichlet- und dem Robin-Rand liegen, werden dabei der Menge  $N_D$  zugeordnet. Insgesamt gilt also

$$N_H = N_I \cup N_D \cup N_R.$$

#### Umgebungen von Ecken und Elementen

Die folgenden Umgebungen werden eine wichtige Rolle bei den a-posteriori Abschätzungen in Kapitel 4 spielen.

**Definition 3.9** Für alle  $x \in N_h$  und alle  $T \in \mathcal{T}_h$  seien die Umgebungen  $\omega_x$  und  $\omega_T$  definiert durch

$$\omega_x := \bigcup_{T \ni x} T \quad und \quad \omega_T := \bigcup_{T' \cap T \neq \emptyset} T'.$$

Diese Umgebungen werden bei den oberen a-posteriori Fehlerschätzungen auftreten



Abbildung 3.3: Umgebung  $\omega_x$ 

Abbildung 3.4: Umgebung  $\omega_T$ 

**Definition 3.10 (Durchmesser)** Mit  $h_{\omega_T}$  bzw.  $h_x$  werden die Durchmesser der Umkreise von  $\omega_T$  bzw.  $\omega_x$  und mit  $\varrho_x$  wird der Inkreisdurchmesser von  $\omega_x$  bezeichnet.

**Definition 3.11** Für alle  $T \in \mathcal{T}_h$  und alle  $E \in \mathcal{E}_h$  seien die Umgebungen  $\widetilde{\omega}_T$  und  $\omega_E$  definiert durch

$$\widetilde{\omega}_T := \bigcup_{\emptyset \neq T' \cap T \in \mathcal{E}_h} T' \quad und \quad \omega_E := \bigcup_{\partial T' \supset E} T'.$$

Mit  $h_E$  wird der Durchmesser diam(E) der Kante E bezeichnet.

Diese Umgebungen werden bei den unteren a posteriori Fehlerschätzungen auftreten.



Abbildung 3.5: Umgebung  $\widetilde{\omega}_T$ 



Abbildung 3.6: Umgebung  $\omega_E$ 

**Bemerkung 3.4 (Proportionalität)** Ist die Familie  $\{\mathcal{T}_h\}$  von Zerlegungen regulär, so sind sämtliche bisher definierte Durchmesser äquivalent

$$h_{\omega_T} \approx h_x \approx \varrho_x \approx h_T \approx \varrho_T$$

wie man durch geometrische Betrachtungen leicht einsieht.

**Definition 3.12 (Ansatzraum)** Der Ansatzraum  $X_h^1$  bestehe aus stückweise affin-linearen, stetigen Ansatzfunktionen, die auf dem Dirichlet-Rand verschwinden, d. h.

$$X_h^1(\Omega) := \{ \phi \in \mathcal{C}^0(\Omega) \mid \phi|_T \in \mathbb{P}_1(T) \; \forall T \in \mathcal{T}_h, \; \phi \big|_{\Gamma_D} = 0 \} \subseteq W^{1,2}(\Omega).$$

**Bemerkung 3.5 (Baryzentrische Koordinaten)** Zu jedem  $x \in T$  gibt es genau ein Tupel  $(\lambda_1, ..., \lambda_{n+1}) \in \mathbb{R}^{n+1}$  von baryzentrischen Koordinaten mit:



Abbildung 3.7: Baryzentrische Koordinate  $\lambda_2$ 

Für alle  $x \in N_h \setminus N_D$  seien die Funktionen  $\{\lambda_x\}_{x \in N_h}$  auf  $\omega_x$  elementweise aus den baryzentrischen Koordinaten zusammengesetzt und sonst mit Null fortgesetzt.

**Definition 3.13 (Basisfunctionen)** Sei  $\omega_x = T_1 \cup ... \cup T_k$  und  $\lambda_i$  die baryzentrische Koordinate auf  $T_i$  mit  $\lambda_i(x) = 1$ , dann werden die Basisfunktionen  $\lambda_x$  definiert als

$$\begin{array}{rccc} \lambda_x : & \Omega & \longrightarrow & \mathbb{R} \\ & y & \longmapsto & \lambda_x(y) := \left\{ \begin{array}{ccc} \lambda_i(y), & \textit{f} \ddot{u}r \ y \in T_i \\ & 0, & \textit{f} \ddot{u}r \ y \in \Omega \backslash \omega_x. \end{array} \right. \end{array}$$

Es ist  $\omega_x = \operatorname{supp} \lambda_x$ . Die Menge dieser Funktionen  $\{\lambda_x\}_{x \in N_h \setminus N_D}$  ist eine Basis in  $X_h^1$ , denn jede auf einem *n*-Simplex *T* affin-lineare Funktion ist durch die Werte an den Eckpunkten von *T* eindeutig festgelegt (Lineare Algebra).

**Definition 3.14 (Bezeichnungen)** Seien  $T \subseteq \mathbb{R}^n$  ein n-Simplex und  $\{x_1, ..., x_{n+1}\}$  dessen Eckpunkte, dann werden die Kanten  $\{E_1, ..., E_{n+1}\}$  so bezeichnet, daß  $E_i$  gegenüber von  $x_i$  liegt, d. h. für  $i \in \{1, ..., n+1\}$  gilt

$$E_i := \{ x \in T \mid \lambda_i(x) = 0 \}.$$

Im Falle, daß  $T \subseteq \mathbb{R}^n$  der Standard-n-Simplex ist, gilt für  $i \in \{1, ..., n\}$ 

$$E_i := \{ x \in T \mid x_i = 0 \} \quad und \quad E_{n+1} := \{ x \in T \mid ||x||_1 = 1 \}.$$



Abbildung 3.8: Basisfunktion  $\lambda_x$ 



Abbildung 3.9: Bezeichnungen für das Element T

#### 3.4 Diskretisierung

Die Diskretisierung des Problems soll mit der SUPG-FEM (SUPG=Streamline-Upwind-Petrov-Galerkin) erfolgen.

**Definition 3.15 (SUPG-Formen)** Set  $\delta_T \geq 0$ . Für alle  $u_h, v_h \in X_h^1$  definiere

$$B_{\delta}(u_{h}, v_{h}) := B(u_{h}, v_{h}) + \sum_{T \in \mathcal{T}_{h}} \delta_{T}(-\varepsilon \Delta u_{h} + \underline{a} \cdot \nabla u_{h} + bu_{h}, \underline{a} \cdot \nabla v_{h})_{T},$$
  

$$F_{\delta}(v_{h}) := F(v_{h}) + \sum_{T \in \mathcal{T}_{h}} \delta_{T}(f, \underline{a} \cdot \nabla v_{h})_{T}.$$

**Bemerkung 3.6** i) Die  $\delta_T$  werden so gewählt, daß  $B_{\delta} X_h^1$ -elliptisch bleibt. Mit einer geeigneten Konstanten C ist die Bedingung

$$\delta_T \leq C \min\left\{\frac{h_T}{\|\underline{a}\|_{L^{\infty}(T)}}, \frac{h_T^2}{\varepsilon}
ight\}$$

hinreichend für die  $X_h^1$ -Elliptizität, siehe [Kla98]. Es wird deshalb im Folgenden immer davon ausgegangen, daß diese Bedingung erfüllt ist.

 $\diamond$ 

ii) Für  $\delta_T = 0$  erhält man die gewöhnliche Galerkin-Diskretisierung.

**Definition 3.16 (SUPG-Diskretisierung)** Mit  $u_h \in X_h^1$  wird die eindeutige diskrete Lösung von

$$B_{\delta}(u_h, v_h) = F_{\delta}(v_h) \quad f \ddot{u}r \ alle \ v_h \in X_h^{\perp}$$

bezeichnet.

**Bemerkung 3.7** Die  $X_h^1$ -Elliptizität ist hinreichend für die Existenz und Eindeutigkeit der Lösung  $u_h \in X_h^1$  der SUPG-Diskretisierung.

### Kapitel 4

## **A-posteriori** Fehleranalysis

Ziel dieses Kapitels ist es, einen a-posteriori Fehlerschätzer für die SUPG-Diskretisierung des Problems (3.1) anzugeben, der eine globale obere und eine lokale und globale untere Abschätzung des Diskretisierungsfehlers zuläßt.

Das Kapitel ist in drei Abschnitte unterteilt. Im ersten Abschnitt wird ein Interpolationsoperator  $\Pi_h$  über dem konformen FE-Raum  $(\Omega, W^{1,2}, X_h^1, \Sigma)$  aus Kapitel 3 definiert, der auf [Clé75] beziehungsweise [Cia78] zurückgeht. Die Funktionale  $\Sigma$  werden lokale  $L^2$ -Mittelungen sein. Es wird eine quasi-lokale Interpolationsabschätzung bewiesen. Mit Spursätzen aus [Ver98] werden die Abschätzungen auf den Rand der Elemente Tübertragen. Diese werden dann später im Beweis für die globale obere Abschätzung des a-posteriori Fehlerschätzers von [Ver98] benötigt.

Im zweiten Abschnitt werden die Hilfsmittel für die unteren Abschätzungen angegeben. Es werden inverse Ungleichungen mit Hilfe von Blasenfunktionen angegeben.

In diesem Kapitel liegt stets der konforme FE-Raum aus Kapitel 3 zugrunde und es werden die dortigen Bezeichnungen verwendet. Die Dimension n kann in allen Aussagen beliebig gewählt werden. Alle vorkommenden Zerlegungen  $\mathcal{T}_h$  von  $\Omega$  werden als regulär angenommen, trotzdem wurde nach Möglichkeit immer zwischen den Parametern h und  $\rho$  unterschieden.

**Definition 4.1** In diesem Kapitel wird das Symbol  $\leq f \ddot{u} r \leq$ -Ungleichungen bis auf eine von negativen h oder  $\varepsilon$  Potenzen unabhängige Konstante C > 0 verwendet.

#### 4.1 Analysis für die oberen Abschätzungen

Es wird ein Interpolations operator konstruiert, der auf Clément zurückgeht. Zur Festlegung des Interpolations operators definiert man die Funktionale  $\Sigma$  als lokale  $\mathbb{P}_0$ -Projektionen.

**Definition 4.2 (Mittelungsoperator)** Seien die Umgebungen  $\omega_x$  wie in Abschnitt 3.3 definiert, dann bezeichnet  $\pi_x^0$  die orthogonale  $\mathbb{P}_0$ -Projektion über  $\omega_x$ , d. h.

$$\pi^0_x: L^2(\omega_x) \longrightarrow \mathbb{P}_0(\omega_x) \ u \longmapsto rac{1}{\mu(\omega_x)} \int\limits_{\omega_x} u \ dx.$$

Bemerkung 4.1 i) Es gilt offensichtlich

$$(u - \pi_x^0(u), v)_{L^2(\omega_x)} = 0$$
 für alle  $v \in \mathbb{P}_0(\omega_x).$ 

ii) Insbesondere gilt

$$\pi_x^0\big|_{\mathbb{P}_0(\omega_x)} = Id.$$

iii)  $\pi_x^0$  ist stetig in der  $L^2$ - und der  $W^{1,2}$ -Norm. iv)  $\pi_x^0$  kann als Funktional oder als Operator interpretiert werden. Beide Sichtweisen werden später nützlich sein.

Der zugehörige Interpolationsoperator  $\Pi_h$  wird wie in Kapitel 2 definiert.

**Definition 4.3 (Interpolationsoperator nach Clément)** Sei die Menge  $\Sigma$  der Funktionale gegeben durch die lokalen  $\mathbb{P}_0$ -Projektionen, d. h.

$$\Sigma = \left\{ \pi_x^0 \mid x \in N_h \right\},\,$$

dann definiert sich der Interpolationsoperator  $\Pi_h$  auf  $(\Omega, W^{1,2}, X_h^1, \Sigma)$  durch

$$egin{array}{rcl} \Pi_h:& L^2(\Omega)&\longrightarrow &X_h^1\ & u&\longmapsto&\sum\limits_{x\in N_h}\pi^0_x(u)\lambda_x. \end{array}$$

**Bemerkung 4.2**  $\Pi_h$  ist ein stetiger Interpolationsoperator auf  $L^2(\Omega)$  und  $W^{1,2}(\Omega)$ . Dies folgt aus der Tatsache  $X_h^1 \subset W^{1,2}(\Omega)$  und Bemerkung 4.1.

Es werden die Interpolationsabschätzungen aus [Ver97] angegeben. Die Beweise werden mit Hilfe der klassischen Ergebnisse aus [Cia78], die im Kapitel 2 dargestellt sind, geführt.

Satz 4.1 (Quasi-lokale Interpolationsabschätzungen) Für den Interpolationsoperator  $\Pi_h$  auf dem FE-Raum  $(\Omega, W^{1,2}, X_h^1, \Sigma)$  gelten die folgenden Abschätzungen für alle  $T \in \mathcal{T}_h$  und für alle  $u \in W^{1,2}(T)$ 

i) 
$$\|u - \Pi_h u\|_{L^2(T)} \lesssim \sum_{x \in N(T)} h_x \|\nabla u\|_{L^2(\omega_x)} \lesssim h_{\omega_T} \|\nabla u\|_{L^2(\omega_T)},$$

ii) 
$$\|\nabla(u - \Pi_h u)\|_{L^2(T)} \lesssim \sum_{x \in N(T)} \|\nabla u\|_{L^2(\omega_x)} \lesssim \|\nabla u\|_{L^2(\omega_T)},$$

 $||u - \Pi_h u||_{L^2(T)} \lesssim ||u||_{L^2(\omega_T)}.$ iii)

Beweis. zu i):

$$\begin{aligned} \|u - \Pi_{h} u\|_{L^{2}(T)} & \stackrel{\omega_{x} = \operatorname{supp} \lambda_{x}}{\underset{\sum \lambda_{x} = 1}{\overset{\Delta - \operatorname{Ung.}}{\underset{\sum \lambda_{x} = 1}{\overset{\sum \nu_{x} \in N(T)}{\underset{x \in N(T)}{\overset{\sum \nu_{x} \in N(T)}{\overset{\sum \nu_{x} \\{\sum \nu_{x} \in N(T)}{\overset{\sum \nu_{x} \\{\sum \nu_{x}$$

zu ii):

 $\|\nabla(u-\Pi_h u)\|_{L^2(T)}$ 

$$\begin{split} & \underset{\sum \lambda_{x}=1}{\overset{\leq}{\sum \lambda_{x}=1}} & \| \nabla \sum_{x \in N(T)} \lambda_{x} (u - \pi_{x}^{0} u) \|_{L^{2}(T)} \\ & \stackrel{\Delta \text{-Ung.}}{\leq} & \sum_{x \in N(T)} \| \nabla \{ \lambda_{x} (u - \pi_{x}^{0} u) \} \|_{L^{2}(T)} \\ & \underset{\text{Lemma 1.7}}{\overset{\sum}{\sum x \in N(T)}} & \sum_{x \in N(T)} \left( \| \nabla \lambda_{x} \|_{\infty} \| u - \pi_{x}^{0} u \|_{L^{2}(\omega_{x})} + \| \lambda_{x} \|_{\infty} \| \nabla (u - \pi_{x}^{0} u) \|_{L^{2}(\omega_{x})} \right) \\ & \| \nabla \lambda_{x} \|_{\infty} \leq \varrho_{x}^{-1} & \sum_{x \in N(T)} \left( \varrho_{x}^{-1} \| u - \pi_{x}^{0} u \|_{L^{2}(\omega_{x})} + \| \nabla (u - \pi_{x}^{0} u) \|_{L^{2}(\omega_{x})} \right) \\ & \underset{\pi_{x}^{0} u = \text{konst}}{\overset{\leq}{\sum x \in N(T)}} & \sum_{x \in N(T)} \left( \frac{h_{x}}{\varrho_{x}} \| \nabla u \|_{L^{2}(\omega_{x})} + \| \nabla u \|_{L^{2}(\omega_{x})} \right) \\ & \underset{\text{Regular.}}{\overset{\text{Vergr.}}{\sum \text{Regular.}}} & \| \nabla u \|_{L^{2}(\omega_{T})} \end{split}$$

zu iii):

Die Abschätzung folgt sofort aus der Stetigkeit des Operators  $Id - \Pi_h$  auf  $\omega_T$ , d. h.

$$||u - \Pi_h u||_{L^2(T)} \leq ||u - \Pi_h u||_{L^2(\omega_T)} \leq ||Id - \Pi_h||_{\omega_T} ||u||_{L^2(\omega_T)}.$$

**Bemerkung 4.3** Für die Aussage i) ist es nicht nötig, die Regularität der Zerlegungen  $\mathcal{T}_h$  anzunehmen. Dies liegt daran, daß man in Satz 2.3 bei der ersten Transformation keine Ableitungen von u transformiert und somit auch kein  $||A^{-1}||$  auftritt. Für die Aussage ii) ist die Regularität notwendig.

#### Spursätze

In diesem Unter-Abschnitt werden spezielle Spursätze aus [Ver98] vorgestellt und bewiesen, um verbesserte Abschätzungen machen zu können. Mit Hilfe dieser Spursätze werden die Interpolationsabschätzungen auf den Rand übertragen.

Für den Beweis des nächsten Lemmas ist die folgende Betrachtung nützlich.

**Bemerkung 4.4** Sei  $\hat{T}$  der Standard-*n*-Simplex in  $\mathbb{R}^n$ . Sei  $x \in \hat{E}_i$  für ein  $i \in \{1, ..., n\}$ ,

Abbildung 4.1: Standard-2-Simplex  $\hat{T}$ 

dann ist  $z = x + (1 - ||x||_1)e_i \in \hat{E}_{n+1}$ , denn es gilt  $||z||_1 = 1$ .

**Lemma 4.1 (Spursatz 1)** Set  $\hat{T}$  der Standard-n-Simplex im  $\mathbb{R}^n$  und

$$\hat{v} \in W^{1,2}_{\hat{E}_{n+1}}(\hat{T}) := \{ \hat{v} \in W^{1,2}(\hat{T}) \mid \operatorname{Sp}(\hat{v}) \big|_{\hat{E}_{n+1}} = 0 \},\$$

dann gilt für alle  $\hat{v} \in W^{1,2}_{\hat{E}_{n+1}}(\hat{T})$  und für alle Kanten  $\hat{E}_i$  mit  $i \in \{1, ..., n\}$ 

$$\|\hat{v}\|_{L^{2}(\hat{E}_{i})} \leq \sqrt{2} \|\hat{v}\|_{L^{2}(\hat{T})} \|\frac{\partial}{\partial x_{i}} \hat{v}\|_{L^{2}(\hat{T})}.$$

Beweis. Es wird  $\hat{T}$  entlang der Seite  $\hat{E}_i$  aufintegriert. Sei

$$\varphi \in \mathcal{C}^{\infty}_{\hat{E}_{n+1}}(\hat{T}) := \{ \varphi \in \mathcal{C}^{\infty}(\hat{T}) \mid \varphi \big|_{\hat{E}_{n+1}} = 0 \}$$

und  $x \in \hat{E}_i$  für ein  $i \in \{1, ..., n\}$ , dann ist

$$egin{array}{rcl} arphi(x)|^2 &=& |arphi(x)|^2 - |arphi(x+(1-\|x\|_1)e_i))|^2 \ &=& 2\int_0^{1-\|x\|_1} arphi(x+t\,e_i) rac{\partial}{\partial x_i} arphi(x+t\,e_i) dt. \end{array}$$

Durch Aufintegrieren über  $\hat{E}_i$ erhält man also

$$\begin{split} \|\varphi\|_{L^{2}(\hat{E}_{i})}^{2} &= 2\int_{\hat{E}_{i}}\int_{0}^{1-\|x\|_{1}}\varphi(x+t\,e_{i})\frac{\partial}{\partial x_{i}}\varphi(x+t\,e_{i})dt\,dx\\ \stackrel{\text{Fubini}}{=} & 2\int_{\hat{T}}\varphi(x)\frac{\partial}{\partial x_{i}}\varphi(x)dx\\ \stackrel{\text{Hölder}}{\leq} & \|\varphi\|_{L^{2}(\hat{T})}\|\frac{\partial}{\partial x_{i}}\varphi\|_{L^{2}(\hat{T})}. \end{split}$$





Der Beweis erfolgt nun aufgrund der Dichtheit von  $C^{\infty}_{\hat{E}_{n+1}}(\hat{T})$  in  $W^{1,2}_{\hat{E}_{n+1}}(\hat{T})$  unter Benutzung von Lemma 1.9.

Bemerkung 4.5 Aus dem Lemma 4.1 ergibt sich sofort

$$\|\hat{v}\|_{L^{2}(\hat{E}_{i})} \leq \sqrt{2} \|\hat{v}\|_{L^{2}(\hat{T})} \|\nabla \hat{v}\|_{L^{2}(\hat{T})}.$$

**Satz 4.2 (Spursatz 2)** Sei  $T \in \mathcal{T}_h$  ein Element und  $E \subseteq \partial T$  eine Kante von T. Sei weiterhin  $v \in W^{1,2}(T)$ , dann gilt

$$\|v\|_{L^{2}(E)} \lesssim h_{T}^{-\frac{1}{2}} \|v\|_{L^{2}(T)} + \|v\|_{L^{2}(T)}^{\frac{1}{2}} \|\nabla v\|_{L^{2}(T)}^{\frac{1}{2}}.$$

Beweis. Seien die Eckpunkte  $\{x_1, ..., x_{n+1}\}$  so notiert, daß  $E = E_{n+1}$  gegenüber von  $x_{n+1}$  liegt, dann ist für alle  $x \in E$ 

$$x = \lambda_1 x_1 + \dots + \lambda_n x_n,$$

da  $\lambda_{n+1}|_E = 0$ . Daraus folgt

$$\|v\|_{L^{2}(E)} = \|\sum_{i=1}^{n} \lambda_{i} v\|_{L^{2}(E)} \leq \sum_{i=1}^{n} \|\lambda_{i} v\|_{L^{2}(E)}.$$

Sei für  $i \in \{1, ..., n\}$  die affine Abbildung  $\operatorname{Tr}_i : \hat{T} \longrightarrow T$  so, daß  $\operatorname{Tr}_i(\hat{E}_{n+1}) = E_i$  gilt, dann ist

$$(\lambda_i \circ \operatorname{Tr}_i)\Big|_{\hat{E}_{n+1}} = 0.$$

Sei  $\hat{v} := \lambda_i v \circ \operatorname{Tr}_i$  und  $\hat{E} := \operatorname{Tr}_i^{-1}(E)$ , dann ergibt sich mit Bemerkung 4.5 für alle  $i \in \{1, ..., n\}$ 

$$\|\hat{v}\|_{L^{2}(\hat{E})} \leq \sqrt{2} \|\hat{v}\|_{L^{2}(\hat{T})} \|\nabla \hat{v}\|_{L^{2}(\hat{T})}.$$

Man kann also insgesamt zeigen:

$$\begin{split} \|\lambda_{i}v\|_{L^{2}(E)} & \sum_{\text{Satz 2.2}}^{\text{Trafo Tr}_{i}^{-1}} h_{E}^{\frac{n-1}{2}} \|\hat{v}\|_{L^{2}(\hat{E})} \\ & \underset{\text{Satz 2.2}}{\text{Bem. 4.5}} h_{E}^{\frac{n-1}{2}} \|\hat{v}\|_{L^{2}(\hat{T})}^{\frac{1}{2}} \|\nabla\hat{v}\|_{L^{2}(\hat{T})}^{\frac{1}{2}} \\ & \underset{\text{Satz 2.2}}{\text{Trafo Tr}_{i}} h_{E}^{\frac{n-1}{2}} \|\hat{v}\|_{L^{2}(\hat{T})}^{\frac{1}{2}} \|\nabla\hat{v}\|_{L^{2}(T)}^{\frac{1}{2}} \\ & \underset{\text{Satz 2.2}}{\text{Regul.}} h_{E}^{\frac{n-1}{2}} h_{T}^{-\frac{n}{4}} \|\lambda_{i}v\|_{L^{2}(T)}^{\frac{1}{2}} h_{T}^{-\frac{n}{4}} h_{T}^{\frac{1}{2}} \|\nabla(\lambda_{i}v)\|_{L^{2}(T)}^{\frac{1}{2}} \\ & \underset{h_{E} \sim h_{T}}{\text{Regul.}} \|\lambda_{i}v\|_{L^{2}(T)}^{\frac{1}{2}} \|\nabla(\lambda_{i}v)\|_{L^{2}(T)}^{\frac{1}{2}} \\ & \|\nabla\lambda_{i}\|_{\infty} \leq \varrho_{T}^{-1} \\ & \underset{\|\lambda_{i}\|_{\infty}=1}{\otimes} \rho_{T}^{-\frac{1}{2}} \|v\|_{L^{2}(T)} + \|v\|_{L^{2}(T)}^{\frac{1}{2}} \|\nabla v\|_{L^{2}(T)}^{\frac{1}{2}}. \end{split}$$

Durch Aufsummieren von  $\|\lambda_i v\|_{L^2(E)}$  und wegen der Regularität  $\rho_T \approx h_T$  ergibt sich die Behauptung. 

Für die oberen Fehlerabschätzungen in Abschnitt 4.3 werden die folgenden quasi-lokalen Abschätzungen vorgestellt. Diese lassen sich mit Hilfe der quasi-lokalen Interpolationsabschätzungen aus 4.1 und dem Spursatz 4.2 beweisen.

Satz 4.3 (Quasi-lokale Abschätzungen) Sei  $\Pi_h$  der Interpolationsoperator auf dem FE-Raum  $(\Omega, W^{1,2}, X_h^1, \Sigma)$ , dann gilt für alle Elemente  $T \in \mathcal{T}_h$  und alle Kanten  $E \subseteq \partial T$ für alle  $u \in W^{1,2}(T)$ 

i) 
$$\|u - \Pi_h u\|_{L^2(T)} \lesssim \min\{h_{\omega_T} \varepsilon^{-\frac{1}{2}}, 1\} \|\|u\|\|_{\omega_T},$$

$$|||\Pi_h u|||_T \lesssim |||u|||_{\omega_T}$$

iii) 
$$\| \| \Pi_h u \| \|_T \gtrsim \| \| u \| \|_{\omega_T} ,$$
  
iii) 
$$\| u - \Pi_h u \|_{L^2(E)} \lesssim \varepsilon^{-\frac{1}{4}} \min\{ h_{\omega_T} \varepsilon^{-\frac{1}{2}}, 1 \}^{\frac{1}{2}} \| \| u \| \|_{\omega_T}$$

Beweis. Der Beweis von i) ergibt sich aus den beiden Abschätzungen

$$\begin{aligned} \|u - \Pi_h u\|_{L^2(T)} & \lesssim & h_{\omega_T} \|\nabla u\|_{L^2(\omega_T)} & \text{und} \\ \|u - \Pi_h u\|_{L^2(T)} & \lesssim & \|u\|_{L^2(\omega_T)}. \end{aligned}$$

ii) folgt aus der Stetigkeit von  $\Pi_h$  auf  $\omega_T$  bezüglich  $\|\cdot\|_{W^{1,2}(\omega_T)}$  und der Normäquivalenz aus Lemma 3.1, d. h.

$$\left\| \left\| \Pi_{h} u \right\| \right\|_{T} \leq \left\| \left\| \Pi_{h} u \right\| \right\|_{\omega_{T}} \overset{\text{Stet.}}{\leq} \left\| \Pi_{h} \right\|_{W^{1,2}(\omega_{T})} \left\| \left\| u \right\| \right\|_{\omega_{T}}.$$

Um iii) zu beweisen, benötigt man noch den Spursatz 4.2. Damit gilt

$$\begin{aligned} \|u - \Pi_{h} u\|_{L^{2}(E)} & \lesssim & h_{\omega_{T}}^{-\frac{1}{2}} \|u - \Pi_{h} u\|_{L^{2}(T)} + \|u - \Pi_{h} u\|_{L^{2}(T)}^{\frac{1}{2}} \|\nabla (u - \Pi_{h} u)\|_{L^{2}(T)}^{\frac{1}{2}} \\ & \lesssim & \sup_{\substack{i \in \mathbb{N}^{2} \\ i \in \mathbb{N}^{2}}} & h_{\omega_{T}}^{-\frac{1}{2}} \min\{h_{\omega_{T}} \varepsilon^{-\frac{1}{2}}, 1\} \|\|u\|\|_{\omega_{T}} + \varepsilon^{-\frac{1}{4}} \min\{h_{\omega_{T}} \varepsilon^{-\frac{1}{2}}, 1\}^{\frac{1}{2}} \|\|u\|\|_{\omega_{T}} \\ & \lesssim & \varepsilon^{-\frac{1}{4}} \min\{h_{\omega_{T}} \varepsilon^{-\frac{1}{2}}, 1\}^{\frac{1}{2}} \|\|u\|\|_{\omega_{T}}. \end{aligned}$$

Bemerkung 4.6 Die Aussage ii) spiegelt gerade die Eigenschaften der Spurabbildung wider, d. h. man verliert eine halbe h-Potenz bei der Abschätzung.

#### 4.2Analysis für die unteren Abschätzungen

In diesem Abschnitt wird die Analysis für die unteren Abschätzungen des Diskretisierungsfehlers bereitgestellt. Die wichtigsten Hilfsmittel sind Blasenfunktionen, inverse Ungleichungen und ein Fortsetzungsoperator.

#### Blasenfunktionen

**Definition 4.4 (Blasenfunktion 1 auf Referenzelement)** Sei $\hat{T}$  der Standard-n-Simplex im  $\mathbb{R}^n$  und  $\{\lambda_1, ..., \lambda_{n+1}\}$  die baryzentrischen Koordinaten, d. h.

$$\lambda_i(x) = x_i \quad und \quad \lambda_{n+1}(x) = 1 - \|x\|_1,$$

 $dann \ ist$ 

$$\hat{\Psi}: \quad \hat{T} \longrightarrow \mathbb{R} 
x \longmapsto (n+1)^{n+1} \prod_{i=1}^{n+1} \lambda_i(x).$$

Für die Blasenfunktion 1 gilt

1.  $\|\hat{\Psi}\|_{L^\infty(\hat{T})} \leq 1,$  denn es gilt die Ungleichung des geometrischen und arithmetischen Mittels

$$\sqrt[n+1]{\lambda_1 \cdots \lambda_{n+1}} \leq \frac{\lambda_1 + \ldots + \lambda_{n+1}}{n+1} \Rightarrow \lambda_1 \cdots \lambda_{n+1} \leq (n+1)^{-(n+1)}.$$

- 2.  $\hat{\Psi}|_{\partial \hat{T}} = 0.$
- 3.  $\hat{\Psi} \in \mathbb{P}_{n+1}(\hat{T})$  ist ein Polynom.



Abbildung 4.2: Blasenfunktion  $\hat{\Psi}$ 

Man lokalisiert nun Funktionen auf einem Element T der Zerlegung  $\mathcal{T}_h$  mit Hilfe der folgenden Blasenfunktionen.

**Definition 4.5 (Blasenfunction 1 auf T)** Sei  $\Psi$  wie in Definition 4.5 definiert und  $T \in \mathcal{T}_h$  ein Element. Sei Tr :  $\hat{T} \to T$  eine affine Transformation auf T, dann wird  $\Psi_T$  definiert durch

$$\begin{aligned}
\Psi_T : & \Omega & \longrightarrow & \mathbb{R} \\
& x & \longmapsto & \begin{cases} \hat{\Psi} \circ \operatorname{Tr}^{-1}(x), & falls \ x \in T, \\
& 0, & sonst. \end{cases}
\end{aligned}$$

Um Funktionen auf den Teilgebieten  $\omega_E$  um eine Kante E zu lokalisieren, wird noch die folgende abgewandelte Blasenfunktion benötigt.

**Definition 4.6 (Blasenfunction 2 auf Referenzelement)** Sei  $\Theta \in (0, 1]$  und  $\hat{T}$  der Standard-n-Simplex im  $\mathbb{R}^n$  und  $\{\lambda_1^{\Theta}, ..., \lambda_{n+1}^{\Theta}\}$  die in Richtung  $x_n$  mit  $\Theta$  gestauchten baryzentrischen Koordinaten, d. h. für  $i \in \{1, ..., n-1\}$  gilt

$$\lambda_i^{\Theta}(x) = x_i \quad und \quad \lambda_n^{\Theta}(x) = \frac{x_n}{\Theta} \quad und \quad \lambda_{n+1}^{\Theta}(x) = 1 - \sum_{i=1}^n \lambda_i^{\Theta}(x),$$

 $dann \ ist$ 

$$\hat{\Psi}_{\hat{E}_n}(\Theta): \quad \hat{T} \quad \longrightarrow \quad \mathbb{R}$$

$$x \quad \longmapsto \quad \begin{cases} n^n \lambda_{n+1}^{\Theta}(x) \prod_{i=1}^{n-1} \lambda_i^{\Theta}(x), & falls \, \|\lambda^{\Theta}(x)\|_1 = 1, \\ 0, & sonst. \end{cases}$$

Für die Blasenfunktion 2 gilt

1.  $\|\hat{\Psi}_{\hat{E}_n}(\Theta)\|_{L^{\infty}(\hat{T})} \leq 1$ , denn es gilt die Ungleichung des geometrischen und arithmetischen Mittels

$$\sqrt[n]{\lambda_1^{\Theta} \cdots \lambda_{n-1}^{\Theta} \cdot \lambda_{n+1}^{\Theta}} \leq \underbrace{\frac{\lambda_1^{\Theta} + \ldots + \lambda_{n-1}^{\Theta} + \lambda_{n+1}^{\Theta}}{n}}_{n} \Rightarrow \lambda_1^{\Theta} \cdots \lambda_{n-1}^{\Theta} \cdot \lambda_{n+1}^{\Theta} \leq n^{-n}.$$

2. für die partiellen Ableitungen

(4.1) 
$$\|\frac{\partial}{\partial x_i} \hat{\Psi}_{\hat{E}_n}(\Theta)\|_{L^{\infty}(\hat{T})} \leq \Theta^{-1}(n-1) \left(\frac{n}{n-1}\right)^n$$

3.  $\hat{\Psi}_{\hat{E}_n}(\Theta) \in \mathbb{P}_n(\hat{T})$  ist ein Polynom.

Der Parameter  $\Theta$  ist für die Balancierung der unteren a-posteriori Abschätzungen zuständig. Eine gute Balancierung ergibt sich mit  $\Theta := \min\{\varepsilon^{-\frac{1}{2}}h_E, 1\}.$ 

Die Funktion  $\hat{\Psi}_{\hat{E}_n}(\Theta)$  für  $\Theta = 1$  und  $\Theta = 0.35$  im  $\mathbb{R}^2$ .



Abbildung 4.3: Blasenfunktion  $\hat{\Psi}_{\hat{E}_n}(\Theta)$  Abbildung 4.4: Blasenfunktion  $\hat{\Psi}_{\hat{E}_n}(\Theta)$ für  $\Theta = 1, 0$  für  $\Theta = 0, 35$ 

Man lokalisiert nun für alle Ecken  $E \in \mathcal{E}_h$  Funktionen auf den Umgebungen  $\omega_E$ , indem man zwei Blasenfunktionen  $\hat{\Psi}_{\hat{E}_n}(\Theta)$  an einer Kante E zusammenklebt.

**Definition 4.7 (Blasenfunction 2 auf**  $\omega_E$ ) Sei  $\Psi_{\hat{E}_n}(\Theta)$  wie Definition 4.6 festgelegt. Sei  $E \in \mathcal{E}_h$  eine innere Kante und  $\omega_E = T_1 \cup T_2$  die Umgebung von E.  $\operatorname{Tr}_1 : \hat{T} \longrightarrow T_1$ und  $\operatorname{Tr}_2 : \hat{T} \longrightarrow T_2$  seien die affinen Transformationen mit  $\operatorname{Tr}_1(\hat{E}_n) = \operatorname{Tr}_2(\hat{E}_n) = E$ , dann wird  $\Psi_E(\Theta)$  definiert durch

$$\Psi_{E}(\Theta): \quad \Omega \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} \hat{\Psi}_{\hat{E}_{n}}(\Theta) \circ \operatorname{Tr}_{1}^{-1}(x) & falls \ x \in T_{1}, \\ \hat{\Psi}_{\hat{E}_{n}}(\Theta) \circ \operatorname{Tr}_{2}^{-1}(x) & falls \ x \in T_{2}, \\ 0 & sonst. \end{cases}$$

Falls E eine äußere Kante ist, entfällt eines der angrenzenden Elemente  $T_i$ . Die Funktion  $\Psi_E(\Theta)$  ist an der Kante E stetig.

Für die *inversen* Kantenabschätzungen wird noch ein Fortsetzungsoperator benötigt, der glatte Funktionen, später Polynome, auf einer Kante konstant auf die Umgebung  $\omega_E$  fortsetzt. Zunächst wird eine Fortsetzung auf dem Referenzgebiet  $\hat{T}$  definiert.

**Definition 4.8 (Fortsetzungsoperator auf Referenzelement)** Sei  $\hat{T}$  der Standardn-Simplex im  $\mathbb{R}^n$ , dann sei

$$\begin{array}{rccc} \hat{K}: & \mathcal{C}^{\infty}(\hat{E}_n) & \longrightarrow & \mathcal{C}^{\infty}(\hat{T}) \\ & \varphi & \longmapsto & \hat{K}\varphi \end{array}$$

definiert durch

$$K\varphi(x_1, ..., x_{n-1}, x_n) := \varphi(x_1, ..., x_{n-1}).$$

Für eine glatte Funktion auf einer beliebigen Kante E der Zerlegung  $\mathcal{T}_h$  wird nun die folgende Fortsetzung definiert.

**Definition 4.9 (Fortsetzungsoperator auf**  $\omega_E$ ) Sei  $E \in \mathcal{E}_h$  eine innere Kante und  $\omega_E = T_1 \cup T_2$  die Umgebung von E.  $\operatorname{Tr}_1 : \hat{T} \longrightarrow T_1$  und  $\operatorname{Tr}_2 : \hat{T} \longrightarrow T_2$  seien die affinen Transformationen mit  $\operatorname{Tr}_1(\hat{E}_n) = \operatorname{Tr}_2(\hat{E}_n) = E$ , dann wird  $K_E$  definiert durch

$$\begin{array}{rccc} K_E: & \mathcal{C}^{\infty}(E) & \longrightarrow & \mathcal{C}^{\infty}(\omega_E) \\ & v & \longmapsto & \begin{cases} \hat{K}(\varphi \circ \operatorname{Tr}_1) \circ \operatorname{Tr}_1^{-1} & auf \ T_1, \\ & \hat{K}(\varphi \circ \operatorname{Tr}_2) \circ \operatorname{Tr}_2^{-1} & auf \ T_2. \end{cases}$$

Falls E eine äußere Kante ist, entfällt eines der angrenzenden Elemente  $T_i$ .

#### Inverse Abschätzungen

Es wäre sehr wünschenswert, wenn die folgenden Abschätzungen direkt auf die Daten des Problems (3.1) anwendbar wären. Leider muß man einen Umweg über den Raum der Polynome wählen und hoffen, daß sich die Daten durch Polynome auf den Zerlegungen  $\mathcal{T}_h$  genügend gut in den entsprechenden Normen approximieren lassen.

**Lemma 4.2 (Elementabschätzungen)** Sei  $T \in \mathcal{T}_h$  ein Element und  $\mathbb{P}_l(T)$  der Raum der Polynome vom Grad l, dann gelten die folgenden Abschätzungen für alle  $v \in \mathbb{P}_l(T)$ 

$$\begin{aligned} \|v\|_{L^{2}(T)} &\lesssim (v, \Psi_{T} v)_{L^{2}(T)}, \\ \|\Psi_{T} v\|_{L^{2}(T)} &\leq \|v\|_{L^{2}(T)}, \\ \|\nabla(\Psi_{T} v)\|_{L^{2}(T)} &\lesssim \varrho_{T}^{-1} \|v\|_{L^{2}(T)}. \end{aligned}$$

*Beweis.* Die erste Ungleichung folgt aus der Normäquivalenz in endlichdimensionalen Räumen, weil  $(\cdot, \Psi_T \cdot)$  positiv definit ist.

Die zweite Ungleichung folgt mit  $\|\Psi_T\|_{L^{\infty}(T)} \leq 1.$ 

Die dritte Abschätzung folgt sofort aus der inversen Ungleichung aus Korollar 2.2 für endlichdimensionale Unterräume und der zweiten Abschätzung. □

Nun werden mit Hilfe der Blasenfunktion aus Definition 4.7 und des Fortsetzungsoperators aus Definition 4.8 *inverse* Randabschätzungen angegeben. Dabei werden die Aussagen zunächst auf dem Referenzelement  $\hat{T}$  gemacht und dann durch affine Transformationen auf die Elemente T übertragen.

Lemma 4.3 (Kantenabschätzungen auf Referenzelement) Sei  $\hat{T}$  der Standard-n-Simplex im  $\mathbb{R}^n$ , dann gelten die folgenden Abschätzungen für alle  $\varphi \in \mathcal{C}^{\infty}(\hat{E}_n)$ .

$$\begin{split} \|\Psi_{\hat{E}_{n}}(\Theta)\hat{K}\,\varphi\|_{L^{2}(\hat{T})} &\leq \Theta^{\frac{1}{2}} \|\varphi\|_{L^{2}(\hat{E}_{n})}, \\ \|\nabla(\Psi_{\hat{E}_{n}}(\Theta)\hat{K}\,\varphi)\|_{L^{2}(\hat{T})} &\lesssim \Theta^{-\frac{1}{2}} \|\varphi\|_{L^{2}(\hat{E}_{n})} + \Theta^{\frac{1}{2}} \|\nabla\varphi\|_{L^{2}(\hat{E}_{n})}. \end{split}$$

Beweis. Sei  $\varphi \in \mathcal{C}^{\infty}(\hat{E}_n)$ , dann folgt mit dem Satz von Fubini für die erste Abschätzung

$$\begin{aligned} \|\Psi_{\hat{E}_{n}}(\Theta)\hat{K}\varphi\|_{L^{2}(\hat{T})}^{2} &= \int_{\hat{E}_{n}}\int_{0}^{\Theta}(\underbrace{\Psi_{\hat{E}_{n}}(\Theta)}_{\leq 1}\hat{K}\varphi)^{2} dx \\ &\leq \Theta\int_{\hat{E}_{n}}\varphi^{2} dx_{1}...dx_{n-1} \\ &\leq \Theta \|\varphi\|_{L^{2}(\hat{E}_{n})}^{2}. \end{aligned}$$

Sei  $\varphi \in \mathcal{C}^{\infty}(\hat{E}_n)$  und  $i \in \{1, ..., n\}$ , dann folgt mit dem Satz von Fubini für die zweite Abschätzung

$$\begin{split} \|\frac{\partial}{\partial x_{i}}(\Psi_{\hat{E}_{n}}(\Theta)\hat{K}\,\varphi)\|_{L^{2}(\hat{T})}^{2} &= \int_{\hat{E}_{n}}\int_{0}^{\Theta}(\hat{K}\,\varphi\,\underbrace{\frac{\partial}{\partial x_{i}}\Psi_{\hat{E}_{n}}(\Theta)}_{\leq\Theta^{-1}} + \Psi_{\hat{E}_{n}}(\Theta)\underbrace{\frac{\partial}{\partial x_{i}}(\hat{K}\,\varphi)}_{=0, \text{ für } i=n})^{2}\,dx \\ \overset{\text{H\"older}}{\leq} & 2\left(\Theta^{-\frac{1}{2}}\,\|\varphi\|_{L^{2}(\hat{E}_{n})} + \Theta^{\frac{1}{2}}\,\|\frac{\partial}{\partial x_{i}}\varphi\|_{L^{2}(\hat{E}_{n})}\right)^{2}. \end{split}$$

Lemma 4.4 (Kantenabschätzungen auf E) Sei  $E \in \mathcal{E}_h$  und  $\mathbb{P}_l(E)$  der Raum der Polynome vom Grad l. Mit  $\Theta := \min\{h_E^{-1}\varepsilon^{\frac{1}{2}}, 1\}$  gelten die folgenden Abschätzungen für alle  $v \in \mathbb{P}_l(E)$ 

$$\begin{aligned} \|v\|_{L^{2}(E)}^{2} &\lesssim (v, \Psi_{E}(\Theta) v)_{L^{2}(E)}, \\ \|\Psi_{E}(\Theta)K_{E} v\|_{L^{2}(\omega_{E})} &\lesssim \varepsilon^{\frac{1}{4}}\min\{h_{E}\varepsilon^{-\frac{1}{2}}, 1\}^{\frac{1}{2}}\|v\|_{L^{2}(E)}, \\ \|\nabla(\Psi_{E}(\Theta)K_{E} v)\|_{L^{2}(\omega_{E})} &\lesssim \varepsilon^{-\frac{1}{4}}\min\{h_{E}\varepsilon^{-\frac{1}{2}}, 1\}^{-\frac{1}{2}}\|v\|_{L^{2}(E)}. \end{aligned}$$

Beweis. Die erste Ungleichung folgt aus der Normäquivalenz in endlichdimensionalen Räumen, weil  $(\cdot, \Psi_{\hat{E}_n}(\Theta) \cdot)_{L^2(\hat{E}_n)}$  positiv definit ist und weil  $\Psi_E(\Theta)$  auf E unabhängig von  $\Theta$  ist.

Die zweite Ungleichung folgt aus der Abschätzung auf dem Referenzelement aus Lemma 4.3 und den Transformationsregeln aus Satz 2.2. Sei  $\omega_E = T_1 \cup T_2$ , dann gilt für i = 1, 2

Die dritte Abschätzung folgt aus der Abschätzung auf dem Referenzelement aus Lemma 4.3, den Transformationsregeln aus Satz 2.2 und der inversen Ungleichung aus Korollar 2.2. Sei  $\omega_E = T_1 \cup T_2$ , dann gilt für i = 1, 2

$$\begin{split} \|\nabla\Psi_{E}(\Theta)K_{E}v\|_{L^{2}(T_{i})} & \stackrel{\text{Trafo}}{\lesssim} & \varrho^{-1}h_{T}^{\frac{n}{2}}\|\nabla\hat{\Psi}_{\hat{E}_{n}}(\Theta)\hat{K}\,\hat{v}\|_{L^{2}(\hat{T})} \\ & \stackrel{\text{Lemma 4.3}}{\lesssim} & \varrho^{-1}h_{T}^{\frac{n}{2}}\left(\Theta^{-\frac{1}{2}}\|\hat{v}\|_{L^{2}(\hat{E}_{n})} + \Theta^{\frac{1}{2}}\|\nabla\hat{v}\|_{L^{2}(\hat{E}_{n})}\right) \\ & \stackrel{\text{Trafo}}{\lesssim} & h_{E}^{-\frac{1}{2}}\Theta^{-\frac{1}{2}}\|v\|_{L^{2}(E)} + h_{E}^{\frac{1}{2}}\Theta^{\frac{1}{2}}\|\nabla v\|_{L^{2}(E)} \\ & \stackrel{\text{Korollar 2.2}}{\lesssim} & h_{E}^{-\frac{1}{2}}\Theta^{-\frac{1}{2}}\|v\|_{L^{2}(E)} \\ & \Theta^{-\frac{1}{2}} \ge \Theta^{\frac{1}{2}} \\ & \lesssim & \varepsilon^{-\frac{1}{4}}\min\{h_{E}\varepsilon^{-\frac{1}{2}},1\}^{-\frac{1}{2}}\|v\|_{L^{2}(E)}. \end{split}$$

| _ |  |
|---|--|

#### 4.3 A-posteriori-Fehlerschätzung

Im Folgenden wird das allgemeine Konzept von Fehlerschätzern dargestellt.

**Definition 4.10 (A-posteriori Fehlerschätzer)** Sei  $\mathcal{T}_h$  eine Familie von zulässigen Zerlegungen auf einem Gebiet  $\Omega$  und seien  $u_h$  die Lösungen der zugehörigen diskreten Probleme, dann heißt

$$\eta_R^2 = \sum_{T \in \mathcal{T}_h} \eta_{R,T}^2$$

a-posteriori Fehlerschätzer, falls die lokalen Größen  $\eta_{R,T}$  nur von der diskreten Lösung  $u_h$ auf dem Element  $T \in \mathcal{T}_h$  und den Daten des Problems abhängen.

 $\eta_R$  wird als Fehlerschätzer bezeichnet, falls einige der folgenden Abschätzungseigenschaften erfüllt sind.

**Definition 4.11 (Fehlerschranken)** Sei  $\mathcal{T}_h$  eine Familie von zulässigen Zerlegungen auf einem Gebiet  $\Omega$  und seien  $u_h$  die Lösungen der zugehörigen diskreten Probleme. Sei  $e_h := u - u_h$  und  $||| \cdot |||$  eine dem Problem angepaßte Norm. Ein Fehlerschätzer  $\eta_R^2 = \sum_{T \in \mathcal{T}_h} \eta_{R,T}^2$  heißt

i) globale obere Schranke, falls für alle  $\mathcal{T}_h$  gilt

 $|||e_h||| \le C_o \eta_R.$ 

*ii)* globale untere Schranke, falls für alle  $\mathcal{T}_h$  gilt

 $\eta_R \leq C_u |||e_h|||.$ 

*iii)* lokale obere Schranke, falls es für alle Elemente  $T \in \mathcal{T}_h$  Umgebungen  $\omega_T \subseteq \mathcal{T}_h$  gibt, so daß gilt

$$|||e_h|||_T \le c_o \sum_{T \in \omega_T} \eta_{R,T}.$$

iv) lokale untere Schranke, falls es für alle Elemente  $T \in \mathcal{T}_h$  Umgebungen  $\omega_T \subseteq \mathcal{T}_h$  gibt, so daß gilt

$$\eta_{R,T} \leq c_u |||e_h|||_{\omega_T}.$$

Die in den Ungleichungen vorkommenden Konstanten sollen dabei unabhängig von der Gitterfeinheit h und dem Störungsparameter  $\varepsilon$  sein.

**Bemerkung 4.7** Ein Fehlerschätzer heißt äquivalent zu der Fehlernorm  $||| \cdot |||$ , falls i) und ii) gelten. Man kann in diesem Fall auch von einem globalen Schätzer sprechen. Im günstigsten Fall bestehen die Umgebungen  $\omega_T$  nur aus den Elementen T selber. Im Folgenden seien die Umgebungen  $\omega_T$  wie in Kapitel 3 definiert.

#### Ein residualer a-posteriori Fehlerschätzer

Der residuale a-posteriori Fehlerschätzer von Verfürth beruht auf der folgenden Identität.

**Lemma 4.5 (Residuum)** Sei u die Lösung des kontinuierlichen Problems aus Definition 3.4. Sei weiterhin  $\mathcal{T}_h$  eine Familie von zulässigen Zerlegungen, dann gilt für alle  $u_h \in X_h^1(\Omega)$  und für alle  $v \in W_{\Gamma_D}^{1,2}(\Omega)$ 

$$B(u - u_h, v) = \sum_{T \in \mathcal{T}_h} (f + \varepsilon \Delta u_h - \underline{a} \cdot \nabla u_h - bu_h, v)_{L^2(T)} + \sum_{E \in \mathcal{E}_I} (-\varepsilon [\nabla u_h \cdot \vec{n}_E], v)_{L^2(E)} + \sum_{E \in \mathcal{E}_R} (g - \nabla u_h \cdot \vec{n}_E - \zeta u_h, v)_{L^2(E)},$$

wobei mit  $[\nabla u_h \cdot \vec{n}_E]$  der Sprung des Gradienten von  $u_h$  über der Kante E bezeichnet wird.

Beweis. Es gilt offensichtlich  $u_h|_T \in \mathcal{C}^{\infty}(T)$ . Durch elementweise verallgemeinerte partielle Integration von  $u_h$  auf allen  $T \in \mathcal{T}_h$  erhält man durch Aufsummieren die gewünschte Identität.

**Bemerkung 4.8** Der Vorteil der rechten Seite der Identität aus Lemma 4.5 ist, daß die kontinuierliche Lösung u nicht mehr auftritt, also durch die Daten geschluckt wird. Dies ist die Motivation für den folgenden residualen a-posteriori Fehlerschätzer nach Verfürth. Die lokalen Fehlergrössen  $\eta_{R,T}$  werden die mit Gewichten versehenen lokalen Residuen sein, wobei die Kantensprünge gleichmäßig auf die beiden angrenzenden Elemente aufgeteilt werden. Die hinzugewonnenen Kantensprünge bezeichnet man als Kantenresiduen.

**Definition 4.12 (Residuenterme)** Die Element- und Kantenresiduen werden für alle  $u_h \in X_h^1(\Omega)$  definiert durch

$$R_T := (f + \varepsilon \Delta u_h - \underline{a} \cdot \nabla u_h - bu_h) |_T \quad und$$

$$R_E := \begin{cases} -\varepsilon [\nabla u_h \cdot \vec{n}_E] |_E, & falls \ E \in \mathcal{E}_I, \\ (g - \varepsilon \nabla u_h \cdot \vec{n}_E - \zeta \ u_h) |_E, & falls \ E \in \mathcal{E}_R, \\ 0, & falls \ E \in \mathcal{E}_D. \end{cases}$$

Es gilt mit Lemma 4.5 also

(4.2) 
$$B(u - u_h, v) = \sum_{T \in \mathcal{T}_h} (R_T, v)_{L^2(T)} + \sum_{E \in \mathcal{E}_h} (R_E, v)_{L^2(E)}.$$

**Bemerkung 4.9** Diese Identität würde schon ausreichen, um mit einfachen Mitteln wie der X-Elliptizität und der Stetigkeit von B sowie der Hölderschen Ungleichung einen a-posteriori Fehlerschätzer zu konstruieren. Man kann den Fehlerschätzer noch *besser* machen, indem man die Interpolationsabschätzungen des Kapitels 4 benutzt. Dadurch gewinnt man zusätzliche *h*-Potenzen für die Residuenterme. Diese *h*-Potenzen stecken in den sogleich definierten Gewichten  $a_E$  und  $a_T$ , die in der folgenden Definition erklärt werden.  $\diamond$  **Definition 4.13 (Residualer a-posteriori Fehlerschätzer)** Sei  $\mathcal{T}_h$  eine Familie von zulässigen Zerlegungen und sei zunächst  $u_h \in X_h^1(\Omega)$  eine beliebige Funktion aus dem Ansatzraum. Seien für alle Elemente  $T \in \mathcal{T}_h$  und alle Kanten  $E \in \mathcal{E}_h$ 

$$\alpha_T := \min\{h_T \varepsilon^{-\frac{1}{2}}, 1\} \quad und$$
  
$$\alpha_E := \min\{h_E \varepsilon^{-\frac{1}{2}}, 1\},$$

und sei für alle  $T \in \mathcal{T}_h$ 

$$\eta_{R,T}^{2} := \alpha_{T}^{2} \|R_{T}\|_{L^{2}(T)}^{2} + \varepsilon^{-\frac{1}{2}} \left( \frac{1}{2} \sum_{\substack{E \in \mathcal{E}_{I} \\ E \subset \partial T}} \alpha_{E} \|R_{E}\|_{L^{2}(E)}^{2} + \sum_{\substack{E \in \mathcal{E}_{R} \\ E \subset \partial T}} \alpha_{E} \|R_{E}\|_{L^{2}(E)}^{2} \right).$$

Mit diesen Bezeichnungen ist

$$\eta_R := \left\{ \sum_{T \in \mathcal{T}_h} \eta_{R,T}^2 \right\}^{\frac{1}{2}}$$

ein residualer a-posteriori Fehlerschätzer nach Verfürth, siehe [Ver98].

Die Residuen des Fehlerschätzers sind i. a. nicht numerisch berechenbar. Aus diesem Grund wird ein Fehlerschätzer  $\widetilde{\eta_R}$  mit approximierten Daten definiert, welcher bei numerischen Verfahren berechnet werden kann.

**Definition 4.14** Seien  $\underline{\widetilde{a}}, \widetilde{b}, \widetilde{\zeta}, \widetilde{f}, \widetilde{g}$  polynomiale Approximationen an die Daten  $\underline{a}, b, \zeta, f, g$ und  $\widetilde{R}_T$  und  $\widetilde{R}_E$  die Residuen bezüglich der approximierten Daten für ein  $u_h \in X_h^1(\Omega)$  wie in Definition 4.12. Der Fehlerschätzer  $\widetilde{\eta}_R, \widetilde{\eta}_{R,T}$  sei mit diesen Residuen wie in Definition 4.13 gebildet.

Zunächst werden die globalen und lokalen unteren Fehlerschranken bezüglich des approximierten Fehlerschätzers  $\eta_R$  angegeben.

**Satz 4.4 (Untere Abschätzungen)** Sei  $u_h \in X_h^1(\Omega)$  eine beliebige Funktion, dann gelten die unteren Abschätzungen

$$\begin{split} \widetilde{\eta_{R}} &\lesssim \max_{T \in \mathcal{T}_{h}} \left\{ 1 + \alpha_{T} \| b \|_{L^{\infty}(T)} + \varepsilon^{-\frac{1}{2}} \alpha_{T} \| \underline{a} \|_{L^{\infty}(T)} + \varepsilon^{-\frac{1}{4}} \alpha_{T}^{\frac{1}{2}} \| \zeta \|_{L^{2}(\partial T)} \right\} \| \| u - u_{h} \| \| \\ &+ \min\{h \, \varepsilon^{-\frac{1}{2}}, 1\} \| \widetilde{R_{T}} - R_{T} \|_{L^{2}(\Omega)} + \varepsilon^{-\frac{1}{4}} \min\{h^{\frac{1}{2}} \, \varepsilon^{-\frac{1}{4}}, 1\} \| \widetilde{R_{E}} - R_{E} \|_{L^{2}(\partial \mathcal{T}_{h})}, \\ \widetilde{\eta_{R,T}} &\lesssim \left( 1 + \alpha_{T} \| b \|_{L^{\infty}(\widetilde{\omega}_{T})} + \varepsilon^{-\frac{1}{2}} \alpha_{T} \| \underline{a} \|_{L^{\infty}(\widetilde{\omega}_{T})} + \varepsilon^{-\frac{1}{4}} \alpha_{T}^{\frac{1}{2}} \| \zeta \|_{L^{2}(\partial T)} \right) \| \| u - u_{h} \| \|_{\widetilde{\omega}_{T}} \\ &+ \alpha_{T} \| \widetilde{R_{T}} - R_{T} \|_{L^{2}(\widetilde{\omega}_{T})} + \varepsilon^{-\frac{1}{4}} \alpha_{E}^{\frac{1}{2}} \| \widetilde{R_{E}} - R_{E} \|_{L^{2}(\partial T)}. \end{split}$$

Falls T nicht am Rand  $\Gamma_R$  liegt, d. h.  $T \cap \Gamma_R = \emptyset$ , entfällt der Term  $\|\zeta\|_{L^{\infty}(\partial T)}$  in der letzten Abschätzung.  $\partial \mathcal{T}_h := \bigcup_{E \in \mathcal{E}_h} E$  bezeichnet das Skelett von  $\mathcal{T}_h$ .

Die globale untere Abschätzung folgt aufgrund der Zulässigkeit und Regularität der Zerlegungen  $\mathcal{T}_h$  aus der lokalen unteren Abschätzung. Daher wird der Beweis der lokalen unteren Abschätzung geführt.

Der Beweis ergibt sich aus der lokalen unteren Abschätzung der einzelnen Terme (Residuen) des Fehlerschätzers  $\widetilde{\eta_{R,T}}$  mit Hilfe der Lokalisierungen durch Blasenfunktionen gegen die Energienorm des Fehlers  $|||u - u_h|||_T$ . Wesentliche Hilfsmittel sind

- die Stetigkeit der Bilinearform B,
- Blasenfunktionen,
- inverse Ungleichungen und
- inverse Randabschätzungen mit Hilfe des Fortsetzungsoperators  $K_E$ .

Beweis. Zunächst wird das Elementresiduum  $\widetilde{R_T}$  gegen den Fehler  $|||u - u_h|||_T$  abgeschätzt. Dazu definiert man das Polynom

$$w_T := \Psi_T \widetilde{R_T}.$$

Setzt man  $w_T$  in die Identität (4.5) ein, so ergibt sich

$$(\widetilde{R_T}, w_T)_{L^2(T)} = B(u - u_h, w_T) + (\widetilde{R_T} - R_T, w_T)_{L^2(T)},$$

da alle Kantenterme verschwinden.

Aufgrund von Lemma 4.2 erhält man die untere Abschätzung

$$\|\widetilde{R_T}\|_{L^2(T)}^2 \lesssim |B(u-u_h, w_T)| + \|\widetilde{R_T} - R_T\|_{L^2(T)} \|\widetilde{R_T}\|_{L^2(T)}$$

Da der Träger von  $w_T$  in T enthalten ist, folgt mit Hilfe der Ungleichung (3.6) für die Bilinearform B und der inversen Abschätzung aus Lemma 4.2

$$\begin{aligned} |B(u - u_h, w_T)| \\ &\stackrel{\text{Stet.}}{\leq} \qquad \left( \varepsilon^{\frac{1}{2}} \|\nabla w_T\|_{L^2(T)} + \varepsilon^{-\frac{1}{2}} \|\underline{a}\|_{L^{\infty}(T)} \|w_T\|_{L^2(T)} \right) \varepsilon^{\frac{1}{2}} \|\nabla (u - u_h)\|_{L^2(T)} \\ &+ \|w_T\|_{L^2(T)} \|b\|_{L^{\infty}(T)} \|u - u_h\|_{L^2(T)} \\ &\stackrel{\text{Lemma 4.2}}{\lesssim} \\ &\underset{\text{Regul.}}{\lesssim} \qquad \|\widetilde{R_T}\|_{L^2(T)} \left( \varepsilon^{\frac{1}{2}} \, \varrho_T^{-1} + \|b\|_{L^{\infty}(T)} + \varepsilon^{-\frac{1}{2}} \|\underline{a}\|_{L^{\infty}(T)} \right) \||u - u_h\||_T \,. \end{aligned}$$

Damit gilt die lokale untere Abschätzung des Elementresiduums  $\widetilde{R_T}$ 

(4.3) 
$$\alpha_T \|\widetilde{R}_T\|_{L^2(T)} \lesssim \left(1 + \alpha_T \|b\|_{L^{\infty}(T)} + \varepsilon^{-\frac{1}{2}} \alpha_T \|\underline{a}\|_{L^{\infty}(T)}\right) \||u - u_h||_T$$
$$+ \alpha_T \|\widetilde{R}_T - R_T\|_{L^2(T)}.$$

Nun werden die Kantenresiduen  $\widetilde{R_E}$  gegen den Fehler  $|||u - u_h|||_T$  abgeschätzt. Dazu setzt man  $\Theta := \min\{h_E^{-1}\varepsilon^{\frac{1}{2}}, 1\}$  und

$$w_E := \Psi_E(\Theta) K_E R_E.$$

Mit Hilfe von Lemma 4.4, der Stetigkeit von B und der bereits gezeigten Abschätzung aus (4.3) läßt sich die untere Abschätzung zeigen. Sei  $\omega_E$  die Umgebung von E (vgl. Abschnitt 3.3) dann gilt

$$(\widetilde{R_E}, w_E)_{L^2(E)} = (\widetilde{R_E} - R_E, w_E)_{L^2(E)} + \sum_{T \subseteq \omega_E} (\widetilde{R_T} - R_T, w_E)_{L^2(T)} + B(u - u_h, w_E) - \sum_{T \subseteq \omega_E} (\widetilde{R_T}, w_E)_{L^2(T)},$$

da nur der Kantenterm auf E nicht verschwindet. Es ergibt sich aus Lemma 4.4

$$\begin{aligned} \|\widetilde{R}_{E}\|_{L^{2}(E)}^{2} &\lesssim \|\widetilde{R}_{E} - R_{E}\|_{L^{2}(E)} \|\widetilde{R}_{E}\|_{L^{2}(E)} + \varepsilon^{\frac{1}{4}} \alpha_{E}^{\frac{1}{2}} \|\widetilde{R}_{T} - R_{T}\|_{L^{2}(\omega_{E})} \|\widetilde{R}_{E}\|_{L^{2}(E)} \\ &+ \underbrace{|B(u - u_{h}, w_{E})|}_{\operatorname{Term}(\alpha)} + \sum_{T \subseteq \omega_{E}} \underbrace{|(\widetilde{R}_{T}, w_{E})_{L^{2}(T)}|}_{\operatorname{Term}(\beta)}. \end{aligned}$$

Nun schätzt man die beiden Terme ( $\alpha$ ) und ( $\beta$ ) ab. Für Term ( $\alpha$ ) gilt mit Hilfe der Ungleichung (3.6) für B

$$\begin{split} |B(u - u_{h}, w_{E})| \\ & \stackrel{\text{Stet.}}{\leq} \\ & \underset{\text{Spurab.}}{\leq} \left( \varepsilon^{\frac{1}{2}} \| \nabla w_{E} \|_{L^{2}(\omega_{E})} + \varepsilon^{-\frac{1}{2}} \| \underline{a} \|_{L^{\infty}(\omega_{E})} \| w_{E} \|_{L^{2}(\omega_{E})} \right) \varepsilon^{\frac{1}{2}} \| \nabla (u - u_{h}) \|_{L^{2}(\omega_{E})} \\ & + (\| b \|_{L^{\infty}(\omega_{E})} \| w_{E} \|_{L^{2}(\omega_{E})} + \| \zeta \|_{L^{\infty}(E)} \| \widetilde{R_{E}} \|_{L^{2}(E)}) \| u - u_{h} \|_{L^{2}(\omega_{E})} \\ \overset{\text{Lemma 4.4}}{\leq} \left( \varepsilon^{\frac{1}{4}} \alpha_{E}^{-\frac{1}{2}} + \varepsilon^{\frac{1}{4}} \alpha_{E}^{\frac{1}{2}} \| b \|_{L^{\infty}(\omega_{E})} + \varepsilon^{-\frac{1}{4}} \alpha_{E}^{\frac{1}{2}} \| \underline{a} \|_{L^{\infty}(\omega_{E})} + \| \zeta \|_{L^{\infty}(E)} \right) \\ & \cdot \| \widetilde{R_{E}} \|_{L^{2}(E)} \| \| u - u_{h} \| \|_{\omega_{E}} \,. \end{split}$$

Sei  $\omega_E = T_1 \cup T_2$ . Für den Term ( $\beta$ ) folgt mit der Hölderschen Ungleichung und der Abschätzung (4.3) für i = 1, 2

$$\begin{split} |(\widetilde{R}_{T_{i}}, w_{E})_{L^{2}(T_{i}})| & \lesssim \\ |(\widetilde{R}_{T_{i}}, w_{E})_{L^{2}(T_{i}})| & \lesssim \\ | \underset{\text{Lemma 4.4}}{\overset{(4.3)}{\lesssim}} & \varepsilon^{\frac{1}{4}} \alpha_{E}^{\frac{1}{2}} \|\widetilde{R}_{E}\|_{L^{2}(E)} \|\widetilde{R}_{T_{i}}\|_{L^{2}(T_{i})} \\ & \lesssim & \left[ \varepsilon^{\frac{1}{4}} \alpha_{E}^{\frac{1}{2}} \left( \alpha_{T_{i}}^{-1} + \|b\|_{L^{\infty}(T_{i})} + \varepsilon^{-\frac{1}{2}} \|\underline{a}\|_{L^{\infty}(T_{i})} \right) \||u - u_{h}||_{T_{i}} \\ & + \varepsilon^{\frac{1}{4}} \alpha_{E}^{\frac{1}{2}} \|\widetilde{R}_{T} - R_{T}\|_{L^{2}(\omega_{E})} \right] \|\widetilde{R}_{E}\|_{L^{2}(E)}. \end{split}$$

Faßt man beide Abschätzungen zusammen, so erhält man schließlich für alle Kanten E von T mit Hilfe der Umgebung  $\tilde{\omega}_T$  aus Abschnitt 3.3

$$\varepsilon^{-\frac{1}{4}} \alpha_E^{\frac{1}{2}} \|\widetilde{R}_E\|_{L^2(E)}$$

$$\lesssim \left(1 + \alpha_T \|b\|_{L^{\infty}(\widetilde{\omega}_T)} + \varepsilon^{-\frac{1}{2}} \alpha_T \|\underline{a}\|_{L^{\infty}(\widetilde{\omega}_T)} + \varepsilon^{-\frac{1}{4}} \alpha_T^{\frac{1}{2}} \|\zeta\|_{L^2(\partial T)}\right) \||u - u_h\||_{\widetilde{\omega}_T}$$

$$+ \alpha_T \|\widetilde{R}_T - R_T\|_{L^2(\widetilde{\omega}_T)} + \varepsilon^{-\frac{1}{4}} \alpha_E^{\frac{1}{2}} \|\widetilde{R}_E - R_E\|_{L^2(\partial T)},$$

indem man auf das Element  $\widetilde{\omega}_T$  vergrössert. Falls T nicht am Rand  $\Gamma_R$  liegt, d. h.  $T \cap \Gamma_R = \emptyset$ , entfällt der Term  $\|\zeta\|_{L^{\infty}(\partial T)}$  in der Abschätzung. Die Terme  $\|\widetilde{R}_T - R_T\|_{L^2(\widetilde{\omega}_T)}$  und  $\|\widetilde{R}_E - R_E\|_{L^2(\partial T)}$  sind Approximationsfehler und können durch zusätzliche Glättevoraussetzungen an die Daten wirklich zu "higher-order-terms" gemacht werden. Dies ist die Aussage des folgenden

**Korollar 4.1** Seien die Daten  $\underline{a}, b \in W^{m,2}(\Omega)$  und  $\zeta, f, g \in W^{m,2}(\partial \Omega)$  und

$$\underline{\widetilde{a}} := \Pi(\underline{a}), \quad \overline{\widetilde{b}} := \Pi(b), \quad \overline{\widetilde{\zeta}} := \Pi(\zeta), \quad \overline{\widetilde{f}} := \Pi(f), \quad \overline{\widetilde{g}} := \Pi(g)$$

geeignete Interpolierende gemäß Kapitel 2, d. h. für  $u = \underline{a}, b, \zeta, f, g$  sei

$$||u - \Pi u||_{L^2} \lesssim h^m |u|_{W^{m,2}},$$

dann gilt

$$\begin{split} \widetilde{\eta_{R}} &\lesssim \max_{T \in \mathcal{T}_{h}} \left\{ 1 + \alpha_{T} \|b\|_{L^{\infty}(T)} + \varepsilon^{-\frac{1}{2}} \alpha_{T} \|\underline{a}\|_{L^{\infty}(T)} + \varepsilon^{-\frac{1}{4}} \alpha_{T}^{\frac{1}{2}} \|\zeta\|_{L^{2}(\partial T)} \right\} \||u - u_{h}\|| \\ &+ h^{m} \left( \varepsilon^{-\frac{1}{4}} \min\{h^{\frac{1}{2}} \varepsilon^{-\frac{1}{4}}, 1\} \|u_{h}\|_{L^{\infty}(\partial \mathcal{T}_{h})} + \min\{h \varepsilon^{-\frac{1}{2}}, 1\} \|u_{h}\|_{W^{1,\infty}(\Omega)} \right), \\ \widetilde{\eta_{R,T}} &\lesssim \left( 1 + \alpha_{T} \|b\|_{L^{\infty}(\widetilde{\omega}_{T})} + \varepsilon^{-\frac{1}{2}} \alpha_{T} \|\underline{a}\|_{L^{\infty}(\widetilde{\omega}_{T})} + \varepsilon^{-\frac{1}{4}} \alpha_{T}^{\frac{1}{2}} \|\zeta\|_{L^{2}(\partial T)} \right) \||u - u_{h}\||_{\widetilde{\omega}_{T}} \\ &+ h_{T}^{m} \left( \varepsilon^{-\frac{1}{4}} \alpha_{E}^{\frac{1}{2}} \|u_{h}\|_{L^{\infty}(\partial T)} + \alpha_{T} \|u_{h}\|_{W^{1,\infty}(\widetilde{\omega}_{T})} \right). \end{split}$$

Beweis. Für die Approximationsfehler gilt

$$\begin{aligned} \|\widetilde{R}_{T} - R_{T}\|_{L^{2}(T)} &= \|\widetilde{f} - f + (\underline{a} - \underline{\widetilde{a}})\nabla u_{h} + (b - \widetilde{b})u_{h}\|_{L^{2}(T)} \\ &\leq \|\widetilde{f} - f\|_{L^{2}(T)} + \|(\underline{a} - \underline{\widetilde{a}})\|_{L^{2}(T)}\|\nabla u_{h}\|_{L^{\infty}(T)} + \|(b - \widetilde{b})\|_{L^{2}(T)}\|u_{h}\|_{L^{\infty}(T)} \\ &\lesssim h^{m}\|u_{h}\|_{W^{1,\infty}(T)} + h^{m} \end{aligned}$$

und

$$\begin{aligned} \|\widetilde{R}_{E} - R_{E}\|_{L^{2}(E)} &= \|\widetilde{g} - g + (\zeta - \widetilde{\zeta})u_{h}\|_{L^{2}(E)} \\ &\leq \|\widetilde{g} - g\|_{L^{2}(E)} + \|(\zeta - \widetilde{\zeta})\|_{L^{2}(T)}\|u_{h}\|_{L^{\infty}(E)} \\ &\lesssim h^{m}\|u_{h}\|_{L^{\infty}(E)} + h^{m} \end{aligned}$$

Nun folgt die Aussage aus Satz 4.4.

**Bemerkung 4.10** Die Grössen  $h^m ||u_h||_{W^{1,\infty}(T)}$  können i. a. nicht beschränkt werden. Allerdings lassen sie sich in jedem Berechnungsschritt explizit berechnen. Falls sie in einem Berechnungschritt nicht vernachlässigbar sind (d. h.  $\geq Tol$ ), muß man sie von der linken Seite abziehen, um den Fehler sinnvoll nach unten abschätzen zu können.

Der Fehlerschätzer  $\eta_R$  erlaubt eine globale obere Abschätzung des Fehlers, falls  $u_h$  die Lösung der SUPG-Diskretisierung aus Definition 3.16 ist. Dieses Resultat wird im nächsten Satz wiedergegeben.

Satz 4.5 (Globale obere Abschätzung) Seien  $\mathcal{T}_h$  eine Familie von zulässigen Zerlegungen von  $\Omega$  und  $u_h$  die eindeutigen Lösungen der SUPG-Diskretisierung aus Definition 3.16, dann erfüllt der Fehlerschätzer  $\eta_R$  die globale obere Abschätzung

$$|||u-u_h||| \lesssim \eta_R.$$

Im Beweis werden folgende Hilfsmittel benutzt:

- X-Elliptizität der Bilinearform B,
- Stetigkeit der Bilinearform B,
- Interpolationsabschätzungen des Clément-Operators aus Satz 4.3.

Beweis. Aufgrund der X-Elliptizität gilt

(4.4) 
$$|||u - u_h||| \leq \sup_{v \in H_D^1(\Omega) \setminus \{0\}} \frac{B(u - u_h, v)}{|||v|||} = \sup_{\substack{v \in H_D^1(\Omega) \setminus \{0\}\\ |||v|||=1}} B(u - u_h, v).$$

Mit Hilfe des Interpolations operators  $\Pi_h$  von Clément erhält man die Aufspaltung

$$B(u - u_h, v) = \underbrace{B(u - u_h, v - \Pi_h v)}_{\text{Term }(a)} + \underbrace{B(u - u_h, \Pi_h v)}_{\text{Term }(b)}.$$

Sei  $v \in H_D^1(\Omega) \setminus \{0\}$  mit |||v||| = 1. Für Term (a) ergibt sich durch Einsetzen von  $v - \prod_h v$ in (4.2) mit der Hölderschen Ungleichung und der Interpolationsabschätzung aus Satz 4.3 i) und iii) bezüglich des Operators  $\prod_h$ 

$$B(u - u_h, v - \Pi_h v) \lesssim \sum_{T \in \mathcal{T}_h} \alpha_T \|R_T\|_{L^2(T)} \|\|v\|\|_{\omega_T} + \sum_{E \in \mathcal{E}_h} \varepsilon^{-\frac{1}{4}} \alpha_E^{\frac{1}{2}} \|R_E\|_{L^2(E)} \|\|v\|\|_{\omega_T}.$$

Mit Hilfe der Hölderschen Ungleichung für Reihen und aufgrund der Regularität der Zerlegungen  $\mathcal{T}_h$  ergibt sich daraus mit |||v||| = 1

$$B(u - u_h, v - \Pi_h v) \lesssim \left( \sum_{T \in \mathcal{T}_h} \alpha_T^2 \|R_T\|_{L^2(T)}^2 + \sum_{E \in \mathcal{E}_h} \varepsilon^{-\frac{1}{2}} \alpha_E \|R_E\|_{L^2(E)}^2 \right)^{\frac{1}{2}} \left( \sum_{T \in \mathcal{T}_h} \||v|\|_T^2 \right)^{\frac{1}{2}} \\ \lesssim \left( \sum_{T \in \mathcal{T}_h} \alpha_T^2 \|R_T\|_{L^2(T)}^2 + \sum_{E \in \mathcal{E}_h} \varepsilon^{-\frac{1}{2}} \alpha_E \|R_E\|_{L^2(E)}^2 \right)^{\frac{1}{2}} \lesssim \eta_R.$$

Für Term (b) gilt aufgrund der SUPG-Diskretisierung

$$B(u-u_h,v_h) = -\sum_{T\in\mathcal{T}_h} \delta_T(R_T,\underline{a}\cdot 
abla v_h)_{L^2(T)}.$$

Der Term  $\|\underline{a} \cdot \nabla v_h\|_{L^2(T)}$  läßt sich mit Hilfe der inversen Ungleichung  $\|\nabla v_h\|_T \lesssim h_T^{-1} \|v_h\|_T$ und der Interpolationsabschätzung aus Satz 4.3 ii) abschätzen durch

$$\|\underline{a} \cdot \nabla v_h\|_{L^2(T)} \lesssim \|\underline{a}\|_{L^\infty(T)} h_T^{-1} \min\{h_T \varepsilon^{-\frac{1}{2}}, 1\} \||v\||_{\omega_T}.$$

Mit der Wahl von  $\delta_T$  wie in Bemerkung 3.6 ergibt sich wieder mit der Hölderschen Ungleichung für Reihen und der Regularität der Zerlegungen  $\mathcal{T}_h$ 

$$B(u - u_h, v_h) \lesssim \left( \sum_{T \in \mathcal{T}_h} \alpha_T^2 \|R_T\|_{L^2(T)}^2 \right)^{\frac{1}{2}} \left( \sum_{T \in \mathcal{T}_h} \|\|v\|\|_T^2 \right)^{\frac{1}{2}},$$
  
$$\lesssim \left( \sum_{T \in \mathcal{T}_h} \alpha_T^2 \|R_T\|_{L^2(T)}^2 \right)^{\frac{1}{2}} \le \eta_R.$$

Die so gewonnenen Abschätzungen für die Terme (a) und (b) hängen nun nicht mehr von  $v \in H_D^1(\Omega) \setminus \{0\}$  ab. Damit schätzt man das Supremum (4.4) und damit die Fehlernorm  $|||u - u_h|||$  durch den Fehlerschätzer  $\eta_R$  global nach oben ab. Es ergibt sich

(4.5) 
$$|||u - u_h||| \lesssim \left\{ \sum_{T \in \mathcal{T}_h} \alpha_T^2 ||R_T||_{L^2(T)}^2 + \sum_{E \in \mathcal{E}_h} \varepsilon^{-\frac{1}{2}} \alpha_E ||R_E||_{L^2(E)}^2 \right\}^{\frac{1}{2}} = \eta_R.$$

Mit Hilfe einer Nullergänzung in (4.5) und der Anwendung der Dreiecksungleichung sowie der Youngschen Ungleichung erhält man auch eine obere Abschätzung durch den Fehlerschätzer  $\widetilde{\eta_R}$  + additive Approximationsterme ähnlich wie in Satz 4.4.

**Korollar 4.2** Seien  $\mathcal{T}_h$  eine Familie von zulässigen Zerlegungen von  $\Omega$  und  $u_h$  die eindeutigen Lösungen der SUPG-Diskretisierung aus Definition 3.16. Sei weiterhin der Fehlerschätzer  $\widetilde{\eta}_R$  mit einer beliebigen Ansatzfunktion  $\widetilde{u}_h \in X_h^1$  gebildet, dann erfüllt der Fehlerschätzer  $\widetilde{\eta}_R$  die globale obere Abschätzung

$$|||u-u_h||| \lesssim \widetilde{\eta_R} + \left\{ \sum_{T \in \mathcal{T}_h} \alpha_T^2 ||R_T - \widetilde{R_T}||_{L^2(T)}^2 + \sum_{E \in \mathcal{E}_h} \varepsilon^{-\frac{1}{2}} \alpha_E ||R_E - \widetilde{R_E}||_{L^2(E)}^2 \right\}^{\frac{1}{2}}.$$

**Bemerkung 4.11** Die Ausdrücke  $||R_T - \widetilde{R_T}||_{L^2(T)}$  und  $||R_E - \widetilde{R_E}||_{L^2(E)}$  beinhalten im Gegensatz zu den Ausdrücken in Satz 4.4 die Terme  $||u_h - \widetilde{u_h}||_{L^2(T)}$ . Diese sind numerisch nicht berechenbar und lassen sich auch nicht ohne weiteres abschätzen. Bei einer praktischen Implementierung wird  $\widetilde{u_h}$  die diskrete Lösung bezüglich der approximierten Daten sein. Es wäre noch zu zeigen, daß  $||u_h - \widetilde{u_h}||_{L^2(T)}$  bei geeigneter Datenapproximation für  $h \to 0$  wenigstens beschränkt ist, um ähnliche Aussagen wie in Korollar 4.1 zu erhalten. Aus diesem Grund ist das letzte Ergebnis dieser Arbeit aus Sicht der praktischen Anwendbarkeit nicht so gut wie das Ergebnis für die unteren Abschätzungen.

## Kapitel 5

## Zusammenfassung

Anwendungen wie beispielsweise Gebietszerlegungsverfahren (DDM=Domain-Decomposition-Method) erfordern gemischte Dirichlet-Robin-Randbedingungen. Daher war es ein wesentliches Ziel dieser Arbeit, die in dem Artikel von Verfürth [Ver98] für Probleme mit Dirichlet-Neumann-Randbedingungen untersuchten Fehlerschätzer auf die Anwendung auf Probleme mit Dirichlet-Robin-Randbedingungen zu verallgemeinern.

Die polynomiale Approximation der Daten mußte anders als bei [Ver98] konsequent durchgeführt werden. Dadurch sind die Approximationsfehler in Satz 4.4 zustandegekommen. Angesichts der praktischen Implementierung ist das allerdings kein Nachteil, denn dort muß man sich ohnehin mit der Datenapproximation begnügen. Bei den oberen Abschätzungen läßt sich die Datenapproximation nicht in natürlicher Weise einbeziehen. Es ist notwendig, den Beweis der oberen Abschätzung mit der diskreten Lösung  $u_h$  und nicht mit einer beliebigen Funktion  $\widetilde{u_h}$  zu führen. Daraus resultierend ergeben sich die Datenfehler  $||u_h - \widetilde{u_h}||_{L^2(T)}$ . Diese lassen sich nicht so leicht handhaben wie Fehler der Art  $||f - \widetilde{f}||_{L^2(T)}$ .

Eine lokale obere Schranke kann für die Problemklasse (3.1) nicht gefunden werden. Im Fall dominanter Konvektion (d. h.  $\varepsilon \ll 1$ ) breiten sich lokale Fehler entlang der Charakteristiken des Operators 1. Ordnung  $\underline{a} \cdot \nabla(\cdot)$ d. h. entlang des Strömungsfeldes  $\underline{a}$  global im Gebiet  $\Omega$  aus.

Die unteren Abschätzungen konnten abgesehen von den Approximationsfehlern leicht verbessert werden. Die Parameter  $h_T$ ,  $h_E$  bzw.  $\rho_T$ ,  $\rho_E$  und sämtliche Abwandlungen sind häufig aufgrund der Regularitätsannahme identifiziert worden. Daher ist ein großer Spielraum in den Abschätzungen zu erwarten. Angesichts der häufigen Umrechnungen ist es allerdings sehr schwer, wenn nicht sogar aussichtslos, darüber Buch zu führen. Die Unterscheidung von  $h_T$  und  $h_E$  scheint vom praktischen und analytischen Standpunkt für die Abschätzungen durchaus sinnvoll zu sein und wurde daher beibehalten.

#### Ausblick

Die oberen Abschätzungen sind hinsichtlich der praktischen Nutzbarkeit noch nicht befriedigend. Die Aussage in Korollar 4.2 ist mit Sicherheit noch genauer präzisierbar. Es wäre für die Zukunft sehr lohnenswert, sich mit der Untersuchung der darin auftretenden Fehlerterme zu beschäftigen. Es ist zu erwarten, daß es nicht leicht sein wird, bei einer praktischen Implementierung des Fehlerschätzers gleichmäßig gute Ergebnisse zu erzielen. Die Ergebnisse werden vermutlich stark davon abhängen, welche Strategie für die zur Verfeinerung markierten Elemente gewählt wird.

Wie schon in der Einleitung erwähnt wurde, sind in den Konstanten wesentliche Faktoren verborgen, die durchaus stark variieren können. Es bedarf sicherlich einiger Tests und Erfahrungen, um den Fehlerschätzer erfolgreich bei Finite-Element-Methoden einsetzen zu können.

## Symbolverzeichnis

Die aufgeführten Symbole treten im Text immer wieder auf und sind unter Umständen im näheren Kontext nicht erklärt. Das Zeichen ► deutet an, daß das nachfolgende Symbol im Verzeichnis aufgeführt ist. Hat ein Symbol mehrere Bedeutungen, so sind diese untereinander numeriert aufgelistet.

| <u>a</u>                                        | Strömungsfeld in der Differentialgleichung                                                                | (3.1)             |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------|
| $\underline{\widetilde{a}}$                     | polynomiale Approximation des Strömungsfeldes $\blacktriangleright \underline{a}$                         | (Definition 4.14) |
| A                                               | Transformations<br>matrix der affinen Transformation $\blacktriangleright$ Tr                             | Definition 2.1    |
| α                                               | Multiindex einer partiellen Ableitung                                                                     | Definition 1.6    |
| $\alpha_E$                                      | lokales Gewicht des Fehlerschätzers $\blacktriangleright~\eta_R$                                          | Definition 4.13   |
| $\alpha_T$                                      | lokales Gewicht des Fehlerschätzers $\blacktriangleright~\eta_R$                                          | Definition 4.13   |
| b                                               | Reaktionskoeffizient in der Differentialgleichung                                                         | (3.1)             |
| $\widetilde{b}$                                 | polynomiale Approximation des Reaktionskoeffizienten $\blacktriangleright b$                              | (4.14)            |
| В                                               | Bilinearform der schwachen Formulierung                                                                   | Definition 3.4    |
| $B_{\delta}$                                    | Bilinearform der $\blacktriangleright$ SUPG-Diskretisierung                                               | Definition 3.15   |
| $\mathcal{B}$                                   | $\blacktriangleright$ $\sigma$ -Algebra der Borelschen Mengen                                             | Definition 1.19   |
| C                                               | positive Konstante, die nicht von $\blacktriangleright h$ und $\blacktriangleright \varepsilon$ abhängt   |                   |
| $\mathcal{C}^m(\Omega)$                         | $\blacktriangleright$ <i>m</i> -fach stetig partiell differenzierbare                                     |                   |
|                                                 | Funktionen auf $\blacktriangleright \Omega$                                                               | Definition 1.9    |
| $\mathcal{C}^m(\overline{\Omega})$              | Unterraum aller Funktionen aus $\blacktriangleright C^m(\Omega)$ mit stetig auf                           |                   |
|                                                 | $\blacktriangleright \overline{\Omega}$ fortsetzbaren Ableitungen bis zur Ordnung $\blacktriangleright m$ | Definition 1.9    |
| $\mathcal{C}^{m,\lambda}(\overline{\Omega})$    | Hölderräume                                                                                               | Definition 1.10   |
| $\mathcal{C}^{\infty}(\Omega)$                  | Raum der beliebig oft stetig partiell differenzierbaren                                                   |                   |
|                                                 | Funktionen auf $\blacktriangleright \Omega$                                                               | Definition 1.5    |
| $\mathcal{C}_0^\infty(\Omega)$                  | Raum der beliebig oft stetig partiell differenzierbaren                                                   |                   |
|                                                 | Funktionen auf $\blacktriangleright \Omega$ mit kompaktem Träger in $\blacktriangleright \Omega$          | Definition 1.8    |
| $\mathcal{C}^\infty_\Gamma(\Omega)$             | Raum der beliebig oft stetig partiell differenzierbaren                                                   |                   |
| -                                               | Funktionen auf $\triangleright \Omega$ , die auf $\triangleright \Gamma$ verschwinden                     | Lemma $1.9$       |
| $\mathcal{C}^{\infty}_{\Gamma_{D}}(\Omega)$     | Raum der beliebig oft stetig partiell differenzierbaren                                                   |                   |
| - D                                             | Funktionen auf $\triangleright \Omega$ , die auf $\triangleright \Gamma_D$ verschwinden                   |                   |
| $\mathcal{C}^{\infty}_{\hat{E}_{n+1}}(\hat{T})$ | Raum der beliebig oft stetig partiell differenzierbaren                                                   |                   |
|                                                 | Funktionen auf $\triangleright \hat{T}$ , die auf $\triangleright \hat{E}_{n+1}$ verschwinden             | Lemma $4.1$       |
| $D^{lpha}$                                      | i) partielle Ableitung                                                                                    | Definition 1.6    |
|                                                 | ii) schwache Ableitung                                                                                    | Definition 1.23   |
|                                                 |                                                                                                           |                   |

| $\frac{\partial}{\partial x}$           | partielle Ableitung nach der ► <i>i</i> -ten Koordinate                                                  |                 |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------|
| $\Delta x_i$                            | Laplace-Operator                                                                                         | Definition 1 13 |
| $\frac{1}{\delta_T}$                    | SUPG-Parameter                                                                                           | Definition 3 15 |
| e<br>E                                  | Störungsparameter in der Differentialgleichung                                                           | (3 1)           |
| E                                       | allgemeine Kante eines Elements $\triangleright$ T                                                       | (0.1)           |
| $\overline{E}_i$                        | ▶ <i>i</i> -te Kante eines Elementes ▶ $T$ der Zerlegung ▶ $\mathcal{T}_h$                               | Definition 3.14 |
| $\hat{E}_i$                             | ▶ <i>i</i> -te Kante des Standard-▶ <i>n</i> -Simplex ▶ $\hat{T}$                                        | Definition 3.14 |
| $\mathcal{E}_{D}$                       | Kanten der Zerlegung $\triangleright \mathcal{T}_{h}$ auf dem Dirichlet-Rand $\triangleright \Gamma_{D}$ | Definition 3.7  |
| $\mathcal{E}_{h}$                       | Kantenmenge der Zerlegung $\blacktriangleright \mathcal{T}_b$                                            | Definition 3.7  |
| $\mathcal{E}_{I}$                       | innere Kanten der Zerlegung $\triangleright \mathcal{T}_h$                                               | Definition 3.7  |
| $\mathcal{E}_{R}$                       | Kanten der Zerlegung $\triangleright \mathcal{T}_h$ auf dem Robin-Rand $\triangleright \Gamma_R$         | Definition 3.7  |
| $n_R$                                   | residualer a-posteriori Fehlerschätzer                                                                   | Definition 4.13 |
| $\widetilde{n_R}$                       | Fehlerschätzer $\triangleright$ $\eta_{R}$ mit approximierten Daten                                      | Satz 4.4        |
| n<br>NR T                               | lokaler Term des Fehlerschätzers $\triangleright$ $n_{\mathcal{B}}$ auf $\triangleright$ T               | Definition 4.13 |
| $\widetilde{\eta_{B}}_{T}$              | lokaler Term des Fehlerschätzers $\blacktriangleright \widetilde{\eta_R}$                                |                 |
| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | mit approximierten Daten auf $\triangleright T$                                                          | Satz 4.4        |
| f                                       | Quellterm der Differentialgleichung                                                                      | (3.1)           |
| $\widetilde{f}$                         | polynomiale Approximation des Quellterms $\triangleright$ f                                              | (3.2)<br>(4.4)  |
| F                                       | lineares stetiges Funktional der schwachen Formulierung                                                  | (1.1)           |
| $F_{s}$                                 | lineares stetiges Funktional der SUPG-Diskretisierung                                                    | Definition 3.15 |
| FEM                                     | Finite-Element-Methode                                                                                   | Deminion 9.19   |
| FE-Raum                                 | Finite-Element-Baum                                                                                      | Definition 2.3  |
| ()                                      | glatte Funktion aus $\blacktriangleright C^{\infty}(\Omega)$                                             | Dominion 2.0    |
| Ψ<br>a                                  | rechte Seite der Bandbedingung                                                                           | (3, 1)          |
| $\widetilde{a}$                         | polynomiale Approximation der rechten Seite $\triangleright a$                                           | (3.1)<br>(4.4)  |
| 9<br>Г                                  | kompakte Teilmenge des Bandes $\blacktriangleright \partial \Omega$                                      | Lemma 1.9       |
| Γъ                                      | Teilrand von $\triangleright \Omega$ mit Dirichlet-Bandbedingungen                                       | (3 1)           |
| $\Gamma_{P}$                            | Teilrand von $\triangleright \Omega$ mit Bohin-Bandbedingungen                                           | (3.1)           |
| h h                                     | i) Umkreisdurchmesser eines Gebietes ► Ω                                                                 | Definition 2.2  |
|                                         | i) maximaler Umkreisdurchmesser einer Zerlegung $\triangleright \mathcal{T}_{k}$                         | Abschnitt 3 3   |
| $h_{F}$                                 | Umkreisdurchmesser der Kante $\triangleright E$                                                          | Definition 3.11 |
| $h_{L}$                                 | Umkreisdurchmesser des Gebietes $\blacktriangleright \omega_T$                                           | Definition 3 10 |
| $h_{T}$                                 | Umkreisdurchmesser des Elements $\triangleright T$                                                       | Definition 2.2  |
| $h_x$                                   | Umkreisdurchmesser des Gebietes $\blacktriangleright \omega_x$                                           | Definition 3.10 |
| i                                       | natürliche Zahl                                                                                          | Dominion 0.10   |
| Id                                      | i) Identischer Operator                                                                                  |                 |
| 10                                      | i) Einbettungsoperator in Hölder-Räume                                                                   | Satz 13         |
|                                         | iii) Einbettungsoperator in Sobolev-Bäume                                                                | Satz 1.4        |
| $\int (\cdot) dx$                       | Lebesgue-Integral                                                                                        | 5002 111        |
| j ( ) uz                                | natürliche Zahl                                                                                          |                 |
| s<br>k                                  | natürliche Zahl                                                                                          |                 |
| $\hat{K}$                               | Fortsetzungsoperator von $\blacktriangleright \hat{E}$ is nach $\blacktriangleright \hat{T}$             | Definition 4.8  |
| $K_{E}$                                 | Fortsetzungsoperator von $\blacktriangleright E$ nach $\blacktriangleright w_{\pi}$                      | Definition 4.9  |
| $\frac{11E}{Ker(L)}$                    | Nullraum des stetigen linearen Operators $\blacktriangleright L$                                         |                 |
|                                         | stetiger linearer Operator                                                                               | Lemma 9.9       |
| <b>L</b>                                | Stonger uncarer Oberator                                                                                 | 1.0mma 2.2      |

| $L^p(\Omega)$              | Raum der auf $\triangleright \Omega$ in der $\triangleright p$ -ten Potenz                                                                    |                 |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| · · /                      | Lebesgue-integrierbaren Funktionen                                                                                                            | Lemma 1.2       |
| $L^{\infty}(\Omega)$       | Raum der auf $\blacktriangleright \Omega$ f. ü. beschränkten Funktionen                                                                       | Lemma 1.2       |
| $L^1_{\rm loc}(\Omega)$    | Raum der auf $\blacktriangleright \Omega$ lokal in der 1-ten Potenz                                                                           |                 |
|                            | Lebesgue-integrierbaren Funktionen                                                                                                            | Definition 1.22 |
| $\lambda_i$                | baryzentrische Koordinate zum Eckpunkt $\blacktriangleright x_i$                                                                              | Bemerkung 3.5   |
| $\lambda_{x}$              | Basisfunktion zum Eckpunkt $\triangleright x$                                                                                                 | Definition 3.13 |
| $\lambda_i^{\Theta}$       | mit $\triangleright \Theta$ gestauchte $\triangleright i$ -te barvzentrische Koordinate                                                       | Definition 4.6  |
| $m^{i}$                    | natürliche Zahl                                                                                                                               |                 |
| $\mu$                      | i) Lebesgue-Maß der Borelschen ▶ σ-Algebra ▶ β                                                                                                | Satz 1.1        |
|                            | ii) allgemeines Maß                                                                                                                           | Definition 1.18 |
| n                          | Dimension des Vektorraums $\triangleright \mathbb{R}^n$                                                                                       |                 |
| $\vec{n}$                  | äußerer Normaleneinheitsvektor an $\blacktriangleright \partial \Omega$                                                                       | Lemma 1.10      |
| $N_h$                      | Menge aller Eckpunkte der Zerlegung $\triangleright \mathcal{T}_h$                                                                            | Definition 3.8  |
| $\ \cdot\ _n$              | Normen auf dem Raum $\blacktriangleright \mathbb{R}^n$                                                                                        | Definition 1.3  |
| $ \cdot _{Wk,p}$           | Halbnormen der Räume $\blacktriangleright W^{m,p}(\Omega)$ für $\blacktriangleright k \leq m$                                                 | Lemma 1.3       |
| $\ \cdot\ _{L^p}$          | Normen der Räume $\blacktriangleright L^p(\Omega)$                                                                                            | Lemma 1.2       |
| $\ \cdot\ _{L^{\infty}}$   | Normen der Räume $\blacktriangleright L^{\infty}(\Omega)$                                                                                     | Lemma 1.2       |
| $\ \cdot\ _{W^{m,p}}$      | Normen der Räume $\blacktriangleright W^{m,p}(\Omega)$                                                                                        | Lemma 1.3       |
| $\ \cdot\ _{W^{m,\infty}}$ | Normen der Räume $\blacktriangleright W^{m,\infty}(\Omega)$                                                                                   | Lemma 1.3       |
| $\ \nabla(\cdot)\ _{L^2}$  | and ere Schreibweise der $\blacktriangleright W^{1,2}(\Omega)$ -Halbnorm                                                                      | Definition 3.3  |
| •                          | Energienorm auf $\triangleright \Omega$                                                                                                       | Definition 3.3  |
| $\Omega$                   | beschränktes Gebiet im $\blacktriangleright \mathbb{R}^n$                                                                                     | Definition 1.4  |
| $\hat{\Omega}$             | Referenzebiet im $\triangleright \mathbb{R}^n$                                                                                                | Definition 2.1  |
| $\frac{1}{\Omega}$         | Abschluß des Gebietes $\triangleright \Omega$                                                                                                 | Definition 1.4  |
| $\partial \Omega$          | Rand des Gebietes $\triangleright \Omega$                                                                                                     | Definition 1.4  |
| ( <i>i</i> )E              | Umgebung der Kante $\blacktriangleright E$                                                                                                    | Definition 3 11 |
| $\omega_E$<br>$\omega_T$   | Umgebung des Elements $\triangleright T$                                                                                                      | Definition 3.9  |
| $(u)_{m}$                  | Umgebung des Ecknunktes $\triangleright x$                                                                                                    | Definition 3.9  |
| $\widetilde{\omega}_{T}$   | Umgebung des Elements $\triangleright T$                                                                                                      | Definition 3 11 |
| m = 1                      | reelle Zahl aus $\begin{bmatrix} 1 \\ \infty \end{bmatrix}$ oder $\blacktriangleright \infty$                                                 | Dominion 9.11   |
| P<br>P                     | allgemeiner Ansatzraum eines <b>F</b> E-Raumes                                                                                                | Definition 2.3  |
| P:                         | Function aus dem Ansatzraum $\triangleright P$                                                                                                | Definition 2.4  |
| $\mathbb{P}_{m}(\Omega)$   | Baum der Polynome vom Grad $\blacktriangleright m$ auf $\blacktriangleright \Omega$                                                           | Definition 1 24 |
| $\pi^0$                    | Mittelungsoperator                                                                                                                            | Definition 4.2  |
| $\Pi$                      | i) polynom-erhaltender Operator                                                                                                               | Satz 2.1        |
|                            | i) Interpolationsoperator auf einem ▶FE-Raum                                                                                                  | Definition 2.4  |
| $\prod_{h}$                | Interpolationsoperator nach Clément                                                                                                           | Definition 4.3  |
| $\hat{a}_{n}$              | Blasenfunktion 1 auf dem Referenzelement $\blacktriangleright \hat{T}$                                                                        | Definition 4.4  |
| $\psi$                     | Blasenfunktion 1 auf dem Element $\triangleright T$                                                                                           | Definition 4.5  |
| $\hat{\psi}_{I}$           | Blasenfunktion 2 auf dem Brenent $\triangleright \hat{T}$                                                                                     | Definition 4.6  |
| $\Psi_{E_n}(\Theta)$       | Blassenfunktion 2 auf dem Flement $\triangleright$ (1-                                                                                        | Definition 4.7  |
| $\psi_E(\Theta)$           | rollo 7 ahl ang $\begin{bmatrix} 1 & \infty \end{bmatrix}$ adar $\blacktriangleright$ as                                                      |                 |
| Ч<br>Въ                    | reene Zani aus $[1, \infty)$ ouer $\mathbf{P} \infty$<br>Kantonrosiduum dos Fohlorschötzors $\mathbf{N}$ n- zur Kanto $\mathbf{N} \mathbf{F}$ | Definition 4 19 |
| n <sub>E</sub><br>D        | Kantemesiduum des Fehlerschätzers $\triangleright$ $\eta_R$ zur Kallte $\triangleright E$                                                     |                 |
| $n_T$                      | Elementresiduum des renierschatzers $\blacktriangleright \eta_R$                                                                              |                 |

|                                                     | zum Element $\blacktriangleright T$                                                                           | Definition 4.12  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------|
| R<br>m <sup>n</sup>                                 | der reelle Zahlkorper                                                                                         |                  |
| R″<br>auna                                          | der reelle euklidische Raum der Dimension $\triangleright n$                                                  | Definition 1.1   |
| SUPG                                                | Streamline-Upwind-Petrov-Galerkin (Diskretisierungs-                                                          | <b>-</b>         |
| ~                                                   | verfahren mit zusätzlicher Stromliniendiffusion)                                                              | Definition 3.16  |
| Spur                                                | Bild einer Funktion unter dem Spuroperator $\triangleright$ Sp                                                | Satz 1.2         |
| $\operatorname{supp}(\varphi)$                      | Träger der Funktion $\blacktriangleright \varphi$                                                             | Definition 1.7   |
| $\sigma$ -Algebra                                   | maßtheoretisches Mengensystem                                                                                 | Definition 1.17  |
| $\operatorname{Sp}$                                 | allgemeiner Spuroperator                                                                                      | Satz 1.2         |
| $\sum$                                              | endliche Menge von Funktionalen                                                                               | Definition 2.3   |
| $(\cdot, \cdot)$                                    | Euklidisches Skalarprodukt auf dem $\blacktriangleright \mathbb{R}^n$                                         | Definition 1.2   |
| $(\cdot,\cdot)_{L^2}$                               | Skalarprodukt auf dem Raum $\blacktriangleright L^2(\Omega)$                                                  | Lemma $1.2$      |
| $\hat{T}$                                           | Standard- $\triangleright$ <i>n</i> -Simplex im $\triangleright$ $\mathbb{R}^n$                               | Definition 3.14  |
| T                                                   | Element der Zerlegung $\blacktriangleright \mathcal{T}_h$                                                     | Abschnitt 3.3    |
| $\mathcal{T}_h$                                     | simpliziale Zerlegung des Gebietes $\blacktriangleright \Omega$                                               | Abschnitt 3.3    |
| Tr                                                  | affine Transformation                                                                                         | Definition 2.1   |
| Θ                                                   | Parameter aus $(0, 1]$ der Blasenfunktion $\blacktriangleright \psi_E(\Theta)$                                | Definition 4.6   |
| u                                                   | allgemeine Funktion                                                                                           |                  |
| v                                                   | allgemeine Funktion                                                                                           |                  |
| V                                                   | Banach-Raum von Funktionen auf einem ▶ FE-Raum                                                                | Definition 2.3   |
| $W^{m,p}(\Omega)$                                   | Sobolev-Räume                                                                                                 | Lemma 1.3        |
| $W^{1,2}(E)$                                        | Sobolev-Raum auf der Kante $\blacktriangleright E$                                                            |                  |
| $W^{1,2}(T)$                                        | Sobolev-Raum auf dem Element $\blacktriangleright T$                                                          |                  |
| $W^{1,2}_{r}(\Omega)$                               | Unterraum der Funktionen aus $\blacktriangleright W^{1,2}(\Omega)$ .                                          |                  |
| ··· [· ()                                           | deren $\blacktriangleright$ Spur auf $\blacktriangleright$ $\Gamma$ verschwindet                              | Lemma 1.9        |
| $W^{1,2}_{{\scriptscriptstyle \mathrm{P}}}(\Omega)$ | Unterraum der Funktionen aus $\blacktriangleright W^{1,2}(\Omega)$ .                                          |                  |
| $\Gamma_D(\gamma)$                                  | deren $\blacktriangleright$ Spur auf $\blacktriangleright$ $\Gamma_D$ verschwindet                            | Definition 3.2   |
| x                                                   | Element im $\triangleright \mathbb{R}^n$                                                                      | 2 3111101011 0.2 |
| $x_i$                                               | $\blacktriangleright$ <i>i</i> -te Koordinate im $\blacktriangleright \mathbb{R}^n$                           |                  |
| X                                                   | Lösungsraum des Problems 3.4                                                                                  | Definition 3.2   |
| $X_{I}^{1}$                                         | Ansatzraum der ► SUPG-Diskretisierung 3.16                                                                    | Definition 3.12  |
| <u>n</u>                                            | Element im $\triangleright \mathbb{R}^n$                                                                      | 2 011101011 0112 |
| Э<br>С                                              | Koeffizient in der Robin-Bandbedingung                                                                        | $(3 \ 1)$        |
| č                                                   | polynomiale Approximation des Koeffizienten $\triangleright$ (                                                | (4.4)            |
| $\nabla$                                            | Cradient $\Gamma$                                                                                             | Definition 1 11  |
| V<br>V                                              |                                                                                                               | Definition 1.11  |
| v ·<br><                                            | ∠ Ungleichung his auf eine pesitive Konstante ► C                                                             |                  |
| $\stackrel{\sim}{\sim}$                             | $\geq$ -Ongleichung Dis auf eine positive Konstallte $\blacktriangleright$ C<br>der unendlich forne Punkt der |                  |
| $\omega$                                            | Tinnunkt Kompolitifizionung von N                                                                             |                  |
|                                                     | Empunkt-Kompaktnizierung von 🕨 ĸ                                                                              |                  |

# Abbildungsverzeichnis

| 3.1 | Zerlegung des Gebietes $\Omega$                                     | 6 |
|-----|---------------------------------------------------------------------|---|
| 3.2 | In- und Umkreisdurchmesser von $T$                                  | 7 |
| 3.3 | Umgebung $\omega_x$                                                 | 8 |
| 3.4 | Umgebung $\omega_T$                                                 | 8 |
| 3.5 | Umgebung $\widetilde{\omega}_T$                                     | 8 |
| 3.6 | Umgebung $\omega_E$                                                 | 8 |
| 3.7 | Baryzentrische Koordinate $\lambda_2$                               | 9 |
| 3.8 | Basisfunction $\lambda_x$                                           | 0 |
| 3.9 | Bezeichnungen für das Element $T$                                   | 0 |
| 4.1 | Standard-2-Simplex $\hat{T}$                                        | 4 |
| 4.2 | Blasenfunktion $\hat{\Psi}$                                         | 7 |
| 4.3 | Blasenfunction $\hat{\Psi}_{\hat{E}_n}(\Theta)$ für $\Theta = 1, 0$ | 8 |
| 4.4 | Blasenfunction $\hat{\Psi}_{\hat{E}_n}(\Theta)$ für $\Theta = 0,35$ | 8 |
## Literaturverzeichnis

- [Ada75] ADAMS, R.A.: Sobolev Spaces. Pure and Applied Mathematics, Academic Press, 1975.
- [Alt99] ALT, H.W.: Lineare Funktionalanalysis. Hochschultext, Springer, 1999.
- [BR78] BABUŠKA, I., RHEINBOLDT, W.C.: Error estimates for adaptive finite element computations. SIAM J. Num. Anal. 15, 736-754, 1978.
- [BW85] BANK, R.E., WEISER, A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44, 283-301, 1985.
- [Bra97] BRAESS, D.: Finite Elemente. Lehrbuch, Springer, 1997.
- [BS94] BRENNER, S.C., SCOTT, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, Springer, 1994.
- [Cia78] CIARLET, P.G.: The Finite Element Method For Elliptic Problems. North-Holland, 1978.
- [Clé75] CLÉMENT, P.: Approximation by finite element functions using local regularization. R.A.I.R.O. Anal. Num. 9, S. 77-84, 1975.
- [Els96] ELSTRODT, J.: Maβ- und Integrationstheorie. Grundwissen Mathematik, Springer, 1996.
- [For84] FORSTER, O.: Analysis. Grundkurs Mathematik, Vieweg, 1984.
- [GT98] GILBARG, D., TRUDINGER, N.S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der mathematischen Wissenschaften, Springer, 1998.
- [Heu81] HEUSER, H.: Lehrbuch der Analysis. Mathematische Leitfäden, Teubner, 1981.
- [Jän93] JÄNICH, K.: Vektoranalysis. Lehrbuch, Springer, 1993.
- [Joh97] JOHN, V.: Parallele Lösung der inkompressiblen Navier-Stokes Gleichungen auf adaptiv verfeinerten Gittern. Dissertation, 1997.
- [Kla98] KLAPPROTH, P.: Zweigitter-Diskretisierungsverfahren für singulär gestörte elliptische Randwertprobleme. Diplomarbeit, 1998.
- [Rud73] RUDIN, W.: Functional Analysis. Series in Higher Mathematics, McGraw-Hill, 1973.

| [Ott99]  | OTTO, F. C.: A non-overlapping Domain Decomposition Method for elliptic Problems. Dissertation, 1999.                                             |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| [Sch 66] | SCHWARTZ, L.: Théorie des distributions. Hermann, Paris, 1966.                                                                                    |
| [SZ90]   | SCOTT, L.R., ZHANG S.: Finite Element Interpolation of Nonsmooth Functi-<br>ons satisfying Boundary Conditions. Math. Comp. 54, S. 483-493, 1990. |
| [Tri72]  | TRIEBEL, H.: <i>Höhere Analysis.</i> Hochschulbücher für Mathematik, Deutscher Verlag der Wissenschaften, 1972.                                   |
| [Ver 97] | VERFÜRTH, R.: Error estimates for some quasi-interpolation operators. Pre-<br>print, 1997.                                                        |
| [Ver98]  | VERFÜRTH, R.: A posteriori error estimators for convection-diffusion equations. Numer. Math. 80 (4), S. 641-663, 1998.                            |
| [Wlo82]  | WLOKA, J.: Partielle Differentialgleichungen. Mathematische Leitfäden, Teubner, 1982.                                                             |

LITERATURVERZEICHNIS

[Yos80] YOSIDA, K.: Functional Analysis. Classics in Mathematics, Springer, 1980.

## Danksagung

Mein ganz besonderer Dank gilt Herrn Prof. Dr. Gert Lube für die wohlwollende Aufnahme in seine Arbeitsgruppe und die gute Betreuung.

Mein herzlichster Dank gilt Pamela für die liebevolle Unterstützung, die sie mir während meiner Arbeit gegeben hat.

Ein besonderer Dank gilt meinen Eltern, die mir mein Studium ermöglicht haben und mich in meinen Entscheidungen stets unterstützt haben.