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Preface

Turbulent flows driven or significantly affected by buoyancy occur in a variety of problems
including building ventilation, cooling of electrical equipment, and environmental science.
The fundamental mathematical model are the non-isothermal Navier-Stokes equations, gov-
erning the time-evolution of velocity ũ, pressure p̃, and temperature T̃ . The phenomenon
of turbulence reveals that their solutions can become very complex if a critical parameter,
e.g., the Reynolds number or the Rayleigh number, becomes large. A proper numerical
resolution of the random motion of all scales of ũ, p̃, and T̃ (called Direct Numerical Simu-
lation) is feasible only for a very limited number of flows. Thus the major task in turbulence
modelling is to reduce the complexity of the Navier-Stokes equations in a manner which is
appropriate to the needs of science and engineering. The goal is to develop models that are
computationally simpler than the Navier-Stokes equations but ”whose predictions are close
to those of the Navier-Stokes equations”. In this thesis we pursue two strategies: The first
approach is a statistical approach which is based on a statistical averaging procedure for
the Navier-Stokes equations. The objective is to obtain a set of equations for the statistical
mean values for ũ, p̃, and T̃ , which requires an empirical modelling of the terms involving
statistical fluctuations. The second approach is called large-eddy simulation (LES). The
idea of LES is to apply a spatial averaging filter to the Navier-Stokes equations in order to
extract the large-scale structures of ũ, p̃, and T̃ , and to attenuate their small-scale struc-
tures. Then only the random motion of the large scales is resolved and the effects of the
small scales on the large scales are modelled.
This thesis is involved into a longlasting cooperation with the Institute for Thermodynam-
ics and Building Energy Systems at Dresden University of Technology. A major result
of this cooperation is our research code ParallelNS, see e.g. [Mue99] and [KLGR02].
ParallelNS is intended for the numerical solution of indoor-air flow problems, see e.g.
[Gri01]. The building blocks of this code are the k/ε model (which is a statistical turbulence
model), an improved wall-function concept for the treatment of the near-wall region, and
a stabilised finite-element method together with an iterative substructuring method as a
domain decomposition method for the numerical solution process.
The first objective of this thesis is a critical review of the theoretical background of these
building blocks. Both the turbulence model and the numerical solution scheme used in Par-

allelNS are described in a manner which is more convenient to mathematicians than the
presentations in engineering textbooks. Secondly, the aim is to investigate the accuracy of
our research code. The near-wall treatment in ParallelNS conceived by [Nei99] had not
yet been assessed by reference with experimental data from other research groups. We will
investigate a natural convection flow in an air filled cavity. For this test case Karayiannis

et al. (see [TK00a] and [AK02]) provided widely accepted experimental data. Moreover
the accuracy of the domain decomposition method for this three-dimensional test case has
to be investigated, since the numerical tests in [Mue99] are restricted to two-dimensional
problems.
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The k/ε model is the most widespread turbulence model, but it suffers from several
well-known deficiencies. Thus an additional objective of this thesis is to recommend al-
ternative turbulence models which are amenable for use in ParallelNS. A successful
improvement of the standard k/ε model is the so called k-ε-v2 model, which was de-
vised by Durbin, see [Dur91]. However, this model requires resolving the near-wall re-
gion, which is infeasible for three-dimensional problems of practical relevance. Therefore
we study LES, which has the additional advantage of being much closer to the Navier-
Stokes equations than statistical turbulence models. Modern advances in computer power
have allowed LES to become more and more interesting for engineering applications, see,
e.g., the current projects in Prof. Dr. Lars Davidson’s research group at the Depart-
ment of Thermo and Fluid Dynamics at Chalmers University of Technology Göteborg
(http://www.tfd.chalmers.se/∼lada/projects/proind.html) and the homepage of the Flow
Physics and Computation Division at the Department of Mechanical Engineering at Stan-
ford University (http://www-fpc.stanford.edu/). The objective of this thesis is not to devise
new LES models but to review current models in order to employ them in ParallelNS.
LES models are often referred to as residual stress models. Three residual stress models
have been studied in this thesis, viz., the well-known Smagorinsky model, the Iliescu-Layton
model (see [IL98]), and the Galdi-Layton model (see [GL00]), including a modification de-
vised by Eidson, cf. [Eid85]. We describe how these models can be applied in a natural
manner in ParallelNS using the same near-wall strategy as for the k/ε model. We per-
form an a priori test and show first results from an a posteriori test. An a priori test uses
experimental data or data from a DNS to study the residual stress model separately. In an a
posteriori test, we perform a computation for a certain flow problem and then compare the
calculated statistics (mean values, variances) with the corresponding statistics extracted
from experimental data or from a DNS.
The wall function concept applied in ParallelNS can be viewed as a fully overlapping
domain decomposition method, as devised by Tidriri and LeTallec, cf. [LTT99]. Within
this approach, a boundary-layer solution is determined in the near-wall region, which sat-
isfies the correct Dirichlet boundary condition at the wall and which is matched with the
global solution on an artificial inner boundary. The crucial point is that the boundary-
layer information is transferred to the global problem using a suitable friction (Neumann)
boundary condition for the global problem. From a mathematical point of view this ap-
proach is not yet well understood. During a research stay at the University of Pittsburgh,
in close cooperation with Prof. Dr. W. J. Layton some mathematical results for a certain
coupling scheme have been obtained, which will be presented in this thesis.

Epitome

Part I is dedicated to a detailed description of the turbulence models studied in this thesis.
In Chapter 1 the laminar case is studied and the wall function procedure is motivated.
In Chapter 2 some fundamental results regarding turbulent flows and their modelling are
reviewed. Chapter 3 is devoted to the k/ε turbulence model and in Chapter 4 some LES
models are described. In Chapter 5 we derive a set of appropriate boundary-layer equations
for the near-wall region. In Chapters 6 we present the k/ε model using the wall-function
procedure which is implemented in our research code. The corresponding computational
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model for the LES models is described in Chapter 7. Chapter 8 is dedicated to the analysis
of a certain wall-function scheme for LES.
Part II is devoted to a description of the numerical solution scheme and to the numerical
investigations. In Chapter 9 we study the semidiscretisation in time and the linearisation
for both models. The spatial discretisation is considered in Chapter 10. The domain
decomposition method will be described in Chapter 11. Numerical tests for the fully
developed turbulent channel flow and for a natural convection flow in a closed cavity are
studied in Chapters 12 and 13 resp.
In the appendix, some prerequisited material is reviewed. Moreover, some additional results
will be presented there, which do not fit well into the thread of principal ideas in the main
text.
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Turbulence modelling for buoyancy driven flows
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1. The laminar model

The first part of this thesis is devoted to turbulence modelling for incompressible buoyancy
driven flows. We begin by considering the laminar case, introducing the incompressible
non-isothermal Navier-Stokes equations. These are the governing equations for velocity,
pressure and temperature in non-isothermal flow problems.

1.1. Laminar thermally coupled flow problems

Let Ω be an open domain of Rd (d = 2, 3) and Γ its (sufficiently regular, at least Lipschitz
continuous) boundary. Denote ũ the velocity field, p̃ the pressure and T̃ the temperature.
Note that in the sequel dimensional variables are labelled by a tilde. Then the time evolu-
tion of these quantities is described by the following coupled system of partial differential
equations:

ρ̃

(
∂ũ

∂t̃
+ (ũ · ∇)ũ

)
− ∇ · ( 2 µ̃S ( ũ ) ) + ∇ p̃ = ρ̃ g̃ ,(1.1)

∇ · ũ = 0 ,(1.2)

ρ̃ c̃p

(
∂T̃

∂t̃
+ ( ũ · ∇ ) T̃

)
− ∇ ·

(
λ̃∇ T̃

)
= ˜̇qV(1.3)

together with a set of initial and boundary conditions to be discussed later in this section.
µ̃ is the dynamic viscosity of the fluid and ρ̃ its density. g̃ is the gravitational acceleration,
c̃p denotes the specific heat at constant pressure, λ̃ (often used alternative symbol: k̃) is
the thermal conduction coefficient, and ˜̇qV is a volume specific external heat source. Eq.
(1.1) is called momentum equation. We use the symmetric, deviatoric rate-of-strain tensor

S ( ũ ) =
∇ũ+∇ũT

2
, ∇su ≡ 2 S ( ũ ) .

Eq. (1.2) ensures the incompressibility of the fluid and is called equation of continuity.
Eq. (1.3) will be referred to as temperature equation or heat transfer equation. Note that
in indoor-air flow problems it is reasonable to neglect the dissipation of mechanical work
(Joule effect) and heat transfer via radiation in (1.3).
In thermally coupled flow problems, the governing equations are fully coupled. First, as
density is temperature sensitive, temperature variations may lead to density gradients. This
can result in buoyancy forces due to gravitational forces. These are taken into account by
the right hand side term in (1.1). For this reason temperature is referred to as an ’active’
scalar in (1.1). Second, the velocity field is the convection field for the temperature in (1.3).
The density dependence on the temperature is modelled by using the so-called Boussinesq

13



1. The laminar model

approximation, which consists of two parts. First, it assumes that ρ̃(T̃ ) behaves like

ρ̃(T̃ ) = ρ̃0 − ρ̃0β̃0(T̃ − T̃0) , with ρ̃0 ≡ ρ̃(T̃0) , β̃0 ≡ − 1
ρ̃

(
∂ρ̃

∂T̃

)∣∣∣∣
T̃=T̃0

(1.4)

and β̃0 being the volumetric coefficient of thermal expansion. T̃0 is a reference temperature.
This equation can be regarded as a Taylor expansion of ρ̃ around T̃0 (while keeping the
pressure constant). Second, it assumes that density variations can be neglected in inertial
terms, but not when they are multiplied by gravity, see e.g. [DPR01], p.223.

Remark 1.1
References concerning the thermodynamical background of the Boussinesq approximation
can be found e.g. in [Cod93b], p.3.2. According to [Mue91] the Boussinesq approximation
is accurate enough for temperature differences of about 50 K. This is satisfied in typical
indoor-air flow problems. ♦

Now we introduce a reduced pressure

p̃red ≡ p̃− ρ̃0g̃ · x̃ .(1.5)

Using the Boussinesq approximation and the reduced pressure, (1.1)-(1.3) can be rearranged
to

ρ̃0

(
∂ũ

∂t̃
+ (ũ · ∇)ũ

)
− ∇ · ( 2 µ̃S ( ũ ) ) + ∇ p̃red = − ρ̃0 β̃0 ( T̃ − T̃0 ) g̃ ,(1.6)

∇ · ũ = 0 ,(1.7)

ρ̃0 c̃p

(
∂T̃

∂t̃
+ ( ũ · ∇ ) T̃

)
− ∇ ·

(
λ̃∇ T̃

)
= ˜̇qV .(1.8)

It is convenient to write the (non-isothermal) Navier-Stokes equations in a non-dimensional
form, i.e. with respect to the following scaled variables:

t ≡ t̃Ũsc

L̃
, x ≡ x̃

L̃
, u ≡ ũ

Ũsc
, θ ≡ T̃ − T̃0

T̃diff
.

Here, L̃ is a characteristic length of the problem, T̃diff is a characteristic temperature
difference, and Ũsc is a suitable velocity scale (which will be determined later in this section).
Recall that in fluid mechanics the following dimensionless numbers are defined, see e.g.
[KC93]:

Re ≡ ρ̃0L̃Ũsc
µ̃

, Reynolds number, P r ≡ c̃pµ̃

λ̃
, Prandtl number,

Gr ≡
β̃0|g̃|ρ̃2

0L̃
3T̃diff

µ̃2
, Grashof number, Ra ≡

β̃0|g̃|c̃pρ̃2
0L̃

3T̃diff

µ̃λ̃
, Rayleigh number.

We introduce the thermal diffusivity ã ≡ λ̃/(c̃pρ̃0) and the kinematic viscosity ν̃ ≡ µ̃/ρ̃0.
Note that Pr = ν̃ã−1. The numbers are related by Ra = GrPr. From these relations it
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1.2. Boundary conditions for thermally coupled flows

can be seen that the Prandtl number is a measure for the similarity of the transport of
heat and momentum. The Grashof number is the ratio of the buoyancy force to the viscous
force.
Depending on the boundary conditions for the momentum equation, there are two different
possibilities for choosing a characteristic scaling velocity Ũsc. In the case of so-called forced
convection, the fluid motion is enforced by the boundary conditions (see section 1.2). Then
we choose Ũsc = ||u||∞,Γ. In indoor-air flow problems most of the time there is no external
force and u = 0 or a homogeneous Neumann condition is prescribed on the boundary.
The only driving forces are due to buoyancy effects. Then physically meaningful choice
is Ũsc = (β̃0|g̃|T̃diff L̃)1/2, cf. [KC93], p.408. In both cases the reduced pressure is non-
dimensionalised with ρ̃0Ũ

2
sc.

Remark 1.2
As it will turn out in Section 10.5, an appropriate choice for Ũsc is essential for the PSPG-
stabilisation technique in the numerical solution process. ♦

In this thesis dimensionless quantities are chosen in agreement with [Mue99], viz.,

ã ≡ λ̃

c̃pρ̃0
, a ≡ ã

L̃Ũsc
, g ≡ g̃L̃

Ũ2
sc

, cp ≡
λ̃T̃diff

ρ̃0ãŨ2
sc

, q̇V ≡
˜̇qV L̃
ρ̃0Ũ3

sc

, β ≡ β̃0T̃diff , ν ≡
µ̃

ρ̃0ŨscL̃
.

This yields the following system of equations

∂tu−∇ · ( 2 ν S(u) ) + (u ·∇)u+∇pred = − β θ g ,(1.9)
∇ · u = 0 ,(1.10)

∂tθ + (u ·∇)θ −∇ · (a∇θ) = q̇V c−1
p .(1.11)

1.2. Boundary conditions for thermally coupled flows

For specifying the boundary conditions, we introduce two partitions of Γ : one for the
momentum equation and one for all scalar equations, e.g., the heat transfer equation and
a possible additional equation describing contaminant transport.

The first partition of Γ is due to the boundary conditions concerning the momentum equa-
tion. For this purpose we define the stress tensor

σ(u, p) = − pI + 2νS(u) .

Moreover we suppose that for almost every point x in Γ we have a local orthonormal basis
{n(x) , tj(x) , 1 ≤ j ≤ d− 1}, where {tj}d−1

j=1 is a local orthonormal basis for the tangent
space of Γ in x and n denotes the outer unit normal vector to Γ at x. Denote

ΓF = { x ∈ Γ | u = uF , uF · n < 0 a.e. in ΓF } ,(1.12)

ΓW = { x ∈ Γ | u · n = 0 , χnTσ(u, p)tj = σt(u) · tj 1 ≤ j ≤ d− 1 } ,(1.13)
ΓN = { x ∈ Γ | σ(u, p)n = σn }(1.14)
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1. The laminar model

which are mutually disjoint and satisfy ΓF ∪ ΓN ∪ ΓW = Γ. The quantity nTTr|ΓW σ(u, p)
is called stress vector, which represents the force that the fluid exerts on the wall. Here
Tr|ΓW denotes the trace operator, see Chapter B and Remark 8.4. ΓF is a forced convection
inflow boundary; on ΓF a non-zero inflow velocity profile is prescribed. (1.13) describes a
general (non-linear) friction law, covering the following situations:

(i) slip with linear friction: χ ≡ 1, and σt(u) · tj ≡ −βju · tj ,

(ii) wall stress condition: χ ≡ 1, and σt(u) · tj ≡ τw u·tj
||u·tj ||

(provided u · tj 6= 0),

(iii) no-slip condition: χ = 0, and σt(u) · tj ≡ −u · tj .

Note that in the case of (i), σt(u) · tj depends linearly on the magnitude of u · tj whereas
in the case of (ii), only a directional and a so-called phase information of u · tj is used.
Due to the definition of ΓF , even in case (iii) ΓF and ΓW are disjoint.

Now we explain how different physical situations can be modelled using these types of
boundary conditions. Informally spoken, in indoor-air flow simulations the boundary con-
sists of openings and solid impermeable and smooth walls. On the wall, in any case we
impose u · n = 0, being covered by (1.13), (iii). Next openings are studied. There is a
wide agreement that σ(u, p)n = 0 is suitable to model undisturbed outflow. Concerning
inflow, we have to distinguish between forced convection and natural convection. In the
former case, on a part of the boundary a nonzero inflow velocity is prescribed, i.e. ΓF 6= ∅.
Alternatively, inflow can be enforced by imposing a suitable external pressure σn in (1.14).
Of course, when selecting (1.14), it is possible that u = 0 or u · n = 0 on parts of ΓN . In
the latter case of natural convection, i.e. ΓF = ∅, σn = 0 in (1.14), the fluid motion is
induced by buoyancy forces. It is worth rewriting both cases in the following form:

Forced convection: ΓF 6= ∅ or σn 6= 0.

Natural convection: ΓF = ∅ and σn = 0.

In most indoor-air flow problems both natural and forced convection have to be considered.
This case is also referred to as mixed convection. As pointed out in [KC93], in mixed
convection problems often the forced convection character dominates, in particular if Gr
is small compared to Re. The crucial question is whether the buoyancy force term in the
momentum equation is significant or not.
The most general condition describing solid impermeable walls is (1.13). Measurements
showed that no-slip is the correct boundary condition on walls for indoor-air flow problems,
cf. [Nei99]. However, as it will turn out later, it is useful considering the more general
condition (1.13).

A second partition of Γ can be defined w.r.t. the sign of u · n, where n denotes the outer
unit vector normal to Γ, viz.,
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1.2. Boundary conditions for thermally coupled flows

Γ−(u) = { x ∈ Γ | u · n < 0 } inflow boundary ,(1.15)
Γ0(u) = { x ∈ Γ | u · n = 0 } ”wall” except a set of measure zero ,(1.16)
Γ+(u) = { x ∈ Γ | u · n > 0 } outflow ,(1.17)

which are mutually disjoint and satisfy Γ−(u)∪Γ0(u)∪Γ+(u) = Γ. Note that ΓW = Γ0(u)
(except for a set of measure zero) and ΓF ⊂ Γ−(u). In Figure 1.1 (from [Gri01], p.98)
the situation of an opened window is sketched, which is described by (1.14) with σn = 0.
Inflow and outflow is a consequence of thermal buoyancy effects. It is worth mentioning
that in almost every application the so-called neutral zone, consisting of points located in
the opening with u · n = 0, is of measure zero. A survey on boundary conditions for the

Y

Z

X

domain of
influx

neutral
plane

window opening

Figure 1.1.: Inflow at outflow regions at an opened window.

isothermal Navier-Stokes equations and further references thereon can be found in [Lia99].
More details on boundary conditions regarding the simulation of indoor-air movement can
be found in [Nei99] and [Gri01].
The partition Γ−(u), Γ0(u) and Γ+(u) is used for imposing boundary conditions for the
temperature equation. It seems natural to require

θ = θin on Γ−(u) , a∇θ · n = 0 on Γ+(u) ,

where θin designates the outside (fluid) temperature.
Depending on the physical boundary conditions at the wall, we consider the following
sub-partitioning of Γ0(u), videlicet,

θ = θw on ΓW,D , a∇θ · n = q̇c−1
p on ΓW,N ,(1.18)

where θw denotes the wall temperature and q̇ denotes the heat-flux at the wall. Of course,
ΓW,D ∩ ΓW,N = ∅, ΓW,D ∪ ΓW,N = ΓW .
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1. The laminar model

1.3. A model for non-isothermal flow problems

Putting together the results of the previous sections we can state our basic model for
laminar thermally-coupled flow problems, later referred to as model TNSE (thermally
coupled Navier-Stokes equations).

A model for thermally-driven flows

• Non-isothermal Navier-Stokes equations

∂tu−∇ · ( 2 ν S(u) ) + (u ·∇)u+∇pred = − β θ g ,(1.19)
∇ · u = 0 ,(1.20)

∂tθ + (u ·∇)θ −∇ · (a∇θ) = q̇V c−1
p .(1.21)

• Boundary conditions

– Momentum Equation

∗ Forced convection problem:

u = uF on ΓF , u = 0 on ΓW , σ(u, p)n = 0 on ΓN .(1.22)

∗ Natural convection problem:

ΓF = ∅ , u = 0 on ΓW , σ(u, p)n = 0 on ΓN .(1.23)

– Heat Equation

θ = θin on Γ−(u) , ∇θ · n = 0 on Γ+(u) ,(1.24)

θ = θw on ΓW,D , a∇θ · n = q̇c−1
p on ΓW,N .(1.25)

Finally we have to prescribe the initial conditions

u = u0 , θ = θ0 in Ω× {0} ,(1.26)

where the initial condition satisfies ∇ · u0 = 0.

Remark 1.3
From the point of numerical analysis, the boundary conditions specified in model TNSE

can cause severe problems. For example a discontinuity in the boundary condition for θ
occurs, if Γ−(u) ∩ ΓW,D 6= ∅ and θin 6= θw. ♦
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1.4. Modelling turbulent boundary layers using a fully overlapping DDM

1.4. Modelling turbulent boundary layers using a fully overlapping DDM

Most flow problems of interest are wall bounded flows. Surface boundary conditions often
cause several problems. In the laminar case, imposing a no-slip condition and the first
option in (1.18) on a solid wall, the solutions of velocity and temperature equations can
exhibit sharp gradients in the vicinity of the wall, referred to as boundary layers. Moreover,
in the turbulent case in the near-wall region the behaviour of the solution is strongly
influenced by complicated turbulent processes, being discussed in Chapters 2-7.
There are two major solution strategies for wall-bounded flow problems:

(i) Resolve the near-wall region using a suitable grid refinement technique. In the tur-
bulent case, this is called direct numerical simulation, abbreviated DNS.

(ii) Model the overall effect of the solution in the near-wall region on the flow remote
from the wall, i.e., ”bridge” the boundary layer. This is called near-wall modelling.

Strategy (i) is not feasible for most high Reynolds resp. Rayleigh number turbulent flows,
in particular in complex geometries. However, when studying the physics in the near-wall
region, a DNS must be accomplished. On the other hand, in engineering applications, often
only the effect of the near-wall behaviour of the solution on the flow remote from the wall
is of interest, as proposed in strategy (ii). Moreover, to obtain certain characteristic quan-
tities on the wall, which are of great engineering interest (i.e., so-called surface transfer
coefficients), it is not necessary to perform a DNS; they can be determined from the results
of the near-wall modelling process immediately.
The most popular near-wall modelling scheme is the so-called wall function concept. The
application of this strategy to turbulence modelling is a building block of this thesis being
considered in great detail in Chapters 6 and 7. The wall function method has been used
by engineers for more than thirty years. As an introduction, in this section we present the
underlying idea from a mathematician’s point of view: As devised by Tidriri and LeTal-

lec, cf. [LTT99], we interpret the wall function concept as a fully overlapping domain
decomposition method. Following [LTT99], first we consider the case of an advection-
diffusion-reaction problem. After that, some analytical results obtained by LeTallec and
Tidriri are resumed. Finally two alternative strategies for applying this method to the
Navier-Stokes equations will be presented.
To understand the underlying idea, we start with the instationary advection-diffusion prob-
lem of seeking φ : Ω× (0,∞) 7→ R, s.t.

∂tφ− a∇ · (∇φ) + (u · ∇)φ = 0 in Ω× (0,∞) ,(1.27)
φ = 0 on Γ× (0,∞) ,(1.28)

φ(0) = 0 in Ω .(1.29)

Here, Γ ≡ ∂Ω and we suppose ∇ · u = 0 in Ω. Moreover we assume that there exists
a uniquely determined stationary solution of (1.27)-(1.29) and that the solution of the
corresponding backward-Euler scheme converges to this stationary solution as t→∞.
Instead of solving (1.27)-(1.29), the following modified problem is studied. Denote Ωlayer ⊂
Ω a suitable neighbourhood of ΓW ≡ Γ, cf. Figure 1.2. Denote Γi ≡ ∂Ωlayer ∩Ω. Then we
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Figure 1.2.: Sketch of fully overlapping DDM.

seek Φ : Ω× (0,∞) 7→ R (the so-called global solution) and φBL : Ωlayer × (0,∞) 7→ R (the
boundary-layer solution or local solution or inner solution) such that

∂tΦ− a∇ · (∇Φ) + (u · ∇)Φ = 0 in Ω× (0,∞) ,(1.30)

a∇Φ · n = a∇φBL · n on ΓW × (0,∞) ,(1.31)

∂tφ
BL − a∇ · (∇φBL) + (u · ∇)φBL = 0 in Ωlayer × (0,∞) ,(1.32)

φBL = 0 on ΓW × (0,∞) , φBL = Φ on Γi × (0,∞) ,(1.33)

Φ(0) = 0 in Ω , φBL(0) = 0 in Ω .(1.34)

In (1.32)-(1.34) a solution in the boundary layer is determined. Note that φBL satisfies the
correct homogeneous Dirichlet condition on ΓW and that φBL is matched with the global
solution on Γi. The crucial point is that the boundary-layer information is transferred to
the global problem via (1.31) using a friction (Neumann) boundary condition.
Le Tallec and Tidriri now perform a semidiscretization in time using a backward Euler
scheme: Within each time step, they consider the following coupled problem: Given a time
step width 4t and Φk, φBL,k from the previous time step ( resp. from an initial guess
Φ0, φBL,0 if k = 0 ) seek Φk+1, φBL,k+1 s.t.

φBL,k+1 − φBL,k

4t
− a∇ · (∇φBL,k+1) + (u · ∇)φBL,k+1 = 0 in Ωlayer,(1.35)

φBL,k+1 = 0 on ΓW , φBL,k+1 = Φk+1 on Γi,(1.36)

Φk+1 − Φk

4t
− a∇ · (∇Φk+1) + (u · ∇)Φk+1 = 0 in Ω,(1.37)

a∇Φk+1 · n− a∇φBL,k+1 · n = 0 on ΓW .(1.38)
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1.4. Modelling turbulent boundary layers using a fully overlapping DDM

The coupled problem (1.35)-(1.38) can be solved using the following fixed point method.
Denote a lower index j the iteration cycle. Then Le Tallec and Tidriri studied the following
scheme: Given Φk, φBL,k as the solution of the previous time step and Φk+1

j , φBL,k+1
j from

the previous iteration step (or as the solution of the previous time step if j = 0 ), seek
Φk+1
j+1 , φBL,k+1

j+1 s.t.

φBL,k+1
j+1 − φBL,k

4t
− a∇ · (∇φBL,k+1

j+1 ) + (u · ∇)φBL,k+1
j+1 = 0 in Ωlayer,(1.39)

φBL,k+1
j+1 = 0 on ΓW , φBL,k+1

j+1 = Φk+1
j on Γi,(1.40)

Φk+1
j+1 − Φk

4t
− a∇ · (∇Φk+1

j+1) + (u · ∇)Φk+1
j+1 = 0 in Ω,(1.41)

a∇Φk+1
j+1 · n − a∇φBL,k+1

j+1 · n = 0 on ΓW .(1.42)

Le Tallec and Tidriri show that Φk+1
j+1 → Φk+1, φBL,k+1

j+1 → φBL,k+1 linearly as j →∞,
cf. [LTT96]. Moreover they can prove that the solution of (1.35)-(1.38) converges linearly
in H1(Ω) to the stationary solution of the problem (1.27)-(1.29) as k →∞.

There are (at least) two alternative strategies for applying this method to the Navier-Stokes
equations. We restrict ourselves to the isothermal flow problem of seeking u : Ω×(0,∞) 7→
R
d, p : Ω× (0,∞) 7→ R, s.t.

∂tu− ν∇ · (∇u) + (u · ∇)u+∇p = f in Ω× (0,∞) ,(1.43)
∇ · u = 0 in Ω× (0,∞) ,(1.44)

u = 0 on Γ× (0,∞) ,(1.45)
u(0) = 0 in Ω(1.46)

with given external force f . Both approaches can be distinguished by the boundary con-
dition for the global problem, transferring the boundary-layer information to the global
solution. However, both are a special case of (1.13).
First we consider the traditional approach, which has been applied in CFD for more than
thirty years: Seek u : Ω × (0,∞) 7→ R

d, p : Ω × (0,∞) 7→ R (the global solution) and
uBL : Ωlayer× (0,∞) 7→ R

d, pBL : Ωlayer× (0,∞) 7→ R (the boundary-layer solution or local
solution or inner solution) such that

∂tu− ν∇ · (∇u) + (u · ∇)u+∇p = f in Ω× (0,∞),(1.47)

u · n = 0 , nTσ(u, p)tj − nTσ(uBL, pBL)tj = 0 on ΓW × (0,∞),(1.48)

∂tu
BL − ν∇ · (∇uBL) + (uBL · ∇)uBL +∇pBL = f in Ωlayer × (0,∞),(1.49)

uBL = 0 on ΓW × (0,∞) , uBL = u on Γi × (0,∞),(1.50)

u(0) = 0 in Ω , uBL(0) = 0 in Ω.(1.51)

Tidriri applied the strategy (1.47)-(1.51) to the compressible Navier-Stokes equations, cf.
[Tid95]. He gives promising numerical results for complex flow problems, but he does not
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1. The laminar model

give any analytical results.
Motivated by the work of Liakos, cf.[Lia99], Layton and Galdi, see [GL00], we can
formulate an alternative approach for coupling global and boundary-layer problem: Seek
u : Ω × (0,∞) 7→ R

d, p : Ω × (0,∞) 7→ R and uBL : Ωlayer × (0,∞) 7→ R
d, pBL :

Ωlayer × (0,∞) 7→ R such that

∂tu− ν∇ · (∇u) + (u · ∇)u+∇p = f in Ω× (0,∞),(1.52)

u · n = 0 , βj(uBL, pBL)u · tj + nTσ(u, p)tj = 0 on ΓW × (0,∞),(1.53)

∂tu
BL − ν∇ · (∇uBL) + (uBL · ∇)uBL +∇pBL = f in Ωlayer × (0,∞),(1.54)

uBL = 0 on ΓW × (0,∞) , uBL = u on Γi × (0,∞),(1.55)

u(0) = 0 in Ω , uBL(0) = 0 in Ω.(1.56)

Here we additionally have to specify the so-called friction parameters βj(uBL, pBL). Given
a specification for βj(uBL, pBL), we obtain a closed system of equations.
Method (1.47)-(1.51) will be the underlying strategy for the computational treatment of
flow problems in this thesis, see Chapters 6 and 7. Approach (1.52)-(1.56) is more amenable
to the analysis and will be studied in Chaper 8.
As explained in Section 1.2, both the slip with linear friction and the wall stress boundary
condition can be written in terms of (1.13). Thus the general coupling scheme reads:
Seek u : Ω × (0,∞) 7→ R

d, p : Ω × (0,∞) 7→ R and uBL : Ωlayer × (0,∞) 7→ R
d, pBL :

Ωlayer × (0,∞) 7→ R such that

∂tu− ν∇ · (∇u) + (u · ∇)u+∇p = f in Ω× (0,∞),(1.57)

u · n = 0 , nTσ(u, p)tj = σt(u,uBL) · tj on ΓW × (0,∞),(1.58)

∂tu
BL − ν∇ · (∇uBL) + (uBL · ∇)uBL +∇pBL = f in Ωlayer × (0,∞),(1.59)

uBL = 0 on ΓW × (0,∞) , uBL = u on Γi × (0,∞),(1.60)

u(0) = 0 in Ω , uBL(0) = 0 in Ω.(1.61)

Thus, in the general case, coupling global and local problem is accomplished via the non-
linear friction law σt(u,uBL).
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The dynamics of non-isothermal fluid flow including all phenomena of turbulence are gov-
erned by the non-isothermal Navier-Stokes equations, see model TNSE. However, the
solutions to model TNSE can become very complex if the critical parameter like Re resp.
Ra becomes sufficiently large. Then the turbulent state of motion is simply the phenomeno-
logical aspect of this complexity. The complexity of the solution has two aspects, viz., (i)
its randomness and (ii) its vast and continuous range of scales. As pointed out by Durbin,
the turbulence problem is how to describe and how to reduce this complexity in a manner
which is appropriate to the needs of science and engineering, see [DPR01], p.1.
Depending on how to handle this complexity, there are three levels of description concerning
a computational approach to a turbulent flow problem, videlicet,

• Compute the random motion of all scales, which is referred to as direct numerical
simulation (abbreviated DNS),

• compute the random motion of the large scale motion (and model the small scale
motion), which is referred to as large-eddy simulation (abbreviated LES),

• predict mean flow field, pressure and temperature (in a statistical sense), referred to
as statistical turbulence modelling or Reynolds averaged CFD (called RANS),

The first two approaches are called turbulence simulation, because they account for the
randomness of an individual realisation of a flow experiment. Their results have to be
statistically averaged to obtain a mean flow. In contrast, the output of a RANS computation
is already the mean flow.
In Section 2.1 we focus on aspect (i) and consider the random behaviour of turbulent
flows, introducing some basic concepts for describing its statistics. In Section 2.2 we study
aspect (ii), i.e., the scales of motion in a turbulent flow, and explain the most fundamental
process involving eddies of different sizes, viz., the energy cascade. This chapter concludes
by reviewing some criteria for appraising turbulence modelling and simulation, resumed
e.g. in [Pope00].

2.1. Aspects of randomness and statistical description of turbulent flows

A major property of turbulent flows is that they appear to be chaotic or random. This
seems to be in contrast to the a priori deterministic nature of model TNSE. Randomness
is a consequence of the interaction of (i) the singular perturbation parameter Re resp. Ra
and (ii) the non-linearity of the Navier-Stokes equations. In a fluid-flow experiment, there
are unavoidably inaccuracies and perturbations in initial conditions, boundary conditions
(e.g., differential heating, surface roughness) and material properties, i.e. viscosity and
thermal diffusivity (due to impurities of the fluid). Because of (i) and (ii) flow is extremely
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2. Fundamentals, modelling and simulation of turbulent flows

sensitive to small perturbations. Thus a single realisation of a fluid flow experiment has
some aspects of randomness, its individual eddies seem to develop randomly and irregu-
larly in space and time. Some mathematical understanding can be gained by studying
much simpler model problems like the Lorenz equations or the Rayleigh-Bénard convection.
However, statistics, like averages, variances and covariances of velocity and temperature,
show a reproducible and regular behaviour in space and time. If a flow experiment is re-
peated with a very small perturbation in the initial conditions, after a certain time the
realisations can differ significantly. However, their statistics are (nearly) identical.

Now some basic concepts for the statistical description of turbulent flows will be introduced.
We consider an ensemble of N identical flow experiments, whose initial and boundary con-
ditions differ by small random perturbations. Quantities of the n-th experiment are labelled
by superscript (n). Then velocity resp. pressure and temperature in an individual experi-
ment can be considered as a time-dependent random field resp. as random variables. These
quantities can be subdivided into a mean component and into a ”turbulent fluctuation”
component, viz.,

(u, p) = (〈u〉E , 〈p〉E) + (u′, p′) , θ = 〈θ〉E + θ′ .(2.1)

Here 〈·〉E denotes the ensemble averaging filter. For a time-dependent random variable φ,
we define 〈φ〉E(x, t) as

〈φ〉E(x, t) = lim
N→∞

1
N

N∑
n=1

φ(n)(x, t) .(2.2)

Ensemble averaging is a linear operation. Denote φ, ψ a random variable and let λ be
non-random. Then we have

〈φ+ ψ〉E = 〈φ〉E + 〈ψ〉E , 〈λφ〉E = λ〈φ〉E , 〈〈φ〉E〉E = 〈φ〉E .

The last equality implies that the fluctuating component has zero mean. It is essential to
point out that

〈φ ψ〉E 6= 〈φ〉E 〈ψ〉E .

From the fluctuating velocity field we can define the following tensor of the fluctuation
velocity covariances, called Reynolds stress tensor 〈u′1u′1〉E 〈u′1u′2〉E 〈u′1u′3〉E〈u′2u′1〉E 〈u′2u′2〉E 〈u′2u′3〉E

〈u′3u′1〉E 〈u′3u′2〉E 〈u′3u′3〉E

 .

Half its trace is called turbulent kinetic energy, denoted k, namely,

k =
1
2

d∑
i=1

〈u′iu′i〉E ,
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being the mean kinetic energy per unit mass in the fluctuating velocity field.
Now we want to describe the stochastical behaviour of a random field. The only objective
of the remaining part of this section is to introduce some definitions, being needed in the
following section. A concept of fundamental importance is the so-called N-point, N-time
joint cumulative distribution function (CDF) of the velocity field, see [Pope00], pp.65, which
is defined by

FN (v(1),x(1), t(1); . . . ;v(n),x(n), t(n)) ≡ P ({u(x(1), t(1)) < v(1); . . . ;u(x(n), t(n)) < v(n)}) ,

where u < v means ui < vi (1 ≤ i ≤ d) and P (A) denotes the probability of A. To
completely characterize a random field, this N-point N-time CDF must be determined for all
space-time points, which is impossible. However, it turned out that in many applications the
complexity reduces considerably, because the flow is statistically stationary, homogeneous
and isotropic.
A random field u(x, t) is called statistically stationary, if all N -point CDFs are invariant
under a shift in time. Similarly, u(x, t) is called statistically homogeneous, if all N -point
CDFs are invariant under a shift in position. The field u(x, t) is called statistically isotropic,
if it is statistically homogeneous and if all N -point CDFs are invariant under rotations and
reflections of the coordinate system.
Studying the two-point correlation of u′ in homogeneous isotropic turbulence has been of
greatest interest in turbulence research. The two-point correlation is the two-point, one-
time autocovariance

Rij(r,x, t) ≡ 〈 u′i(x, t) u′j(x+ r, t) 〉E ,

being independent of x because of homogeneity, i.e., Rij(r,x, t) = Rij(r, t). From this, the
velocity spectrum tensor Φij(k, t) can be defined via Fourier transform, viz.,

Φij(κ, t) =
1

(2π)d

∫
Rd

e−iκ·rRij(r, t) dr .

In isotropic turbulence, Rij and Φij depend only on |r| and |κ| resp. Then the turbulent
kinetic energy k = 1

2〈u
′ · u′〉E can be written as

k =
1
2
〈u′2〉E =

1
2

d∑
i=1

Rii(0, t) =
∫ ∞

0

∫
|κ|=κ

1
2

d∑
i=1

Φii(κ, t)dσ dκ =
∫ ∞

0
E(κ, t) dκ,(2.3)

where E(κ, t) is called the spectrum of the turbulent kinetic energy and is defined by

E(κ, t) =
∫
|κ|=κ

1
2

d∑
i=1

Φii(κ, t)dσ ,(2.4)

with
∫
. . . dσ denoting the (d− 1)-dimensional surface integral. From the two-point corre-

lation, the following characteristic lengthscale can be defined

L11(x, t) =
1

R11(0,x, t)

∫ ∞
0

R11(e1r,x, t)dr ,(2.5)

where e1 denotes the unit vector in the x1 direction.
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2.2. The scales of turbulent flows

A second characteristic feature of a turbulent flow is its large variety of scales, primarily
studied by Richardson (1922) and Kolmogorov (1941). The goal of this section is to
provide some physical understanding of the different scales of motion in turbulent flows and
the processes among them, being a motivation for the approach of large-eddy simulation.
According to Richardson, a turbulent flow can be thought of as a superposition of locally
coherent structures, called eddies, of different sizes. Today, the term ’eddy’ is used more
ambiguously; it is used to characterise the scales of structures in the flow field: Large
eddies refer to large structures, small eddies refer to small structures in the flow field, see
[DPR01], p.2. A process of fundamental inportance is the so-called energy cascade : By
a production mechanism Pr, which will be described later, the large eddies are generated.
These are unstable and break up into successively smaller and smaller eddies, i.e. their
energy is transferred to smaller and smaller scales by inviscid processes. At the smallest
scales the energy is dissipated into heat by molecular viscosity. This process is called
dissipation of turbulent kinetic energy or simply dissipation. It is described by the quantity
ε ≡ 〈2νS(u′) : S(u′)〉E .
A more detailed and quantitative analysis of high Reynolds number turbulence was given
by Kolmogorov. He introduced various length scales and ranges, depending on the eddy
size l, as pictured in the following schematic diagram (cf. [Pope00], pp. 187): Whereas

ProductionDissipation  

Energy-containing
range

Universal equilibrium range

η

Dissipation
range

Inertial subrange

llll
EIDI 0

P

Transfer of energy
to successively
smaller scales

T(l)ε

Figure 2.1.: Eddy sizes (on a logarithmic scale) and the energy cascade.

the behaviour of the large eddies (l ≈ l0) depends on the flow problem, the smale-scale
motions (l� l0) are locally statistically isotropic according to Kolmogorov’s hypothesis of
local isotropy. Moreover Kolmogorov’s first similarity hypothesis states that the statistics
of the small-scale motions (l < lEI) have a universal form that is uniquely determined by ε
and ν. Denote T (l) the rate of transfer of energy from eddies larger than l to eddies smaller
than l. Then T (lEI) = T (l) = T (lDI) = ε for all lDI ≤ l ≤ lEI and thus ε is determined by
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the transfer of energy from the largest eddies. Kolmogorov’s second similarity hypothesis
says that in the inertial subrange the statistics depend only on ε.
The characteristic lengthscale in the dissipation range is the so-called Kolmogorov scale
η = (ν3/ε)1/4. Then the ratio of the largest to smallest scales is of order Re3/4, which
demonstates the vast range of scales.
The question is how turbulent kinetic energy and dissipation are distributed among the
eddies of different sizes. Denote κ = 2π/l the wavenumber corresponding to motions of
lengthscale l. Then energy and dissipation in the wavenumber range (κa, κb) are given by

k(κa,κb) =
∫ κb

κa

E(κ)dκ , ε(κa,κb) =
∫ κb

κa

2νκ2E(κ)dκ ,

with E(κ) = E(κ, t) in statistically stationary turbulence and the energy spectrum function
E(κ, t) being defined in (2.4). By Kolmogorov’s first hypothesis, in the universal equilibrium
range (κ > 2π/lEI), E(κ) is a universal function of ε and ν. In 2π/lDI > κ > 2π/lEI the
spectrum is given by

E(κ) = Cε2/3κ−5/3

with a universal constant C = 1.5, see [Pope00], p.231. Abundant physical experiments
confirm this law.
To answer the remaining question, the cumulative kinetic energy and the cumulative dissi-
pation have to be introduced

k(0,κ) =
∫ κ

0
E(κ′)dκ′ ε(0,κ) =

∫ κ

0
2νκ′2E(κ′)dκ′ .

Since ε(0,2π/(60η)) = 0.1ε, significant dissipation occurs only for l ≤ 60η. Therefore the
demarcation lengthscale between the inertial and dissipative ranges is taken to be lDI =
60η. Concerning the kinetic energy, if lEI = 1/6L11 and κEI = 2π/lEI , cf. (2.5), then
k(0,κEI) = 0.8k, i.e. eddies of size l > lEI contain 80% of the kinetic energy, cf. [Pope00],
p.237 and p.241. For this reason, l > lEI is called energy containing range. Thus the bulk
of kinetic energy is contained in the large-scale motions, whereas the bulk of dissipation
affects the small-scale motions.

2.3. Criteria for appraising approaches in CFD

Pope resumes the following criteria for appraising approaches in CFD, see [Pope00], pp.336,
viz.,

• level of description,

• completeness,

• cost and ease of use,

• range of applicability,

• accuracy.
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The level of description specifies which information is provided by the solution of a com-
putation. For example, from a LES we can extract the Reynolds stresses carried by the
large scale motion, whereas from a RANS computation, the only quantities obtained are
mean values. A model is called complete if there are no unclosed terms in its constituent
equations. Both the k/ε model and the LES models studied in this thesis are complete.
The criterion concerning cost and ease of use of a model regards its use in a CFD code. We
start regarding the cost of a model. Firstly, we have to account for the number of operations
needed to perform a computation. Secondly, we have to consider the memory consumption
of a computation. Clearly these two points dictate the scale of computer needed, i.e. a
supercomputer or a workstation. There has been a tremendous progress in computer ar-
chitecture in the last decades (see [HP96]). Moreover, the CFD community becomes more
and more aware of the need for architecture-friendly algorithms in order to exploit the
improvements in computer hardware, see e.g. the URL http://www.math.odu.edu/ keyes/
and in particular [Key00]. Despite these efforts, a DNS for complex flows will be infeasible
even with next decades supercomputers.
One aspect of ease of use of a model concerns its numerical properties, e.g., its stability.
A further point is regarding the post-processing required to extract the results of interest.
In particular, a LES requires ensemble averaging whereas a RANS computation does not.
Moreover, the model together with the numerical solution scheme impact the implementa-
tion and the data structures required. This determines the ease of code implemention and
maintenance for a certain model. Fortunately, even in the CFD community, having relied
on Fortran and C for several decades, the trend is towards object-oriented programming
languages. Using an object-oriented programming paradigm facilitates implementing and
maintaining complex CFD codes significantly without loss in performance, see e.g. the
URL http://www.oonumerics.org/.
Applicability concerns the question whether the model assumptions and requirements are
satisfied for a given flow problem. Finally, the accuracy of a model appraises the quality of
its predictions by comparison with experimental data.
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In the previous section we introduced the idea of reducing the complexity of a turbulent
flow by a statistical approach. The objective of this chapter is to present the so-called
k/ε turbulence model. It is the most widely used statistical turbulence model, being in-
corporated in most commercial CFD codes. The focus will be on the underlying model
approximations with emphasis being placed on effects of buoyancy.

3.1. The Reynolds averaged Navier-Stokes equations

The starting point is the so-called Reynolds decomposition, cf. (2.1)

(u, p) = (〈u〉E , 〈p〉E) + (u′, p′) , θ = 〈θ〉E + θ′ ,

where 〈·〉E again denotes the ensemble averaging filter, defined in (2.2). For simplicity, in
the sequel, ensemble averaged quantities are designated by capital letters. Applying the
ensemble-averaging filter to the evolution equations in model TNSE yields the so-called
Reynolds averaged Navier-Stokes equations (abbreviated RANS equations)

∂tU + (U · ∇)U +∇P −∇ · (2νS(U)− 〈u′ ⊗ u′〉E) = − βΘg ,(3.1)
∇ ·U = 0 ,(3.2)

∂tΘ + (U∇)Θ−∇ · (a∇Θ− 〈u′θ′〉E) =
q̇V

cp
.(3.3)

These are ”nearly” the non-isothermal Navier-Stokes equations for the mean values of
velocity, pressure and temperature. However, they contain two additional terms of crucial
importance. Therein, the velocity covariances 〈u′ ⊗ u′〉E appearing in the momentum
equation are referred to as Reynolds stresses. They can be interpreted as additional stresses
arising from the mean momentum flux due to the fluctuating velocity field. The analogous
term in the temperature equation, viz, 〈u′θ′〉, is called scalar flux. It describes the flux of
temperature due to the fluctuating velocity field. Pope generalises and emphasises this
observation: In turbulent flows, the rates of mixing of momentum, heat and mass are
greatly enhanced, see [Pope00], p.7.
Both fluctuation terms are functions of unknown correlations that cannot be expressed in
terms of mean quantities: Because of the non-linearity of the Navier-Stokes equations, the
first moment equation contains second moments, the second moment equations will contain
third moments, and so forth. Thus, to handle these terms, closure hypotheses are needed.
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3.2. Turbulent-viscosity and gradient-diffusion hypotheses

3.2.1. The RANS equations using the turbulent-viscosity and gradient-diffusion
hypotheses

In 1877, Boussinesq proposed the so-called eddy-viscosity hypothesis or turbulent-viscosity
hypothesis. It assumes the constitutive relation

〈u′ ⊗ u′〉 = − 2νt S(U) +
2
3
kI ,(3.4)

where the positive scalar field νt is the so-called eddy-viscosity or turbulent viscosity. Some-
times −〈u′⊗u′〉+ 2

3kI will be referred to as anisotropic Reynolds-stress. The second right
hand side term in (3.4) is a normal stress correction which ensures that the traces of both
sides equal.
Similarly the gradient-diffusion hypothesis assumes that

〈u′θ′〉 = − at∇Θ ,(3.5)

where at is the turbulent thermal diffusivity. Moreover we introduce effective viscosity νe
and effective diffusivity at, viz,

νe = ν + νt , ae = a + at .(3.6)

Using (3.4), (3.5) and (3.6), the non-isothermal RANS equations (3.1)-(3.3) become

∂tU + (U · ∇)U +∇(P +
2
3
k)−∇ · (2νeS(U)) = − βΘg ,(3.7)

∇ ·U = 0 ,(3.8)

∂tΘ + (U∇)Θ−∇ · (ae∇Θ) =
q̇V

cp
.(3.9)

Here we should point out a further difficulty. We have two possibilities for treating the
term 2

3∇k arising in (3.4). We could (i) include it in the pressure term or we could (ii)
modify the right hand side

(i) P ∗ ≡ P +
2
3
k , or (ii) f∗ ≡ f − 2

3
∇k.

Case (i) is based on the observation that the stresses due to the term 2
3kI are normal

stresses that act like pressure forces. But it has the major disadvantage that when using p∗

as the independent pressure variable, special care must be taken when prescribing boundary
conditions involving the physical pressure, cf. [HC01], p.43.
On the other hand, in case (ii) the right hand side is disturbed. In our field of interest, the
study of indoor-air movement, the flow is induced and influenced by temperature differences
in a sensitive manner. Consequently we want to avoid contamination of this term by other
terms. In our research group therefore strategy (i) was chosen.
The notion that the turbulent motion mixes both momentum and temperature motivates
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the goal to formulate a relationship between the turbulent heat flux and the Reynolds
stress tensor which is responsible for that flux. The simplest model is to assume that the
scalar flux behaves analogously to the momentum flux. An immediate consequence of this
assumption is that there is a constant of proportionality, called turbulent Prandtl number,
such that at = Pr−1

t νt, which can be rearranged to the more convenient form

Prt =
νt
at
.(3.10)

Remark 3.1
Prt can depend on many factors that influence the flow field. In particular, Prt is not
a constant material property. In indoor-air flow problems, our research group chooses
Prt = 0.9 remote from walls and Prt = 1.15 in the near-wall region, Prt being smooth
in-between. This choice is in agreement with [PS01]. [DPR01], p.53 report Prt = 0.9
in boundary layers and Prt = 0.7 in free-shear flows. This again reveals the problem in
turbulence modelling that model constants are not physical constants. ♦

So far the closure problem for (3.1)-(3.3) has been reduced to the task of specifying the
scalar field νt. This will be the objective of Section 3.4.

3.2.2. An appraisal of the turbulent-viscosity hypothesis

A thorough appraisal of the turbulent-viscosity and gradient-diffusion hypothesis can be
found in [Pope00], Section 4.4 and Section 10.1, and in [Wilcox98], Section 3.2 and Chap-
ter 6. According to Pope, the turbulent-viscosity hypothesis can be viewed in two parts,
viz., an intrinsic part and a specific part. The intrinsic assumption is that the anisotropic
Reynolds-stress a ≡ 〈u′ ⊗ u′〉E − 2

3kI at each space-time point (x, t) is determined by the
value of the mean rate-of-strain tensor at that space-time point (x, t), i.e., we assume that
a(x, t) = f(S(U)(x, t)) with some function f . The specific assumption is to assume a
linear relation.
Obviously, turbulent-viscosity and gradient-diffusion hypothesis are analogous to Fourier’s
law and Fick’s law of molecular processes. Wilcox explains why the viscous stress term
2νS(U) describes the momentum transfer at the molecular level and that ν is given by

ν =
1
2
vthlmfp ,(3.11)

where vth is the thermal velocity and lmfp is the mean free path, cf. [Wilcox98]. However,
a consideration of the corresponding timescales shows that turbulent processes differ vastly
from molecular processes. The timescales corresponding to shear stress and turbulence are
S−1 and k/ε, resp. The ratio of the molecular timescale to S−1 is very small (e.g. 10−10).
Therefore molecular motion adjusts instantaneously to changes in mean straining. But in
general, turbulence does not adjust rapidly, because typically Sk/ε > 1.

Originally, the turbulent-viscosity hypothesis was used with an algebraic model for νt by
Prandtl to describe simple shear flows like free-shear flows, e.g., the far wake or the
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3. The k/ε turbulence model

mixing-layer, and attached boundary-layer flows, see [Wilcox98], Chapter 3. Surprisingly,
using a more sophisticated formula for νt, complicated two-dimensional flows can also be
predicted quite well. The Spalart-Allmaras model is a one-equation model conceived for
aerodynamic applications, which predicts transonic flows over airfoils including boundary-
layer separation successfully. Durbin developed the k − ε − v2 model, a successor of the
standard k/ε model, which has been applied successfully to complicated two-dimensional
flows like jet impingement.
However, there are some situations where all models based on the turbulent-viscosity hy-
pothesis fail inevitably: (i) Flows in ducts where the anisotropy of the Reynolds stresses
generates a new component of the mean flow (often referred to as secondary motion), (ii)
flows over curved surfaces and flows in rotating fluids and (iii) flows with sudden changes
in mean strain rate. Describing the physics of (i), (ii) and (iii) correctly requires more
complex models for the Reynolds stresses.
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Figure 3.1.: Sketch of Tucker-Reynolds flow experiment.

Ad (i): In order to predict the anisotropy of the normal Reynolds stresses, non-linear
constitutive relations (instead of the specific linear assumption a = νtS(U)) have been
proposed, see [Wilcox98], Chapter 6.2 and references therein.
Ad (ii): In some situations, the individual components of the Reynolds stress tensor are
affected differently by the production of turbulence. For example, in flows over surfaces
with convex curvature the component directed toward the centre of curvature will be dimin-
ished. Thus a further step is to solve an algebraic equation for the Reynolds stress tensor.
Such an equation can be derived from the exact (but unclosed) partial differential equation
for the Reynolds stress tensor using some approximations for the unclosed terms and the
terms including derivatives of the Reynolds stresses. This approach was originally devised
by Rodi and is explained e.g. in [Pope00], pp.448 and [Wilcox98] pp. 282. These so-called
algebraic stress models provide a significant improvement for flows with mean streamline
curvature.
Ad (iii): On a statistical level, the most complete approach is to consider the partial dif-
ferential equation for the Reynolds stress tensor. Closure models for unclosed terms lead
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3.3. Production and dissipation of turbulent kinetic energy in RANS models

to Reynolds stress models, also called second moment closure models or Reynolds stress
transport models. An investigation of the resulting equation in the limit ||S(U)|| → ∞
reveals that the evolution of the Reynolds stresses at time t depends on the prior history
of straining

∫ t
0 ||S(U)||dt′ (Crow 1968), see [Pope00], p.405. This is in contrast to the

intrinsic assumption a(x, t) = f(S(U)(x, t)). For example, consider the experiment by
Tucker and Reynolds, sketched in Figure 3.1. When the strain is suddenly removed after
the axisymmetrical contraction, the intrinsic assumption predicts zero Reynolds stresses.
This is in contrast to the experimentally observed relatively slow return to isotropy of the
Reynolds stresses, see e.g. [Wilcox98], pp.274, and [Pope00], pp.359.
As a final remark, it is quite interesting that in natural convection boundary layers the
turbulent-viscosity hypothesis does not hold in the near-wall region, but the gradient-
diffusion hypothesis is satisfied reasonably, see [TN98b].

3.3. Production and dissipation of turbulent kinetic energy in RANS models

3.3.1. Isothermal turbulent flows

This section is devoted to the processes in turbulent flows that generate and dissipate
turbulent kinetic energy. First we consider the isothermal case. The kinetic energy of the
fluid per unit mass is E(x, t) = u(x, t) · u(x, t)/2. We can decompose 〈E(x, t)〉E into
the kinetic energy of the mean flow E = U · U/2 and into the turbulent kinetic energy
k = 〈u′ ·u′〉E/2. Starting from the RANS equations (3.1)-(3.2) and from the corresponding
equation for u′, the following equations can be derived, cf. eq. (5.131)-(5.132) in [Pope00].

∂tE +U · ∇E +∇ ·
(
〈u′ ⊗ u′〉EU +UP − 2νS(U)U

)
= − Pk − ε ,(3.12)

∂tk +U · ∇k +∇ ·
(
〈u′ ⊗ u′u′〉E + 〈u′p〉E − 2ν〈S(u′)u′〉E

)
= Pk − ε ,(3.13)

with

ε ≡ 2νS(U) : S(U) , (dissipation due to the mean flow),(3.14)
ε ≡ 2ν〈S(u′) : S(u′)〉E , (dissipation due to turbulent fluctuations),(3.15)
Pk ≡ − 〈u′ ⊗ u′〉E : S(U) , (production of turbulent kinetic energy).(3.16)

The last term on the left hand side, i.e. ∇· (. . .), in (3.12)-(3.13) is called flux of energy, as
it represents the transfer of mean flow kinetic energy resp. turbulent kinetic energy from
one region to another. Pk is a sink term in the equation for E and a source term in the k
equation. Pk describes how kinetic energy is removed from the mean flow and transferred
to the fluctuating velocity field. Using the turbulent-viscosity hypothesis, (3.16) becomes

Pk = 2νtS(U) : S(U) .(3.17)

3.3.2. Coupling between buoyancy and turbulence generation

Now we consider the case of buoyancy driven flows. Then we have to distinguish between
two phenomena:

(I) The stabilising effect of stratification.
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(II) A (speculative) additional turbulence generation mechanism due to buoyancy as sug-
gested by the theory of baroclinic vorticity generation.

First we study the effect of stratification on turbulence. In the non-isothermal case, equa-
tions for E and k can be derived similar to (3.12)-(3.13), see e.g. [DPR01], pp.223. The
difference w.r.t. (3.12)-(3.13) is that we have to replace Pk by Pk + G. G is often called
gravitational production term and is given by

G = − β
d∑
i=1

gi 〈uiθ〉E .(3.18)

It is convenient to define the flux Richardson number

Rif ≡
−G
Pk

,(3.19)

which is a measure for the stabilising effect of stratification. If Rif > 0, then turbulence is
suppressed; if Rif < 0, then turbulence is enhanced.
Regarding (II), at the present stage of knowledge, there are two concurring theories regard-
ing an additional coupling mechanism between buoyancy and turbulence generation, being
reported briefly by Tieszen et al. in [TODB98].
First both perspectives will be reviewed. According to the more traditional theory, the only
effect of buoyancy (i.e., density gradients) is to induce vertical momentum. Ascending air
requires a transverse inflow. Then turbulence is only due to large-scale instabilities (mean
velocity gradients) and the subsequent turbulent energy cascade. The second perspective
views buoyancy in terms of the so-called baroclinic vorticity generation (BVG): In a gravi-
tational field, temperature gradients perpendicular (normal) to the direction of gravity tend
to result in the generation of vorticity, also referred to as small-scale instabilities. These
vortical structures randomly interact with themselves and with the existing turbulence.
Having presented both viewpoints, Tieszen et al. draw the following conclusions re-
garding the modelling of an additional buoyancy-turbulence interaction. Regarding the
traditional perspective, buoyancy acts only on the large lengthscales. In this case, there is
no need for modifying the turbulence model under consideration. On the other hand, the
BVG theory says that there is an additional interaction between buoyancy and turbulence
that has to be modelled.
A relevant situation concerning (II) is a flow along a vertical hot wall. Then in the near-
wall region vertical stratification is small compared to the large temperature gradients in
cross-stream direction. The observation that the turbulent-viscosity hypothesis does not
hold in the near-wall region can be viewed as an indication of the BVG-hypothesis, see
[TN98b].

3.4. A two-equation model : The k/ε model

3.4.1. The k/ε model for buoyancy driven flows

Two-equation models are based on the so-called Kolmogorov-Prandtl relation

νt = cu∗lm , with u∗ = cu∗k
1/2 .(3.20)
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(3.20) can be regarded as a formal analogy to (3.11). lm and u∗ are a suitable lengthscale
resp. a suitable velocity scale, being a formal analogy to lmfp and vth resp. in (3.11). Using
dimensional analysis, lm can be expressed using k and ε according to

lm = clmk
3/2ε−1 .(3.21)

Combining (3.20) and (3.21) we can compute νt from k and ε using the formula

νt = Cµ
k2

ε
, Cµ = 0.09.(3.22)

Here the value Cµ = 0.09 is chosen to ensure a correct behaviour in shear flows.
In the k/ε model, k and ε are obtained as solutions of partial differential equations; conse-
quently the model will be finally closed. Using the closure approximation

(〈u′ ⊗ u′u′〉E + 〈u′p〉E − 2ν〈S(u′)u′〉E = − νt
Prk
∇k ,(3.23)

in (3.13), the following equation for k is obtained (using the further approximation that
Prk = 1.0 equals a constant)

∂tk + (u ·∇)k −∇ · ( νt
Prk
∇k) = Pk − ε .(3.24)

Compared to the k equation, the equation for ε ”is best viewed as being entirely empirical”
([Pope00], p.375); it reads (with constants Prε, C1, C2 being specified later)

∂tε+ (u ·∇)ε−∇ · ( νt
Prε
∇ε) + C2ε

2k−1 = C1εk
−1Pk .(3.25)

An attempt to a mathematical approach to (3.24) and (3.25) can be found in [MP94].
The standard modification of the k/ε model for buoyancy driven flows is based on simply
replacing Pk with Pk + G, being defined in (3.16) resp. (3.18). Then for Pk and G
the turbulent-viscosity resp. gradient-diffusion assumptions are used. This was originally
devised by Ince and Launder, see [IL89], who proposed to replace Pk by

Pk +G , with G ≡ Ctβ
νt
Prt

g · ∇Θ , Ct = 0.8 .(3.26)

However, (3.26) can only describe the interaction between stratification and turbulence, see
Subsection 3.3. As pointed out in [TODB98], p. 294, (3.26) cannot describe the following
phenomenon. In a flow along a vertical hot wall, the vertical stratification is small compared
to the temperature cross-stream gradient. On the one hand, formula (3.26) implies G = 0
as temperature gradients are perpendicular to the direction of gravity. On the other hand,
BVG theory says that temperature gradients perpendicular to the direction of gravity tend
to result in the generation of vorticity. Therefore [TODB98] emphasise using the so-called
generalized gradient-diffusion hypothesis, originated by Daly and Harlow (1970), see
[DH70], and applied by Ince and Launder, cf. [IL89], viz.,

G = − βcθ
k

ε

d∑
i,j=1

gi

[
2
3
kδij − νt

(
∂Ui
∂xj

+
∂Uj
∂xi

) ]
∂Θ
∂xj

(3.27)
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with constant cθ with standard value cθ = 0.18. Numerical tests with our research code
revealed that (3.26) and (3.27) give almost the same results due to our near-wall modelling
strategy. However, when resolving the near-wall region, (3.27) is reported to be superior to
(3.26), see [TODB98]. Thus, for practical reasons, we use (3.26). To this end, using (3.26)
we arrive at the following system of equations for U , P , Θ, k and ε

∂tU −∇ · (2νeS(U)) + (U ·∇)U +∇P = − βΘg(3.28)
∇ ·U = 0(3.29)

∂tΘ + (U ·∇)Θ−∇ · (ae∇Θ) = q̇V c−1
p(3.30)

∂tk + (U ·∇)k −∇ · (νk∇k) = Pk +G− ε(3.31)

∂tε+ (U ·∇)ε−∇ · (νε∇ε) + C2ε
2k−1 = C1εk

−1(Pk +G)(3.32)

with turbulent-viscosity and thermal diffusivity being related by the turbulent Prandtl
number

νt = Cµ
k2

ε
, a = νPr−1 , at = νtPr

−1
t ,with Pr = 0.70 , P rt = 0.9 for air,

(3.33)

with effective viscosities

νe = ν + νt , ae = a+ at , νk = ν +
νt
Prk

, νε = ν +
νt
Prε

(3.34)

and with experimentally determined constants (see below)

C1 = 1.44 , C2 = 1.92 , P rk = 1.0 , P rε = 1.3 , Ct = 0.8 , Cµ = 0.09,
(3.35)

Production and buoyancy terms Pk and G are defined in (3.17) and (3.26).
It is not possible to determine the empirical constants of the k/ε model from a set of
measurements that isolate each term, because the model is not exact. The standard values
are rather a compromise for a range of flows. Nevertheless it is worth mentioning that C2

determines the decay of homogeneous, isotropic turbulence. The spreading rate of shear
layers is controlled by C2 − C1. Boundary-layer data suggest C1 = 1.55, whereas C1 = 1.3
is appropriately for mixing layer data, see [DPR01], p.181. Discernibly the standard value
C1 = 1.44 is a compromise.

3.4.2. An appraisal of the k/ε model

A principal limitation of the the k/ε model arises from the underlying turbulent-viscosity
hypothesis and its formula for νt. Instead of the full Reynolds stress tensor only half its
trace k is computed. Moreover, in Wilcox’s opinion, the closure approximation (3.23)
for the k-equation and much more notably those for the ε equation (given in [Wilcox98]
eq.(4.45)), are a ”drastic surgery” on the exact equations. Whereas turbulent-viscosity and
gradient-diffusion hypotheses have been investigated using various experimental data, the
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terms modeled in the k and ε equation are almost impossible to measure. However, there
is hope that DNS studies can help to gain information for suitable closure approximations.
A further dispute is on the question whether the lengthscale provided by ε is the correct
one for (3.20). For more details, the reader is addressed to [Pope00], Section 10.4 and
[Wilcox98], Subsection 4.3.2.
The values of the constants in (3.35) are a compromise, balanced for several basic test
cases, e.g. decaying turbulence and behaviour in the log-layer. The standard k/ε model
yields acceptable results for the mixing layer and for the plane and radial jet, cf. [Wilcox98]
pp.137. However, the k/ε model erroneously predicts unequal rates for spreading for round
and plane jets, a phenomenon referred to as ’round jet-plane jet anomaly’. Of course,
the constants can be tuned for a particular flow. It is noteworthy that values for the
model constants can be derived from renormalization group (RNG) analysis. Despite its
mathematical reasoning, in practice this does not provide a significant improvement to the
standard k/ε model, cf. [Wilcox98], p.137.
The main deficiencies of the k/ε model are its poor predictions (i) in the near-wall region
and (ii) for flows with strong pressure gradients. The latter is discussed in great detail in
[Wilcox98], Chapter 4.6.2. As pointed out in [DPR01], Section 6.2.2, the behaviour of the
k/ε model below the log-layer imposes several severe difficulties. First it is not a trivial
task to specify meaningful boundary conditions for ε at solid walls. Secondly, in (3.25) the
term C2ε

2/k behaves like y−2 near the wall, with y denoting the distance from the wall,
and hence becomes singular. Finally, even if the exact data for k and ε (e.g. from a DNS
data base) are substituted into νt = Cµk

2/ε, the theoretical value νt ≡ −〈u′v′〉E/(dU/dy)
is spuriously overpredicted close to the wall.
These problems gave rise to several of modifications of the k/ε model near solid walls, most
noteworthy (a) low Reynolds number models, (b) wall functions (c) two-layer models, (d)
the k-ε-v2 model by Durbin, for details see [DPR01], Chapter 6.2.2 and references therein.
Low Reynolds number models introduce artificial damping functions for damping νt near
the wall. They are unreliable for flows with significant pressure gradient and cause numer-
ical stiffness problems. Hence this approach is virtually unanimously doomed in the CFD
community. Approach (b) has been employed in our research group and will be described
in great detail in this thesis. It is computationally attractive since it circumvents resolving
the near wall region. The wall function concept can be justified for attached boundary-layer
flows with small pressure gradients. In practical applications wall functions are also used
when the underlying assumptions do not hold. In flows with massive separation or strong
pressure gradients their predictions can be poor. However, such situations do not often
occur in indoor-air flow problems. Nevertheless, more accurate approaches are desirable.
The strategies (c) and (d) both require a near-wall grid. A two-layer model was devised
by Chen and Patel, who proposed to use a suitable one-equation model for k in the
near-wall region, which is matched with the k/ε model at a certain artificial boundary in
the log-layer.
The k-ε-v2 model is a four equation model, presented in [Dur91]. It is based on the idea
that it is the cross-stream fluctuation velocity v′2 that is responsible for turbulent mo-
mentum transport in the near-wall region and that v′2 is suppressed in the proximity of
walls. The model adds one advection-diffusion-reaction equation for the scalar v2 and an
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advection-reaction equation for a scalar f which is motivated from the theory of second
moment closure modelling and tries to emulate effects of redistribution of turbulent kinetic
energy from the streamwise to the wall-normal component. Very reasonable results have
been obtained even for complicated test cases including separation and jet impingement,
see [DPR01]. The notion that the model k-ε-v2 model is significantly superior to the k/ε
model in predicting the heat transfer in an axisymmetric turbulent jet impinging on a
flat plate, [BPD98], makes this model quite attractive for application in indoor-air flow
problems. It is worth mentioning that Piomelli et al., see [SP02] performed a thor-
ough study of today’s most successful near-wall RANS models, including the one-equation
Spalart-Allmaras model, the k/ε model with the wall functions of Lam and Bremhorst,
the k/ω2 model of Saffman and Wilcox, and the k-ε-v2 model of Durbin for a pulsating
flow in [SP02], the latter being the most successful.
Besides the k/ε model, there are other two-equation models, most remarkebly the k/ω
model. It has two well-known advantages over the standard k/ε model. First, it yields
reasonable predictions for the mean velocity field throughout the near-wall region provided
a suitable near-wall grid is used. Secondly, it gives good results even for flows with strong
pressure gradients. Both observations have made this model very interesting for aeronauti-
cal flows. However, a more detailed analysis reveals that the propitous predictions for νt are
just a consequence of underpredicting k and overpredicting ε; its success in the near-wall
region is not based on physical reasoning. Moreover the model is unreliable for free-shear
layers, whose correct predictions are also quite important for indoor-air flow problems, see
[DPR01], p.132. Thus concerning future projects, the k-ε-v2 model seems to be the most
promising RANS model for problems involving indoor-air movement.
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This chapter is dedicated to large-eddy simulation (LES). LES is an alternative approach for
reducing the complexity of turbulent flow problems. As described in Section 2.2, turbulent
flows are characterized by a large range of scales, the ratio of the smallest to largest eddies
increasing as Re−3/4. When the turbulent motions of all scales are fully resolved, i.e. in
a DNS, the computational efforts for resolving the small scale motions exceed those for
resolving the large scale motions by far. Since engineers are primarily interested in the
behaviour of the large scale motions, ”there is a mismatch between DNS and the objective
of determining the mean velocity and energy-containing motions in a turbulent flow”, as
pointed out by [Pope00], p.357. Thus the idea is to reduce complexity of turbulence by first
filtering out the small scale motions using a spatial filter, resolving the random motion of
the remaining large eddies. However, again a closure problem arises. Thus the idea of LES
is to resolve the large-scale motions and to model the effects of the small-scale motions on
the large-scale motions. This approach is supported by the observation that the small-scale
motions have, to some extent, a universal behaviour, making them amenable for modelling.

4.1. Filtering

The objective of filtering a variable is to extract its large-scale structures and to attenuate
its small-scale structures. The filter width ∆ specifies the demarcation line of this scale
separation. Such a space-averaging filter 〈·〉∆ should have the following properties:

(F1) Filtering is a linear operation, i.e. 〈f + λg〉∆ = 〈f〉∆ + λ〈g〉∆ , f, g : Rd → R, λ ∈ R.

(F2) Derivatives and averages commute, i.e. 〈 ∂f∂xi 〉∆ = ∂〈f〉∆
∂xi

, 〈∂f∂t 〉∆ = ∂〈f〉∆
∂t .

The classical filtering technique used in LES is the convolution with a suitable filter func-
tion. Let f(x, t) be an instantaneous variable. If f is defined w.r.t. the spatial variable on
a bounded domain Ω, then f is extended by zero onto Rd. Then its corresponding filtered
variable is defined by the convolution integral

f(x, t) ≡ 〈f〉∆ =
∫
Rd

g∆(x− y)f(y, t)dy, g∆(x) =
d∏
j=1

gj∆(xj) .(4.1)

with g∆ being a filter function and ∆ denoting the filter width. If f is vector-valued resp.
tensor-valued, then filtering has to be understood componentwise. Since f ≡ 0 on Rd \ Ω,
f ∈ E ′ ⊂ S ′, cf. Section A.1. Given g∆ ∈ S, the spatial averaging filter can be interpreted
as an operator 〈·〉∆

〈·〉∆ : S ′(Rd) 7→ S(Rd), 〈f〉∆ ≡ g∆ ∗ f .(4.2)
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4. Large-eddy simulation

If ∆ = const, then the filter defined by (4.1) satisfies (F1) and (F2), see Theorem A.4.
f(x, t) is the weighted mean value of f with weight function g∆(x − ·). In the case
supp(gj∆) ⊂ [−∆,∆] the averaging is performed over B∆(x) (ball in the maximum norm).
Then velocity, pressure and temperature can be decomposed into a filtered part and a
residual part, videlicet,

(u, p)(x, t) = (u, p)(x, t) + (u′, p′)(x, t) , (u′, p′)(x, t) ≡ (u, p)(x, t)− (u, p)(x, t)(4.3)

θ(x, t) = θ(x, t) + θ′(x, t) , θ′(x, t) ≡ θ(x, t)− θ(x, t)(4.4)

It is worth considering the effect of the filtering operation in the Fourier space. The relation

f̂ ≡ F(f) = F(g∆ ∗ f) = F(g∆)F(f).(4.5)

shows that all the high wave number components of f are annihilated by convolution with
g∆, if F(g∆)(κ) = 0 for |κ| > κc, where κc is a cut-off wave number. A filter with such a
characteristic is called an ideal low pass filter. If the filter function in wave number space
rapidly falls off, a cut-off wave number can also be defined for all practical purposes.

The most popular filtering functions in LES and their corresponding Fourier transforms
are, cf. [Pope00], p.563:

1. Box filter

gj∆(xj) =
{

1
∆ , if |xj | ≤ ∆/2
0, if |xj | > ∆/2.

, ĝj∆(kj) =
sin(∆kj/2)

∆kj/2
,(4.6)

2. Sharp spectral filter

gj∆(xj) =
sin(πxj/∆)

πxj
ĝj∆(kj) =

{
1, if |kj | ≤ π/∆
0, if |kj | > π/∆.

,(4.7)

3. Gaussian filter

gj∆(xj) =
√

γ

π∆2
e−

γx2
j

∆2 , ĝj∆(kj) = e
−

∆2k2
j

4γ , γ = 6 .(4.8)

The specification γ = 6 in (4.8) ensures that box filter function and the Gaussian have the
same second moment, see [Pope00], p.563. Direct calculation yields the following equations
for u′, cf. [Pope00], p.566,

û′(κ, t) ≡ F(u′)(κ, t) = [1− ĝ∆(κ)]û(κ, t) , u′(x, t) = u(x, t)− u(x, t)(4.9)

On the one hand, the Gaussian is reasonably sharp both in physical space and in wavenum-
ber space, see (4.8). On the other hand, since 0 < g∆(x) ≤ 1 and 0 < ĝ∆(κ) ≤ 1 it follows
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that, in principle, filtering with a Gaussian is an invertible operation (although poorly
conditioned).
It is worthwhile studying the resolution requirements for the filtered field. Denote κc = π/∆
the cutoff wavenumber. For the Gaussian û(κ, t) = ĝ∆(κ)û(κ, t) > 0 (for κ > κc), i.e.
despite filtering, û(κ, t) has a non-vanishing contribution for κ > κc. Equivalently spoken,
u contains (non-negligible) structures of size smaller than ∆. This suggests to resolve u up
to κr , called the highest resolved mode, with κr = nκc (n ≥ 2). In other words, filter width
∆ and the grid size of a numerical calculation h should be related by ∆ = nh (n ≥ 2). This
intuitive reasoning is supported by numerical analysis, cf. [JL01].

4.2. Differential filtering

Explicit filtering is an important issue in LES. In the previous section, filtering was intro-
duced using an integral operator, viz.,

u(t,x) = (g∆ ∗ u0)(t,x) , g∆(y) =
( γ

π∆2

)d/2
exp(−γy

2

∆2
) .(4.10)

In his work on differential filters, Germano proposed to approximate this type of integral
operator by taking the inverse of an appropriate differential operator, cf. [Ger86]. In
the appendix, this approach will be motivated by (A.25). The objective of this section
is to describe the relation between the convolution with a gaussian filter and the solution
operator of the heat equation. For this purpose we consider the Cauchy-problem of the
heat equation: For given u0 ∈ S(Rd) find u : Rd × R+ 7→ R s.t.

∂u

∂s
− a2∇2u = 0 in R

d × R+ ,(4.11)

u = u0 in R
d × {0} .(4.12)

Its solution u(x, s) is given by (cf. [Kre89], p.134)

u(x, s) = (G ∗ u0)(x, s) , G(y, s) = (4πa2s)−d/2 exp
(
−||y||

2

4a2s

)
,(4.13)

which holds even for u0 ∈ S ′(Rd). For s small, we can approximate the solution u(·, s) of
(4.11)-(4.12) using one step of a backward Euler scheme. Using the notation u(·, 0) = u0,
the solution u(·, s) of the problem

u(x, s)− u0(x)
s

− a2∇2u(x, s) = 0 in R
d × R+(4.14)

is an approximation to the solution of (4.11)-(4.12). Thus, for fixed s, the solution of(
−a2s∇2 + I

)
u(x, s) = u0(x) in R

d × R+

is an approximation to u(·, s) in (4.13). Comparing (4.13) with (4.10) implies ∆2γ−1 =
4a2s.
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4. Large-eddy simulation

After this motivation we can describe how to approximate (4.10) using a differential filter:
Given u(x, t) (t being fixed), approximate u(x, t) ≡ (g∆ ∗ u)(x, t) as solution us of(

−∆2

4γ
∇2 + I

)
us(·, t) = u(·, t) in R

d .

Often u(x, t) is given in Ω × R+ and Ω is a domain. Denote R(u) (a suggestion for) an
approximation of u(x, t). Then given u : Ω×R+ 7→ R, we seek R(u) : Ω×R+ 7→ R s.t. for
each fixed t (

−∆2

4γ
∇2 + I

)
R(u)(·, t) = u(·, t) in Ω, ∇R(u) · n = 0 on Γ .(4.15)

The idea of choosing a Neumann boundary condition in (4.15) is to keep the modelling error
near the boundary small.To the author’s best knowledge, error estimates of ||g∆∗u−R(u)||
are not available. ||g∆ ∗ u−R(u)|| will be studied numerically in Section 12.3.

Remark 4.1
An alternative differential filter based on the solution of a Stokes problem was proposed by
Layton, see [LL03]. A further question is whether the differential filtering scheme can be
improved by using a higher order scheme w.r.t. the variable s in (4.11). ♦

4.3. The space averaged non-isothermal Navier-Stokes equations

This section is devoted to the evolution equations for u, p and θ and to the closure problem
in non-isothermal LES. Assume u, p and θ are extended by zero onto Rd. Then applying
a spatial averaging filter 〈·〉∆ to (1.19)-(1.21) gives (using (F1) and (F2))

∂tu−∇ · ( 2 ν S(u)− u⊗ u+ u⊗ u ) + (u ·∇)u+∇p = − β θ g ,(4.16)
∇ · u = 0 ,(4.17)

∂tθ + (u ·∇)θ −∇ ·
(
a∇θ − u θ + u θ

)
= q̇V c−1

p .(4.18)

Remark 4.2
Regarding the isothermal Navier-Stokes equations, we can assume the following regu-
larities, cf. e.g. [Tem77]: f ∈ L2(0, T ; (H1

div(Ω)∗)d), u ∈ L2(0, T ; (H1
div(Ω))d), ∂tu ∈

L1(0, T ; (H1
div(Ω)∗)d), and ∇p ∈ E ′(Ω× (0, T )). Therefore, for each t ∈ (0, T ), ∇u and 4u

are at least in E ′(Ω) for each t ∈ (0, T ). Hence, for each t ∈ (0, T ), the expressions on both
sides are at least in S ′(Rd) and we can convolve both sides with a function g∆ ∈ S(Rd). ♦

Remark 4.3
According to John and Layton, the extension of variables onto Rd leads to a commutation
error in the Navier-Stokes equations due to a loss in regularity. John and Dunca studied
this error in the case of the isothermal Navier-Stokes equations with homogeneous Dirichlet
conditions. Extending u by zero in Rd \ Ω gives rise to an additional boundary term both
in the Navier-Stokes equations for u in Rd and the space filtered equations. However, in a
numerical solution using FEM, this term is negligible small, cf. [Joh02], pp.10 and pp.14.

♦

42



4.3. The space averaged non-isothermal Navier-Stokes equations

It is worth emphasising that the fields involved in (4.16)-(4.18), i.e u, p, and θ are still
random.
Equations (4.16)-(4.18) are unclosed. Similar to the RANS equations, we introduce

τR ≡ u⊗ u − u⊗ u , residual stress tensor ,(4.19)

kr ≡
1
2

d∑
i=1

τRii , residual kinetic energy ,(4.20)

τ r ≡ τR − 2
d
krI , anisotropic residual stress tensor ,(4.21)

h ≡ u θ − u θ , residual temperature flux .(4.22)

The isotropic residual stress is included in the modified pressure pmod ≡ p + 2
dkr. The

residual stress tensor and the residual temperature flux represent the effects of the residual
scales on the filtered scales. They are often referred to as subgrid scale (abbreviated SGS)
stresses and fluxes resp. Their modelling will be studied in Section 4.4.

As described in Section 2.2, the transfer of kinetic energy between filtered and residual
scales is an important mechanism in turbulent flows. In order to quantify this, we focus on
filtered kinetic energy E(x, t), kinetic energy of the filtered velocity field Ef and residual
kinetic energy kr, being defined as

E ≡ 1
2
u · u , Ef ≡

1
2
u · u , kr ≡

1
2
u · u− 1

2
u · u , with E = Ef + kr .(4.23)

Multiplying (4.16) with u we obtain the conservation equation for Ef , viz.,

∂tEf + u ∇Ef −∇ · [(2νS(u)− τ r − pI)u] = − εf − Pr − βθg · u ,(4.24)

where

εf ≡ 2νS(u) : S(u) , Pr ≡ −τ r : S(u) .(4.25)

The corresponding equation for kr reads (cf. e.g. [PYA96], p.217 or [Sag01], p.37)

∂tkr + u · ∇kr −∇ · [(E u− 1
2
u · uu) + (p u− pu) + ν∇kr + τ ru]

= − εν + Pr − βθ′u′ · g
(4.26)

with

εν ≡ ν

 d∑
i,j=1

∂ui
∂xj

∂ui
∂xj
−

d∑
i,j=1

∂ui
∂xj

∂ui
∂xj

 .(4.27)

The right hand side terms in (4.24) and (4.26) are source or sink terms. εf describes viscous
dissipation directly from the filtered velocity field, being small compared to ε, cf. [Pope00],
p.588. εν represents the residual kinetic energy dissipated by viscous forces. Pr appears as
a sink term in the equation for Ef and as a source term in the equation for kr. It represents
the rate of transfer of energy from the filtered velocity field to the residual motions. In the
mean, Pr > 0, but locally, backscatter can occur with Pr < 0, i.e. energy transfer from the
residual motions to the filtered motions.
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4. Large-eddy simulation

4.4. Modelling the residual stress tensor and the residual fluxes

In order to close (4.16)-(4.18), we have to model τ r and h. Concerning the isothermal
case, for a survey on closure models see [Pope00], [Sag01] and [Geu01]. A mathematical
review can be found in e.g. [Lay02] and [Lay02a]. For detailed numerical tests of the most
popular residual stress models see e.g. [VGK97]. In subsection 4.4.1, we accomplish closure
modelling using formal series expansions, also referred to as structural modelling. We will
augment this with a functional model in order to explicitely account for the energy cascade,
see subsection 4.4.2. Effects of buoyancy are regarded in subsection 4.4.3.

4.4.1. Structural modelling

One classical strategy for obtaining models for the residual stress tensor and the residual
temperature flux is so-called structural modelling: The underlying idea is to use formal
series expansions for the filter kernel in Fourier space. A detailed derivation of the following
two models can be found in appendix A.2. Starting point is the decomposition

u⊗ u = (u+ u′)⊗ (u+ u′) = u⊗ u+ u⊗ u′ + u′ ⊗ u+ u′ ⊗ u′(4.28)

θu = (θ + θ′)(u+ u′) = θ u+ θ u′ + θ′ u+ θ′ u′(4.29)

with resolved stresses resp. fluxes u⊗ u and θ u, cross stresses resp. fluxes u⊗ u′, u′ ⊗ u,
θ u′ and θ′ u, and residual stresses resp. fluxes u′ ⊗ u′ and θ′ u′. We introduce

τSGS ≡ u′ ⊗ u′ − 1
d

d∑
i=1

u′ ⊗ u′) I , trace(A) ≡
d∑
i=1

Aii for A ∈ Rd×d ,(4.30)

hSGS ≡ u′θ′ .(4.31)

The so-called Clark model is based on a Taylor approximation of the filter kernel in Fourier
space. The Clark model reads

u⊗ u = u⊗ u +
∆2

12
∇u • ∇u + Oformal(∆4)

θu = θ u +
∆2

12
∇θ ◦ ∇u + Oformal(∆4)

with the notations

(∇U • ∇U)ij =
d∑
l=1

∂Ui
∂xl

∂Uj
∂xl

, (∇Θ ◦ ∇U)j =
d∑
l=1

∂Θ
∂xl

∂Uj
∂xl

.(4.32)

Instead, Galdi and Layton proposed using a rational approximation for the filtering
kernel, leading to the following model

u⊗ u = u⊗ u +
∆2

12
R (∇u • ∇u) + Oformal(∆4)

θu = θ u +
∆2

12
R
(
∇θ ◦ ∇u

)
+ Oformal(∆4)

with the regularization operator R defined in (4.15).
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Remark 4.4
There is an interesting formal connection between the Galdi-Layton model and today’s
most successful Reynolds-stress model, the so-called elliptic relaxation model devised by
Durbin, see [Dur93]. Both models use a similar elliptic regularization operator.

Remark 4.5
The Fourier analysis reveals that the residual stress term and the residual flux term are
of formal order ∆4 for both the Clark model and the Galdi-Layton model. Hence their
contribution is neglected in both models. Moreover, numerical tests show that for both
models the transfer of energy from the resolved scales to the residual scales is too small
leading to numerical instabilities for high Reynolds/Rayleigh numbers, see. e.g. [LMK94],
[VGK97] and [Joh02]. For these reasons in the following subsection we introduce two
additional subgrid scale models which are based on the turbulent-viscosity hypothesis. ♦

Remark 4.6
The Galdi-Layton model has to be combined with a suitable damping function in order to
obtain an appropriate near-wall behaviour. ♦

4.4.2. Functional modelling part I : Residual stress modelling for isothermal problems

The SGS models presented in this subsection are based on the turbulent-viscosity hypoth-
esis. The objective of functional modelling is to provide a mechanism to transfer energy
from the filtered scales to the residual scales and to dissipate energy at the end of the
energy cascade. As pointed out in [VGK97] this is an issue of major importance in LES.
In analogy to Prandtl’s mixing length hypothesis (see (5.31)), Smagorinsky (1963)
proposed

τ r = − 2νtS(u) , with νt ≡ (CS∆)2S , S ≡
√
S(u) : S(u) .(4.33)

From the relation Pr ≈ ε, Lilly (1967) obtained CS = 0.17.

Remark 4.7
Another interpretation is to replace τ r by τSGS in (4.33). This interpretation accounts for
the fact that τSGS is formally of order ∆4 and is neglected in the structural modelling.
However, the resulting effective model is the same.
A fundamental problem of the Smagorinsky model concerns the choice of C2

S , which is in
general flow dependent. Lilly’s approach is reviewed in [BFR80]. Using a constant value for
C2
S might cause excessive dissipation, e.g. in turbulent channel flow and in the turbulent

mixing-layer, see [LMK94], [VGK97] and references therein. Moreover, in laminar (shear)
flow CS must equal zero. In 1991, Germano devised a widespread modification of (4.33),
cf. [GPMC91], viz., to compute CS in terms of the filtered velocity field. ♦

The Smagorinsky model can be viewed as a so-called turbulent kinetic energy (TKE) model.
TKE models are based on the Kolmogorow-Prandtl relation (3.20) with lm = ∆ and u∗ ≈√
kr. Here for u∗ a model for

√
kr is needed. Note that for the Smagorinsky model applied

to high-Reynolds-number turbulence with the filter width in the inertial subrange the choice
lm ∼ ∆ can be confirmed, cf. [Pope00], pp.587. The Smagorinsky model takes u∗ ∼ ∆S,

45



4. Large-eddy simulation

which can be viewed as an algebraic model for u∗.
The Smagorinsky model is (formally) of second order in ∆, whereas the SGS term in Fourier
analysis is of fourth order in ∆. This is a mismatch (at least formally). Moreover, in many
flow experiments the Smagorinsky model has been turned out to be too dissipative - that is,
it transfers too much energy to the residual motions. This motivates considering a further
SGS model.
Bardina (1980) suggested a different choice for u∗, based on the second identity in (4.9),
cf. [BFR80], viz.,

u∗ = Cq|u · u− u · u|1/2 , with Cq = 0.126.

Similarly, Iliescu and Layton proposed

u∗ = Cq

√
|u− u|2 ≈ Cq

√
|u− u|2 = Cq|u− u| , with Cq = 0.17 ,

leading to the following model for νt:

νt = Cq∆|u− u| .(4.34)

The Iliescu-Layton model can be written as (see [IL98] eq. (2.6))

νt = Cq
∆3

6
||4u||2(4.35)

demonstrating that this model is formally of third order in ∆.

Remark 4.8
An inherent problem of TKE models is that they are unable to give accurate predictions
for τ r and Pr simultaneously. This stems from the fact that this type of model implies a
much too large correlation ρr between τ r and S(u). Measurements by Liu show ρr between
0 and 0.2 (cf. [LMK94]). However, substituting e.g. the Smagorinsky model for τ r gives
a value ρr ≈ 0.88 under some assumptions concerning the probability distribution of S(u),
cf. [Pope00] exercise 13.33. Thus if the Smagorinsky coefficient chosen ensures a reason-
able value for 〈Pr〉E , then the modelled residual stresses are significantly underpredicted,
cf. [Pope00], p.603. This flaw is confirmed by numerical investigations, see e.g. [VGK97],
section 3.2.4. But, as mentioned above, there is wide agreement that the correct prediction
of Pr is much more important than the prediction of τ r.
To ensure that the classical Smagorinsky model and the Iliescu Layton model behave rea-
sonable near solid walls, νt has to be damped near the wall. For details see Chapter 7. As
a final remark, note that both models predict νt ≥ 0 and thus preclude backscattering. ♦

4.4.3. Functional modelling part II : SGS modelling for non-isothermal problems

First effects of buoyancy will be neglected. We focus on modelling the residual temperature
flux using the gradient-diffusion hypothesis with SGS diffusivity at, viz.,

h ≡ − θ u+ θu = − at∇θ .(4.36)
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In analogy to the dynamic Smagorinsky model, the so-called dynamic scalar model uses
at = Ca∆2S, with Ca being determined dynamically, see [PD98] and references therein. An
alternative approach for specifying at is to relate at to νt by introducing a SGS turbulent
Prandtl number Prt ≡ νta

−1
t . A priori, Prt is an unknown scalar field which can be

determined dynamically. In this thesis we choose Prt = 0.4 remote from solid walls. For
the treatment of Prt in the near-wall region see section 7.1.1. Further details are given in
the next subsection.

4.4.4. Functional modelling part III : SGS modelling for buoyancy driven problems

Now the effect of thermal stratification on residual stress modelling will be explored. Recall
that in the k/ε model, the production term is modified to account for effects of stratification,
cf. (3.26). Via the production term Pk + G, gravitational production affects k and hence
νt = Cµk

2/ε.
Residual stress modelling for buoyant convection was investigated most remarkebly by
Lilly, see [Lil62], and Eidson, see [Eid85]. Eidson’s reasoning starts by assuming that
in buoyant convection the total transfer of energy from the filtered motions to the residual
motions is given by

Pθr ≡ − τ r : S(u) − βg · h .(4.37)

Equation (4.37) is motivated by Lilly’s analysis for the corresponding compressible case,
cf. eq. (10)-(11) in [Lil62].
Using the eddy-viscosity assumption τ r = −2νtS(u) implies that the transfer of energy from
the resolved scales to the residual scales is predicted to be 2νtS. In the isothermal case, νt
has to be chosen such that 2νtS is a reasonable approximation to Pr ≡ −τ r : S(u). Two
appropriate choices were discussed in subsection 4.4.2. In the case of buoyant convection,
Lilly and later Eidson suggested to choose νt such that 2νtS is a suitable approximation
to Pθr ≡ − τ r : S(u) − βg · h.

The Lilly-Eidson model

Based on the work of Lilly and Eidson, in [PD98] Peng and Davidson resume the
following modified choices for νt for buoyancy driven flows

1. Lilly-Eidson model

νt =

{
CE∆2

(
S2 + β

Prt
g · ∇θ

)1/2
, if S2 ≥ − β

Prt
g · ∇θ

0 , otherwise
, at = Pr−1

t νt.(4.38)

2. Modification by Peng and Davidson:

νt = max
(
CE∆2 S−1

(
S2 +

β

2Prt
g · ∇θ

)
, − ν

)
, at = Pr−1

t νt .(4.39)

Unlike (4.38), the modification (4.39) allows negative values of νt in the range of
(−ν, 0). Note that the factor two in the denominator of the second term in (4.39) is
missing in [PD98]. Its presence will be motivated below.
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4. Large-eddy simulation

Both in (4.38) and (4.39), CE and Prt have to be determined dynamically. Note that both
formulae reduce to the standard Smagorinsky model if ∇θ = 0.
Now the following questions arise :

1. How to determine the two coupled parameters CE and Prt dynamically ?

2. Which relation holds between (4.38) and (4.39) ?

3. Do (4.38) and (4.39) provide a suitable approximation to (4.37) ?

Concerning the first question, see [PD98], [WL94] and references therein. With respect to
the second question, note that for small x the following Taylor expansion holds :

√
1 + x ≈

1 + 1
2x. Taking this into account, starting with (4.38) we can obtain (4.39):

CE∆2

(
S2 +

β

Prt
g · ∇θ

)1/2

= CE∆2S
(

1 +
1

S2

β

Prt
g · ∇θ

)1/2

≈ CE∆2S
(

1 +
1

2S2

β

Prt
g · ∇θ

)
= CE∆2 1

S

(
S2 +

1
2
β

Prt
g · ∇θ

)
On the physical background and on a numerical comparison of both variants, see [PD98],
[PD01]. To answer the third question, simple calculation yields (using (4.39))

2νtS
2 = 2CE∆2 S−1

(
S2 +

β

2Prt
g · ∇θ

)
S2 = 2(CE∆2S)S2 + β

CE∆2S
Prt

g · ∇θ .

This is a consistent approximation to −τ r : S(u) − βg · h when taking the eddy-viscosity
and the gradient-diffusion hypothesis with the Smagorinski model.

Modification of the Iliescu-Layton SGS model

Now we modify the Iliescu-Layton model

νt = Cq∆|u− u| .

in order to account for effects of buoyancy.

1. Corresponding to (4.38) it seems natural to propose

νt =

{
Cq∆|u− u|

(
1 + 1

S2
β
Prt
g · ∇θ

)1/2
, if S2 ≥ − β

Prt
g · ∇θ

0 , otherwise
, at = Pr−1

t νt.

(4.40)

2. Similarly, to (4.39) the following suggestion corresponds

νt = max
(
Cq∆|u− u|

(
1 +

1

2S2

β

Prt
g · ∇θ

)
, − ν

)
, at = Pr−1

t νt.(4.41)
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4.5. System of equations for non-isothermal LES

It can be verified easily that (4.40) and (4.41) are related by a Taylor expansion of
√

1 + x.
Moreover (4.41) is consistent in the sense that

2νtS
2 = 2Cq∆|u− u|

(
1 +

1

2S2

β

Prt
g · ∇θ

)
S2

= 2 (Cq∆|u− u|) S
2 + β

Cq∆|u− u|
Prt

g · ∇θ

is a suitable approximation (using the Iliescu-Layton model) to −τ r : S(u)− βg · h.

Remark 4.9
Of course, both the turbulent-viscosity SGS model and the Galdi-Layton model contribute
to Pr. Therefore we should also involve the Galdi-Layton stress tensor into the modifica-
tions presented in this subsection. However, as the major contribution to Pr is due to the
turbulent-viscosity model, we can neglect the Galdi-Layton stress tensor in our considera-
tions. ♦

Remark 4.10
It is worth giving some remarks on the model parameters C and Prt. First it should be
emphasised that the SGS turbulent Prandtl number has a different significance and thus a
different value than for RANS computations. Based on experimental data Eidson proposed
Prt = 0.4. Moreover he proposed CE = 0.0441. Peng and Davidson compared numerical
tests with CE = 0.0441, Prt = 0.4 and both coefficients being determined dynamically, see
[PD98], [PD01]. They observed that remote from walls the constant values are a reasonable
approximation to the dynamically obtained values. On the other hand, near solid walls
the dynamically determined values are far from being constant. However, they report that
this does not affect the behaviour of the large scale statistics significantly. This point will
be considered in more detail in Chapter 7.
The number of research groups studying buoyancy driven flows using LES is very limited.
In virtually all recent papers, a variant of the Lilly-Eidson model is employed, see e.g.
[KD00], [PD01], [WL94]. Their focus is on how to determine the model coefficients CE and
Prt dynamically.
The Eidson model accounts only for effects of stratification, but not for a (speculative)
turbulence generation mechanism due to buoyancy as suggested by the theory of baroclinic
vorticity generation, see Section 3.3.2. LES with near-wall resolution might benefit from
adding a term similar to (3.27) to the Eidson model. ♦

4.5. System of equations for non-isothermal LES

We conclude this chapter by summarizing the system of equations for LES of non-isothermal
flow problems. This system will be equipped with suitable boundary conditions in Chapter
7. We seek w, q, and ϑ as an approximation to u, p, and θ as solution of
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4. Large-eddy simulation

∂tw −∇ · ( 2 (νe S(w)−Au(w)) ) + (w∇)w +∇q = − β ϑ g(4.42)
∇ ·w = 0(4.43)

∂tϑ−∇ · (ae∇ϑ−Aθ(w, ϑ)) + (w∇)ϑ = q̇V c−1
p(4.44)

with

Au(w) =
∆2

12
R (∇w • ∇w) , Aθ(w, ϑ) =

∆2

12
R (∇ϑ ◦ ∇w)(4.45)

with the regularization operator R defined in (4.15).
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5. Near-wall treatment in turbulence modelling

This chapter is dedicated to wall bounded flows. Fundamental results of the turbulent
boundary-layer theory are reviewed. Moreover, some turbulence models for the near-wall
region are discussed. Throughout this chapter we suppose that for almost every point x
in Γ there exists a local orthonormal basis {n(x) , tj(x) , 1 ≤ j ≤ d − 1}, where {tj}d−1

j=1

is a local orthonormal basis for the tangent space of Γ in x and n denotes the outer unit
normal vector to Γ at x; denote x ≡ x1, y ≡ x2, z ≡ x3 streamwise, wall-normal, and
spanwise coordinate direction resp.

5.1. Fundamentals of turbulent boundary-layer theory

As a starting point we consider a (forced convection) flow over a flat plate, often called a
turbulent boundary layer, as sketched in Figure 5.1. In this flow, remote from the plate
turbulence is absent and the only source of turbulence is due to the presence of a solid
surface, where impermeability and no-slip condition hold. The flow configuration consists
of a flat plate located at

ΓW ≡ { x ∈ R
3 : y = 0 , x ≥ 0 } .

At x→ −∞ the free-stream velocity is given by u = U∞e1. We assume that due to transla-
tional invariance in the x3 ≡ z direction the problem is two-dimensional. Measurements and
DNS data reveal that there is a neighbourhood of the plate of thickness δulayer = δulayer(x)
increasing with x, where the Reynolds stresses are significantly large. This region is called
the turbulent boundary layer. Remote from the wall, the Reynolds stresses cease and the
velocity tends to the free-stream velocity. Figure 5.2 shows the profiles of the Reynolds
stresses in a supersonic flat-plate zero-pressure gradient boundary layer from the DNS data
of [MAK01].
The boundary-layer thickness δulayer(x) is generally defined as the value d99 of y at which
U(x, y) = 0.99U∞ with U(x, y) ≡ U · e1. The flow region with y > d99 is called the free-
stream.
In the region between turbulent boundary-layer flow and the irrotational non-turbulent
free-stream, the flow is sometimes turbulent and sometimes not, a phenomenon called in-
termittency. Therefore, strictly speaking, δulayer is a random variable. However, a detailed
description of the near-wall turbulent structures goes beyond the scope of this chapter. For
details, see e.g [Pope00], Sections 5.5.2 and 7.4.
Now we extend the previous notions to the forced convection non-isothermal boundary
layer. Denote θw the wall temperature and θ0 the temperature of the free-stream fluid.
Then a temperature boundary layer of thickness δθlayer, characterised by a large heat flux
vector 〈u′θ′〉E , can be defined analogously.
Now we make the approximation that δulayer = δθlayer = δlayer for each x in ΓW , i.e. mo-
mentum and temperature boundary layer are assumed to have the same thickness. This
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Figure 5.1.: Sketch of flow configuration.
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Figure 5.2.: Profiles of Reynolds stresses.

was first devised by Eckert, cf. [Eck50], pp. 158-164. The approximation is reasonable
as δulayer/δ

θ
layer ≈

√
νt/at =

√
Prt ≈ 0.95 for air; it just helps reducing the complexity

concerning indices.
We assume that δlayer(x) is given for each x in ΓW . Then we can define the turbulent
boundary-layer region Ωlayer and the free-stream region Ωfree :

Ωlayer = { x ∈ Ω | dist(x,ΓW ) < δlayer } ,(5.1)
Ωfree = Ω \ Ωlayer .(5.2)

For each x ∈ ΓW the following characteristic quantities can be defined

τw ≡ ν∇U |ΓW · n , uτ ≡
√
τw , cf ≡

2τw
U2
∞
,(5.3)

τw being the wall shear stress, uτ being the friction velocity and cf being the skin friction
coefficient. In the case of ∂U∞/∂x = 0, the growth of the boundary-layer is given by the
formula (cf. [DPR01], p.69)

dδ∗

dx
=
cf
2
, with δ∗ ≡

∫ ∞
0

U

U∞

(
1− U

U∞

)
dy ,(5.4)

where δ∗ is called momentum thickness. Since typically cf = O(10−3) the boundary-layer
thickness grows very slowly. As cf is unknown a priori, equation (5.4) is unclosed. Using
the empirical relation cf ≈ 0.025Reδ∗ with Reδ∗ = U∞δ

∗/ν we finally obtain (cf. [DPR01],
p.69)

δ∗

x
≈
(

5a
8

)4/5(U∞x
ν

)−1/5

, with a = 0.025,(5.5)

demonstrating that δ∗ scales with ν1/5. In constrast, in the laminar case δ∗ ∝ ν1/2.
Pursuing further the parallel between momentum and temperature boundary layers, the
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x/L

V
/U

0

0 0.025 0.05 0.075
0

0.05

0.1

0.15

0.2

Figure 5.3.: Natural convection:
Velocity profile.

x/L

(T
-T

c)
/(

T
h-

T
c)

0 0.025 0.05 0.0750.5

0.6

0.7

0.8

0.9

1

Figure 5.4.: Natural convection:
Temperature profile.

enthalpy thickness ∆2 can be introduced measuring the thickness of the temperature bound-
ary layer. Similar to (5.4), the following equation holds

d∆2

dx
= St , with ∆2 ≡

∫ ∞
0

U

U∞

(
1− θ − θ∞

θw − θ∞

)
dy , St ≡ q̇w

(θw − θ∞)U∞
,(5.6)

with θw and θ∞ denoting the temperature on the wall resp. in the free stream. The Stanton
number St is the normalized surface heat flux. If Pr ≈ 1 and Prt ≈ 1 then St ≈ cf/2 in a
zero pressure gradient forced convection boundary layer.
In natural convection along surfaces, boundary-layer phenomena are also apparent. Figures
5.3-5.4 show velocity and temperature profile for a buoyancy induced flow along a heated
vertical plate in a closed cavity recently studied experimentally by Tiam, Ampofo and
Karayiannis, cf. [TK00a], [TK00b], and [AK02]. Figures 5.5-5.6 show the turbulence
quantities, indicating that turbulent boundary-layer effects are significant only in a narrow
strip close to the wall. The substructure of turbulent boundary layers in forced and natural
convection flows will be studied in greater detail in Subsections 5.3.1 and 5.4.1. As pointed
out by Wilcox, see [Wilcox98], Section 4.6, the turbulent flow over a flat plate is a classical
singularly-perturbed problem: The task is to find a boundary-layer solution which satisfies
both the no-slip at y = 0 and the free-stream condition at y = δlayer. In the next subsection,
the asymptotic behaviour in the region very close to the wall will be studied.

5.2. Boundary-layer equations and singular perturbation methods

In this subsection we derive simplified differential equations that describe the flow problem
approximately in the near-wall region, called boundary-layer equations. This will be ac-
complished using the method of singular perturbations. To achieve our objective, we will
proceed as follows:

1. Derivation of the laminar boundary-layer equations.
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2. Presentation of the turbulent boundary-layer equations, which are motivated by the
laminar boundary-layer equations.

3. Simplification of the three-dimensional turbulent boundary-layer equations to the
two-dimensional boundary-layer equations.

4. Simplification of the two-dimensional turbulent boundary-layer equations to the one-
dimensional boundary-layer equation.

For sake of clarity and simplicity, in step (1)-(3) we restrict ourselves to the isothermal
case. Moreover we have to assume that the surface curvature is significantly small. The
turbulence in a boundary layer entering a convex (concave) curve is suppressed (amplified),
see [DPR01], pp.162. Models based on the eddy-viscosity hypothesis cannot describe such
effects. In particular, the predictions near corners can become unreliable. Finally we
assume that the processes in the boundary layer are stationary, see e.g. [Pope00], pp. 111.

5.2.1. The three-dimensional laminar boundary-layer equations

Throughout this subsection we will deal with two coordinate systems. First, denote ex,
ey, ez the standard wall fitted coordinate system of streamwise, wall-normal and spanwise
direction resp. Second, we suppose that there exists a network of potential lines (φ = const)
and streamlines (ψ = const), which represent the idealized inviscid wall bounded flow. Then
eφ and eψ are defined being perpendicular to the lines (φ = const) and (ψ = const) resp.
Obviously, this assumption does not hold for flow separation and recirculation. However,
we could derive the laminar boundary-layer equations in almost the same manner in the
ex, ey, ez coordinate system, but then the equations involved are more complex. Anyway,
at the end, we will present the boundary-layer equations in the standard ex, ey, ez system.
As a rough idea, one could imagine that ey ≡ eψ and eφ = αex +βez, for some α, β. Then
u = wφeφ + wψeψ.
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5.2. Boundary-layer equations and singular perturbation methods

As mentioned in the previous section, near the wall, i.e. locally in the boundary-layer, flow
characteristics vary rapidly in the eψ direction. Hence we introduce the following local
variable, viz., ψ∗ = ψ

δ(ν) . Then for the local solution wφ, wψ the following ansatz is made

wφ(φ, ψ, ν) = W 0
φ(φ, ψ∗, ν) + δ(ν)W 1

φ(φ, ψ∗, ν) +O(δ2(ν)),

wψ(φ, ψ, ν) = W 0
ψ(φ, ψ∗, ν) + δ(ν)W 1

ψ(φ, ψ∗, ν) +O(δ2(ν)),

p(φ, ψ, ν) = P 0(φ, ψ∗, ν) + δ(ν)P 1(φ, ψ∗, ν) +O(δ2(ν)).

First we show that W 0
ψ = 0. Denote Wφ(φ, ψ∗, ν) = wφ(φ, ψ, ν) and Wψ(φ, ψ∗, ν) =

wψ(φ, ψ, ν). The equation of continuity reads

∂wφ
∂φ

+
∂wψ
∂ψ

= 0 ⇐⇒
∂Wφ

∂φ
+

1
δ(ν)

∂Wψ

∂ψ∗
= 0.

Substituting the ansatz the continuity equation becomes

∂W 0
φ

∂φ
+ δ(ν)

∂W 1
φ

∂φ
+O(δ2(ν)) +

1
δ(ν)

∂W 0
ψ

∂ψ∗
+
∂W 1

ψ

∂ψ∗
+O(δ(ν)) = 0.

In order to obtain a nontrivial continuity equation we have to balance the terms with

respect to the parameter δ(ν). Hence
∂W 0

ψ

∂ψ∗ = 0. Together with the no-penetration condition
wψ(φ, 0) = 0 this implies W 0

ψ ≡ 0 (which follows immediately from the theory of ordinary
differential equations). Thus we have deduced that our ansatz can be simplified to

wφ(φ, ψ∗, ν) = W 0
φ(φ, ψ∗, ν) + δ(ν)W 1

φ(φ, ψ∗, ν) +O(δ2(ν)),(5.7)

wψ(φ, ψ∗, ν) = δ(ν)W 1
ψ(φ, ψ∗, ν) +O(δ2(ν)),(5.8)

p(φ, ψ∗, ν) = P 0(φ, ψ∗, ν) + δ(ν)P 1(φ, ψ∗, ν) +O(δ2(ν)).(5.9)

Substituting this ansatz into the momentum equations, the following two observations can
be made. First we can deduce δ = O(

√
ν). In the wφ- equation the term ν(∂2wφ/∂ψ

2) is
of order ν/δ2. As the wφ-equation has to satisfy two boundary conditions, viz., (i) no-slip
at ψ = 0 and (ii) matching the free-stream for ψ∗ → ∞, this term must be of order O(1)
and consequently δ = O(

√
ν). Second, the only O(1) term in the wψ- equation is ∂P/∂ψ∗

and therefore the wψ-equation reduces to ∂P/∂ψ∗ = 0. This implies P = P (φ).
Substituting δ =

√
ν into the wφ-equation and taking into account only terms of order O(1)

we obtain the laminar boundary-layer equations.

In the standard ex, ey, ez coordinate system the equations for Ui ≡ U · ei read, cf. e.g.
[CT90],

3∑
j=1

∂(UiUj)
∂xj

+
∂P∞
∂xi

=
∂

∂y

[
ν
∂Ui
∂y

]
, i = 1, 3(5.10)

with continuity equation

U2 = −
∫ y

0

∑
i=1,3

∂Ui(y′)
∂xi

dy′ ,(5.11)
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5. Near-wall treatment in turbulence modelling

and boundary conditions

Ui = 0 on ΓW , lim
y+→∞

Ui(x1, y
+, x3) = U∞,i(x1, x3)(5.12)

with P∞ = P∞(x1, x3) being the free stream pressure and U∞ being the freestream velocity.
Note that ∂P∞/∂xi (i=1,3) can be given in terms of the free-stream velocity by Bernoulli’s
equation, viz., −∂P∞/∂xi =

∑3
j=1 U∞,j∂U∞,i∂xj .

5.2.2. The three-dimensional turbulent boundary-layer equations

In this subsection we motivate the turbulent boundary-layer equations. We can start with
the RANS equations and take into account only the wall-normal derivatives of the Reynolds
stresses. Similar to the laminar case the lateral mean momentum equation becomes

∂P

∂y
+

∂〈u′22 〉E
∂y

= 0 .

In the free stream (y+ →∞), 〈u′22 〉E is zero, see Figure 5.2. Consequently integration yields
P = P∞ − 〈u′22 〉E and therefore

∂P

∂xi
=

∂P∞
∂xi

− ∂〈u′22 〉E
∂xi

, i = 1, 3.(5.13)

Using the approximations devised for the laminar case, the ex- and ez-momentum equations
become when substituting (5.13)

3∑
j=1

∂(UiUj)
∂xj

+
∂P∞
∂xi

=
∂

∂y

[
ν
∂Ui
∂y

]
−

3∑
j=1

∂〈u′iu′j〉E
∂xj

+
∂〈u′22 〉E
∂xi

, i = 1, 3 .(5.14)

Taking into account only the derivatives of 〈u′iu′j〉E in the ey-direction in (5.14), we arrive
at the turbulent boundary-layer equations, cf. e.g. [CM00]:

3∑
j=1

∂(UiUj)
∂xj

+
∂P∞
∂xi

=
∂

∂y

[
ν
∂Ui
∂y

]
− ∂〈u′iu′2〉E

∂y
, i = 1, 3 .(5.15)

Using the eddy viscosity hypothesis for ∂(〈u′iu′2〉E)/∂y, i.e., ∂(〈u′iu′2〉E)/∂y = −νt∂Ui/∂y,
we finally obtain (5.11), (5.12), and

3∑
j=1

∂(UiUj)
∂xj

+
∂P∞
∂xi

=
∂

∂y

[
(ν + νt)

∂Ui
∂y

]
, i = 1, 3 .(5.16)

Remark 5.1
It is worth recalling that in contrast to the laminar case (δ∗ ∼

√
ν), in the turbulent case

the momentum thickness δ∗ scales like ν1/5. In the laminar case, it is possible to deduce
δ ∼
√
ν using the method of asymptotic expansions. As the RANS equations are unclosed,

an empirical closure approximation is necessary. ♦
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5.2.3. The two-dimensional turbulent boundary-layer equations

From now on we assume that ex is the dominant direction of the flow. Denote L, δν and B
the characteristic length scales over which flow properties change in the x, y and z direction
resp. Since δν � L and δν � B we scale x, y and z differently, viz.,

ξ =
x

L
, y+ =

y

δν
with δν ≡

ν

uτ
, and η =

z

B
.(5.17)

Then all partial derivatives w.r.t. the scaled variables are at most of order O(1). First we
assume that L � B. This approximation is reasonable in many applications, e.g. a flow
in a channel with large aspect ratio, a flow over an airfoil or a flow along a flat wall in
a indoor-air flow problem. Then, in the limit B → ∞ we obtain U3 = 0. Consequently,
(5.16), (5.11), and (5.12), reduce to, cf. [Wilcox98], p.150

2∑
j=1

∂(U1Uj)
∂xj

+
∂P∞
∂x1

=
∂

∂y

[
(ν + νt)

∂U1

∂y

]
, U2 = −

∫ y

0

∂U1(y′)
∂x1

dy′ ,(5.18)

with boundary conditions

U1 = 0 on ΓW , lim
y+→∞

U1(x1, y
+, x3) = U∞,1(x1) .

Under all these assumptions and using the same arguments, it is possible to obtain the
following corresponding boundary-layer equation for Θ, viz.,

2∑
j=1

∂(UjΘ)
∂xj

=
∂

∂y

[
(a+ at)

∂Θ
∂y

]
+ q̇V c−1

p ,(5.19)

with boundary conditions

Θ = Θw on ΓW , lim
y+→∞

Θ(x1, y
+, x3) = Θ∞(x1) ,

with Θ∞ denoting the free-stream temperature, see Section 5.1.

5.2.4. The one-dimensional non-isothermal boundary-layer equations

From now on we focus on the non-isothermal case. Equations (5.18)-(5.19) are the start-
ing point for deriving the one-dimensional boundary-layer equations, see e.g. [Wilcox98],
pp.150. For the streamwise and wall normal component of the mean velocity U and V
resp., the mean temperature Θ and turbulent viscosity νt Wilcox makes the following
ansatz inspired by physical intuition

U = uτ
(
U0(ξ, y+) + φ1U1(ξ, y+) +O(φ2)

)
,(5.20)

V = νL−1
(
V0(ξ, y+) + φ1V1(ξ, y+) +O(φ2)

)
,(5.21)

Θ = Θ0(ξ, y+) + φ1Θ1(ξ, y+) +O(φ2) ,(5.22)
νt = ν

(
n0(ξ, y+) + φ1n1(ξ, y+) +O(φ2)

)
,(5.23)

at = a
(
m0(ξ, y+) + φ1m1(ξ, y+) +O(φ2)

)
,(5.24)

with an asymptotic sequence {1, φ1, φ2, . . .}, φj =
(

ν
uτL

)αj
, 0 < α ≤ 1.

57



5. Near-wall treatment in turbulence modelling

Remark 5.2
As the following analysis is restricted to the leading-order terms, we are not interested in
detailed information regarding {1, φ1, φ2, . . .}. As noted in remark 5.1, in the turbulent case
it is not possible to deduce information concerning {1, φ1, φ2, . . .} without adding further
physical insight. This scaling is based on physical intuition. However it is in full agreement
with the ideas presented in subsection 5.2.1. First note that

∂U

∂x
=

∂U

∂ξ

∂ξ

∂x
=

1
L

∂U

∂ξ
,

∂2U

∂x2
=

1
L2

∂2U

∂ξ2
,

∂U

∂y+
=

1
δν

∂U

∂ξ
,

∂2U

∂y2
=

1
δ2
ν

∂2U

∂y+2

and analogous relations hold for V and Θ. Substituting (5.20)-(5.21) into the equation of
continuity yields (taking into account (5.17))

∂U

∂x
+
∂V

∂y
=

1
L

∂U

∂ξ
+

1
δν

∂V

∂y+
= O(

1
L
uτ ) + O(

1
δν

ν

L
) = O(

uτ
L

) + O(
uτ
L

).

Hence this ansatz ensures a nontrivial continuity equation, as the leading order terms
are already balanced with respect to the scaling parameters. Hence the ansatz can be
interpreted setting δ(ν) = ν

uτL
in the laminar asymptotic expansion (5.7)-(5.9). Again it

should be emphasised that the relation uτ = uτ (ν) is a priori unknown. ♦

Motivated by equations (5.18)-(5.19), for the further analysis we start with

U
∂U

∂x
+ V

∂U

∂y
+
∂P

∂x
− ∂

∂x

(
(ν + νt)

∂U

∂x

)
− ∂

∂y

(
(ν + νt)

∂U

∂y

)
= − βΘg · ex ,

U
∂Θ
∂x

+ V
∂Θ
∂y
− ∂

∂x

(
(a+ at)

∂Θ
∂x

)
− ∂

∂y

(
(a+ at)

∂Θ
∂y

)
= q̇V c−1

p .

Neglecting all terms of order φi (i ≥ 1) we get

uτU0

L

uτ∂U0

∂ξ
+
νV0

Lδν

uτ∂U0

∂y+
+

1
L

∂P

∂ξ
− ν

L2

∂

∂ξ

(
(1 + n0)

uτ∂U0

∂ξ

)
− ν

δ2
ν

∂

∂y+

(
(1 + n0)

uτ∂U0

∂y+

)
= − βΘg · ex ,

uτU0

L

∂Θ0

∂ξ
+
νV0

Lδν

∂Θ0

∂y+
− a

L2

∂

∂ξ

(
(1 +m0)

∂Θ0

∂ξ

)
− a

δ2
ν

∂

∂y+

(
(1 +m0)

∂Θ0

∂y+

)
= q̇V c−1

p .

This can be written as
τw
L
U0
∂U0

∂ξ
+
τw
L
V0
∂U0

∂y+
+

1
L

∂P

∂ξ
− δντw

L2

∂

∂ξ

(
(1 + n0)

∂U0

∂ξ

)
−τw
δν

∂

∂y+

(
(1 + n0)

∂U0

∂y+

)
= − βΘg · ex ,

uτ
L
U0
∂Θ0

∂ξ
+

ν

Lδν
V0
∂Θ0

∂y+
− a

L2

∂

∂ξ

(
(1 +m0)

∂Θ0

∂ξ

)
− a

δ2
ν

∂

∂y+

(
(1 +m0)

∂Θ0

∂y+

)
= q̇V c−1

p .
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5.3. Algebraic turbulence models for non-isothermal boundary layers

For most practical flows τw = O(10−3) and hence uτ = O(10−1). Now we assume that
δν � L and τw � L. Taking into account only terms of order O(1) and returning back to
dimensional variables, we obtain

dP

dx
− ∂

∂y

(
(ν + νt)

∂U

∂y

)
= − βΘg · ex ,(5.25)

− ∂

∂y

(
(a+ at)

∂Θ
∂y

)
= q̇V c−1

p .(5.26)

Now we assume that q̇V vanishes in the boundary layer. The remaining difficulty arises from
the pressure gradient. As an immediate consequence of Bernoulli’s equation (−dP/dxi =∑3

j=1 Uj∂Ui∂xj), decelerating flow (dU∞/dx < 0) corresponds to a positive, so-called ad-
verse pressure gradient, which can lead to separation of the boundary layer from the surface.
But also in attached boundary-layer flows the effect of a pressure gradient on the mean
flow and on the Reynolds stresses can be significant. This is described in more details e.g.
in [DPR01], pp.66. Moreover, pressure gradients might affect the value of PrT , see [KC93],
although such effects are small. Nevertheless, in this thesis we restrict ourselves to zero
pressure gradient boundary layers. For our purposes this approximation is reasonable since
in indoor-air flow problems, buoyance is the driving force of the air movement and pressure
gradients are hopefully small. (However, in natural convection in a closed cavity, adverse
pressure gradients occur as the flow approaches the corners, see [TODB98], p.290.) Then
(5.25)-(5.26) reduce to the following coupled system of ordinary differential equations:

− d

dy

(
(ν + νt)

dU

dy

)
= − βΘg · ex ,(5.27)

− d

dy

(
(a+ at)

dΘ
dy

)
= 0 .(5.28)

It is worthwhile pointing out that in the case βΘg · ex = 0, q̇V = 0, and dP/dx = 0,
momentum and heat transfer equation look analogously. As shown in Section C.2, when
suitably normalized, both have the same profile, an observation called Reynolds analogy.

5.3. Algebraic turbulence models for non-isothermal boundary layers

5.3.1. The substructure of a forced convection turbulent boundary layer

The total stress is the sum of the viscous stress ν∇U and the Reynolds stress −〈u′ ⊗ u′〉.
The fundamental observation is that in attached boundary layers the profiles of the viscous
and Reynolds stresses are universal, i.e., for different Reynolds numbers their normalized
profiles collapse when they are plotted against y+. On the basis of the relative magnitude
of the stresses and motivated by the profile for U several regions can be distinguished (cf.
[Pope00], p. 275), see Table 5.7.

In the literature, the near-wall edge of the log layer varies from y+ = 40 (Durbin) to
y+ = 50 (Pope). An understanding of the names ”log-law” and ”law of the wake” will
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5. Near-wall treatment in turbulence modelling

Region Location Characteristic property
Near-wall region y+ < 40 The viscous contribution to the shear stress
(viscous wall region) is significant
Viscous sublayer y+ < 5 The viscous stress highly dominates

the Reynolds shear stress
Buffer layer 5 < y+ < 40 large production, large Reynolds stress

anisotropy
Outer layer y+ > 40 Direct effects of the viscous stresses on U

are negligible
Log-law region y+ > 40, y/δ < 0.2 The log-law holds
Defect layer 0.2 < y/δ < 1.0 The law of the wake holds

Figure 5.7.: Location and defining properties of the near-wall regions and layers.

be postponed to Subsection 5.3.3. A computational method should be able to identify
the boundary layer and to distinguish between its subregions. In ParallelNS the thick-
ness of the boundary layer δlayer is estimated before the calculation when the mesh for the
numerical computation is chosen. This estimate is checked during the calculation. The
sublayers can be identified within the numerical solution process. For this purpose, recall
that if using the eddy-viscosity hypothesis, the turbulent viscosity νt should be a measure
for the magnitude of the Reynolds stresses. Thus, if we have an appropriate model for νt in
the boundary layer, on the basis of νt we can distinguish between its subregions. For this
purpose, we review algebraic turbulence models for the boundary layer. Algebraic models
are the simplest turbulence models, calculating νt from an algebraic expression.

5.3.2. Algebraic models based on Prandtl’s mixing-length hypothesis

In 1925, Prandtl proposed his famous mixing-length hypothesis as a relation for νt for
an isothermal turbulent boundary layer. It is a reasonable model in the region 40δν ≤
y ≤ 0.2δlayer, later referred to as the log-layer. A quite heuristic derivation of this model
will be given in the sequel, cf. [Pope00], p. 289. Therefore we consider a two dimensional
boundary-layer flow with U = U(y)e1. Then the turbulent-viscosity hypothesis reduces to

〈u′v′〉E = − νt
dU

dy
(5.29)

(3.11) motivates that νt is the product of a velocity scale u∗ and a lengthscale lm, viz.,
νt = u∗ lm . Choosing u∗ = |〈u′v′〉E |1/2 and substituting this into (5.29) gives

u∗ = lm |
dU

dy
| .(5.30)

Measurements and DNS data show that in the log-law region (i) 〈u′v′〉E is approximately
constant, viz., |〈u′v′〉E |1/2 ≈ uτ and (ii) dU/dy = uτ/(κy) . Inserting these two semi-
empirical relations into (5.30) gives Prandtl’s mixing-length hypothesis :

νt = u∗lm , with lm = κy , and u∗ = lm|
dU

dy
| = uτ .(5.31)
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5.3. Algebraic turbulence models for non-isothermal boundary layers
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Figure 5.8.: νt for simple algebraic models.

Note that (5.31) can be written as

νt = uτκy .(5.32)

Figure 5.8 provides some illustration. However, this sketch needs some explanation. The
solid line shows the profile of νt obtained from DNS data for a turbulent channel flow at
Reτ = 395: Given DNS data for U and 〈u′v′〉E , νt can be computed numerically using
formula (5.29). Secondly, given DNS data for U we can calculate νt from Prandtl’s relation
νt = (κy)2dU/dy (dashed line). Next, we can plot νt from (5.32) (dot-dashed line). Note
that the difference between the second and the third profile is that the latter explicitely
uses assumption (ii) whereas the former does not. Finally, from the DNS data for U we
can plot νt from Albring’s proposal (5.38) (dot-dot-dashed line), which is covered in the
next section. Apparently, νt is modelled reasonably in the log-layer (40 < y+ < 80 = 0.2δ).
However, in applications it may appear that we need an extension of our model for νt (i)
to the near-wall region y+ < 40 or (ii) to the region 0.2 < y/δ < 1.0. An example is
the wall function concept presented in the next chapter: An intrinsic objective therein is
to estimate the velocity at a certain distance yP from the wall in the boundary layer (to
be more precise: at the first node above the wall). On the one hand, when the Reynolds
number is large, we only can afford 0.2 < yP /δ < 1.0. On the other hand, in simple test
cases we are also interested in the model’s behaviour if yP ν/uτ < 40, see also (5.17).
Concerning (i) van Driest proposed to multiply lm with a suitable damping function
D(y+) = 1− exp(−y+/A+), known as the van Driest damping function, viz.,

lm = δνκy
+D(y+) , D(y+) = 1− exp(−y+/A+) , A+ = 26 .(5.33)

Then νt is effectively multiplied with (D(y+))2. Some heuristic physical support for this
modification stems from the fact that the no-penetration condition v′ = 0 and the continu-
ity equation imply that asymptotically u′ ∼ y, v′ ∼ y2 near the wall and hence 〈u′v′〉E ∼ y3.
But (5.31) predicts 〈u′v′〉E ∼ y2 and thus has to be damped. (5.33) gives 〈u′v′〉E ∼ y4 (see
[Pope00], Exercise 7.19), which is in much better agreement with DNS data.
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5. Near-wall treatment in turbulence modelling

The deviation in the defect layer is much more severe. Figure 5.8 reveals that a con-
stant eddy viscosity is a much better approximation. One modification to accomplish this
is to choose νt = 0.2κuτd99 (y > 0.2δ) (cf. [DPR01], p.116) as originated by Clauser

(see [Wilcox98], p.73). Alternatively, Escudier proposed to limit lm by setting lm =
min{κy, 0.09d99}. Note that Escudiers modification is quite simple and can be included
in both Prandtl’s and Albring’s model immediately once d99 can be estimated. An addi-
tional improvement for approaching the freestream from within the boundary layer can be
achieved by multiplying νt by a so-called intermittency factor [1 + 5.5(0.3y/d99)6]−1, see
[DPR01], p.117 or [Wilcox98], pp. 73.

Remark 5.3
Concerning the isothermal case, a survey of more advanced algebraic turbulence models
can be found in [Wilcox98], Chapters 3.4-3.8. ♦

Nevertheless, one should be aware that all these modifications have been conceived for
isothermal boundary layers.

5.3.3. Forced convection solution in the viscous sublayer and in the log layer

In this subsection we elaborate on the mean velocity profiles in forced convection. Then U
is the solution of the boundary-layer equation (5.27) with zero right hand side. Substituting
(5.31) into (5.27) simple integration yields the famous log law (see C.3)

u+(y+) =
{
y+, if y+ ≤ 11.06
1
κ ln(y+) +B, if y+ > 11.06 , with κ = 0.41, B = 5.2.

(5.34)

The name log-layer originates from the logarithmic profile of the velocity in that layer.
From the definition of y+ and (5.34), it can be checked during the calculation whether a
point with distance y+ to the wall is located in the viscous sublayer or in the log layer.
Another well-established solution is given by Reichardt’s law

u+ =
1
κ

ln(1 + 0.4y+) + 7.8
[
1− exp

(
−y

+

11

)
− y+

11
exp(−0.33y+)

]
.(5.35)

Since the simple algebraic models for νt fail in the defect layer, it is evident that the
predicted profiles for U deviate from the true profiles. For the boundary layer, in good
agreement with experimental data is the modified log-law, cf. [Dea76], viz.,

u+ =
1
κ

ln(y+) +B +
Π
κ
w

(
y

d99

)
, w

(
y

d99

)
= 2 sin2

(
π

2
y

d99

)
(5.36)

with Π ≈ 0.4757 for a zero pressure gradient boundary layer. The term w(·) in (5.36) is
called wake contribution.
Figure 5.9 visualises the profiles. Apparently the deviation of (5.34), (5.35) and (5.41) from
the log-wake law in the defect layer is significant.
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5.4. Algebraic turbulence models for natural convection boundary layers
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Figure 5.9.: Typical velocity profile in a boundary layer.

5.4. Algebraic turbulence models for natural convection boundary layers

5.4.1. The substructure of a natural convection turbulent boundary layer

Appropriate experimental data for natural convection turbulent boundary layers are by
far less abundant than for the forced convection case. George and Capp, see [GC79],
suggested a two-layer structure: an inner layer and an outer layer are separated by the
location of velocity maximum denoted by ymax, see Figure 5.3. The inner layer can be
divided into a viscous layer next to the wall and a buoyant sublayer. In the viscous sublayer
the turbulent fluxes and stresses are negligible small. Therefore this sublayer is also referred
to as conductive layer. If Ra is sufficiently large, then the logarithmic profile is a reasonable
approximation for velocity and temperature, cf. [Nei99]. However, as reported in [TK00a],
in their low turbulence natural convection test case (Ra = 1.58×109), the solution does not
exhibit a logarithmic region, because Ra is not large enough. Finally it should be recalled
that density gradients alter the near-wall turbulence compared to the forced convection
case, recall Subsection 3.3.2. However, this is still an open problem.

5.4.2. An algebraic model for boundary layers in buoyancy driven flows

In buoyancy driven flows, the wall-parallel mean velocity U has a well-defined maximum
at wall distance ymax in the boundary layer. Then at y = ymax we get |dU/dy| = 0 but
measurements show νt is far from zero there. Hence for buoyance driven flows (5.31)-(5.32)
are not an appropriate model for νt at least for y ≥ ymax. Following Neitzke, cf. [Nei99],
and using the following scaled variables

y+ ≡ yuτ
ν

, u+ ≡ U

uτ
, θ+ ≡ cpuτ (Θw −Θ)

q̇
(5.37)
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5. Near-wall treatment in turbulence modelling

our research group uses the following choice for νt suggested by Albring, cf. [Alb81]:

ν + νt = ν max
(

1 ,
Re

Remin

)
,(5.38)

a+ at =
ν

Pr
max

(
1 ,

Re

Remin

Pr

Prt

)
(5.39)

with Re = U(y)yν−1, and Remin being a parameter which has to be determined experi-
mentally. In particular, Remin depends on Re and on the stratification, see below. Neitzke
proposes

√
Remin = 6.25 in neutral stratified boundary layers. We use Pr = 0.70 for air.

For the non-universal constant Prt we choose Prt = 1.15 in the boundary layer, which is
in agreement with latest papers, cf. [PS01], Section 3.3. It can be seen from Figure 5.8
that Albring’s model exhibits the same deficiencies as Prandtl’s model in the isothermal
case.

Remark 5.4
In our research group (5.38)-(5.39) is also used in the case of mixed convection. ♦

As described in Section 3.3.2, the Richardson number is a measure for the stabilising effect
of stratification. If Rif > 0, then turbulence is suppressed; if Rif < 0, then turbulence is
enhanced. In order to account for this effect in boundary layer flows, Neitzke proposed
[Nei99], p.51, for each x ∈ ΓW :

Remin = Remin,n e
χKsRig , with Rig ≡ −g · n

1
Θ
∇Θ · n||S(U)||−2

F ,
√
Remin,n = 6.25 .

(5.40)

Here g is the gravitational acceleration, n is the outer normal vector to x ∈ ΓW , and
χ ∈ {0, 1}. Rig is called gradient Richardson number. Note that Rif is based on the
turbulent fluxes; substituting (3.17) and (3.26) into (3.19) gives Rig which is based on
gradient-diffusion and eddy-viscosity hypotheses. If Rig < 0 then Remin < Remin,n and
thus νt, i.e., turbulence, is enhanced; if Rig > 0 then νt is suppressed. Based on numerical
tests, Neitzke suggests Ks = 20.0, see [Nei99], Subsection 5.2.4. In agreement with new
results from [Sei03] and due to own tests we suggest Ks = 25.0, Remin = 20.0. We use a
cut-off technique to ensure that Remin ∈ [Remin,cut, 70.0] with Remin,cut = 12.0. Note that
Rig can be calculated directly from surface transfer coefficients, viz.,

Rig = g
1
Θ
∂Θ
∂y

(
∂U

∂y

)−2

=
gq̇Prν

τ2
wcpΘ

, with ν
∂U

∂y
= τw and a

∂Θ
∂y

=
q̇

cp
.

5.4.3. Non-isothermal forced convection solution in the sublayer and in the log layer

Neitzke’s proposal (5.38)-(5.39) gives reasonable results also for the forced convection case,
see [Nei99], Section 5.2.1. This is quite important because in practical indoor-air flow
problems mixed free and forced convection occurs. Substituting (5.38)-(5.39) into (5.27)
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5.5. On the near-wall behaviour of the k/ε model

and (5.28), and integration gives (see C.4)

u+(y+) =

{
y+, if y+ ≤ Ru
Ru(2 ln( y

+

Ru
) + 1)

1
2 , if y+ > Ru

,(5.41)

θ+(y+) =

{
Pr y+, if y+ ≤ Rθ
Cθ(2 ln(y

+

Rθ
) + 1)

1
2 , if y+ > Rθ

,(5.42)

with constants Ru = 6.25, P r = 0.70, Rθ = 8.0, Cθ = PrRθ. From (5.38)-(5.39) resp. from
(5.41)-(5.42) it can be checked during the calculation whether a point with distance y+ to
the wall is located in the viscous sublayer or in the log layer.
Substituting (5.31) and Prt = νt/at into (5.28) gives the standard log-law for the tempera-
ture for non-isothermal forced convection flows, see C.3. As pointed out in [KC93], p.274, a
streamwise pressure gradient alters the profile in the logarithmic layer significantly, whilst
it effects the velocity profile only in the wake region. This underligns the importance of a
negligible streamwise pressure gradient.

5.4.4. Free convection solution in the viscous sublayer and in the log layer

In the case of natural convection, we have to solve (5.27)-(5.28) using (5.38)-(5.39). It can
be confirmed that the analytic solution in the conductive layer is given by

U(y) =
τw
ν
y − 1

2
βgx

θw
ν
y2 − βgx

3νa
q̇

cp
y3 , Θ(y) = θw +

q̇

acp
y ,(5.43)

with gx = g · ex. This theoretical result is supported by the experimental study in [AK02].
The solution procedure in the log-layer has to be accomplished numerically. The wall
iteration procedure by Neitzke provides the opportunity to obtain reasonable values for
wall surface parameters, even if the first near-wall grid point resides beyond the location
of the velocity maximum, see [Nei99], Chapter 5.
Finally, it should be mentioned that experimental data for the Reynolds stresses and for the
heat flux vector can be used for testing existing models for νt and at in natural convection
problems. Profiles for νt, at and Prt, computed from mean flow and temperature gradients
and the corresponding fluxes, are shown in [AK02], Figure 11. However, the available
experimental data concerning this problem are still very limited.

5.5. On the near-wall behaviour of the k/ε model

Using the perturbation techniques described in the previous section, in the log layer, the
isothermal RANS equations with the k/ε model, can be written as

d

dy

(
νt
dU

dy

)
= 0 ,(5.44)
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5. Near-wall treatment in turbulence modelling

νt

(
dU

dy

)2

− ε +
d

dy

(
νt
Prk

dk

dy

)
= 0 ,(5.45)

C1Cµk

(
dU

dy

)2

− C2
ε2

k
+

d

dy

(
νt
Prε

dε

dy

)
= 0 ,(5.46)

νt = Cµ
k2

ε
,(5.47)

cf. Wilcox eq.(4.126) and eq.(4.132). The solution of (5.44)-(5.47) is, cf.[Wilcox98] eq.(4.133)

U =
uτ
κ

ln y + constant , k =
u2
τ√
Cµ

, ε =
u3
τ

κy
.(5.48)

Based on experimentell results Yuan et al. proposed the following modifications:

k+ ≡ k

u2
τ

= min

(
1√
Cµ

; 0.05(y+)2

)
, ε+ ≡ εν

u4
τ

=
0.1 + 0.003(y+)2

1.0 + 0.00125(y+)3
.(5.49)

Obviously these formulae satisfy very close to the wall k+ ∼ (y+)2, and ε = O(1), cf.
[Pope00], pp. 286., [DPR01], p.169. Hence (5.49) can be used also in the near-wall region.
However, (5.49) becomes erroneous in the defect layer. By definition 2k = 〈u′2〉E +〈v′2〉E +
〈w′2〉E . Figure 5.2 reveals that k ceases when approaching the freestream region in contrast
to (5.49).

5.6. On LES in the near-wall region

In order to apply LES to the near-wall region, it is essential bearing in mind the physics
of turbulence there. Eddies of size O(δν) are subject to fundamental high energetic struc-
tures processes and events (e.g. streaks, sweeps and ejections). Moreover the maximum
of production of turbulent kinetic energy is located in the buffer layer at y+ ≈ 12, which
gives rise to a significant backward energy cascade, cf. [Sag01], p.215. For further details
see [Sag01], Section 9.2.1, [DBP01], p.208 and [Pope00], Section 7.4. Regarding turbulent
structures in buoyancy driven flows see e.g. [PD01], Figure 6.
To resolve these very small eddies near the wall, a very fine filter width is necessary. In the
wall-normal direction a filter width of ∆y ≈ δν is recommended, see [Sag01], p.217, [PC96].
As turbulent flow structures in the free-stream are much larger, it would be desirable to
use filters with non-constant filter width. On the problems of non-constant filter width and
the commutation error between filtering and differentiation see e.g. [MV02].
Besides the problem of non-constant filter width, there are two major model problems.
First, for each ∆ > 0 the no-slip condition u = 0 on ΓW does not imply u = 0 on ΓW .
Thus a no-slip condition for u is only an approximation. A second problem is that clas-
sical residual stress models cannot predict backscattering effects accurately, cf. [VGK97].
Moreover, a correct near-wall scaling of the SGS model is important. Finally, even with
today’s supercomputers, the computational costs are a major obstacle; LES with near-wall
resolution for high Reynolds/Rayleigh-number turbulent flows is still infeasible.
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6. A computational k/ε model using wall functions

In this chapter we develop a computational k/ε model for wall-bounded flows, the term
”computational” indicating its applicability in a CFD code. For this purpose we combine
results from Section 1.4, and Chapters 3 and 5. The k/ε model, introduced in Chapter 3, is
a successful model except in a zone adjacent to the wall. In Chapter 5 a much simpler model
for boundary-layer flows was reviewed. Now the underlying idea is to couple the global k/ε
model with the local boundary-layer model using a fully overlapping DDM by applying the
scheme (1.47)-(1.51). This approach is often referred to as wall function procedure.

6.1. A two-domain approach

In the previous section we divided the flow region Ω into the boundary layer Ωlayer and
the free-stream region Ωfree. From a computational point of view, this partitioning is
not propitious. As explained in the previous chapter, the k/ε model yields reasonable
predictions not only in Ωfree but also in the log layer, being a subset of Ωlayer. Merely in
the sublayer and in the buffer layer the predictions are erroneous. Thus we divide Ω into
Ωδ and Ωouter, being defined as

Ωδ ≡ { x ∈ Ω | dist(x,ΓW ) ≤ yδ } , Ωouter ≡ { x ∈ Ω | dist(x,ΓW ) > yδ } .(6.1)

Here we have to introduce an artificial curve Γδ, see Figure 6.1. For each x ∈ ΓW denote
yδ ≡ yδ(x) ≡ dist(x,Γδ). We require that Γδ is located at most in the log-layer. Thus Γδ
is the curve where the k/ε model prediction for the flow field farther from the surface and
a suitable near-wall solution are patched. The idea is to use two different models for νt in
Ωδ and Ωouter. We start with the following model, later referred to as k/ε model I.

Computational k/ε turbulence model I

• Non-isothermal RANS equations

∂tU −∇ · (2νeS(U)) + (U ·∇)U +∇p = − βΘg in Ω ,

∇ ·U = 0 in Ω ,

∂tΘ + (U ·∇)Θ−∇ · (ae∇Θ) = q̇V c−1
p in Ω .

• Eddy viscosity model

– In Ωouter : νt = Cµk
2ε−1, at = Pr−1

t νt, where k and ε are the solution of

∂tk + (U ·∇)k −∇ · (νk∇k) = Pk +G− ε in Ωouter ,

∂tε+ (U ·∇)ε−∇ · (νε∇ε) + C2ε
2k−1 = C1εk

−1(Pk +G) in Ωouter .
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Figure 6.1.: Domain decomposition for wall function procedure.

– In Ωδ : νt and at are given by (5.38) and (5.39) resp.

• Boundary conditions

U = U in on ΓF , U = 0 on ΓW , σ(U , P ) · n = 0 on ΓN ,

Θ = Θin on Γ−(U), Θ = Θw on ΓW , a∇Θ · n = 0 on Γ+(U) ,

k = 1.5(Tu||U ||)2 on Γ−(U), k= C−1/2
µ U2

∗ on Γδ, νk∇k · n = 0 on Γ+(U),

ε = C3/4
µ k3/2L−1 on Γ−(U), ε= U3

∗ /(κyδ) on Γδ, νε∇ε · n = 0 on Γ+(U).

Here κ = 0.41, Tu denotes the degree of turbulence and L is a length that is charac-
teristic for this turbulence problem. If Γδ is partially located in the viscous sublayer,
we use (5.49) on Γδ as boundary condition for k and ε.

• together with suitable initial conditions

Note that the boundary condition for k and ε on Γδ is a consequence of (5.48) when
substituting y = yδ. In practice, Γδ contains all mesh points with minimal positive distance
to ΓW and the corresponding (d-1)-dimensional simplices from the finite element mesh. It
has to be checked during the numerical solution process that Γδ is located at most in the
log-layer.

6.2. The wall function concept as a fully overlapping DDM

It seems natural to apply a domain decomposition method (DDM) to this two-domain
problem. The idea is to apply the approach from Section 1.4, i.e., a fully overlapping
DDM.
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6.2. The wall function concept as a fully overlapping DDM

1. In the first step we compute a solution in Ω. This solution has a good accuracy in
Ωouter and is therefore called the outer solution. But it might be not accurate enough
in Ωδ. For the outer solution at ΓW instead of a no-slip condition we impose a
mixed boundary condition (1.13) with a traction vector σt that has to be determined
during the iterative solution process. The traction vector σt tries to ensure the correct
behaviour of the outer solution in the proximity of the wall.

2. In the second step we compute a solution in Ωδ by solving a boundary-layer problem
in Ωδ. The boundary-layer solution is often referred to as inner solution, as it is a
good solution in the near-wall zone of the boundary layer.

3. In the third step we calculate a new guess for the traction vector such that the inner
flow matches the outer flow on Γδ.

First we introduce the following notation: Given η : Ω→ R and x ∈ ΓW , we write

η|Γδ ≡ η(x− yδ(x)n) .(6.2)

Thus for each x′ on Γδ with x′ = x − yδn we have η|Γδ ≡ η(x′), which is the value of
η at the point x′ corresponding to x ∈ ΓW . This implicit relation between x ∈ ΓW and
x′ ∈ Γδ will be used throughout this thesis. As an example, we introduce the projection of
the velocity onto the plane tangent to the wall,

U δ,t ≡ U δ − (U δ · n)n , with U δ ≡ U |Γδ .(6.3)

Then we seek an outer solution U , P , Θ, k, ε in Ω× (0, T ), an inner solution UBL, PBL,
ΘBL in Ωδ × (0, T ) (with Ωδ ⊂ Ω) and scalars U∗, q̇ (these are the variables which shall
ensure the matching) such that the following equations hold, referred to as k/ε model II:

Computational k/ε turbulence model II

(1) Compute the outer solution.

– Non-isothermal RANS equations

∂tU −∇ · (2νeS(U)) + (U ·∇)U +∇p = − βΘg in Ω ,

∇ ·U = 0 in Ω ,

∂tΘ + (U ·∇)Θ−∇ · (ae∇Θ) = q̇V c−1
p in Ω .

– Eddy viscosity model: νt is given as in k/ε model I.
– Boundary conditions: W.r.t. k and ε see k/ε model I. For U and Θ we

prescribe

Θ = Θin on Γ−(U) , a∇Θ · n = q̇/cp on ΓW , ∇Θ · n = 0 on Γ+(U),
U = U in on ΓF , σ(U , P )n = 0 on ΓN ,

U · n = 0, nTσ(U , p)tj = U∗
2U δ,t · tj
||U δ,t||

(j = 1, . . . , d− 1) on ΓW .

(6.4)
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6. A computational k/ε model using wall functions

(2) Compute the inner solution and match outer and inner solution

– Non-isothermal RANS equations

∂tU
BL −∇ · (2νeS(UBL)) + (U ·∇)UBL +∇pBL = −βΘBLg in Ωδ ,

∇ ·UBL = 0 in Ωδ ,

∂tΘBL + (UBL ·∇)ΘBL −∇ · (ae∇ΘBL) = q̇V c−1
p in Ωδ .

– Eddy viscosity model : νt and at are given by (5.38) and (5.39) resp.

– Boundary conditions

ΘBL = Θ|Γδ on Γδ , ΘBL = Θw on ΓW ,

UBL = U |Γδ on Γδ , UBL = 0 on ΓW .

Matching condition : U∗ and q̇ are given by

nTσ(UBL, PBL)tj = U2
∗
U δ,t · tj
||U δ,t||

(j = 1, . . . , d− 1) on ΓW ,(6.5)

a∇ΘBL · n = q̇/cp on ΓW .(6.6)

Remark 6.1
The close relation between k/ε model II and (1.47)-(1.51) is obvious: k/ε model II can
be interpreted in the sense of a fully overlapping DDM as introduced in section 1.4. In Ωδ

the function νt is given by (5.38) and (5.39) for both the outer flow and the inner problem.
Thus, performing a DDM is originated in a natural manner by the use of two models for
computing the turbulent viscosity νt in Ωδ and Ωouter. ♦

Remark 6.2
Note that (6.4) assumes σt being aligned with U δ,t. Moreover, obviously U∗ is an ap-
proximation to uτ . At a two-dimensional separation point uτ = 0, see [DPR01], p.128.

♦

Remark 6.3
A different promising strategy is a so-called hybrid RANS/RANS approach. Then Ω
is divided into Ωδ and Ωouter. In Ωδ and Ωouter different RANS are used. In contrast to the
wall function approach, coupling both subdomains is accomplished at the interface Γδ. For
example, for massively separated flows using the Spalart-Almaras model in Ωδ seems
reasonable. Menter proposed to couple the k/ε and the k/ω models using a blending
function, see [Men94]. ♦

6.3. The wall function concept using boundary-layer theory

The next step consists in simplifying the model in Ωδ. In ParallelNS we use the equa-
tions (5.27)-(5.28). Of course, more complex boundary-layer equations like (5.16) can be
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6.3. The wall function concept using boundary-layer theory

considered, which can be combined with more advanced models for νt in Ωδ, see [CM00].
Thus we focus on the following model, referred to as k/ε model III:

Computational k/ε turbulence model III

(1) Compute the outer solution: See k/ε model II.

(2) Compute the inner solution and match outer and inner solution

– Non-isothermal RANS equations

− d

dy

(
(ν + νt)

dUBL

dy

)
= − βΘBLgx in (0, yδ) ,(6.7)

− d

dy

(
(
ν

Pr
+

νt
Prt

)
dΘBL

dy

)
= 0 in (0, yδ) .(6.8)

– Eddy viscosity model: See k/ε model II.

– Boundary conditions:

UBL|y=0 = 0 , UBL|y=yδ = U(yδ) ≡
U δ ·U δ,t

||U δ,t||
,(6.9)

ΘBL|y=0 = Θw , ΘBL|y=yδ = Θ(yδ) ≡ Θ|Γδ .(6.10)

(3) Matching condition: U∗ and q̇ are given by

ν
dUBL

dy
|y=0 = U∗

2 , a
dΘBL

dy
|y=0 = q̇/cp on ΓW .(6.11)

Computational turbulence model IIIa for flows significant buoyancy forces

First we consider the case of significant buoyancy forces. Then for each x ∈ ΓW we have
to solve the boundary value problem (6.7)-(6.10) using a shooting method. Therefore for
each x ∈ ΓW consider the following initial value problem:

− d

dy

(
(ν + νt)

dUBL

dy

)
= − βΘBLgx in (0, yδ) ,(6.12)

− d

dy

(
(
ν

Pr
+

νt
Prt

)
dΘBL

dy

)
= 0 in (0, yδ)(6.13)

with the initial conditions

UBL(y = 0) = 0 , ν
dUBL

dy
|y=0 = r ,(6.14)

ΘBL(y = 0) = Θw , a
dΘBL

dy
(y = 0) = s .(6.15)
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6. A computational k/ε model using wall functions

where (r, s) is a parameter in R × R. For every given (r, s) in R × R the initial value
problem has a unique solution, see C.1. Obviously the solution of the initial value problem
is a solution of the boundary value problem, if(

Udiff (r, s)
Θdiff (r, s)

)
=
(

0
0

)
,with

(
Udiff (r, s)
Θdiff (r, s)

)
≡
(
UBL(yδ)
ΘBL(yδ)

)
−
(
U(yδ)
Θ(yδ)

)
.(6.16)

(Udiff (r, s),Θdiff (r, s))T is a function from R×R onto R×R. For each pair (r, s) the corre-
sponding value Udiff (s, r),Θdiff (r, s) can be computed by solving an initial value problem,
see C.1. Consequently we can seek the zero (r0, s0) of (Udiff ,Θdiff ) using Newton’s method
and set U∗2 ≡ r0, q̇ = cps0. Whereas in practice this scheme shows a reasonable conver-
gence behaviour, cf. Section 13.3, a proof for the well-posedness and the convergence of
the Newton’s method is still an open problem.

Then the k/ε model IIIa reads : Find an outer solution U , P , Θ, k, ε and an inner
solution UBL, PBL, ΘBL and scalars U∗, q̇ such that

Computational k/ε turbulence model IIIa

(1) Compute the outer solution: See k/ε model III.

(2) Compute the inner solution and match outer and inner solution
For each x ∈ ΓW seek the zero (r0, s0) ∈ R×R of (6.16) (using Newton’s method).
Then U∗ and q̇ are given by U∗2 ≡ r0,q̇ = cps0.

Remark 6.4
It should be mentioned that k/ε model IIIa does not account for effects predicted by BVG
theory (see Subsection 3.3.2), because k/ε model IIIa uses a coarse turbulence model
for the near-wall region. On the other hand, when using a more sophisticated near-wall
turbulence model together with a near-wall resolution technique, numerical tests revealed
that (3.27) gives significantly better results than (3.26), see [TODB98]. ♦

Computational turbulence model IIIb for flows with negligible buoyancy forces

In the case of forced convection we can neglect the buoyancy term in (6.7) and (6.12) resp.
Then (6.12)-(6.15) can be solved analytically. The solution depends on the model for νt and
at. Using (5.38)-(5.39) yields the law of the wall derived by Neitzke, see C.4. Using (5.31)
yields the log law by Prandtl and van Karman, cf. C.3. The profile of the analytical
solution depends solely on the parameters U∗ and q̇. Thus U∗ and q̇ can be determined
by the requirement that the inner solution matches the corresponding outer solution at
y+
δ ≡ yδU∗/ν, i.e.,

u+(y+
δ ) = u+

δ , θ+(y+
δ ) = θ+

δ , with u+
δ ≡

U(yδ)
U∗

, θ+
δ ≡

cpU∗(ΘW −Θ(yδ))
q̇

.(6.17)

Therein u+(y+
δ ) and θ+(y+

δ ) are the (scaled) values of the analytic inner solutions at y+
δ

and u+
δ and θ+

δ are the (scaled) values of the outer solutions at y+
δ . Equation (6.17) can
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6.3. The wall function concept using boundary-layer theory

be used to compute (U∗, q̇). First, U∗ is determined by solving the first equation, as q̇ does
not occur in (5.41). After that q̇ can be determined from an algebraic equation.

Then the model reads : Find an outer solution U , P , Θ, k, ε and scalars U∗, q̇ such that
the following equations hold, which will be referred to as k/ε model IIIb

Computational k/ε turbulence model IIIb

(1) Compute the outer solution : See k/ε model II.

(2) Compute wall shear stress and heat flux. For each x ∈ ΓW
(i) seek U∗ (using Newton’s method) s.t.

u+
δ =

{
y+
δ , if y+

δ ≤ Ru
Ru(2 ln( y

+
δ
Ru

) + 1)
1
2 , if y+

δ > Ru
,

with u+
δ given in (6.17), and (ii) given U∗ from step (i) determine q̇ from

q̇ =
cpU∗(ΘW −Θ(yδ))

θ+(y+
δ )

,

with θ+(y+
δ ) given by

θ+(y+
δ ) ≡

{
Pr y+

δ , if y+
δ ≤ RΘ

CΘ(2 ln( y
+
δ
RΘ

) + 1)
1
2 , if y+

δ > RΘ

,

The wall function concept has been conceived for the isothermal case with yδ located in the
log-layer. In the sequel we will focus on this situation and give some mathematical results.
Step (2) in model IIIb reads: Given yδ and U(yδ) seek U∗ s.t.

f(U∗) = 0, f(x) ≡ RuS(x)− U(yδ)
x

, S(x) =

√
2 ln

(
yδx

Ruν

)
+ 1 .(6.18)

Obviously, f is well defined on D ≡ (e−1/2Ruνy
−1
δ ,∞). The function f is twice continuously

differentiable on D, with

df

dx
=

Ru
S(x)x

+
U(yδ)
x2

,
d2f

dx2
= − Ru

x2

(
1

S(x)3
+

1
S(x)

)
− 2U(yδ)

x3
.(6.19)

Now we study the particular situation ν = 0.0001, yδ = 0.0625 and U(yδ) = 0.505249,
which appears in a turbulent channel flow at Reτ = 395. A plot of f and df/dx for these
values is given in Figures 6.2 and 6.3. Clearly, f has a unique zero in D and df/dx is
strictly positive on D. Then Newton’s method for the solution of the equation f(x) = 0 is
given by the iterative scheme (which is obviously well defined)

x(n+1) = x(n) − [f ′(x(n))]−1f(x(n))(6.20)
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Figure 6.3.: Plot of df/dx.

starting with some x(0) ∈ D. Substituting (6.18)-(6.19) into (6.20) yields the scheme

x(n+1) = x(n)

(
1 + S(x(n))

U(yδ)−RuS(x(n))x(n)

Rux(n) + S(x(n))U(yδ)

)
.(6.21)

Corollary 6.15 in [Kre98] ensures that the scheme (6.21) is locally convergent, i.e., there
exists a neighbourhood B of the zero x∗ such that the Newton iterations converge to x∗
for all x(0) ∈ B. Computational tests reveal that B is sufficiently large. For turbulent
channel flow at Reτ = 395 the exact (theoretical) zero is x∗ = 0.0395 and convergence of
our scheme is obtained for B = (e−1/2Ruνy

−1
δ , xb) with xb ≈ 2x∗.

In ParallelNS we start with the initial guess x(0) = (νU(yδ)y−1
δ )1/2. This choice is

motivated by τw = x2
∗ and τw ≡ νdU/dy|y=0 when using the approximation dU/dy|y=0 ≈

U(yδ)y−1
δ . Of course, a computational method has to check whether x(0) ∈ D or not.

6.3.1. Some remarks on the k/ε model using wall functions

Numerical solutions of k/ε model IIIb are sensitive to the artificial boundary Γδ where
the matching occurs, see [Gri01], pp.32. In particular, k/ε model IIIb yields reasonable
results only if Γδ is sufficiently close to ΓW . Additional problems can occur if Γδ is not
parallel to ΓW , e.g. if Γδ comes from an unstructed grid. Concerning these problems, k/ε
model IIIa is significantly superior to k/ε model IIIb, cf.[Gri01], pp.76.
The idea of wall functions is to ensure a correct behaviour in the log law region in attached
boundary layers. However, despite using wall functions, the prediction e.g. of the skin
friction coefficient can be poor. Wilcox points out that this is not necessarily due to the
function concept. This can arise due to shortcomings of the two-equation model itself, cf.
[Wilcox98], p.174. A strategy to accounting for pressure gradients in the log layer equations
can be found in [Wilcox98], p.174. Finally it should be recalled that care must be taken
regarding separated flows.
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The objective of this chapter is similar to that of Chapter 6: We combine a global LES
model and a local boundary-layer model using the fully overlapping DDM presented in
(1.47)-(1.51). This approach, referred to as stress balance model, has been used by engi-
neers for more than three decades. In Subsection 7.1.1 a formulation which is more con-
venient to mathematicians will be given. As LES is closer to the Navier-Stokes equations
than a RANS model, many efforts have been made to combine the global LES model with
a more sophisticated near-wall model. This coupling is called thin boundary-layer equation
model and is addressed to in Subsection 7.1.2. A survey of an alternative approach, namely
coupling LES with a RANS using a non-overlapping DDM, closes this chapter.
We start with the non-isothermal LES equations equipped with Dirichlet boundary condi-
tions for both velocity and temperature. In the sequel write w, q and ϑ instead of u, p, θ
because due to the closure hypotheses, w, q and ϑ are only an approximation to u, p, θ.
Note that w = 0 on ΓW is only an approximate boundary condition since obviously u = 0
does not imply u 6= 0 on ΓW , unless the filter width ∆ goes to zero when approaching the
wall. The same observation holds for ϑ. Thus we start with LES model I which reads

Computational non-isothermal LES model I

• Compute residual stress tensor and residual temperature flux

(i) Compute turbulent viscosity and turbulent diffusivity.
Define νe = ν + νt, ae = a+ at, where νt and at are given in Ω by

∗ Smagorinsky model: Given CS ∈ {0.1, 0.21}, Prt = 0.4 compute

νt = (CS∆)2

(
max{ 0 ; ||S(w)||2F +

β

Prt
g · ∇ϑ}

)1/2

, at =
νt
Prt

.

∗ Iliescu-Layton model: Compute w = Rw, with regularization operator
R. wi ≡ (Rw)i (1 ≤ i ≤ d) is defined as the solution wi of

−∆2

4γ
4wi +wi = wi in Ω ,(7.1)

∇wi · n = 0 on ∂Ω .(7.2)

Then, given Cq ∈ {0.1, 0.21}, Prt = 0.4, compute νt and at

νt = Cq∆||w −Rw||
(

max{ 0 ; 1 +
1

||S(w)||2F
β

Prt
g ·∇ϑ}

)1/2

, at =
νt
Prt

.
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(ii) Compute Galdi-Layton model.
From the definition of R in (7.1)-(7.2), for 1 ≤ i, j ≤ d compute

(Au(w))ij ≡
∆2

12
R

(
d∑
l=1

∂wi
∂xl

∂wj
∂xl

)
, (Aθ(w, ϑ))j =

∆2

12
R

(
d∑
l=1

∂ϑ

∂xl

∂wj
∂xl

)
.

(iii) Near-wall damping of residual stress tensor and residual temperature
flux. Multiply νt, at, (Au(w))ij and (Aθ(w, ϑ))j with D(y+)α, D(y+) = 1 −
e−y

+/26 being the van Driest damping function and y+ denoting the distance
to the closest wall in wall units. We select α = 2 for Smagorinsky model and
Galdi-Layton model; for the Iliescu-Layton model we choose α = 3.

• Non-isothermal LES-equations

∂tw −∇ · ( 2 νe S(w)−Au(w) ) + (w∇)w +∇q = − β ϑ g in Ω× (0, T ) ,
∇ ·w = 0 in Ω× (0, T ) ,

∂tϑ−∇ · (ae∇ϑ−Aθ(w, ϑ)) + (w∇)ϑ = q̇V c−1
p in Ω× (0, T ) .

• Boundary conditions

ϑ = Θw on ΓW,D × (0, T ) , a∇ϑ · n = q̇c−1
p on ΓW,N × (0, T ) ,(7.3)

w = 0 on ΓW × (0, T ) ,(7.4)

• and a suitable set of initial conditions.

LES model I can be used for practical calculations provided (i) the filter width can be
chosen very fine near the wall, i.e. ∆ ≈ δν with δν denoting the viscous length scale, and
(ii) the SGS model (including some near-wall damping if necessary) is valid up to the wall.
Concerning LES model I, requirement (i) often cannot be satisfied for problems at higher
Rayleigh numbers. Moreover recall the fact that for our purposes, i.e. applications to
indoor-air flow problems, only the mean effect of the near-wall turbulent processes on the
outer flow has to be captured. In natural convection problems, if constant values for CS
and Prt are chosen, then the van Driest damping function close to walls has to be used,
see e.g. [PD01], [Eid85]. Anyway, the computational costs for the near-wall resolution are
too large for most problems of practical relevance.
As a remedy, there are two solution strategies, as distinguished in [Bag98]. The first is
to replace the no-slip condition by a mixed boundary condition (see (1.13)), leading to a
full-overlapping DDM based on the scheme given in (1.47)-(1.51). This approach will be
referred to as wall stress model and is analogous to the method used for the k/ε model.
The second strategy is to use the no-slip boundary condition and to couple the LES with
a RANS using some kind of non overlapping DDM or by a so-called hybrid method, e.g.
by using a blending function; for a survey on this alternative approach see Section 7.2.
Therein also a (moderate) grid refinement near the wall is necessary. In this thesis we will
study only the former approach in greater detail.
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7.1. Wall stress models

Experimental support for the wall stress model concept can be found e.g. in [BH93].
Brooke and Hanratty report that the interaction between the near-wall region and the
outer flow region is only weak. Hence there is hope that a wall stress condition can provide
enough information of the near-wall turbulence to the outer flow. A survey on wall stress
models for the isothermal case can be found e.g. in [Sag01], Section 9.2, in [DBP01] and
in [CM00]. As originated by Schumann and Grötzbach, the idea is to replace (7.4) by
a mixed boundary condition of the type

w · n = 0 , nTσ(w, q)tj = W∗
2vδ · tj
||vδ||

(j = 1, . . . , d− 1) on ΓW .(7.5)

In (7.5) we still have to determine determine W∗ and vδ/||vδ||. Concerning the latter,
Grötzbach suggested, cf. [Gro87],

vδ
||vδ||

=
wδ,t

||〈wδ,t〉E,y=yδ ||
,(7.6)

using the definition of wδ,t in (6.3). Moreover 〈·〉E,y=yδ denotes an ensemble average (or
time average) over the plane y = yδ. In this thesis, we replace the denominator by simply
taking ||wδ,t||.

Remark 7.1
In order to account for physical effects in the near-wall region, there are several modifi-
cations of (7.5)-(7.6), most notably the shifted model and the ejection model, devised and
tested in [PFMK89]. A recent experimental investigation on these and further models can
be found e.g. in [MKP01]. ♦

W∗ is determined from a boundary-layer solution in Ωδ. Depending on the boundary-layer
model considered, two approaches can be distinguished, viz., stress balance models and
thin boundary-layer equation models. Both approaches are explained and appraised in the
following two subsections.

7.1.1. Stress balance models

Stress balance models for the non-isothermal case use the boundary-layer equations (6.12)-
(6.13) for determining W∗ and ṡ. Note that for 0 ≤ y < ymax the natural convection solution
of (6.12)-(6.13) is reasonably approximated by the forced convection solution (5.41)-(5.42).
We require that Γδ is located in the log layer. Then we can determine (W∗, ṡ) by matching
wδ,t and ϑδ from the outer (LES) solution to the modified log law solution (5.41)-(5.42)
resp. similar the computational k/ε model IIIa. We introduce the following scaled
variables

y+ ≡ yW∗
ν

, w(yδ) ≡
wδ ·wδ,t

||wδ,t||
, w+

δ ≡
w(yδ)
W∗

, ϑ+
δ ≡

cpW∗(Θ0 − ϑδ)
ṡ

.(7.7)

In (7.7), W∗ and ṡ are the LES approximation to uτ and q̇ resp. Then we can propose the
following computational model, referred to as LES model II.
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7. A computational LES model

Computational non-isothermal LES model II

(1) Global LES problem

• Non-isothermal LES-equations

∂tw −∇ · ( 2 (νe S(w)−Au(w) ) + (w∇)w +∇q = − β ϑ g in Ω× (0, T ) ,
∇ ·w = 0 in Ω× (0, T ) ,

∂tϑ−∇ · (ae∇ϑ−Aθ(w, ϑ)) + (w∇)ϑ = q̇V c−1
p in Ω× (0, T ) .

• Subgrid scale model: See LES model I

• Boundary conditions

(a∇(ϑ)−Aθ(w, ϑ)) · n = ṡc−1
p on ΓW × (0, T ) ,

w · n = 0 , nTσu(w, q)tj = W∗
2wδ,t · tj
||wδ,t||

on ΓW × (0, T ), (1 ≤ j ≤ d− 1)

with

σu(w, q) ≡ σ(w, q)−Au(w) .

(2) Compute wall shear stress and heat flux.

• Case of negligible buoyancy forces: For each x ∈ ΓW : given w+
δ and ϑ+

δ as in (7.7),
seek (W∗, ṡ) (using Newton’s method) s.t.

w+
δ =

{
y+
δ , if y+

δ ≤ Ru
Ru(2 ln( y

+
δ
Ru

) + 1)
1
2 , if y+

δ > Ru
,(7.8)

ϑ+
δ =

{
Pr y+

δ , if y+
δ ≤ RΘ

CΘ(2 ln( y
+
δ
RΘ

) + 1)
1
2 , if y+

δ > RΘ

.(7.9)

• Case of significant buoyancy forces: For each x ∈ ΓW proceed analogously to the
computational k/ε turbulence model IIIa.

There are two possible interpretations for this approach. On the one hand, this procedure
can be understood as using a very fine filter width in Ωδ. Then a further problem is that
strictly speaking wδ,t and ϑδ are space averaged quantities. These are matched with the
near-wall solution without explicitely ensuring the filter width to be continuous on Γδ. On
the other hand, a second interpretation is to match a LES for the outer flow to a RANS
model in the near-wall region. The second interpretation is closer to reality, because the
simple ordinary differential equations used for the RANS model can hardly bear detailled
information about the near-wall turbulence.
Results for a channel flow up to Reτ = 5000 using the dynamic model combined with a
wall stress model are satisfying, see e.g. [BBP95].
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7.1. Wall stress models

7.1.2. Thin boundary-layer equation models

A more advanced method is to calculate W∗ from a thin layer equation model. For isother-
mal flows this strategy was primarily studied by Balaras ([BBP96]) and Cabot ([Cab96]).
In Ωδ they consider the following system of equations (x1, y ≡ x2 and x3 denoting the
streamwise, wall-normal and spanwise coordinate direction resp.), see also (5.16):

∂ui
∂t

+
∑
j=1,3

∂(uiuj)
∂xj

+
∂pm
∂xi

=
∂

∂y

[
(ν + νt)

∂ui
∂y

]
, i = 1, 3(7.10)

pm = pm(x1, x3) = q(x1, yδ, x3)(7.11)

with continuity equation

u2 = −
∫ y

0

∑
i=1,3

∂ui(y′)
∂xi

dy′ ,(7.12)

and boundary conditions

ui = 0 on ΓW , ui = wi on Γδ .(7.13)

In particular, note that in (7.11) pm is the near-wall pressure from the outer flow, assumed
to be independent of y in the inner layer. In (7.10) an algebraic turbulence model is used
for νt. Cabot suggests the following ad hoc damped mixing length hypothesis (with y+

being the distance from the wall in wall units and A+ = 25)

νt = κyuτDC(y+) , with damping function DC(y+) = [1− e−y+/A+
]2 .(7.14)

Finally, the wall stress is determined from

τw,i = ν
∂ui
∂y
|y=0 .(7.15)

Stress balance model and thin boundary-layer (TBL) model (including its dynamic variant)
have been tested for a boundary-layer flow past a trailing-edge by Wang, cf. [Wan00]. He
also studied a flow over a circular cylinder, see [WCI01]. He emphasises the observation
that the TBL model can be remarkably improved by determining κ in (7.14) dynamically.
Numerical investigations on a channel flow and a flow over a backward facing step can be
found in [CM00]. Wang points out that ”the total reduction in CPU time, due to both
smaller number of grid points and larger time steps, is over 90% compared to the full LES”
([Wan00], p.243).
Instead of an algebraic model Diurno, Balaras and Piomelli used the Spalart-

Allmaras (see [SA94]) one-equation model in Ωδ, cf. [DBP01]. They report good agree-
ment with DNS results and experimental data for a flow over a backward-facing step.
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7. A computational LES model

7.2. Hybrid RANS/LES approaches

The second recent strategy in LES for wall bounded flows is based on decomposing Ω into
Ωouter and Ωδ, with Ωouter ∪Ωδ = Ω and Ωouter ∩Ωδ = ∅. In Ωouter a pure LES is used. In
Ωδ a RANS or a combination of a RANS with a LES model is performed. An example of
a simple approach is to couple two algebraic models, e.g. the Baldwin Lomax model and
the Smagorinsky model, see [CM02].
A very promising scheme is the so-called detached eddy simulation (DES) turbulence model
as proposed in [SJSA97]. It was conceived to improve the results for unsteady and massively
separated flows. The DES model reduces to the standard Spalart-Allmaras model near
viscous walls, where the grid is refined and has a large aspect ratio, but acts like a large-
eddy simulation model away from the boundary, where the grid is coarser and has an aspect
ratio of order one. Results are presented e.g. in [NNWS00].
A further strategy is to use the k/ω two-equation model in Ωδ and a one-equation SGS
model in Ωouter, see [PD01a]. Quemere and Sagaut studied the hybrid coupling of the
k/ε model with LES, see [Que01].
However, as pointed out by Baggett in [Bag98], there can be a fundamental problem of
artificial near-wall turbulent structures of non-physical origin, when LES and RANS are
merged.
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8. Some analytical results for LES with near wall modelling

In the previous chapter the concept of a fully overlapping DDM for wall bounded flows using
LES as a global model has been studied; the coupling mechanism was given by (1.47)-(1.51).
As already mentioned, the accuracy of this method can be improved when using a better
model in the near wall region. The most accurate method consists in accomplishing a DNS.
Put in other words, if the wall iteration approach using a DNS in the near wall region is not
accurate enough, then there is little hope that the method works for coarser boundary-layer
models.
In this chapter we study the coupling from a functional analytical point of view. Concerning
this issue, boundary condition (1.48) is not suitable. Hence we consider (1.53) (resp. its
modification given below) instead.

Remark 8.1
Throughout this chapter, similar to [Tem77], [GR86] and [Col99] we use ∇u instead of ∇su
in the diffusion term of the momentum equation. The reason for this is that we can bound
∇su by ∇u in the L2-norm, but we cannot bound ∇u by ∇su. ♦

Now we can focus on the following coupling of a global LES with a DNS in the near wall
region using a fully overlapping DDM based on (1.57)-(1.61) together with Figure 1.2:

A Model for Coupling LES and DNS

Seek a global LES solution w : Ω× (0, T ) 7→ R
d, q : Ω× (0, T ) 7→ R and a DNS solution in

the boundary layer u : Ωlayer × (0, T ) 7→ R
d, p : Ωlayer × (0, T ) 7→ R, such that

∂tw −∇ · (νe∇w −Au(w) ) + (w ·∇)w +∇q = f in Ω× (0, T ) ,(8.1)
∇ ·w = 0 in Ω× (0, T ) ,(8.2)

w · n = 0 , βj(δ,u)w · tj + nT (νe∇w −Au(w)− qI)tj = 0 on ΓW × (0, T ) ,
(8.3)

∂tu−∇ · (ν∇u ) + (u ·∇)u+∇p = f in Ωlayer × (0, T ) ,(8.4)
∇ · u = 0 in Ωlayer × (0, T ) ,(8.5)

u = 0 on ΓW × (0, T ) , u = w on Γi × (0, T )(8.6)

with Au(·) being defined in (4.45), νe = ν + νt and βj given by

βj(δ,u) =
−nT (νe∇(u)−Au(u))|ΓW tj

u|ΓW · tj
, j = 1, . . . , d− 1 , u ≡ gδ ∗ u .(8.7)

Before proceeding, it is worthwhile commenting boundary conditions (8.3) and (8.7).
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8. Some analytical results for LES with near wall modelling

Remark 8.2
(i) Note that nT qItj = 0 (appearing e.g. in (8.3)), since {n, tj}d−1

j=1 forms a local or-
thonormal basis. Sometimes this term will be omitted for lack of space.

(ii) It should be recalled that w = u in Ωlayer for an ideal LES. Due to the modelling
error stemming from the closure model, we can expect only w ≈ u in Ωlayer. If w
satisfies (8.3) and if w ≈ u in Ωlayer, then u satisfies

u · n ≈ 0 , βj(δ,u)u · tj + nT (νe∇ u−Au(u)− pI)tj ≈ 0 on ΓW × (0, T ) .

Solving this for βj gives (8.7). Thus, (8.3) together with (8.7) (using the implicit
assumption of LES that w ≈ u in Ωlayer) can be written equivalently as the following
condition for w on ΓW × (0, T ), viz.,

w · n = 0 ,
w · tj
u · tj

nT (νe∇u−Au(u)− pI)tj = nT (νe∇w −Au(w)− qI)tj .

However, we use (8.3) together with (8.7), since that notation is more convenient. ♦

This chapter is organized as follows:

I Some simplifications of the scheme (8.1)-(8.7) have to be made.

II The global LES and the local DNS problem are studied separately.

III The fully coupled scheme (8.1)-(8.7) is investigated.

Note that the underlying functional analytical basics are reviewed in Appendix B. For read-
ers familiar to the analytical treatment of the Navier Stokes equations, it is not necessary
studying Appendix B before delving into the analysis.

8.1. Some simplifications of the coupled problem

Before starting with the analysis, we simplify scheme (8.1)-(8.7), namely, we introduce a
modified (i.e., smooth) definition for the friction parameters βj , we consider the corre-
sponding steady state problem, and we simplify the LES model in Ω.

8.1.1. A modified definition for the friction parameters βj

In order to be able doing some analysis, we have to modify (8.7). First we rewrite (8.7):

(a) Given u : Ωlayer × (0, T ) 7→ R
d, for each (x, t) in ΓW × (0, T ), we can evaluate

η ≡ u(x, t) · tj , ξ ≡ − nT [νe∇(u)−Au(u)] (x, t)tj .(8.8)

(b) Given (ξ, η) ∈ R2 from step (a), and required η 6= 0, then βj is given by

βj = β(ξ, η) ≡ ξη−1.
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8.1. Some simplifications of the coupled problem

In step (b) we introduced the map

β : R2 \ (R× {0}) −→ R , (ξ, η) −→ ξη−1,

which is not amenable to the analysis. The subsequent analysis reveals that the βj have to
satisfy the following minimal design properties, viz.,

(i) β(·, ·) is well-defined on R2 and β ≥ β0 > 0 on R2,

(ii) β is continuous on R2,

(iii) β is Lipschitz continuous on R2, i.e.,

β(ξ2 − ξ1, η2 − η1) ≤ Clc max{|ξ2 − ξ1|, |η2 − η1|} .(8.9)

Clearly, (i)-(iii) are fulfilled when using the following regularisation of β(·, ·):

βj(δ,u) ≡ βj(u) ≡ βj = β(ξ, η) ≡ max{ |ξ|√
η2 + ε2

, β0 } , ε > 0.(8.10)

8.1.2. The steady state case

In this thesis we restrict ourselves to the steady state case of (8.1)-(8.6).

A steady state Model for Coupling LES and DNS

−∇ · (νe∇w −Au(w) ) + (w ·∇)w +∇q = f in Ω ,(8.11)
∇ ·w = 0 in Ω ,(8.12)

w · n = 0 , βj(δ,u)w · tj + nT (νe∇w −Au(w)− qI)tj = 0 on ΓW ,(8.13)
−∇ · ( ν∇u ) + (u ·∇)u+∇p = f in Ωlayer ,(8.14)

∇ · u = 0 in Ωlayer ,(8.15)
u = 0 on ΓW , u = w on Γi .(8.16)

We divide this coupled problem (8.11)-(8.16) into two subproblems: A steady state LES
problem in Ω and a steady state NSE problem in Ωlayer.

Steady state LES problem in Ω:

For given u in H1(Ωlayer) with u = 0 on ΓW , ∇ · u = 0 in Ωlayer, let βj(δ,u) be given by
(8.8) and (8.10). Then the steady state LES problem in Ω reads: Seek w, q such that

−∇ · ( νe∇w −Au(w) ) + (w ·∇)w +∇q = f in Ω ,(8.17)
∇ ·w = 0 in Ω ,(8.18)

w · n = 0 , βj(δ,u)w · tj + nT (νe∇w −Au(w)− qI)tj = 0 on ΓW .(8.19)
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Steady state NSE problem in Ωlayer:

Given w in H1(Ω) with w · n = 0 on ΓW , ∇ ·w = 0 in Ω, the steady state NSE problem
in Ωlayer reads: Seek u, p such that

−∇ · ( ν∇u ) + (u ·∇)u+∇p = f in Ωlayer ,(8.20)
∇ · u = 0 in Ωlayer ,(8.21)

u = 0 on ΓW , u = w on Γi .(8.22)

Finally we simplify the LES model in the steady state LES problem in Ω: We use the
following simplest LES model, originated by Kolmogorow:

Au(w) ≡ 0 , νe = ν + νt , νt = const .

Remark 8.3
For the analysis, this simplification is not too restrictive. Emphasis is placed on the math-
ematical properties of the slip with friction boundary condition. There is hope that the
techniques applied in this context can be transferred to the case of a more sophisticated
model for Au and νt, if (8.17)-(8.19) equipped with homogeneous Dirichlet boundary con-
ditions has a unique solution. ♦

8.2. A separate study of global and local subproblem

In this section we study the global LES problem (8.17)-(8.19) and the local DNS problem
(8.20)-(8.22) separately. In both subsections, the underlying thread is organized as follows:

(1) Derivation of the corresponding variational formulation.

(2) Definition of Sobolev spaces appropriate to the variational formulation.

(3) Derivation of an a priori estimate for the solution.

(4) Proof of existence of at least one solution. This proof takes three steps:

(a) Using Brouwer’s fixed point theorem we show that the finite dimensional Galerkin
scheme for step (2) has at least one solution.

(b) From the a priori estimate (step (3)) we show that the sequence of finite dimen-
sional solutions has a subsequence which possesses a weak limit element.

(c) Using standard arguments is can be shown that this limit element solves the
variational formulation problem given in step (1).

(5) Proof of uniqueness of the solution.
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8.2. A separate study of global and local subproblem

8.2.1. The steady state LES problem in Ω

First we take under consideration (8.17)-(8.19), starting with the corresponding variational
formulation. We define

V2 ≡ { v ∈ C∞(Ω) | ∇ · v = 0 in Ω , v · n = 0 on ΓW } ,(8.23)

V 2 ≡ { v ∈H1(Ω) | ∇ · v = 0 in Ω , v · n = 0 on ΓW } .(8.24)

Multiplying (8.17) with v ∈ V2, and integration by parts gives

(w∇w,v) + (νe∇w,∇v)−
∫

ΓW

(νe∇(w)− qI)nv ds = (f ,v) .(8.25)

The boundary integral over ΓW can be rewritten by decomposing the test function v on
ΓW into d orthonormal components

v = (v · n)n+
d−1∑
j=1

v · tjtj .

Thus (using v · n = 0 on ΓW in the second step)∫
ΓW

(νe∇w − qI)n · v ds =

=
∫

ΓW

(νe∇w − qI)n · (v · n)n ds +
d−1∑
j=1

∫
ΓW

(νe∇w − qI)n · v · tjtj ds

=
d−1∑
j=1

∫
ΓW

nT (νe∇w − qI) tjv · tj ds = −
d−1∑
j=1

〈βjw · tj ,v · tj〉ΓW .

Remark 8.4
The boundary integral

∫
ΓW

∑d−1
j=1 n

T (νe∇w − qI) tjv · tj ds can be interpreted as the dual
product between H−1/2(ΓW )×H1/2(ΓW ) provided nT (νe∇w− qI) · tj ∈ H−1/2(ΓW ). This
can be ensured if w ∈ H2(Ω) with ∇ ·w = 0 and q ∈ H1(Ω), see [Ver87]. This regularity
property is satisfied, e.g., provided f ∈ H2(Ω) and Ω is a bounded C2-domain, see e.g.
[Soh01], p.173. Care must be taken concerning splitting the boundary integral, which
requires that the boundary integral is the inner product in L2(Γ). ♦

Hence (8.25) becomes

(w∇w,v) + (νe∇w,∇v) +
d−1∑
j=1

〈βjw · tj ,v · tj〉ΓW = (f ,v) .(8.26)

Using the well-known continuity argument (see e.g. [Tem77], p.160) we arrive at the fol-
lowing variational formulation corresponding to (8.17)-(8.19):
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Steady state LES problem in Ω : Find w in V 2, s.t. (8.26) holds for all v in V 2.

Now we give an a priori estimate for the LES problem in Ω.

Lemma 8.1
Concerning the steady state LES problem in Ω the following a priori estimates hold

νe
2
||∇w||2

L2
(Ω)

+ β0

d−1∑
j=1

||w · tj ||2L2(ΓW ) ≤ CapLES ||f ||
2
−1,Ω ,(8.27)

νe
2
C−2
M ||w||

2
1,Ω + β0

d−1∑
j=1

||w · tj ||2L2(ΓW ) ≤ CapLES ||f ||
2
−1,Ω .(8.28)

with the following constants

CapLES ≡
C2
M

2νe
, CM ≡

√
1 + c2

Poi(Ω) .(8.29)

Proof:
We introduce the usual bilinear form bΩ(u,v,w) ≡ (u∇v,w). Recall that bΩ(u,v,v) = 0
for all v in H1(Ω) if ∇ · u = 0 and u · n = 0 on ∂Ω. Setting v = w in (8.26) we obtain

νe||∇w||2L2
(Ω)

+ β0

d−1∑
j=1

||w · tj ||2L2(ΓW ) ≤ |(f ,w)| ≤ ||f ||−1,Ω||w||1,Ω.(8.30)

Due to (B.14) we have

||w||1,Ω = (||w||2
L2

(Ω)
+ ||∇w||2

L2
(Ω)

)1/2 ≤ CM ||∇w||L2
(Ω)
.(8.31)

Using the standard estimate

CM ||f ||−1,Ω||∇w||L2
(Ω)
≤

C2
M

2νe
||f ||2−1,Ω +

νe
2
||∇w||2

L2
(Ω)

(8.32)

and inserting (8.32) into (8.30) we obtain

νe
2
||∇w||2

L2
(Ω)

+ β0

d−1∑
j=1

||w · tj ||2L2(ΓW ) ≤
C2
M

2νe
||f ||2−1,Ω .(8.33)

Finally, from (8.33) we obtain the following a priori estimate for ||w||1,Ω.

C−2
M

νe
2
||w||21,Ω + β0

d−1∑
j=1

||w · tj ||2L2(ΓW ) ≤
C2
M

2νe
||f ||2−1,Ω .(8.34)

♦
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Lemma 8.2
Let f in L2(Ω) be given. Then there exists at least one solution u in V 2 and p in L1

loc(Ω),
s.t. (8.26) holds.

Proof:
The proof proceeds similar to the proof of Theorem 1.2, pp. 164, in [Tem77]. Thus it is
assumed that the reader is familiar with this proof and only the necessary modifications
will be explained. The first step of the proof in [Tem77] is done using the Galerkin method.
Define Xm = span(φi)mi=1 ⊂ V 2 and seek wm in Xm s.t.

νe(∇wm,∇φk) + bΩ(wm,wm,φk) +
d−1∑
j=1

〈βjwm · tj ,φk · tj〉ΓW = (f ,φk) , k = 1, . . . ,m .

(8.35)

The goal is to prove the existence of a solution of (8.35) by applying Lemma 1.4, p.164 in
[Tem77], which is a corollary of Brouwer’s fixed point theorem. For this purpose we define
the operator Pm : Xm 7→Xm by

(Pm(w),v) = νe(∇w,∇v) + bΩ(w,w,v) +
d−1∑
j=1

〈βjw · tj ,v · tj〉ΓW − (f ,v) .(8.36)

Pm is a well-defined map from Xm into itself and continuous. Moreover we have

(Pm(w),w) = νe(∇w,∇w) +
d−1∑
j=1

〈βjw · tj ,w · tj〉ΓW − (f ,w)

≥ νe(∇w,∇w) +
d−1∑
j=1

〈βjw · tj ,w · tj〉ΓW − ||f ||−1,Ω||w||1,Ω

≥ ||w||1,Ω
(
νe
C2
M

||w||1,Ω − ||f ||−1,Ω

)
+

d−1∑
j=1

〈βjw · tj ,w · tj〉ΓW .

Therefore (Pm(w),w) > 0 for all w with ||w||1,Ω >
C2
M
νe
||f ||−1,Ω. Note that here we need

that at least β0 ≥ 0. Then we can apply Lemma 1.4, p.164 in [Tem77], which ensures that,
for each m, (8.35) has at least one solution, which will be denoted by wm.
The final step is to obtain a solution of the infinite dimensional problem from the sequence
of finite dimensional solutions (wm)m. According to Lemma 8.1, there exists C ≥ 0, s.t.
||wm||1,Ω < C for all m. Then there exists some w in V 2 and a subsequence mj s.t.

wmj −→ w as j →∞ weak in the norm of H1(Ω).

As V 2 is compact in L2(Ω), wmj −→ w strongly in the norm of L2(Ω). Then it can be
shown very similar to [Tem77] (using Lemma 1.5, p.165 in [Tem77]) that w is the solution
of (8.26), which completes the proof. ♦

Uniqueness of the solution can be proven similar to Theorem 1.3, p. 167 in [Tem77].
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Lemma 8.3
If d ≤ 4 and if νe is ”sufficiently large” or f ”sufficiently small”, s.t.

ν2
e > CunLES ||f ||−1,Ω , with CunLES ≡ C3

M Cb(8.37)

then there exists a unique solution of (8.26).

Proof:
We proceed similar to the corresponding proof of Theorem 1.3, p. 167 in [Tem77]. Let w1,
w2 denote two different solutions of (8.26) and let w ≡ w1 − w2. Then w satisfies (cf.
[Tem77] eq.(1.40))

νe||∇w||2L2
(Ω)

+ β0

d−1∑
j=1

||w · tj ||2L2(ΓW ) ≤ |bΩ(w,w1,w)|

≤ Cb||w||1,Ω||∇w1||L2
(Ω)
||w||1,Ω ≤ C2

MCb
CM
νe
||f ||−1,Ω||∇w||2L2

(Ω)

or (as β0 > 0) (
νe − Cb

C3
M

νe
||f ||−1,Ω

)
||∇w||2

L2
(Ω)
≤ 0.

which implies together with (8.37) and (8.31) that w = 0 and hence w1 = w2 ♦

Remark 8.5
Discernibly, the lemmata of this subsection require only β0 ≥ 0 in (8.10). ♦

8.2.2. The steady state NSE problem in Ωi

We proceed considering (8.20)-(8.22). Note that from now on, we write Ωi instead of Ωlayer.
As usual, instead of regarding the non-homogeneous NSE we consider the corresponding
homogeneous problem. We define the following spaces

V1 ≡ { v ∈ C∞(Ωi) | ∇ · v = 0 in Ωi, v = 0 on Γi, v · n = 0 on ΓW } ,(8.38)

V 1 ≡ { v ∈H1(Ωi) | ∇ · v = 0 in Ωi, v = 0 on Γi, v · n = 0 on ΓW } ,(8.39)

V1
0,W ≡ { v ∈ C∞(Ωi) | ∇ · v = 0 in Ωi, v · n = 0 on ΓW } ,(8.40)

V̧1
0,W ≡ { v ∈H1(Ωi) | ∇ · v = 0 in Ωi, v · n = 0 on ΓW } ,(8.41)

V1,0 ≡ { v ∈ C∞(Ωi) | ∇ · v = 0 in Ωi, v = 0 on Γi ∪ ΓW } ,(8.42)

V 1,0 ≡ { v ∈H1(Ωi) | ∇ · v = 0 in Ωi, v = 0 on Γi ∪ ΓW } .(8.43)

We are looking for a solution of the form

u = ũ+W(8.44)

with ũ in V 1,0. W is a suitable extension of w|Γi into Ωi, specified in the following lemma.
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Lemma 8.4
1. Suppose the geometry of Figure 1.2 with ylayer ≥ ylayer,0 > 0 throughout Ωi(≡ Ωlayer

in Figure 1.2). Then for each v∗ in W 1/2,2(Γi) with
∫

Γi
v∗ · nds = 0 and for each

α > 0 there exists V in H1(Ωi) with Tr|ΓiV = v∗ on Γi, Tr|ΓWV = 0 on ΓW ,
∇ · V = 0 in Ωi and

|bΩi(u,V ,u)| ≤ α||∇u||2
L2

(Ωi)
∀ u ∈ V 1,0,(8.45)

||V ||1,Ωi ≤ C1(d,Ωi)||v∗||1/2,2,Γi .(8.46)

2. Let v∗,1 and v∗,2 satisfy the assumptions of part 1. Denote V 1 and V 2 the corre-
sponding extensions satisfying (8.45) and (8.46). Then the following inequality holds

||V 1 − V 2||1,Ωi ≤ C1(d,Ωi)||v∗,1 − v∗,2||1/2,2,Γi .(8.47)

Proof:
Ad 1.: We can apply Lemma 4.2 in [Gal94II] ch.VIII, pp.27.
Ad 2: We review the proof for part 1. and show that the mapping v∗ 7→ V is linear. This
will give the assertion.
So let v∗,1 and v∗,2 in W 1/2,2(Γi) satisfy

∫
Γi
v∗,1·nds =

∫
Γi
v∗,2·nds = 0. The construction

of the extension takes three steps.
Step (1): due to [Gal94I], exercise III 3.4 (or resp. Lemma 2.2, chapter I in [GR86]), there
exist φ1, φ2 in H1(Ωi) s.t. (for j=1,2)

∇ · φj = 0 in Ωi ,

φj = v∗,j on Γi , φj = 0 on ΓW
||φj ||1,Ωi ≤ c||v∗,j ||1/2,2,Γi .

First we show that the map F1 : v∗,j 7→ φj is linear. Therefore we review the proof given
in [GR86]. Let ψj (j = 1, 2) be any function of H1(Ωi) that satisfies ψj = v∗,j on Γi,
ψj = 0 on ΓW . Then according to Green’s formula (equation (1.19) in [GR86]):∫

Ωi

∇ ·ψjdx =
∫

ΓW∪Γi

ψj · nds =
∫

ΓW∪Γi

v∗,j · nds = 0 .(8.48)

Now we use Corollary 2.4, chapter I in [GR86] which states that the operator div is an
isomorphism of V ⊥ ≡ { u ∈H1

0(Ωi) | ∇·u = 0 }⊥ onto L2
0(Ωi) ≡ { u ∈ L2(Ωi) |

∫
Ω iudx =

0 }. As ∇ · ψj ∈ L2
0(Ωi) (see (8.48)), there exist uniquely determined ζj in V ⊥ (j = 1, 2)

with

∇ · ζj = ∇ ·ψj and ||∇ζj ||L2
(Ωi)
≤ C||∇ ·ψj ||L2

(Ωi)
.

Then we set φj ≡ ψj−ζj (j = 1, 2). Thus so far we have shown that the map F1 : v∗,j 7→ φj
is linear. Consequently φ1 − φ2 solves

∇ · (φ1 − φ2) = 0 in Ωi ,

φ1 − φ2 = v∗,1 − v∗,2 on Γi , φ1 − φ2 = 0 on ΓW

89
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Moreover the following estimate holds

||φ1 − φ2||1,Ωi ≤ c||v∗,1 − v∗,2||1/2,2,Γi .

Step (2): From now on we restrict ourselves to the three-dimensional case. Moreover
we assume that the reader has the textbooks [Gal94I] and [Gal94II] at hand. The two-
dimensional case can be handled analogously using the techniques applied in [Gal94II],
p.25. According to Exercise 4.1, p.26 in [Gal94II], for j = 1, 2, there exists wj in H2(Ωi),
s.t. φj = ∇ × wj and ||wj ||2,Ωi ≤ C||φj ||1,Ωi , see Exercise 4.1 p.26 in [Gal94II]. It can
be seen immediately from the proof in [Gal94II], that the map F2 : φj 7→ wj is linear.
Therefore we have φ1 − φ2 =∇× (w1 −w2) together with the estimate

||w1 −w2||2,Ωi ≤ C||φ1 − φ2||1,Ωi .

Step (3): In order to construct an extension satisfying (8.45), we need a suitable ”cut-off”
function ψε, see [Gal94I], Lemma III 6.2. Therefore, denote y(x) ≡ dist(x, ∂Ω). Moreover,
for any ε > 0 denote γ(ε) = exp(−1/ε). According to [Gal94I], Lemma III 6.2, there exists
a function ψε ∈ C∞(Ω) such that

(i) |ψε(x)| ≤ 1, for all x ∈ Ωi, (ii) ψε(x) = 1, if y(x) < γ2(ε)/(2κ1),

(iii) ψε(x) = 0, if y(x) ≥ 2γ(ε), and (iv) |∇ψε(x)| ≤ κ2ε/y(x), for all x ∈ Ωi,

with κ1 and κ2 being constants introduced in [Gal94I], Lemma III 6.1. To this end, for
given ε > 0 we define

V j ≡ ∇× (ψεwj) .

and so the map F3 : wj 7→ V j is linear. Combining step (1) - step (3) reveals that
F3 ◦ F2 ◦ F1 : v∗,j 7→ V j is a linear map. Then from inequality (4.22) in Chapter VIII, see
[Gal94II], which states that

||V j ||1,Ωi ≤ C1(d,Ω)||v∗,j ||1/2,2,Γi

we can infer that

||V 1 − V 2||1,Ωi ≤ C1(d,Ω)||v∗,1 − v∗,2||1/2,2,Γi .

♦

Let w be the solution of (8.17)-(8.19). Then

0 =
∫

Ωi

∇ ·w dx =
∫

ΓW

w · n ds+
∫

Γi

w · n ds =
∫

Γi

w · n ds.
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Therefore w satisfies the assumptions of Lemma 8.4. Let W be such an extension of w
with

|bΩi(u,W ,u)| ≤ ν

2
|||∇u||2

L2
(Ωi)

∀u ∈ V 1,0.(8.49)

Using (8.44), (8.20) can be written as

−∇ · ( ν∇ũ ) + (ũ ·∇)ũ+ (ũ ·∇)W + (W ·∇)ũ+∇p(8.50)
= f +∇ · ( ν∇W )− (W ·∇)W

Multiplying (8.50) with v in V1,0 and integration by parts gives

ν(∇ũ,∇v) + bΩi(ũ, ũ,v) + bΩi(ũ,W ,v) + bΩi(W , ũ,v)
(8.51)

= (f ,v) + ν(∇W ,∇v)− bΩi(W ,W ,v) .

Then the variational form corresponding to (8.20)-(8.22) reads:

Steady state NSE problem in Ωi : Find ũ in V 1,0, s.t. (8.51) holds for all v in V 1,0.

Now we give an a priori estimate for the steady state NSE problem in Ωi.

Lemma 8.5
Concerning the steady state NSE problem (8.51) in Ωi and problem (8.20)-(8.22) the fol-
lowing a priori estimates hold

ν

2
||∇ũ||L2

(Ωi)
≤ Ka(f , ν,w) ,

ν

2
||∇u||L2

(Ωi)
≤ Ka(f , ν,w) .(8.52)

with

Ka(f , ν,w) ≡ Capu,1||f ||−1,Ωi + Capu,2||w||1/2,2,Γi + Capu,3||w||
2
1/2,2,Γi

.(8.53)

and the following constants

Capu,1 ≡ CP,i , Capu,2 ≡
3
2
νC1(d,Ωi) , CP,i ≡

√
1 + c2

Poi,0(Ωi) ,

CM,i ≡
√

1 + c2
Poi(Ωi) , Capu,3 ≡ CbCP,iC

2
1 (d,Ωi) .

Proof:
In (8.51) we set v = ũ and obtain (recall that bΩi(W , ũ, ũ) = bΩi(ũ, ũ, ũ) = 0)

ν||∇ũ||L2
(Ωi)

+ bΩi(ũ,W , ũ) = (f , ũ) + ν(∇W ,∇ũ)− bΩi(W ,W , ũ) .(8.54)

Using the choice of W and making use of the triangle inequality gives

ν

2
||∇ũ||2

L2
(Ωi)

≤ |(f , ũ)|+ ν||∇W ||L2
(Ωi)
||∇ũ||L2

(Ωi)
+ |bΩi(W ,W , ũ)| .
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Since W in H1(Ωi) and ũ in V 1,0 we have the following inequality (see (B.4))

|bΩi(W ,W , ũ)| ≤ Cb||W ||1,Ωi ||∇W ||L2
(Ωi)
||ũ||1,Ωi

≤ CbCP,i||W ||21,Ωi ||∇ũ||L2
(Ωi)

.

Substituting the last into the last but one inequality gives

ν

2
||∇ũ||2

L2
(Ωi)

≤ CP,i||f ||−1,Ωi ||∇ũ||L2
(Ωi)

+ ν||∇W ||L2
(Ωi)
||∇ũ||L2

(Ωi)

+ CbCP,i||W ||21,Ωi ||∇ũ||L2
(Ωi)

.

Thus we get the following a priori estimate

ν

2
||∇ũ||L2

(Ωi)
≤ CP,i||f ||−1,Ωi + ν||∇W ||L2

(Ωi)
+ CbCP,i||W ||21,Ωi .

Using (8.46) gives

ν

2
||∇ũ||L2

(Ωi)
≤ CP,i||f ||−1,Ωi + νC1(d,Ωi)||w||1/2,2,Γi

+ CbCP,iC
2
1 (d,Ωi)||w||21/2,2,Γi .

Then we can get an a priori estimate for u = ũ+W .

ν

2
||∇u||L2

(Ωi)
≤ ν

2
||∇ũ||L2

(Ωi)
+
ν

2
||∇W ||L2

(Ωi)
≤ ν

2
||∇ũ||L2

(Ωi)
+
ν

2
||W ||1,Ωi

≤ ν

2
||∇ũ||L2

(Ωi)
+
ν

2
C1(d,Ωi)||w||1/2,2,Γi .

Combining the last two inequalities we finally get

ν

2
||∇u||L2

(Ωi)
≤ CP,i||f ||−1,Ωi +

3ν
2
C1(d,Ωi)||w||1/2,2,Γi

+ CbCP,iC
2
1 (d,Ωi)||w||21/2,2,Γi .

♦

Lemma 8.6
For each given w in V 2 there exists at least one solution of (8.51).

Proof:
We can apply Theorem VIII, 4.1, p.32 in [Gal94II], as all its assumptions are fulfilled. ♦

Lemma 8.7
Suppose d ≤ 4. The solution of (8.51) is unique if

ν2 > 4CbC2
P,i Ka(f , ν,w) .(8.55)
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8.2. A separate study of global and local subproblem

Proof:

Let us suppose there are two solutions ũ0 = u0−W and ũ1 = u1−W , where W is given
by (8.49). Denote ũ = ũ0 − ũ1 Then ũ0 and ũ1 resp. fulfill the following equations

ν(∇ũ0,∇v) + bΩi(ũ0, ũ0,v) + bΩi(ũ0,W ,v) + bΩi(W , ũ0,v) = (f̃ ,v) ,

ν(∇ũ1,∇v) + bΩi(ũ1, ũ1,v) + bΩi(ũ1,W ,v) + bΩi(W , ũ1,v) = (f̃ ,v)

where f̃ ≡ f +∇ · (ν∇W ) −W∇W . We set v = ũ in both equations. Subtracting the
second equation from the first one gives (after expanding)

ν||∇ũ||2
L2

(Ωi)
= − bΩi(ũ, ũ1, ũ)− bΩi(ũ,W , ũ).

Using (8.49) gives

ν

2
||∇ũ||2

L2
(Ωi)

≤ |bΩi(ũ, ũ1, ũ)| .

Taking into account (B.4) we get

ν

2
||∇ũ||2

L2
(Ωi)
≤ |bΩi(ũ, ũ1, ũ)| ≤ Cb||∇ũ1||L2

(Ωi)
||ũ||21,Ωi

≤ CbC2
P,i||∇ũ1||L2

(Ωi)
||∇ũ||2

L2
(Ωi)
≤ CbC2

P,i

2
ν
Ka(f , ν,w)||∇ũ||2

L2
(Ωi)

which can be rearranged to(
ν

2
− CbC2

P,i

2
ν
Ka(f , ν,w)

)
||∇ũ||2

L2
(Ωi)
≤ 0.

This implies ũ = 0, taking into account (B.15) and (8.55). ♦

Remark 8.6
Before giving the proof, it is worthily commenting the statement of Lemma 8.7. Condition
8.55 is often not satisfied in high Reynolds number applications, i.e. if ||w||21/2,2,Γi = O(1)
and ν � 1. However, in important flow situations this scheme still remains meaningful.
Firstly, we consider a flow with separation, see Figure 8.2. Then, by suitably choosing Ωi

we can try to ensure that ||w||1/2,2,Γi is small enough. Secondly, in attached boundary-layer
flows typically ||w||21/2,2,Γi = O(1). But then we can determine βj from a log-law resp. or
from a power-law resp. without any need to perform a DNS, see Section 8.4.4. ♦

Remark 8.7
Instead of the full Navier-Stokes equations, it is also very interesting studying the reduced
boundary-layer problem (5.10)-(5.12). The analysis for this problem has been considered
by Caussignac and Touzani. In [CT90] they proved existence and uniqueness of a weak
solution of a simplified variant of (5.10)-(5.12). ♦
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8.3. The coupled steady state problem

From Lemmata 8.2, 8.3 8.6, and 8.7 we can infer the following Corollary:

Corollary 8.1
Assume that the assumptions of Lemmata 8.3 and 8.7 hold. Denote

V 2
def ≡ { w ∈ V 2 | w satisfies (8.55) } .(8.56)

Then the following operators are well-defined:

TNS→LES : V 1
0,W −→ V 2 , u −→ w, w solution of (8.17)− (8.19) ,(8.57)

TLES→NS : V 2
def −→ V 1

0,W , w −→ u, u solution of (8.20)− (8.22).(8.58)

Proof:
The statement follows immediately from Lemmata 8.2, 8.3, 8.6, and 8.7. ♦

An outline of this section reads as follows: Given that ||f ||−1 is ”sufficiently small” or ν is
”sufficiently large”, we can show:

• TLES→NS is continuous on a suitable subset V 2
cont ⊂ V 2

def .

• TNS→LES is continuous and compact on V 1
0,W , if ΓW is piecewise smooth.

• Using the Schauder Fixed-Point Theorem, we show that TLES→NS ◦TNS→LES and
TNS→LES ◦ TLES→NS have a fixed point; the fixed point is a solution of the coupled
problem (8.11)-(8.16).

• The fixed point is uniquely determined, if an additional assumption regarding ||f ||−1

and ν holds.

Lemma 8.8
Suppose that the assumptions of Corollary 8.1 hold. We define

V 2
cont ≡ { w ∈ V 2

def | w satisfies (8.60) }(8.59)

with

3ν
8

> Cb
2
ν
C2
P,iKa(f , ν,w) + CbC1(d,Ωi)CP,i||w||1/2,2,Γi .(8.60)

Then the operator TLES→NS |V 2
cont

is continuous.

Proof:
Requiring the assumptions of Lemma 8.7, TLES→NS is well-defined. Let a sequence wn

in V 2
def be given with wn −→ w in H1(Ω). Denote un ≡ TLES→NS(wn) and u ≡

TLES→NS(w). Then we have to show that un −→ u in H1(Ωi).
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Based on (8.44) with Lemma 8.4, we write un = ũn +W n and u = ũ +W , where W n

and W satisfy (8.49). Since

||un − u||1,Ωi ≤ ||ũn − ũ||1,Ωi + ||W n −W ||1,Ωi ≤ ||ũn − ũ||1,Ωi + C1(d,Ωi)||wn −w||1/2,2,Γi
≤ ||ũn − ũ||1,Ωi + C1(d,Ωi)Ctr||wn −w||1,Ωi

(8.61)

we can complete the proof by showing ||ũn − ũ||1,Ωi → 0 as n → ∞. Due to (8.51) the
following equations hold

ν(∇ũn,∇v) + bΩi(ũn, ũn,v) + bΩi(ũn,W n,v) + bΩi(W n, ũn,v)
= (f ,v)− ν(∇W n,∇v)− bΩi(W n,W n,v)

ν(∇ũ,∇v) + bΩi(ũ, ũ,v) + bΩi(ũ,W ,v) + bΩi(W , ũ,v)
= (f ,v)− ν(∇W ,∇v)− bΩi(W ,W ,v) .

Denote φn ≡ ũn − ũ and Ψn ≡W n −W . Subtracting the second equation from the first
one and setting v = φn gives

ν(∇φn,∇φn) + bΩi(ũn, ũn,φn)− bΩi(ũ, ũ,φn) + bΩi(ũn,W n,φn)
− bΩi(ũ,W ,φn) + bΩi(W n, ũn,φn)− bΩi(W , ũ,φn)
= − ν(∇Ψn,∇φn)− bΩi(W n,W n,φn) + bΩi(W ,W ,φn) .

Now we proceed using the following transformations:

bΩi(ũn, ũn,φn)− bΩi(ũ, ũ,φn) = bΩi(φn, ũn,φn) ,
bΩi(ũn,W n,φn)− bΩi(ũ,W ,φn) = bΩi(φn,W n,φn) + bΩi(ũ,Ψn,φn) ,
bΩi(W n, ũn,φn)− bΩi(W , ũ,φn) = bΩi(Ψn, ũn,φn) ,

bΩi(W n,W n,φn)− bΩi(W ,W ,φn) = bΩi(Ψn,W n,φn) + bΩi(W ,Ψn,φn) .

Then the following equation holds

ν(∇φn,∇φn) = − bΩi(φn, ũn,φn)− bΩi(φn,W n,φn)− bΩi(ũ,Ψn,φn)− bΩi(Ψn, ũn,φn)
− ν(∇Ψn,∇φn)− bΩi(Ψn,W n,φn)− bΩi(W ,Ψn,φn) .

This yields the following inequality

ν(∇φn,∇φn) ≤ |bΩi(φn, ũn,φn)|+ |bΩi(φn,W n,φn)|+ |bΩi(ũ,Ψn,φn)|+ |bΩi(Ψn, ũn,φn)|
+ |ν(∇Ψn,∇φn)|+ |bΩi(Ψn,W n,φn)|+ |bΩi(W ,Ψn,φn)| .
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The following estimates hold

|bΩi(φn, ũn,φn)| ≤ Cb||φn||21,Ωi ||∇ũn||L2(Ωi)

≤ Cb
2
ν
C2
P,iKa(f , ν,wn)||∇φn||2L2(Ωi)

|bΩi(φn,W n,φn)| = |bΩi(φn,φn,W n)| ≤ Cb||φn||1,Ωi ||∇φn||L2(Ωi)||W n||1,Ωi
≤ CbC1(d,Ωi)CP,i||wn||1/2,2,Γi ||∇φn||

2
L2(Ωi)

|bΩi(ũ,Ψn,φn)| = |bΩi(ũ,φn,Ψn)| ≤ Cb||ũ||1,Ωi ||Ψn||1,Ωi ||∇φn||L2(Ωi)

≤ Cb
2
ν
Ka(f , ν,w)CP,iC1(d,Ωi)||wn −w||1/2,2,Γi ||∇φn||L2(Ωi)

≤ 8
ν3
Ka(f , ν,w)2C2

bC
2
1 (d,Ωi)C2

P,i||wn −w||21/2,2,Γi +
ν

8
||∇φn||2L2(Ωi)

|bΩi(Ψn, ũn,φn)| ≤ 8
ν3
Ka(f , ν,wn)2C2

bC
2
1 (d,Ωi)C2

P,i||wn −w||21/2,2,Γi +
ν

8
||∇φn||2L2(Ωi)

ν|(∇Ψn,∇φn)| ≤
√

4ν||∇Ψn||L2(Ωi)

√
ν

4
||∇φn||L2(Ωi) ≤ 2ν||∇Ψn||2L2(Ωi)

+
ν

8
||∇φn||2L2(Ωi)

≤ 2νC2
1 (d,Ωi)||wn −w||21/2,2,Γi +

ν

8
||∇φn||2L2(Ωi)

|bΩi(Ψn,W n,φn)| ≤ Cb||Ψn||1,Ωi ||W n||1,ΩiCP,i||∇φn||L2(Ωi)

≤ CbC1(d,Ωi)CP,i||wn −w||1/2,2,Γi ||∇φn||L2(Ωi)C1(d,Ωi)||wn||1/2,2,Γi

≤ 2
ν
C2
bC

2
P,iC

4
1 (d,Ωi)||wn −w||21/2,2,Γi ||wn||21/2,2,Γi +

ν

8
||∇φn||2L2(Ωi)

|bΩi(W ,Ψn,φn)| ≤ 2
ν
C2
bC

2
P,iC

4
1 (d,Ωi)||wn −w||21/2,1,Γi ||w||

2
1/2,2,Γi

+
ν

8
||∇φn||2L2(Ωi)

.

Putting it all together we arrive at the following inequality for φn, viz.,

ν||∇φn||2L2(Ωi)
≤ [

5ν
8

+ Cb
2
ν
C2
P,iKa(f , ν,wn) + CbC1(d,Ωi)CP,i||wn||1/2,2,Γi ]||∇φn||

2
L2(Ωi)

+
8
ν3
C2
bC

2
1 (d,Ωi)C2

P,i[Ka(f , ν,w)2 +Ka(f , ν,wn)2]||wn −w||21/2,2,Γi
+ 2νC2

1 (d,Ωi)||wn −w||21/2,2,Γi

+
2
ν
C2
bC

2
P,iC

4
1 (d,Ωi)(||wn||21/2,2,Γi + ||w||21/2,2,Γi)||wn −w||21/2,2,Γi .

(8.62)

This can be rearranged to

(
3ν
8
− Cb

2
ν
C2
P,iKa(f , ν,wn)− CbC1(d,Ωi)CP,i||wn||1/2,2,Γi ) ||∇φn||2L2(Ωi)

≤ 8
ν3
C2
bC

2
1 (d,Ωi)C2

P,i(Ka(f , ν,w)2 +Ka(f , ν,wn)2)||wn −w||21/2,2,Γi

+ 2νC2
1 (d,Ωi)||wn −w||21/2,2,Γi

+
2
ν
C2
bC

2
P,iC

4
1 (d,Ωi)(||wn||21/2,2,Γi + ||w||21/2,2,Γi)||wn −w||21/2,2,Γi .

(8.63)
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Since wn −→ w, for each ε > 0 there exists N0 ∈ N s.t. (||wn − w||1/2,2,Γi) < ε for all
n > N0. If (8.60) is satisfied then there exists N1 ∈ N s.t. the l.h.s. term in (. . .) in (8.63)
is strictly positive for all n ≥ N1. Therefore ∇φn → 0 in L2(Ωi) and Poincare’s inequality
implies φn → 0 in H1(Ωi) as n→∞. Together with (8.61) this gives the assertion. ♦

Remark 8.8
It is worthily comparing (8.55) and (8.60). Taking into account (8.55), (8.60) can be
rewritten as

3ν
8

> Cb
2
ν
C2
P,iC

ap
u,1||f ||−1,Ωi + Cb

2
ν
C2
P,iνC1(d,Ωi)||w||1/2,2,Γi

+ Cb
2
ν
C2
P,iC

ap
u,3||w||

2
1/2,2,Γi

+ CbC1(d,Ωi)CP,i||w||1/2,2,Γi

= Cb
2
ν
C2
P,iC

ap
u,1||f ||−1,Ωi + CbCP,i(2CP,i + 1)C1(d,Ωi)||w||1/2,2,Γi

+ Cb
2
ν
C2
P,iC

ap
u,3||w||

2
1/2,2,Γi

.

Typically, cpoi,0(Ωi) = O(ylayer) and ylayer = O(ν1/2) in the laminar case and ylayer =
O(ν1/5) in the turbulent case. Hence, in a first approximation CP,i ≈ 1, and thus (8.60) is
not an essentially stronger ”small data” restriction than (8.55). ♦

Lemma 8.9
Assume that ΓW is piecewise C1 smooth. Under the assumptions of Corollary 8.1 and that

νe − CbC2
MKb(f , νe) > 0 , with Kb(f , νe) ≡

√
2
νe
CapLES ||f ||−1,Ω(8.64)

the operator TNS→LES is continuous on V 1
0,W = { v ∈ H1(Ωi) | ∇ · v = 0 in Ωi, v · n =

0 on ΓW }.

Proof:
Given a sequence un in V 1

0,W with un −→ u in H1(Ωi) as n → ∞. Denote wn ≡
TNS→LES(un) and w ≡ TNS→LES(u). Then we have to show that wn −→ w in H1(Ω) as
n→∞. The proof takes two steps.

(1) Let δ be fixed. Given un −→ u in H1(Ωi), then βj(un) −→ βj(u) in L∞(ΓW ).

(2) Given βj(un) −→ βj(u) in L∞(ΓW ), then wn −→ w in H1(Ω).

So let un −→ u in H1(Ωi) be given. First we show that un ≡ gδ ∗ un −→ u ≡ gδ ∗ u
(with gδ being defined in (4.10)) in Cm(Ωi), for each fixed m. Denote α = (α1, . . . , αd) a
multiindex with |α| = m. First we extend un and u by zero onto Rd \Ωi. Then un and u
are at least in E′(Rd). Thus Dα(gδ ∗ un) = (Dαgδ) ∗ un, Dα(gδ ∗ u) = (Dαgδ) ∗ u, and
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8. Some analytical results for LES with near wall modelling

Dα(gδ ∗ un), Dα(gδ ∗ u) in C∞(Rd). cf.(A.2). Then for each fixed δ and for each α ∈ Nd0
with |α| = m

||Dα(gδ ∗ un)−Dα(gδ ∗ u)||C0(Ωi)
= ||(Dαgδ) ∗ un − (Dαgδ) ∗ u||C0(Ωi)

= max
x∈Ωi

|
∫
Rd

(Dαgδ)(x− x′) (un − u) (x′) dx′|

= max
x∈Ωi

|
∫

Ωi

(Dαgδ)(x− x′) (un − u) (x′) dx′|

≤ ||Dαgδ||L2(Ωi)||un − u||L2(Ωi) → 0 as n→∞.

Thus for each given m ∈ N we have gδ ∗ un −→ gδ ∗ u in Cm(Ωi). Since ΓW is piecewise
C1 smooth, un · tj −→ u · tj and nTD(un)tj −→ nTD(u)tj both in L∞(ΓW ) Since β(·, ·)
is continuous, βj(un) −→ βj(u) in L∞(ΓW ).

Now we perform the second step : Given βj(un) −→ βj(u) in L∞(ΓW ), then we have to
prove that wn −→ w in H1(Ω). For simplicity, we introduce βj,n ≡ βj(un), βj ≡ βj(u)
and Φn ≡ wn − w. Then wn and w satisfy the following equations, resp., for all v in
V 2 = { v ∈H1(Ω) | ∇ · v = 0 in Ω , v · n = 0 on ΓW }, cf. (8.26):

bΩ(wn,wn,v) + (νe∇wn,∇v) +
d−1∑
j=1

〈βj,nwn · tj ,v · tj〉ΓW = (f ,v) ,(8.65)

bΩ(w,w,v) + (νe∇w,∇v) +
d−1∑
j=1

〈βjw · tj ,v · tj〉ΓW = (f ,v) .(8.66)

Subtracting (8.66) from (8.65) gives (for all v in V 2)

bΩ(wn,wn,v)− bΩ(w,w,v) + (νe∇(wn −w)),∇v)

+
d−1∑
j=1

〈βj,nwn · tj ,v · tj〉ΓW −
d−1∑
j=1

〈βjw · tj ,v · tj〉ΓW = 0 ,

After expanding this can be rewritten as

bΩ(Φn,wn,v) + bΩ(w,Φn,v) + (νe∇Φn,∇v)

+
d−1∑
j=1

〈(βj,n − βj)wn · tj ,v · tj〉ΓW +
d−1∑
j=1

〈βjΦn · tj ,v · tj〉ΓW = 0.

Setting v = Φn and taking into account b(w,Φn,Φn) = 0 (as w · n = 0 on ΓW ) gives

νe||∇Φn||2L2(Ω) +
d−1∑
j=1

〈βjΦn · tj ,Φn · tj〉ΓW

= −
d−1∑
j=1

〈(βj,n − βj)wn · tj ,Φn · tj〉ΓW − bΩ(Φn,wn,Φn) .

(8.67)
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Now we need estimates for the right hand side terms. First, we have

|bΩ(Φn,wn,Φn)| ≤ Cb||∇wn||L2(Ω)||Φn||21,Ω ≤ CbC
2
MKb(f , νe)||∇Φn||2L2(Ω) ,

where we used Lemma 8.1 and (8.64) in the last step. Next we have for each K > 0

|
d−1∑
j=1

〈(βj,n − βj)wn · tj ,Φn · tj〉ΓW | ≤ |
d−1∑
j=1

||βj,n − βj ||L∞(ΓW )〈wn · tj ,Φn · tj〉ΓW |

≤
d−1∑
j=1

1
2K
||Φn · tj ||2L2(ΓW ) +

d−1∑
j=1

K

2
||βj,n − βj ||2L∞(ΓW )||wn · tj ||2L2(ΓW )

≤
d−1∑
j=1

1
2K
||Φn · tj ||2L2(ΓW ) +

d−1∑
j=1

K

2
||βj,n − βj ||2L∞(ΓW )C

2
trC

2
MKb(f , νe)2

where we used ||wn||L2(ΓW ) ≤ ||wn||1/2,2,ΓW ≤ CTr||wn||1,Ω (cf. [Otto99], p.159) and
Lemma 8.1 in the last step. Substituting the last two inequalities into (8.67) gives

(
νe − CbC2

MKb(f , νe)
)
||∇Φn||2L2(Ω) +

(
β0 −

1
2K

) d−1∑
j=1

||Φn · tj ||2L2(ΓW )

≤ C2
trC

2
MKb(f , νe)2

d−1∑
j=1

K

2
||βj,n − βj ||2L∞(ΓW ) .

Now we exploit the fact that β0 > 0 and choose K, s.t. β0− 1
2K ≥ 0. Then step (1), (8.64),

and (B.14) imply that Φn −→ 0 as n→∞ in the norm of H1(Ω). ♦

Lemma 8.10
We assume that Ω is sufficiently smooth s.t. there exists a continuous linear prolongation
operator Π : Wm,p(Ω) −→ Wm,p(Rd), d = 2, 3. Then, under the assumptions of Lemma
8.9 the operator TNS→LES is compact.

Proof:
We have to show that for each given bounded sequence (un) in V 1

0,W , i.e. ||un||1,Ωi < C
for all n, the sequence (TNS→LES(un)) contains a subsequence, that converges to some w
in V 2 in the norm of H1(Ω).
Given a bounded sequence (un) in V 1

0,W with ||un||1,Ωi < C for all n. Then there exists
some u in V 1

0,W and a subsequence (unk) s.t. unk → u as n → ∞ in the weak topology
of V 1

0,W . Due to Lemma B.2 we have also unk → u as nk → ∞ strongly in the norm of
L2(Ω). We define βj,nk ≡ βj(unk) and βj ≡ βj(u). In the proof of Lemma 8.9 it was shown
that then βnk −→ β as nk → ∞ in the norm of L∞(ΓW ). Moreover it was shown there
that then TNS→LES(unk) −→ w in the norm of V 2 as nk →∞. ♦
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8. Some analytical results for LES with near wall modelling

Before proceeding it is worthwhile recalling the Schauder Fixed-Point Theorem, cf. [ZeiI],
p.57: Let M be a nonempty, closed, bounded, convex subset of a Banach space X, and
suppose T : M −→M is a compact operator. Then T has a fixed-point.

Now we can state a theorem concerning the existence of at least one solution of the steady
state model for coupling LES and DNS. In all the preceding steps, all inequalities have
been handled very carefully. In contrast, this theorem and its corresponding proof will be
presented slightly lax. As will be seen in the proof, figuring out all inequalities involved in
the proof is a sisyphus-like task without being necessary.

Theorem 8.1
If ν and νe are ”sufficiently large” and if ||f ||−1,Ω and ||f ||−1,Ωi are ”sufficiently small”,
then TNS→LES ◦ TLES→NS and TLES→NS ◦ TNS→LES have at least one fixed-point.

Proof:
First we show the existence of a fixed-point of the operator

S1 ≡ TNS→LES ◦ TLES→NS : V 1
0,W ⊃ M1 7→ M1(8.68)

with M1 to be determined within the proof. The proof takes three steps.

I Show that there is a closed and bounded ball M ′1 ⊂ V 1
0,W , s.t. S1|M ′1 is well-defined

and continuous.

II Show that there is a closed and bounded ball M1 ⊂M ′1, s.t. S1(M1) ⊂M1.

III Show that S1 is compact.

Then M1 is nonempty, closed, bounded and convex. Thus the Schauder Fixed-Point The-
orem ensures that there is u ∈M1, s.t. S1(u) = u.

Ad I: TNS→LES is well-defined on V 1
0,W . As a consequence of Lemmata 8.8 and 8.9, S1 is

well-defined and continuous on M ′1 ⊂ V 1
0,W provided TNS→LES(M ′1) ⊂ V 2

cont. Figure 8.1
provides some illustration:
Therefore we have to ensure that w ∈ M ′1 satisfies the following conditions: First, from
(8.55) we have to ensure (i)

ν

2
> CbC

2
P,i

2
ν
Ka(f , ν,w) .

Second, from (8.60) we need (ii)

3ν
8

> Cb
2
ν
C2
P,iKa(f , ν,w) + CbC1(d,Ωi)CP,i||w||1/2,2,Γi .
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T TNS   LES LES   NS

M’

V2

1 TNS   LES
( 1) 

cont

1S (M )1

V1
0,W V1

0,W

M1

M1

M’

Figure 8.1.: Schematic representation of subspaces.

Due to the priori estimate in Lemma 8.1, we have

||w||1/2,2,Γi ≤ CtrCM ||∇w||L2
(Ωi)
≤ CtrCM ||∇w||L2

(Ω)
≤ Ctr

C2
M

νe
||f ||−1,Ω .(8.69)

Thus if ||f ||2−1,Ω is ”sufficiently small” and νe is ”sufficiently large”, then we can make
||w||1/2,2,Γi sufficiently small such that (i) and (ii) are satisfied. Therefore we can ensure
existence of a closed and bounded ball M ′1 ⊂ V 1

0,W , s.t. TNS→LES(M ′1) ⊂ V 2
cont, i.e., S1|M ′1

is well-defined.

Ad II: Now we have to show that there is a closed and bounded ball M1 ⊂M ′1 s.t. S1(M1) ⊂
M1. As M ′1 is a closed and bounded ball, there is ρ > 0 s.t. B(0, ρ) ⊂ M ′1, with B(0, ρ)
being the ball with radius ρ around the origin. From Lemma 8.5 we know that

||∇S1(u)||2
L2

(Ωi)
≤ 2

ν
Ka(f , ν,w) .(8.70)

We can combine this with (8.69) giving the following estimate

||∇S1(u)||2
L2

(Ωi)
≤ 2
ν
Capu,1||f ||−1,Ωi + Capu,2Ctr

C2
M

νe
||f ||−1,Ω + Capu,3C

2
tr

C4
M

ν2
e

||f ||2−1,Ω .(8.71)

Then we simply require for f and νe that the r.h.s. in (8.71) is smaller than ρ. Therefore
there is a closed and bounded ball M1 ⊂M ′1 s.t. S1(M1) ⊂M1.

Ad III: S1 is a compact operator as TLES→NS is continuous and TNS→LES is continuous
and compact.
From I-III we can infer that the operator S1 has at least one fixed-point.
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8. Some analytical results for LES with near wall modelling

Secondly, we show the existence of a fixed-point of the operator

S2 ≡ TLES→NS ◦ TNS→LES : V 2
cont 7→ V 2 .

This operator is well-defined, continuous and compact according to Lemmata 8.8, 8.9, and
8.10. From Lemma 8.1 we know the following a priori estimate for S2(w), viz.,

||S2(w)||21,Ω ≤
C4
M

ν2
e

||f ||2−1,Ω .

Then we require that ν and f are such that the right hand side is smaller than ρ, satifying
B(0, ρ) ⊂ V 2

cont. Now we can apply the Schauder Fixed-Point Theorem. ♦

Remark 8.9
For proving Lemmata 8.9 and 8.10 we need that β(·, ·) ≥ β0 > 0 and β(·, ·) is continuous
on R2. ♦
Before giving the proof regarding uniqueness, we need a further result regarding βj(·).
Lemma 8.11
Assume ΓW is piecewise smooth. Then for all u1, u2 in H1(Ωi)

||βj(u1)− βj(u2)||L∞(ΓW ) ≤ Cβ(δ)||u1 − u2||H1
(Ωi)

, Cβ(δ) = ClcCδ
−5/2 .

Proof:
For given u in C∞(Rd) and fixed j = 1, . . . , d − 1 we set y(u) ≡ Tr|ΓWu · tj and z(u) ≡
nTTr|ΓWD(u)tj . As ΓW is piecewise smooth, y(u) and z(u) are in L∞(ΓW ). So let u1,
u2 in V 1

0,W be given. Denote yi ≡ y(ui), zi ≡ z(ui), i = 1, 2. Then for each x in ΓW

|β(y1(x), z1(x))− β(y2(x), z2(x))| ≤ Clc max[|y1(x)− y2(x)|; |z1(x)− z2(x)|] .
We will use the following embedding result, see [Gri85], p. 27, i.e.,

W k+d/p,p(Rd) ⊂ Ck−1,α(Rd) , ∀ α ∈ [0, 1[ , k ∈ N , k ≥ 1 .

Moreover we use the following estimate, see [JL01], p.271: For f ∈ L2(Ω), f = 0 on Rd \Ω,
and f ≡ gδ ∗ f ∈ C∞(Rd) we have

||gδ ∗ f ||Wk,2(Rd) ≤ C||gδ||Wk,1(Rd)||f ||L2(Ω) ≤ C3δ
−k||f ||L2(Ω) .

Therefore we obtain

||βj(u1)− βj(u2)||L∞(ΓW ) = max
x∈ΓW

|β(u1)(x)− β(u2)(x)|

≤ Clc max
x∈ΓW

max[ |y1(x)− y2(x)|; |z1(x)− z2(x)| ]

= Clc max[||Tr|ΓW (u1 − u2) · tj ||L∞(ΓW ),

||nTTr|ΓW∇(u1 − u2)tj ||L∞(ΓW )]

≤ Clc max[||u1 − u2||L∞(Rd), ||∇(u1 − u2)||L∞(Rd)]

= Clc max[||u1 − u2||C0(Rd), ||∇(u1 − u2)||C0(Rd)]

≤ ClcC max[||u1 − u2||W 5/2,2(Rd), ||∇(u1 − u2)||W 5/2,2(Rd)]

≤ ClcCδ
−5/2||u1 − u2||1,Ωi .
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♦

Theorem 8.2
Suppose that the assumptions of Theorem 8.1 hold. Moreover we assume that there exists
ε > 0 s.t. β0 − ε/2 > 0 and

νe > Cb
C3
M

νe
||f ||−1,Ω +

1
2ε

(d− 1)C2
β(δ)C4

tr

C6
M

νe
||f ||2−1,Ω[2C2

1 (d,Ωi)

+ 2C2
P,iK

−1
2 (

16
ν3
Kd(f , ν, νe)2C2

bC
2
1 (d,Ωi)C2

P,i

+ (2νC2
1 (d,Ωi) +

2
ν
C2
bC

2
P,iC

4
1 (d,Ωi)2

C2
trC

4
M

ν2
e

||f ||2−1,Ω) ) ] .

(8.72)

with the following abbreviation

Kd(f , ν, νe) ≡ Capu,1||f ||−1,Ωi + Capu,2
CtrC

2
M

νe
||f ||−1,Ω + Capu,3

C2
trC

4
M

ν2
e

||f ||2−1,Ω .(8.73)

Then the solution (w,u) of (8.11)-(8.16) is unique.

Proof:
Suppose that there are two solutions (w1,u1) and (w2,u2), i.e. wi = TLES→NS◦TNS→LES(wi)
and ui = TNS→LES◦TLES→NS(ui), and u1 = TLES→NS(w1), u2 = TLES→NS(w2), i = 1, 2.
Denote w = w1 −w2 and u = u1 − u2. Then for all v in V 2, cf. (8.26),

νe(∇w1,∇v) + bΩ(w1,w1,v) +
d−1∑
j=1

〈βj(TLES→NS(w1))w1 · tj ,v · tj〉ΓW = (f ,v) ,

νe(∇w2,∇v) + bΩ(w2,w2,v) +
d−1∑
j=1

〈βj(TLES→NS(w2))w2 · tj ,v · tj〉ΓW = (f ,v) .

Subtracting the second equation from the first one, expanding, and setting v = w gives

νe(∇w,∇w) +
d−1∑
j=1

〈[βj(TLES→NS(w1))− βj(TLES→NS(w2))]w1 · tj ,w · tj〉ΓW

+ bΩ(w,w1,w) +
d−1∑
j=1

〈(βj(TLES→NS(w2)))w · tj ,w · tj〉ΓW = 0 .

Therefore we arrive at the following estimate

νe(∇w,∇w) +
d−1∑
j=1

〈βj(TLES→NS(w2))w · tj ,w · tj〉ΓW ≤ |bΩ(w,w1,w)|

+
d−1∑
j=1

|〈[βj(TLES→NS(w1))− βj(TLES→NS(w2))]w1 · tj ,w · tj〉ΓW | .

(8.74)
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Now the goal is to bound both r.h.s. terms. Regarding the former we have

|bΩ(w,w1,w)| ≤ Cb
C3
M

νe
||f ||−1,Ω||∇w||2L2(Ω) .(8.75)

Concerning the latter the following estimate holds:

d−1∑
j=1

|〈[βj(TLES→NS(w1))− βj(TLES→NS(w2))]w1 · tj ,w · tj〉ΓW |

≤
d−1∑
j=1

||βj(TLES→NS(w1))− βj(TLES→NS(w2))||L∞(ΓW )||w1 · tj ||L2(ΓW )||w · tj ||L2(ΓW )

≤ 1
2ε

d−1∑
j=1

||βj(TLES→NS(w1))− βj(TLES→NS(w2))||2L∞(ΓW )||w1 · tj ||2L2(ΓW )

+
ε

2

d−1∑
j=1

||w · tj ||2L2(ΓW )

≤ 1
2ε

d−1∑
j=1

||βj(TLES→NS(w1))− βj(TLES→NS(w2))||2L∞(ΓW )C
2
tr

C4
M

ν2
e

||f ||2−1,Ω

+
ε

2

d−1∑
j=1

||w · tj ||2L2(ΓW ) ,

where we bounded the L2(ΓW ) norm by the W 1/2,2,ΓW norm, cf. [Otto99], p.159 in the last
step. From Lemma 8.11 we know that (for each j = 1, . . . , d− 1)

||βj(TLES→NS(w1))− βj(TLES→NS(w2))||2L∞(ΓW )

≤ C2
β(δ)||TLES→NS(w1)− TLES→NS(w2)||21,Ωi .

Thus we need an estimate for the term ||TLES→NS(w1) − TLES→NS(w2)||1,Ωi . We write
TLES→NS(wk) = ũk +W k (k = 1, 2), with W k denoting the Hopf extension. Moreover,
we write ũ ≡ ũ1 − ũ2. Then

||TLES→NS(w1)− TLES→NS(w2)||21,Ωi ≤ 2||W 1 −W 2||21,Ωi + 2||ũ1 − ũ2||21,Ωi
≤ 2C2

1 (d,Ωi)||w1 −w2||21/2,2,Γi + 2||ũ1 − ũ2||21,Ωi
≤ 2C2

1 (d,Ωi)||w1 −w2||21/2,2,Γi + 2C2
P,i||∇ũ||2L2(Ωi)

.
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Combining the last five inequalities, we arrive at

νe||∇w||2L2(Ω) +
d−1∑
j=1

〈βj(TLES→NS(w2))w · tj ,w · tj〉ΓW

≤ Cb
C3
M

νe
||f ||−1,Ω||∇w||2L2(Ω) +

ε

2

d−1∑
j=1

||w · tj ||2L2(ΓW )

+
1
2ε

d−1∑
j=1

C2
β(δ)

(
2C2

1 (d,Ωi)||w||21/2,2,Γi) + 2C2
P,i||∇ũ||2L2(Ωi)

)
C2
tr

C4
M

ν2
e

||f ||2−1,Ω .

(8.76)

So we need an estimate for ||∇ũ||2L2(Ωi)
. In (8.63), replacing wn by w1, w by w2, and Φn

by ũ, we get

[
3ν
8
− Cb

2
ν
C2
P,i[C

ap
u,1||f ||−1,Ωi + Capu,2||w1||1/2,2,Γi + Capu,3||w1||21/2,2,Γi ]

− CbC1(d,Ωi)CP,i||w1||1/2,2,Γi ] ||∇ũ||2L2(Ωi)

≤ 8
ν3

[Capu,1||f ||−1,Ωi + Capu,2||w2||1/2,2,Γi + Capu,3||w2||21/2,2,Γi ]
2

C2
bC

2
1 (d,Ωi)C2

P,i||w||21/2,2,Γi

+
8
ν3

[Capu,1||f ||−1,Ωi + Capu,2||w1||1/2,2,Γi + Capu,3||w1||21/2,2,Γi ]
2

C2
bC

2
1 (d,Ωi)C2

P,i||w||21/2,2,Γi
+ 2νC2

1 (d,Ωi)||w||21/2,2,Γi

+
2
ν
C2
bC

2
P,iC

4
1 (d,Ωi)(||w1||21/2,2,Γi + ||w2||21/2,2,Γi)||w||

2
1/2,2,Γi

.

(8.77)

Combining trace inequality and the a priori estimate for wi (cf. (8.27)), we obtain

||wi||21/2,2,Γi ≤ C2
tr||wi||21,(Ω\Ωi) ≤ C2

tr||wi||21,Ω ≤
C2
trC

4
M

ν2
e

||f ||2−1,Ω .

Inserting this into (8.77) gives (using (8.73))(
3ν
8
− Cb

2
ν
C2
P,iKd(f , ν, νe)− CbC1(d,Ωi)CP,i

CtrC
2
M

νe
||f ||−1,Ω

)
||∇ũ||2L2(Ωi)

≤ 16
ν3
Kd(f , ν, νe)2C2

bC
2
1 (d,Ωi)C2

P,i||w||21/2,2,Γi

+
(

2νC2
1 (d,Ωi) +

2
ν
C2
bC

2
P,iC

4
1 (d,Ωi)2

C2
trC

4
M

ν2
e

||f ||2−1,Ω

)
||w||21/2,2,Γi .

(8.78)

Now we define K2 as

K2 ≡
3ν
8
− CbC1(d,Ωi)CP,i

CtrC
2
M

νe
||f ||−1,Ω − Cb

2
ν
C2
P,iKd(f , ν, νe) .(8.79)
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Substituting (8.78) and (8.79) into (8.76) and using βj ≥ β0, we obtain

νe||∇w||L2(Ω) +
d−1∑
j=1

β0||w · tj ||2L2(ΓW )

≤ Cb
C3
M

νe
||f ||−1,Ω||∇w||2L2(Ω) +

ε

2

d−1∑
j=1

||w · tj ||2L2(ΓW )

+
1
2ε

(d− 1)C2
β(δ)C2

tr

C4
M

ν2
e

||f ||2−1,Ω [ 2C2
1 (d,Ωi)||w||21/2,2,Γi

+ 2C2
P,iK

−1
2 (

16
ν3
Kd(f , ν, νe)2C2

bC
2
1 (d,Ωi)C2

P,i||w||21/2,2,Γi

+
(

2νC2
1 (d,Ωi) +

2
ν
C2
bC

2
P,iC

4
1 (d,Ωi)2

C2
trC

4
M

ν2
e

||f ||2−1,Ω

)
||w||21/2,2,Γi ) ] .

(8.80)

Finally we apply the following estimate, videlicet,

||w||21/2,2,Γi ≤ C2
tr||w||21,(Ω\Ωi) ≤ C2

trC
2
M ||∇w||2L2(Ω) .(8.81)

Substituting this, (8.80) can be rearranged to

(νe −Kc) ||∇w||2L2(Ω) +
d−1∑
j=1

(
β0 −

ε

2

)
||w · tj ||2L2(ΓW ) ≤ 0

with K2 being defined in (8.79) and

Kc ≡ Cb
C3
M

νe
||f ||−1,Ω +

1
2ε

(d− 1)C2
β(δ)C4

tr

C6
M

ν2
e

||f ||2−1,Ω [ 2C2
1 (d,Ωi)

+ 2C2
P,iK

−1
2 (

16
ν3
Kd(f , ν, νe)2C2

bC
2
1 (d,Ωi)C2

P,i + (2νC2
1 (d,Ωi)

+
2
ν
C2
bC

2
P,iC

4
1 (d,Ωi)2

C2
trC

4
M

ν2
e

||f ||2−1,Ω) ) ] .

Due to the assumptions of this theorem, we can find ε > 0 s.t. β0−ε/2 > 0 and νe−Kc > 0.
Thus w = 0, i.e., w1 = w2. Then ui = TLES→NS(wi) implies u1 = u2. ♦

8.4. Some closing remarks

In this section the following issues are discussed, viz., the slip with resistance boundary
condition for LES, the matching condition on Γi the corresponding steady state problem
and its simplification, and finally how to use this coupling scheme in a computational model.

8.4.1. The slip with resistance boundary condition for LES

Traditionally, boundary condition (7.5) has been used in LES with near wall modelling.
In [GL00] Galdi and Layton proposed the following slip with linear friction and no
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penetration boundary condition (with given friction parameters βj):

w · n = 0 on ΓW ,(8.82)

βjw · tj + nT (νe∇(w) +Au(w))tj = 0 on ΓW , 1 ≤ j ≤ d− 1.(8.83)

As a motivation for this boundary condition, Layton refers to the phenomenon of hur-
ricanes, who slip along the ground and thereby loose their energy. Note that in the limit
case βj → ∞, the no-slip condition is recovered. In the limit case βj → 0, the free slip
condition is obtained.
The parameters βj should depend on the filter width δ and on the flow parameter Re (or, for
sake of simplicity, on ν). To be consistent, in (8.83) for fixed ν we must have βj(δ, ν)→∞
as δ → 0, since the non-space-filtered velocity field satisfies the no slip condition.
A reasonable specification for βj was given in (8.7). We will close this subsection by inves-
tigating the following special situation for a flow over a flat plate. Assume the filter width
δ is smaller than the boundary-layer thickness. Denote y ≡ x2 the wall normal direction.
Denote x1 and x3 streamwise and spanwise direction resp. Assume that in the near wall
region the velocity u is given by u = U(y)t1, with t1 being directed in the x1-direction.
Then β1 is well-defined using (8.7). However, concerning β3 both numerator and denom-
inator vanish and (8.7) is not well-defined. In this particular situation, as a remedy we
suggest β3 = β1.

8.4.2. Some remarks concerning the matching condition on Γi

In this subsection we consider the matching condition on Γi, namely (8.6). First we show
that u = w on Γi×(0, T ) is in some sense compatible with the continuity equation. Second
we develop a more sophisticated matching condition.

Lemma 8.12
The boundary condition u = w on Γi× (0, T ) (see (8.6)) is compatible with the continuity
equations (8.2) and (8.5) in the following sense: The boundary integral of u · n and w · n
along Γi vanishes.

Proof:
Integrating the r.h.s. in (8.2) over Ωlayer and integration by parts gives (by virtue of (8.3)
in the last step)

0 =
∫

Ωlayer

∇ ·w dx =
∫

ΓW

w · n ds +
∫

Γi

w · n ds =
∫

Γi

w · n ds.(8.84)

Similarly from (8.5) and (8.6) (i.e. u = 0 on ΓW ) we have

0 =
∫

Ωlayer

∇ · u dx =
∫

Γi

u · n ds .(8.85)

Therefore both u · n and w · n have zero boundary integral over Γi. ♦
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Now we develop a more sophisticated matching on Γi. Recall that w is an approximation
of u. Thus it seems natural to provide more information for the matching condition on Γi.
As an example, write u = u + u′ with w ≈ u. Then a natural matching condition seems
to be

u = w + approximation of u′ on Γi.(8.86)

An approximation of u′ can be given via a scale similarity argument.

u′ = u− u ≈ u− u ≈ w −w .(8.87)

This gives the condition

u = w + (w −w) = 2w −w on Γi .(8.88)

However, this boundary condition is not compatible in the sense of Lemma 8.12. On the
one hand, the integral over the left hand side in (8.88) vanishes, see Lemma 8.12. On the
other hand, integrating the right hand side of (8.88) over ΓW gives∫

Γi

(2w −w) · n ds = −
∫

Γi

w · n ds .(8.89)

However,
∫

ΓW
w · n ds is generally nonzero (although small). Instead we could consider

the following matching condition

u = 2w −w +
1

µ(Γi)

∫
Γi

w · n ds on Γi .(8.90)

By construction, this condition is compatible.

8.4.3. The steady state case

In this chapter we restrict ourselves to the isothermal steady state case of (8.1)-(8.6),
primarily for the following reason. We recall the model problem considered in section 1.4:
Le Tallec and Tidriri seek the stationary solution to the time-dependent problem (1.30)-
(1.34). Semidiscretization in time by applying a backward-Euler scheme then results in a
sequence of coupled stationary problems for each time step. Thus investigating the coupled
steady state problem is of mathematical relevance. Of course, in the case of the stationary
problem stemming from a backward-Euler scheme, an additional term from the discretized
time step appears. In our analysis we neglect this term; however, this term is propitious
regarding the analysis. It might be possible improving our results by accounting for this
term in the analysis.
For our coupled problem, i.e. (8.1)-(8.6), we cannot expect to obtain similar analytical
results as Le Tallec and Tidriri. The reason is the following: The equation corresponding
to (1.43) in our case is (8.1). However, there is no exact boundary condition for (8.1). In
contrast, for (1.43) (resp. (1.27) for the scalar case) homogeneous Dirichlet conditions can
be imposed. Only if δ(x)→ 0 as x→ 0 we can impose a no slip condition for w, but this
case is not of practical interest. Moreover, for the same reason, we cannot expect to benefit
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from utilising the analytical techniques used by Le Tallec and Tidriri.
An aim for future research could be to appraise the solution of this coupled scheme. For
example, assume that there is a LES model Au, that has the property that the global LES
solution w converges to the corresponding global DNS solution u as the filter width δ goes
to zero. Then the question is whether the solution of the coupled scheme converges to u
as δ → 0.

8.4.4. Steps towards a computational model

In this subsection we give some comments on the usage of this coupling method in a
computational model. For sake of simplicity, in the analysis we consider the situation
sketched in Figure 1.2, i.e., in particular, there is no inflow or outflow boundary. Of course,
the aim is to apply the method to more complex flow problems like that shown in figure
8.2. Using a DNS in the near wall region makes the approach computationally expensive.

Ωloc

Ωloc

Ω

WΓ

ΓW

Γi

Γi

yloc

locy

Figure 8.2.: Fully overlapping DDM for a flow over a backward facing step.

The costs of a DNS in the boundary layer can be comparable to those of the global LES. In
practical situations it is often not necessary to employ a DNS in Ωlayer, because there are
classes of technologically interesting flows for which a certain turbulence model gives quite
accurate predictions. Thus again we end up with the task of seeking a simpler boundary-
layer solution uBL in the region close to ΓW .

(1) If we can assume that in the boundary layer the flow uBL is reasonably described
by (5.27) with Θ = 0, then there are several semi-empirical explicit formulae for
uBL, e.g. a log-law or a power-law. From these, explicit formulae for βj(δ, ν) can be
derived, see [JLS02], who considered a power-law profile for uBL.

(2) A more advanced method is to solve the two dimensional turbulent boundary-layer
equations (5.18), i.e. to solve a RANS problem in the boundary layer. For νt in
(5.18), an algebraic turbulence model or the Spalart-Allmaras model could be used.

In case (2) the space averaged quantities in (8.7) have to be evaluated numerically.
In order to provide some illustration, we consider the situation sketched in Figure 8.2. It
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shows some prototypical flow situations (with unidirectional inflow on the left), for which
certain RANS give appropriate results. We can assume that the log-law holds on the
upper wall. The log-law also holds on the lower wall until the separation point is reached.
However, for predicting the behaviour at the separation point and in the lee of the step,
applying the Spalart-Allmaras model seems to be the currently best option. In other
situations, e.g. for describing a jet impinging on a flat plate, the k− ε− v2 model seems to
be a suitable choice.
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9. Semidiscretisation in time, decoupling and linearisation

The second part of this thesis is dedicated to the numerical solution scheme which is applied
to the turbulence models presented in Chapters 6 and 7. This chapter is devoted to the
semidiscretisation in time and a subsequent decoupling and linearisation strategy. Finally
we will obtain an uncoupled system of linear stationary problems of Oseen-type and of
advection-diffusion-reaction-type as underlying basic equations. Describing the variational
formulation for these basic equations will conclude this chapter.

9.1. Semidiscretisation in time using the discontinuous Galerkin method

In our research group, semidiscretisation in time is performed by the so-called discoutinu-
ous Galerkin method. For this purpose the time interval (0, T ] is divided into subsequent
subintervals Jm ≡ (tm−1, tm] with splitting points 0 = t0 < t1 < . . . < tM = T and time
step widths 4m = tm − tm−1. Then the discontinuous Galerkin method of order q (abbre-
viated DG(q)) seeks an approximate solution (of the corresponding continuous problem),
whose restriction to Jm is a polynomial in t of degree q with coefficients in X . Here X is
the solution space of the corresponding stationary problem, which is usually a suitable sub-
space of H1(Ω) for problems of advection-diffusion-reaction type resp. of (H1(Ω))d×L2(Ω)
for problems of Navier-Stokes type.
For instationary problems of advection-diffusion-reaction type and of Oseen type, the
DG(0) and DG(1) method have been implemented in our research code ParallelNS;
numerical results can be found in [Mue99], [Mue00] and [Fis02]. For the k/ε model only
the DG(0) method is available; for numerical results see e.g. [Gri01]. Therefore in this
thesis only the DG(0) method will be considered. It is worthwhile emphasising that the
DG(0) method covers the backward Euler method when approximating the r.h.s. integrals
by the rectangular rule

∫ tm
tm−1 f(t,x)dt ≈ 4mf(tm,x). Both schemes are of first order

accuracy in time. The DG(0) method is attractive because linearisation and decoupling
of our non-linear and coupled systems of equations can be accomplished quite easily in its
framework. On the other hand the DG(0) method has the drawback of being only of first
order accuracy. We intend to circumvent this shortcoming by using very fine time steps in
combination with a time adaptive algorithm, see [Mue00] and [Fis02]. As a final remark
it is worth pointing out that, to our experience, the presented scheme works reasonable
for flow problems for which a (quasi) stationary solution exists. This is satisfied in many
indoor-air flow problems of practical interest, but cannot be expected in mixed resp. nat-
ural convection flow problems in general.
For the numerical analysis of the DG(q) method we refer to [Tho97], Chapter 12 and to
[Mue00], [Fis02].
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9.2. Semidiscretisation, decoupling, and linearisation for the k/ε model

First be consider k/ε model IIIa and k/ε model IIIb.

9.2.1. Semidiscretisation in time for the k/ε model

In a first step we semidiscretise k/ε model I, see Section 6.1, w.r.t. the temporal variable
using the discontinuous Galerkin method DG(0). Therefore the time interval [0, T ] is
divided into subintervals Jm ≡ (tm−1, tm] with splitting points 0 = t0 < t1 < . . . < tM = T
and time step widths 4m = tm − tm−1. Um, , Pm, Θm, km, and εm the (time constant)
solution in Jm. Then we arrive at the following scheme:

DG(0) method for the k/ε turbulence model

Given Um−1, Pm−1, Θm−1, km−1, and εm−1 from the previous time step (if m > 1) or
from the initial condition (if m = 1) seek Um , Pm, Θm, km, εm s.t.

Um −Um−1

4m
−∇ · (2νme S(Um)) + (Um ·∇)Um = −∇Pm − βΘmg ,(9.1)

∇ ·Um = 0 ,(9.2)

Θm −Θm−1

4m
+ (Um ·∇)Θm −∇ · (ame ∇Θm) =

(q̇V )m

cp
,(9.3)

km − km−1

4m
+ (Um ·∇)km −∇ · (νmk ∇km) = Pmk +Gm − εm ,(9.4)

εm − εm−1

4m
+ (Um ·∇)εm −∇ · (νmε ∇εm) + C2

(εm)2

km
= C1

εm

km
(Pmk +Gm) .(9.5)

Here we used the following abbreviations

Pmk = 2νmt ||S(Um)||2F , Gm = Ctβ
νmt
Prt

g ·∇Θm , νmt = cµ
(km)2

εm
,(9.6)

νme = ν + νmt , ame =
ν

Pr
+
νmt
Prt

, νmk = ν +
νmt
Prk

, νmε = ν +
νmt
Prε

.(9.7)

Thus the instationary problem (3.28)-(3.32) is reduced to the sequence of successively solved
stationary problems (9.1)-(9.5).

9.2.2. Iterative decoupling and linearisation for the k/ε model

Equations (9.1)-(9.5) are highly coupled; moreover, due to the boundary conditions spec-
ified in model IIIa and model IIIb an additional coupling occurs. Thus we need a
decoupling and linearisation strategy.
We fix m and a time slice Jm ≡ (tm−1, tm]. Denote a second upper index itdlc the decou-
pling and linearisation cycle.
Given Um,0, Pm,0, Θm,0, km,0, εm,0, Um,0∗ , q̇m,0 as the solution of the previous time step
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(or from an initial guess or the initial condition):

Decoupling and linearisation scheme for the k/ε model

(1) Set itdlc ←− 1.

(2) Set i←− itdlc

(3) Update turbulent viscosity and turbulent diffusivities

νmt ←− Cµ
(km,i−1)2

εm,i−1
, νme ←− ν + νmt ,

ame ←−
ν

Pr
+
νmt
Prt

, νmk ←− ν +
νmt
Prk

, νmε ←− ν +
νmt
Prε

.

(4) Update boundary conditions for momentum and temperature: For each x ∈ ΓW

• If effects of stratification have to be considered: Update Remin according to

Remin = 6.25eKsRig , with Rig = − g · n q̇m,i−1 Pr ν

(Um,i−1
∗ )4 cp Θm,i−1|ΓW

.

with n being the outer normal vector to ΓW in x. Use a cut-off technique to
ensure Remin,cut ≤ Remin ≤ 70.0 with Remin,cut ∈ [2, 12].

• Define U(yδ) and Θ(yδ) by (see also the notation given in (6.3))

U(yδ) =
Um,i−1
δ ·Um,i−1

δ,t

||Um,i−1
δ,t ||

, Θ(yδ) = Θm,i−1|Γδ .

• Seek (Um,i∗ , q̇m,i) as specified in step (2) of k/ε model IIIb resp. model IIIa.

• Check that Γδ is mostly contained in the log-layer.

(5) Solve the linearised Navier-Stokes equations

Um,i −Um−1

4m
+ (Um,i−1 ·∇)Um,i −∇ · (2νme S(Um,i)) +∇Pm,i = − βΘm,i−1g ,

∇ ·Um,i = 0 ,

Um,i = U in on ΓF , σ(Um,i, Pm,i)n = 0 on ΓN ,

nTσ(Um,i, Pm,i)tj = (Um,i∗ )2U
m,i−1
δ,t · tj
||Um,i−1

δ,t ||
, Um,i · n = 0 on ΓW .
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(6) Solve the temperature equation

Θm,i −Θm−1

4m
+ (Um,i ·∇)Θm,i − ∇ · (ame ∇Θm,i) =

(q̇V )m,i

cp
,

Θm,i = Θin on Γ−(Um,i) , a∇Θm,i · n = 0 on Γ+(Um,i) ,

a∇Θm,i · n =
q̇m,i

cp
on ΓW .

(7) Update Pmk ←− 2νmt ||S(Um,i)||2F , Gm ←− Ctβ νmt
Prt
g·∇Θm,i , and solve the k-equation.

km,i − km−1

4m
+ (Um,i ·∇)km,i −∇ · (νmk ∇km,i) = Pmk +Gm − εm,i−1

km,i = 1.5(Tu||Um,i||)2 on Γ−(Um,i) , ν∇km,i · n = 0 on Γ+(Um,i) ,

km,i =
(Um,i∗ )2

C
1/2
µ

on Γδ .

(8) Solve the ε-equation.

εm,i − εm−1

4m
+Um,i ·∇εm,i −∇ · (νmε ∇εm,i) + C2

εm,i−1

km,i
εm,i = C1

εm,i−1

km,i
(Pmk +Gm)

εm,i = C3/4
µ (km,i)3/2L−1 on Γ−(Um,i) , ν∇εm,i · n = 0 on Γ+(Um,i) ,

εm,i =
(Um,i∗ )3

κyδ
on Γδ .

(9) Stopping-criterion for linearisation cycle : If itdlc < maxdlc and if certain stopping
criteria for {um,i}i, {Θm,i}i, {km,i}i, and {εm,i}i are not yet fulfilled, then set itdlc ←−
itdlc + 1 and goto step (2). Otherwise goto next time step.

Remark 9.1
If Γδ is partially located in the viscous sublayer, we use (5.49) on Γδ for km,i and εm,i. ♦

Remark 9.2
Concerning the task of determining (Um,i∗ ) and q̇m,i, our approach is analogous to the fixed
point scheme (1.39)-(1.42) and (1.47)-(1.51). ♦

9.2.3. Arising model problems for the k/ε model

The iterative scheme requires the solution of the following model problems: First, the
linearised equations for θ, k and ε are advection-diffusion-reaction problems (with non-
constant viscosity) of the general form :

Lu ≡ −∇ · (ν∇u) + (b ·∇)u+ cu = f in Ω̃ ,(9.8)

u = g on Γ̃D ,(9.9)

ν∇u · n = h on Γ̃N .(9.10)

The corresponding Ω̃, Γ̃D, Γ̃N , g and h can be found in the following table
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Equation Ω̃ Γ̃D Γ̃N g h

θ Ω Γ− ΓW ∪ Γ+ θin h|Γ0 = q̇m,i/cp,
h|Γ+ = 0

k Ωδ Γ− ∪ Γδ Γ+ g|Γ− = 1.5(Tu||Um,i−1||)2, h = 0

g|Γδ = C
− 1

2
µ (Um,i∗ )2

ε Ωδ Γ− ∪ Γδ Γ+ g|Γ− = C
3/4
µ km,i

3/2
L−1, h = 0

g|Γδ = (Um,i∗ )3/(κyδ)

The other data are given in the following table

Equation u ν b cu f

For θ Θm,i ame Um,i Θm,i/4m
q̇V

cp
+ Θm−1/4m

For k km,i νmk Um,i km,i/4m (Pmk +Gm)− εm,i−1

+km−1/4m

For ε εm,i νmε Um,i C2
εm,i−1

km,i
εm,i C1

εm,i−1

km,i
(Pmk +Gm)

+εm,i/4m +εm−1/4m

From now on, we simply write Ω, ΓD and ΓN and omit the indices of diffusivities and
production terms.

The linearised Navier-Stokes equations are an Oseen-type problem with a positive reaction
term and non-constant viscosity:

LOs(u, p) = −∇ · (2νS(u)) + (a ·∇)u+ cu+∇p = f in Ω ,(9.11)
∇ · u = 0 in Ω ,(9.12)

u = uD on ΓD ,(9.13)
σ(u, p)n = σnn on ΓN ,(9.14)

nTσ(u, p)tj = σt · tj (j = 1, . . . , d− 1), u · n = 0 on ΓW .(9.15)

Comparison with step (5) of the algorithm yields ΓD = ΓF , u = Um,i, ν = νe, a = Um,i−1,
c = 1/4m, p = Pm,i, f = −βΘm,i−1g+1/4mU

m−1 and σt = (Um,i∗ )2Um,i−1
δ,t ·tj/||Um,i−1

δ,t ||.

9.3. Semidiscretisation, decoupling, and linearisation for the LES model

9.3.1. Semidiscretisation in time for the LES model

Similar to the procedure in the previous section, in this subsection we semidiscretise LES

model II (see Section (7.1)) w.r.t. the time variable using the discontinuous Galerkin
method DG(0). We divide the time interval [0, T ] into subintervals Jm ≡ (tm−1, tm] with
splitting points 0 = t0 < t1 < . . . < tM = T and time step widths 4m = tm− tm−1. Denote
wm, qm, and ϑm the (time constant) solution in Jm. Then we can state the following

117



9. Semidiscretisation in time, decoupling and linearisation

scheme:

DG(0) method for the LES model

Given wm−1, qm−1, and ϑm−1 from the previous time step (if m > 1) or from the initial
condition (if m = 1) seek wm , qm, ϑm s.t.

wm −wm−1

4m
−∇ · (2νme S(wm)) + (wm ·∇)wm = −∇qm − βϑmg −∇ · Au(wm),(9.16)

∇ ·wm = 0 ,(9.17)

ϑm − ϑm−1

4m
+ (wm ·∇)ϑm −∇ · (ame ∇ϑm) =

(q̇V )m

cp
−∇ · Aθ(wm, ϑm)(9.18)

with νt given by the Smagorinsky model resp. by the Iliescu-Layton model, viz.,

νt(wm, ϑm) = (CS∆)2

(
max{ 0 ; ||S(wm)||2F +

β

Prt
g · ∇ϑm}

)1/2

, resp.

(9.19)

νt(wm, ϑm) = Cq∆||wm −Rwm||
(

max { 0 ; 1 +
1

||S(wm)||2F
β

Prt
g ·∇ϑm }

)1/2

,

(9.20)

with R being defined in (7.1)-(7.2), together with the following abbreviations

νme = ν + νmt , ame =
ν

Pr
+
νmt
Prt

.(9.21)

Thus the instationary LES model II is reduced to a sequence of stationary problems
(9.16)-(9.21).

9.3.2. Iterative decoupling and linearisation for the LES model

The system of equations (9.16)-(9.21) is decoupled and linearised as follows: Given wm,0,
qm,0, and ϑm,0, as the solution of the previous time step (or from an initial guess or the
initial condition for m = 0)

(1) Set itdlc ←− 1.

(2) Set i←− itdlc

(3) Update νme , ame using wm,i−1 and θm,i−1 from (9.19) resp. (9.20).

(4) Update Au(wm,i−1), Aθ(wm,i−1, ϑm,i−1) (see LES model I).

(5) Near-wall damping of residual stress tensor and residual temperature flux: Multiply
νmt , amt , (Au(wm,i−1))ij and (Aθ(wm,i−1, ϑm,i−1))j with D(y+)α, where D(y+) =
1 − e−y+/26, and y+ = yWm,i−1

∗ ν−1. We select α = 2 for Smagorinsky model and
Galdi-Layton model; for the Iliescu-Layton model we choose α = 3.
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9.3. Semidiscretisation, decoupling, and linearisation for the LES model

(6) Update boundary conditions for momentum and temperature: For each x ∈ ΓW

– If effects of stratification have to be considered: Update Remin according to

Remin = 6.25eKsRig , with Rig = − g · n ṡm,i−1 Pr ν

(Wm,i−1
∗ )4 cp ϑm,i−1|ΓW

with n being the outer normal vector to ΓW in x. Use a cut-off technique to
ensure Remin,cut ≤ Remin ≤ 70.0 with Remin,cut ∈ [2, 12].

– Define w(yδ) and ϑ(yδ) by

w(yδ) =
wm,i−1
δ ·wm,i−1

δ,t

||wm,i−1
δ,t ||

, ϑ(yδ) = ϑm,i−1|Γδ .

– Seek (Wm,i
∗ , ṡm,i) as specified in step (2) of LES model II.

– Check that Γδ is mostly contained in the log-layer.

(7) Solve the linearised LES momentum equations

wm,i −wm−1

4m
+ (wm,i−1 ·∇)wm,i −∇ · (2νme S(wm,i)) = −∇qm,i − βϑm,i−1g

−∇ · Au(wm,i−1) ,

∇ ·wm,i = 0 ,

wm,i = win on ΓF , σ(wm,i, qm,i) · n = 0 on ΓN ,

nTσ(wm,i, qm,i)tj = (Wm,i
∗ )2w

m,i−1
δ,t · tj
||wm,i−1

δ,t ||
, wm,i · n = 0 on ΓW .

(8) Solve the LES temperature equation

ϑm,i − ϑm−1

4m
+ (wm,i ·∇)ϑm,i − ∇ · (ame ∇ϑm,i) =

(q̇V )m

cp

−∇ · Aθ(wm,i−1, ϑm,i−1) ,

ϑm,i = ϑin on Γ−(wm,i) , ∇ϑm,i · n = 0 on Γ+(wm,i) ,

a∇ϑm,i · n = ṡm,i/cp on ΓW .

(9) Stopping-criterion for linearisation cycle : If itdlc < maxdlc and if certain stopping
criteria for {wm,i}i and {ϑm,i}i are not yet fulfilled, then set itdlc ←− itdlc + 1 and
goto step (2). Otherwise goto next time step.

Again, we have to solve an Oseen-type problem for velocity and pressure, and an advection-
diffusion-reaction problem for the temperature. Moreover we have to solve twelve equations
of diffusion-reaction type, viz., six for computing, Au(wm,i−1), three forAθ(wm,i−1, ϑm,i−1),
and three for R(wm,i−1). Given f , the diffusion-reaction problems seek u, s.t.

−∆2

24
∇2 u + u = f , ∇u · n = 0 on ∂Ω ,

i.e., the left hand side for all twelve problems is the same.
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9. Semidiscretisation in time, decoupling and linearisation

9.4. Variational formulation of the arising model problems

In this section a variational formulation of the model problems will be presented. First we
consider (9.8)-(9.10). We introduce the following test and ansatz spaces :

VT ≡ { v ∈ H1(Ω) | Tr|ΓDv = 0 }, VA ≡ { v ∈ H1(Ω) | Tr|ΓDv = g },(9.22)

with Tr denoting the trace operator, see e.g. [Gal94I], Chapter II 3 or Chapter B. Then
the variational form of (9.8)-(9.10) reads:

Find u ∈ VA : bG(u, v) = lG(v) ∀v ∈ VT(9.23)

with the following bi-/linearforms :

bG(u, v) =
∫

Ω
ν∇u · ∇v dx+

∫
Ω

((b · ∇)u+ cu)v dx ,(9.24)

lG(v) =
∫

Ω
fv dx+

∫
ΓN

hv ds .(9.25)

The weak form corresponding to (9.11)-(9.15) can be derived very similar to Section 8.2.1,
but here we need to stress Remark 8.4. We introduce the following test and ansatz spaces

VA ≡ { v ∈Hdiv(Ω) , T r|ΓDv = uD on ΓD , T r|ΓW v · n = 0 on ΓD },(9.26)
VT ≡ { v ∈Hdiv(Ω) , T r|ΓDv = 0 on ΓD , T r|ΓW v · n = 0 on ΓW },(9.27)

Q ≡ { q ∈ L2(Ω) ,
∫

Ω
q dx = 0 },(9.28)

with Hdiv(Ω) being defined in (B.9). Moreover we define the following bi-/linearforms:

A(U, V ) = a(u,v) + b(v, p)− b(u, q) , L(V ) = L(v).(9.29)

with U = (u, p), V = (v, q) and

a(u,v) =
∫

Ω
2νS(u) :∇v + ((a ·∇)u+ cu) · v dx(9.30)

b(v, p) =−
∫

Ω
p(∇ · v) dx ,(9.31)

L(v) =
∫

Ω
f · v dx+

∫
ΓN

σnn · vds+
d−1∑
j=1

∫
ΓW

(σt · tj)(v · tj)ds.(9.32)

Now we can state the weak form of the Oseen problem:

Find U = (u, p) ∈ VA ×Q : A(U, V ) = L(V ) ∀ V ∈ VT ×Q.(9.33)

Remark 9.3
In the above formulation, the Dirichlet boundary data have been imposed in a strong way.
Let us mention two approaches for imposing the Dirichlet condition in a weak sense. A
strategy for imposing u ·n = 0 on ΓW in a weak sense by integrating by parts the equation
of continuity can be found in [MP94] and in [Mue99]. The weak imposition of the no-slip
and no-penetration condition using Lagrange multipliers or as penalty terms can be found
in [Lia99].
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10. Discretisation in space using stabilised FEM

In this chapter we consider the discretisation in space of (9.23) and (9.33). For this pur-
pose we apply a stabilised finite-element method which is also used in our research code
ParallelNS.

10.1. Finite-element discretisation for ADR-problems

The computational domain Ω is now assumed to be polyhedral. Let Th be a family of
admissible and shape-regular triangulations of Ω. Th is called admissible if the intersection
of two triangles belonging to Th is either empty, a vertex or a whole edge (or a whole facet
in 3d). Shape-regular means that

∃ C > 0 such that max
T

hT
ρT
≤ C , ∀ T ∈ ∪h Th

where hT is the diameter of the minimal ball circumscribed around T and ρT is the diameter
of the maximal ball contained in T . On Th we define the conforming finite-element spaces

Xk
h := { v ∈ C(Ω̄) | v|T ∈ Πk(T ) ∀ T ∈ Th }, k ≥ 1

of continuous and piecewise polynomial functions, which are subspaces of H1(Ω). In the
following we restrict ourselves to homogeneous Dirichlet boundary conditions. The Dirichlet
boundary conditions are incorporated into the function space by introducing

Vh ≡ Xk
h ∩ VT

Then the standard Galerkin method of problem (9.23) reads

Find u ∈ Vh : bG(u, v) = lG(v) ∀v ∈ Vh .

10.2. Stabilisation techniques for ADR-problems

It is well known that the simple Galerkin scheme presented in the previous section fails in
the case of dominant advection. In regions where diffusion is small compared to advection,
the exact solution can possess inner and/or boundary layers. If the triangulation is not fine
enough to resolve these layers, the numerical solution can exhibit unphysical oscillations. To
avoid an unaccessable grid refinement, as a remedy a stabilisation technique can be applied.
For a survey thereon see [RST96] or [KLR02] and references therein. Our research group
uses the so-called streamline-diffusion method (SDFEM), sometimes called Streamline-
Upwind/Petrov-Galerkin (SUPG) method, combined with a shock capturing technique.
Both will be presented in the following two sections.
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10. Discretisation in space using stabilised FEM

10.2.1. SUPG-stabilisation for ADR-problems

The idea is to introduce additional artificial diffusivity in the streamwise direction by adding
the term

∑
T∈Th δT (b · ∇u , b · ∇v) to the bilinear form bG(·, ·) in (9.24). We modify this

scheme to achive consistency (but see Remark 10.1). Consistency means that the solution
of the original problem solves the stabilised problem, given the solution is smooth enough.
This is accomplished by adding local weighted residuals tested with b ·∇v, i.e., we add the
term

∑
T∈Th δT (Lu − f, b · ∇v) to bG(·, ·) in (9.24). Recall that Lu was defined in (9.8).

The choice of δT will be postponed to the end of this subsection.
After this motivation, we introduce the following stabilised bi-/linear forms

bSG(u, v) = bG(u, v) + bS(u, v) , with bS(u, v) =
∑
T∈Th

δT (Lu, b · ∇v)T ,

lSG(v) = lG(v) + lS(v) , with lS(v) =
∑
T∈Th

δT (f, b · ∇v)T .

Then the SUPG stabilised discrete formulation of (9.23) reads

Find u ∈ Vh : bSG(u, v) = lSG(v) ∀v ∈ Vh .(10.1)

Remark 10.1
The above formulation is consistent only for stationary problems. For instationary problems
a consistent formulation is obtained by adding the term

∑
T∈Th δT (∂tu + Lu − f, b∇v) to

bG(·, ·) in (9.24). If a DG(0) method is used, then ∂tu vanishes. As a remedy, one could
replace the term ∂tu by (u−um−1)/∆m, with um−1 being the solution of the previous time
step and ∆m denoting the time step width. ♦

Finally let us focus on the choice of δT . An analysis of the one-dimensional finite-difference
scheme of singular perturbed problems reveals that stabilisation terms have to be added
only in regions where PeT > 1, with PeT = hT ||b||∞,T ν−1 being the mesh Peclet-number,
cf. [RST96], p.29. In order to obtain a stable and accurate method, we use

δT =
h2
T

2||ν||∞,T
√

1 + Pe2
T +R2

T

, P eT ≡
hT ||b||∞,T
||ν||∞,T

, RT ≡
h2
T

∆m||ν||∞,T
,(10.2)

with ∆m denoting the actual time step width.
The choice in (10.2) is motivated by an a priori error analysis for the DG(q) scheme, see
[Mue00], Chapter 4. Numerical results can be found in [Mue99],[Mue00], and in [Fis02].
When applying the second modification described in remark 10.1, the analysis suggests
RT ≡ h2

T∆−3/2
m ||ν||−1

∞,T in (10.2). As shown in [Fis02], Subsection 5.1.1, this improves the
scheme slightly.
Concerning the stationary case, for analytical results of the SUPG method and the choice
of δT see e.g. [RST96].
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10.3. Discontinuity capturing for ADR-problems

10.3. Discontinuity capturing for ADR-problems

Despite the SUPG-stabilisation, the solution can exhibit small local oscillations (sometimes
called over- and under-shoots) in the vicinity of regions, in which the solution has steep
gradients. A typical example are the neighbourhood of inner and/or boundary layers of
the temperature equation. Moreover, in the non-linear k/ε model, these small oscillations
can cause unphysical negative values for k and ε, subverting the numerical stability of the
model. These oscillations can occur, because the SUPG-method is neither monotone nor
monotonicity preserving.
The idea of a discontinuity-capturing/crosswind-dissipation (DC/CD) method is to add
artificial diffusivity in crosswind direction in the neighbourhood of layers. A certain class
of non-linear shock-capturing methods is presented and studied in great detail by Lube in
[KLR02].
In our research group we consider a non-linear DC/CD method proposed by Codina, see
[Cod93] and [CS99]. The artificial viscosity should be proportional to the element residual
for consistency and should vanish quickly in regions where the solution is smooth. The
amount of artificial diffusivity added on an element T is given by

νdc =
1
2
ξch
|Lu− f |T
ST + |∇u|T

.(10.3)

with a suitable constant ST . The parameter ξc is computed elementwise according to

ξc = max{0, Cdc −
2ν
|b∗|T h

} with b∗ =
1

|∇u|2T
(b · ∇u+ cu− f)∇u.(10.4)

Codina proposed to choose Cdc = 0.7 for piecewise linear elements and Cdc = 0.35 for
quadratics. Of course, an implementation of (10.3) and (10.4) has to avoid division by
zero; for clarity’s sake, we omit these details in the presentation.
We restrict ourselves to the case of piecewise linear elements. First we show that νdc
vanishes if the elementwise residual is zero. For piecewise linear finite-elements, b∗ is
proportional to the residual, because the term ∇ · (ν∇u) vanishes. It follows from (10.4)
that ξc = 0 on T if |Lu− f |T < 2ν|∇u|TC−1

dc h
−1. Numerical tests confirm indeed that the

considered DC/CD method adds artificial viscosity only in the vicinity of layers. Moreover,
it is worthy mentioning that the sharp gradient of the solution in layers is recovered.
The shock-capturing method proposes to add the following term to the bilinear form (on
elements with b 6= 0):∑

T∈Th

[νdc(∇u,∇v)T + (νsl − νdc)
1
|b|T

2 (b · ∇u, b · ∇v)T ] , with

νsl = max{0, νdc − νsupg} , νsupg =
δT

|b|T
2 .

Here δT is the parameter from the SUPG stabilisation. The effect of the additional form
will be explained at the end of this subsection. Adding the following form

bDC(u, v) =
∑
T∈Th

[νdc(∇u,∇v)T + (νsl − νdc)
1
|b|T

2 (b · ∇u, b · ∇v)T ]
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10. Discretisation in space using stabilised FEM

to the bilinear form, the shock-capturing and SUPG stabilised method is

Find u ∈ Vh : bSG(u, v) + bDC(u, v) = lSG(v) ∀v ∈ Vh .

The form bDC(·, ·) adds additional diffusivity in the direction I − b ⊗ b, i.e. in crosswind
direction. If νdc < νsupg then νsl = 0. Then the total effect of SUPG and DC/CD is to add
an amount νsupg of diffusivity in streamwise direction and an amount of νdc in the plane
given by I− b⊗ b. If νdc > νsupg then νsl > 0. Then the total effect of SUPG and DC/CD
is to add an amount νdc of diffusivity isotropically.
Due to (10.3) the scheme is non-linear. We use a simple iteration within the decoupling and
linearisation cycle (introduced in Subsection 9.2.2) by computing νdc in (10.3) using the
solution um,i−1 of the previous iteration cycle, see [KLR02], p.15. Numerical experiments
show that one iteration of the DC/CD scheme is sufficient to remove crosswind oscillations.
Regarding the numerical analysis we refer to the results given by Lube in [KLR02]. For
further details concerning the implementation and numerical results see [Kno99].

10.4. Finite-element discretisation for Oseen problems

Let Ω, Th, and Xk
h be given as in the previous section. We introduce the following discrete

ansatz and test spaces:

velocity : V A,h ≡ (Xk
h)d ∩ V A ,

velocity : V T,h ≡ (Xk
h)d ∩ V T ,

pressure : Qh ≡ X l
h ∩Q ⊂ Q.

where V A, V T and Q are given in (9.26)-(9.28). Then the discrete variant of the Oseen-
problem (9.11) reads:

Find U = (u, p) ∈ VA,h ×Qh : A(U ,V ) = L(V ) ∀V ∈ VT,h ×Qh.

10.5. SUPG- und PSPG-stabilisation for Oseen problems

To avoid oscillations in the case of dominant advection we stabilise our scheme using the
SUPG method. We add the term∑

T∈Th

δT1u(LOs(u, p)− f , (a · ∇)v)T .

to the form a(·, ·), see (9.30), with LOs being defined in (9.11).

It is well known that the solution of the pressure exhibits strong unphysical oscillations
unless V T,h and Qh satisfy the so-called discrete Babuska-Brezzi (BB) condition for some
β independent of h:

inf
q∈Qh\{0}

sup
v∈V T,h\{0}

b(v, q)
||v||VT,h ||q||Qh

≥ β > 0 ,
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with b(·, ·) being defined in (9.31). In our research group we use k = l = 1, which does not
satisfy the discrete BB condition. As a remedy, we use the so-called pressure stabilisation/
Petrov-Galerkin (PSPG) method. The PSPG method consists in adding to the bilinear
form b(·, ·) the term ∑

T∈Th

δT1p(LOs(u, p)− f ,∇q)T .

Finally, in the case of small viscosity ν we stabilise the continuity equation by adding the
term ∑

T∈Th

δT2u(∇ · u,∇ · v)T .(10.5)

Putting all stabilisation terms together, we obtain the following forms

ASG(U ,V ) = A(U ,V ) +
∑
T∈Th

δT1u(LOs(u, p)(a · ∇)v)T

+
∑
T∈Th

δT1p(LOs(u, p),∇q)T +
∑
T∈Th

δT2u(∇ · u,∇ · v)T
,

LSG(V ) = L(V ) +
∑
T∈Th

δT1u(f , (a · ∇)v)T +
∑
T∈Th

δT1p(f ,∇q)T .

Then the stabilised discrete version of the Oseen problem reads:

Find U = (u, p) ∈ V A,h ×Qh : ASG(U ,V ) = LSG(V ) ∀V ∈ V T,h ×Qh .(10.6)

The stabilisation parameters are chosen according to

δT1u = Cu1
h2
T

2||ν||∞,T

(
1 +

(
hT ||a||∞,T
||ν||∞,T

)2

+
(

h2
T

||ν||∞,T∆m

)2
)− 1

2

,(10.7)

δT1p = Cp1
h2
T

2||ν||∞,T

(
1 +

(
hTUref
||ν||∞,T

)2

+
(

h2
T

||ν||∞,T∆m

)2
)− 1

2

,(10.8)

δT2 = C2||ν||∞,T

√
1 +

(
hT ||a||∞,T
||ν||∞,T

)2

.(10.9)

For instationary problems, consistency can be ensured similar to the advection-diffusion-
reaction problem, see Remark 10.1. The choice of the parameters is based on an a priori
error analysis for isotropic meshes, cf. e.g. [Mue97], pp.55. Of particular importance is the
choice for Uref in (10.8), which is due to [Tez92]. Uref denotes a suitable reference velocity,
for example Uref = ||a||∞,Ω. In indoor-air flow problems we suggest Uref = ||um,i−1||∞,Γ
being the solution for u of the previous iteration step (see Section 9.2.2) in forced convec-
tion problems resp. Uref = Ũsc = (β̃0|g̃|T̃diff L̃)1/2 in natural convection problems with
a suitable length scale L̃ and temperature difference T̃diff . It should be emphasised that
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10. Discretisation in space using stabilised FEM

using ||a||∞,T instead of a global scaling velocity Uref does not lead to a numerically stable
method, in particular if anisotropic unstructured meshes are used. However, to the author’s
knowledge, there is no analytical support for this observation. This is in contrast to the
fact that the choice δT1u = δT1p and hence using a local velocity in the formula for δT1p is
widespread throughout the literature. For the constants Cu1 = Cp1 = C2 = 1.0 is the usual
choice.
As a concluding remark we should stress the point that the computational costs for as-
sembling the PSPG terms in a finite-element code are significant. This motivates using
discrete spaces that satisfy the discrete BB condition in future work.
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11. Non-overlapping domain decomposition methods

The variational formulations (10.1) and (10.6) of the model problems (9.8)-(9.10) and
(9.11)-(9.15) are the starting point for an implementation in a FEM code. Therefore we
have to specify finite-element spaces and appropriate quadrature formulas for the numerical
approximation of the integrals appearing in the weak formulation. Then from the varia-
tional formulation we can determine a linear system, whose solution is the solution of the
stabilised discrete variational problem. The arising linear system is very large if a fine grid
is chosen, in particular for 3D problems. Today, the trend is towards using a cluster of
workstations in scientific computing. If the data segment does not fit into physical memory
then due to page faults the performance drops drastically, see [HP96], Chapter 5.
As a remedy, the aim is to divide the flow problem into a set of smaller problems which
can be solved in parallel. Then the speed-up is achieved (i) from exploiting the memory
hierarchy on a single computer and (ii) from the parallelisation. Its price are the costs
for the communication between the processes. A promising strategy are so-called domain
decomposition methods (DDM). For a comprehensive review see e.g. [QV99]; for further
information visit the homepage of domain decomposition methods at http://www.ddm.org.
In this chapter we describe a particular DDM that has been studied in our research group
during the last few years. For a detailed presentation we refer to [Otto99], [Mue99] and
[Mue00]. We focus on a non-overlapping DDM. Therefore we consider a non-overlapping
partition of Ω into subdomains Ω1, . . . ,ΩN being all of the same regularity as Ω itself and

Ω̄ = ∪Nk=1Ω̄k, Ωk ∩ Ωj = ∅ ∀k 6= j , ∀T ∈ Th ∃k : T ⊂ Ωk.

The last condition ensures that the partition of Ω is aligned with the finite-element mesh.
Moreover, we set

Γk := ∂Ωk\∂Ω, Γjk := ∂Ωj ∩ ∂Ωk, j 6= k,

where Γkj is identified with Γjk.
To obtain a boundary value problem on each subdomain, we have to specify boundary
conditions at the interfaces Γjk. Lions proposed to apply a transmission condition of
Robin type at the interfaces for the Poisson equation, see [Lio90], in order to enforce (in
appropriate trace spaces) continuity of the solution u and of the flux ν∇u·n at the interfaces
in the limit of an iterative procedure. This idea was extended to scalar advection-diffusion-
reaction problems by Nataf, cf. [NR95], and to the linearised Navier-Stokes equations by
Lube and Otto, see [LO98]. Due to the interchange of Robin interface conditions, this
method is sometimes called Robin-Robin algorithm (R-R-algorithm). It belongs to the class
of so-called iteration-by-subdomain methods.
In order to avoid technical problems, we assume that the partition {Ωk}Nk=1 is stripwise,
i.e.

Γij 6= Γkl implies inf
x∈Γij ,y∈Γkl

dist(x,y) > 0 .
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11. Non-overlapping domain decomposition methods

11.1. The Robin-Robin algorithm for advection-diffusion-reaction problems

First we consider the Robin-Robin algorithm for problems of advection-diffusion-reaction
type, as given in (9.8)-(9.10). To illustrate the idea, first we write the method on the
continuous level in a strong formulation, which reads:
For given unk from iteration step n on each Ωk, seek (in parallel) for un+1

k as the solution
of

Lun+1
k = f in Ωk(11.1)

un+1
k = 0 on ΓD ∩ ∂Ωk(11.2)

ν∇un+1
k · nk = h on ΓN ∩ ∂Ωk(11.3)

Φk(un+1
k ) = θΦk(unj ) + (1− θ)Φk(unk) on Γjk , j = 1, . . . , N, j 6= k(11.4)

with a relaxation parameter θ ∈ (0, 1]. The interface function is given by

Φk(u) = ν∇u · nk + (−1
2
b · nk + zk)u.(11.5)

The choice of Φk(u) and in particular the specification of zk are discussed in detail below.
Now we give the discrete weak formulation of (11.1)-(11.4), which is implemented in our
research code. A detailed derivation of this scheme, which is often referred to as two field
formulation, on the continuous level is given in [Otto99], Section 3.2. For this purpose, let
Vk,h, bkSG(·, ·) and lkSG(·) denote the restrictions of Vh, bSG(·, ·) and lSG(·) to Ωk, respectively.
Let Wij,h be the restriction of Vh to the interface part Γij . Furthermore, let 〈·, ·〉Γij be the
inner product in L2(Γij) or, whenever needed, the dual product between (Wij,h)∗ and Wij,h.
Then the fully discretised and stabilised DD method reads :

Parallel computation step :
For k = 1, . . . , N , find un+1

k ∈ Vk,h such that ∀ vk ∈ Vk,h

bkSG(un+1
k , vk) + 〈(−1

2
b · nk + zk)un+1

k , vk〉Γk = lkSG(vk) +
∑
j( 6=k)

〈Λnjk, vk〉Γkj .

Communication step : For all k 6= j, update the Lagrangian multipliers

〈Λn+1
kj , φ〉Γkj = 〈θ(zk + zj)un+1

k − θΛnjk + (1− θ)Λnkj , φ〉Γkj ∀φ ∈Wkj,h.

The analysis of the method for constant viscosity, given in [LMO00a], can be extended
easily to the case of non-constant viscosity. If zk = zj > 0, then the algorithm is well-
posed, i.e., all local discrete problems arising throughout the algorithm have a uniquely
determined solution. Moreover the sequences {unk}n, k = 1, . . . , N converge strongly to
the restrictions of the global discrete solution to Ωk with respect to the stabilised energy
norm induced by the symmetric part of bkSG(·, ·) as n→∞. An analysis of the convergence
behaviour of the Robin-Robin-algorithm is given by Rapin in [RL00]. Let us review his
results briefly. Denote enk ≡ unk − u|Ωk the error in Ωk. Rapin accomplished a Fourier
analysis of the two-dimensional case for a problem with constant coefficients. He considers
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11.2. Choice of the interface function in the R-R-algorithm for ADR problems

Ω = (0, L)× (0, 1), which is decomposed into Ω1 = (0, A)× (0, 1) and Ω2 = (A,L)× (0, 1).
He gives a representation of enk (k=1,2) as a series of the form

en1 (x, y) = exp
(
b · (x, y)

2ν

) ∞∑
l=1

Fn1,l sinh(µlx) sin(lπy) , µ2
l =

|b|
4ν2

+
c

ν
+ l2π2 ,(11.6)

en2 (x, y) = exp
(
b · (x, y)

2ν

) ∞∑
l=1

Fn2,l sinh(µl(L− x)) sin(lπy) .(11.7)

Using θ = 1 he gets a formula for the contraction rate Kl of the l-th Fourier mode of the
form Kl ≡ Fnk,l/F

n−2
k,l . His important result is that Kl tends to one as l → ∞. For this

reason the R-R-algorithm cannot converge linearly.
This result is of prime importance regarding the application of the R-R-algorithm to tur-
bulent flow problems. Since turbulent flows are characterised by a variety of small scales,
the results in [RL00] suggest that the Robin-Robin-algorithm is not a propitious DDM for
a DNS of a turbulent flow problem. However, when employing a turbulence model that
resolves only the large scale flow structures, there is hope that the R-R-algorithm does a
good job.

11.2. Choice of the interface function in the R-R-algorithm for ADR
problems

So far, we have not specified the parameter zk. It turns out that the parameters zk are
important to accelerate the convergence of the scheme. A first suggestion was due to Nataf

in [NR95]. He performed a Fourier analysis for an ADR problem with constant coefficients.
He proposed to choose zk such that the first Fourier mode of the error is annihilated after
one iteration; his choice was

zk =
1
2

√
|b · nk|2 + 4νc .(11.8)

Recent results by Nataf can be found in [JNR00].
Another approach has been performed by Lube, Otto and Mueller. Their choice is
based on an a-posteriori error estimate. Their objective was to find a stopping criterion for
the iteration process within each DDM cycle. They derived an a posteriori estimate which
bounds the error on a subdomain by the difference of the traces of the subdomain solutions
on the interface. Hence the convergence on the subdomains can be controlled via the jumps
of the discrete DD-solutions across the interface. This result not only gives a stopping
criterion. Additionally, it provides information regarding the choice of zk, balancing the
terms in the a posteriori estimate (for a partitioning of Ω into two subdomains), proposing

zk =
|b · nk|

2
+ max

j=1,2

||ν||min,j
Hj

(
1 +

√
C∞,j
||ν||min,j

Hj + 2 min

(
B∞,j√
||cν||min,j

;
B∞,jHj

||ν||min,j

))(11.9)

with Hj ≈ diam(Ωj), B∞,j ≡ ||b||0,∞,Ωj , C∞,j ≡ ||c||0,∞,Ωj , ||φ||min,j ≡ infΩj φ(·), cf.
[LMO00a] and [KLGR02]. Without the min(. . .) term in (11.9), (11.8) and (11.9) are

129



11. Non-overlapping domain decomposition methods

similar. However, numerical tests reveal that the min(. . .) term can be of crucial importance
in order to obtain a robust method, in particular if c = 0. For the symmetric diffusion-
reaction problem with b = 0 and constant viscosity, (11.9) reduces to

zk = max
j=1,2

ν

H
+
√
C∞,jν ,(11.10)

which is consistent with the results given in [OL99]. For the Poisson equation (b = 0,
c = 0) we get zk = νH−1.

11.3. The Robin-Robin algorithm for Oseen type problems

Next we apply the R-R-algorithm to the Oseen problem (10.6). The idea is to guarantee
continuity of velocity u and of the Oseen fluxes σ(u, p)n− 1

2(a · n)u (at least in the limit
of an iterative procedure and in appropriate trace spaces). To achieve this goal we impose
a transmission condition of Robin type on the interfaces. Then the strong form of the
R-R-algorithm for the Oseen problem reads as follows:
For given (unk , p

n
k) from iteration step n on each Ωk, seek (in parallel) for (un+1

k , pn+1
k ) with:

LOs(un+1
k , pn+1

k ) = f in Ωk ,(11.11)

∇ · un+1
k = 0 in Ωk ,(11.12)

un+1
k = uD on ∂Ωk ∩ ΓD ,(11.13)

σ(un+1
k , pn+1

k )nk = σnnk on ∂Ωk ∩ ΓN ,(11.14)

nTσ(un+1
k , pn+1

k )tα = σt · tα , un+1
k · nk = 0 on ∂Ωk ∩ ΓW ,(11.15)

Φk(un+1
k , pn+1

k ) = θΦk(unj , p
n
j ) + (1− θ)Φk(unk , p

n
k) on Γjk.(11.16)

Again θ ∈ (0, 1] is a relaxation parameter. The interface function is given by

Φk(u, p) = σ(u, p)nk + (−1
2
a · nk + zk)u,(11.17)

where zk is an acceleration parameter, which will be specified later.
The formulation of the corresponding weak problem cannot be accomplished straightfor-
ward, see [LMO00c]. As pointed out there, the (possible) discontinuity of the pressure
functions across the interface is necessary in the proof of a convergence result based on a
two-field formulation. Lube suggests two solution strategies, viz., (i) to allow continuous
pressure and to treat the continuity constraint by additional Lagrange multipliers and (ii)
to introduce additional pressure jump terms in the global discrete problem, as described in
[RST96]. Both approaches are described and analyzed in detail in [LMO00c]. Here we re-
strict ourselves to the latter strategy, which is studied in [LMO00b]. Therein the following
modified discrete space for the pressure is chosen

Qh = { q : q|T ∈ P l(T ) , q|Ωi ∈ C0(Ωi) } ∩Q .(11.18)

Denote Γ = ∪Ni,j=1Γij and denote E the edges of the triangles and [·] the jump across the
edge. Then to the global discrete stabilised bilinear form we add the form

∑
E⊂Γ σE([p], [q])E ,
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11.3. The Robin-Robin algorithm for Oseen type problems

with (·, ·)E denoting the L2 scalar product over E. Moreover, we introduce W ij,h ≡ V h|Γij
and its dual space W ∗

ij,h. Then the R-R-algorithm for the discrete Oseen problems (for
θ = 1 for simplicity’s sake) reads, cf. Algorithm 2 in [LMO00b],

Parallel computation step :
For k = 1, . . . , N , find Un+1

k = (un+1
k , pn+1

k ) ∈ V k,A,h × Qk,h such that for all V k =
(vk, qk) ∈ V k,T,h ×Qk,h

AkSG(Un+1
k ,V k) + 〈(−1

2
a · nk + zk)un+1

k ,vk〉Γk +
∑
E⊂Γk

σE(pn+1
k , qk)E

= LkSG(V k) +
∑
j( 6=k)

〈Λn
jk,vk〉Γkj +

∑
j 6=k

∑
E⊂Γkj

σE(pnj , qk)E .

Communication step : For all k 6= j, update the Lagrangian multipliers

〈Λn+1
kj ,φ〉Γkj = 〈(zk + zj)un+1

k −Λn
jk,φ〉Γkj ∀φ ∈W kj,h.

For the analysis of this scheme we refer to [LMO00b]. We have to concede that the pressure
jump term has not yet been implemented in our research code. This is partially supported
by the a posteriori analysis in [LMO00b], which reveals that terms involving σE are not
of significant importance. However, the choices σE = 0 and σE 6= 0 have not yet been
compared in numerical experiments. Moreover, it is worthwhile mentioning that in the
case that the pressure does not appear in the boundary conditions, the subdomain solution
for the pressure might oscillate. Then convergence of the solution for the pressure can be
accelerated by using a relaxation parameter θ < 1.
As in the case of the ADR problem, an a posteriori analysis reveals some information
concerning the choice of the interface function zk. In this thesis we use (11.9) in agreement
with the results in [LMO00b] and [Mue00], p.132 and p.140.
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12. Turbulent channel flow

The last two chapters of this thesis are dedicated to numerical investigations. Flow simu-
lations based on the turbulence models presented in Part I and on the numerical scheme
described in the previous chapters of this part are contaminated by model inaccuracies and
numerical errors. This chapter is devoted to an investigation of these errors. To be more
precise, the aim is to study

• the accuracy and the convergence behaviour of the wall function procedure,

• the influence of the spatial and temporal discretisation scheme on the solution,

• and the behaviour of the Iliescu-Layton model with differential filtering in wall-
bounded flows.

An investigation of the DDM is postponed to the next chapter. We choose the fully
developed plane channel flow as a test case. The reason for this is twofold. First, fully
developed plane channel flow is the simplest wall bounded flow configuration. Second, both
experimental and DNS data are abundant for this flow.

12.1. Fundamentals of isothermal channel flow

This section is devoted to a presentation of the flow configuration and some fundamental
results. A turbulent channel flow is a flow in a rectangular duct of height 2H, length
L� H, and aspect ratio b� H. Channel geometry and flow are sketched in Figure 12.1.
It is convenient to characterise the flow using the following Reynolds numbers, viz.,

ReH ≡ (2H)Ubulk/ν , Re0 ≡ U0H/ν , Reτ ≡
uτH

ν
,(12.1)

with centerline velocity U0 and the bulk velocity Ubulk being defined as

U0 = U |y=H , Ubulk =
1
H

∫ H

0
U(y) dy .(12.2)

Now we simplify the RANS equations for this flow geometry. For time-independent inflow
condition resp. force term, the flow is statistically stationary and therefore ∂(·)/∂t = 0.
Moreover we assume H � B and hence (a) the flow is statistically independent of z,
∂(·)/∂z = 0, and W ≡ 0. Thus the flow is steady and two-dimensional, similar to Section
5.2.3. In the vicinity of the entry of the duct at x = 0, there is a flow-development region.
In the fully developed region (large x), ∂(·)/∂x = 0 as H � L, i.e. (b) velocity statistics
depend only on y, using arguments similar to those in Section 5.2.4. The distance lel
downstream of the entrance where the flow is fully developed is called entrance length. As
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Figure 12.1.: Schematic of channel geometry and flow.

a rule of thumb, lel is about 60H at ReH = 105, see [Wilcox98], p.80.
Thus the full RANS equations (3.1)-(3.2) can be approximated by

ν
∂2U

∂y2
− ∂

∂y
〈u′v′〉E −

∂P

∂x
= 0 ,(12.3)

−d〈v
′2〉E
dy

− ∂P

∂y
= 0(12.4)

bearing discernibly resemblance to (5.25) with Θ = 0. Simple integration of (12.4) using
〈v′2〉E |y=0 = 0 gives

〈v′2〉E + P = Pw(x) , with Pw(x) ≡ P (x, 0, 0) .(12.5)

This implies that the mean axial pressure gradient is uniform across the flow, i.e. ∂P/∂x =
dPw/dx, as in the fully developed region derivatives of the Reynolds stresses in the stream-
line direction can be neglected. Substituting this into (12.3) we obtain

dτ

dy
=

dPw
dx

= const, with τ(y) = ν
dU

dy
− 〈u′v′〉E ,(12.6)

since τ = τ(y) and Pw = Pw(x). τ is called total shear stress. It is convenient to express τ
and Pw in terms of the wall shear stress τw = τ |y=0. Then (12.6) can be written as

−dPw
dx

=
τw
H

, τ(y) = τw

(
1− y

H

)
.(12.7)

Note that in a turbulent flow, there is no exact analytical relation between U0 and τw resp.
Ubulk and τw. For a given flow, they are related by the skin friction coefficients

cf =
τw

1
2U

2
0

, Cf =
τw

1
2U

2
bulk

,(12.8)
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Figure 12.2.: u+ vs. y+ (left) and u+ vs. ln(y+) (right) for channel flow at Reτ = 395.

which are not known a priori in the turbulent case.
From the previous analysis informations regarding the numerical setup can be gained. The
aim is to simulate the fully developed region. The homogeneity in the streamwise and span-
wise direction suggests imposing periodic boundary conditions in these directions. Then a
much smaller computational domain can be used. We choose Ω = (0, 6)×(0, 2)×(0, 3). On
the top and bottom walls at y = 0 and y = 2, wall functions are used. It should be pointed
out that special care must be taken regarding the length of the computational domain in
LES. Discernibly from (12.7), the constant pressure gradient drives the flow through the
channel. Hence we impose the external force f = τw/Hex. Then τw is determined imme-
diately. In this chapter we focus on a fully developed turbulent channel flow at Reτ = 395.
For this flow, widely accepted DNS data by Moser et al., see [MKM99], are available.
Note that when specifying Reτ , then (in scaled coordinates) the centre of the channel is
located at H+ ≡ uτH/ν = Reτ .
Finally we study the mean velocity profile. In Figure 12.2 the approximating velocity pro-
files by Prandtl/van Karman (5.34), Neitzke (5.41) and Reichardt (5.35) are shown
and compared with DNS data of Moser. Moreover we consider the following reference
profile uR = u+

Ruτ , with u+
R given by

u+
R(y+) =


1
κ ln(1 + 0.4y+) + 7.8

[
1− e−

y+

11 − y+

11 e
− y

+

3

]
, if y+ ≤ 30

1
κ ln(y+) +B, if 30ν/uτ < y < 0.23H
U0u

−1
τ + κ−1

[
ln
( y
H

)
− 2Π +G

( y
H

)]
, if y > 0.23H .

(12.9)

with wake parameter Π = 0.1, G(x) ≡ (1 + 6Π)x2 − (1 + 4Π)x3 and U0/uτ = 20.133 (from
DNS data). The approximation for y > 0.229H was devised in [Dea76] and is used in
[CJB99] as a reference profile. Obviously, for the channel flow under consideration uR is in
excellent agreement with the DNS data throughout the channel.
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12.2. Isothermal channel flow computations using the k/ε model

The numerical tests for the k/ε model are performed on a structured grid with 49×33×33
nodes, which are equidistantly distributed in each coordinate direction. Choosing ν = 10−4

in a fully developed turbulent channel flow at Reτ = 395 implies uτ = 0.0395, see (12.1).
We start with the initial solution

u(t = 0) = uRex + χ rand(O(10−4)) ,(12.10)

k(t = 0) = u2
τ min{ 1√

Cµ
; 0.05(y+)2}e−y+/250.0 + χ rand(O(10−6)) ,(12.11)

ε(t = 0) =
u4
τ

ν

0.1 + 0.003(y+)2

1.0 + 0.00125(y+)3
e−y

+/250.0 + χ rand(O(10−6)) .(12.12)

with rand(O(10−n)), n ∈ N, denoting a (pseudo) random field with values in [−10−n, 10−n]
resp. [−10−n, 10−n]d. Here uR = uτu

+
R, with u+

R being defined in (12.9). Since for the
problem a statistically stationary solution exists, we start with an initial guess for u, k
and ε which is close to the RANS solution. Using the parameter χ ∈ {0, 1} we can switch
on/off the random perturbation of the initial condition.

12.2.1. Examination of the wall function approach in periodic channel flow

First we investigate the wall function procedure and study the predictions for τw. Recall
that τw = u2

τ = (0.0395)2 is determined immediately from f = τw/Hex. We use the
decoupling and linearisation scheme for the k/ε model described in Section 9.2.2. Therein
we choose 4m = 0.001 and perform only one time step and one linearisation cycle. In
(12.10)-(12.12) we set χ = 0. The result is shown in the following table. Therein, denote n
the iteration step and u

(n)
τ the corresponding result for uτ .

n 0 1 2 3 4 5
102 × u(n)

τ 2.843234 3.747693 4.095170 4.127534 4.127772 4.127772

Figure 12.3.: Convergence history of Newton’s method within the wall function procedure.

The deviation from the theoretical value uτ = 0.0395 is less than 5% and stems from the
fact that the near-wall profile proposed by Neitzke and uR differ slightly, see Figure 12.2.
The convergence behaviour is in agreement with e.g. [Kre98], Chapter 6. It is interesting
to examine the influence of the initial guess on our scheme, see also Section 6.3. Denote B
the set of all initial guesses x(0) such that (6.21) converges to uτ = 4.127772× 10−2. Then
numerical tests show that B = (6.065307× 10−3, 8.279371× 10−2), where the lower bound
of B equals the lower bound of D. (Recall that D denotes the domain where the Newton’s
method is well-defined, see Section 6.3.)

12.2.2. A posteriori testing for the k/ε model

Now we accomplish an a posteriori testing of the k/ε model, i.e., we compute a solution of
the scheme presented in Section 9.2.2. We use time step width 4m ≡ 4t = 0.01, end time
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T = 6.0 and maxdlc = 5. For the initial solution we select χ = 1 in (12.10)-(12.12).
The convergence history for U1 = u · ex, k and ε is shown in Figures 12.4, 12.6, and 12.8.
In the caption of the figures we use the notation ||fn+1 − fn||L2/(tn+1 − tn) for a quantity
f , with tn = n4t and fn = f(·, tn). Discernibly, two phases can be distinguished in the
convergence history. During the first time steps (until t ≈ 0.3) the changes of the solution
are relatively large, and the turbulence quantities k and ε converge fast. For t ' 0.3 the
convergence of all quantities becomes relatively slow. Plots of the solution (being omitted
for lack of space) reveal that the solution is quite good at t = 0.3. After t ≈ 0.3 the
numerical diffusivity alters the solution significantly. This is well-illustrated in the history
of the profiles for k, see Figure 12.11, 12.13, and 12.15. This observation is supported by the
results in [Mue99] and [Fis02]. Numerical tests reveal that choosing a finer time step width
does not improve the results. Using a much finer grid for the spatial discretisation might
improve the results, see below. However, the necessary computer power is not available for
testing this in the three-dimensional case. Regarding the effect of the computational time
step on turbulence statistics in plane channel flow for a DNS at Reτ = 180, it is interesting
to mention the results by Choi and Moin, see [CM94]. For a given time step ∆t the
corresponding time step in wall unit is defined by

(∆t)+ ≡ ∆tu2
τ/ν .

The viscous time scale in the sublayer is given by the so-called Kolmogorov time scale, τ+ ≡
(u4
τ/εν)1/2 ≈ 2.4 in this case. For (∆t)+ ≥ 1.6 they observe laminar flow solutions for both

the Crank-Nicolson scheme and the backward Euler scheme. Moreover they report that the
turbulent fluctuations 〈u′iu′j〉E are contamined by a significant error unless (∆t)+ ≤ 0.4.
These observations emphasise that both time discretisation schemes are too dissipative for
large time steps in a DNS.
Secondly, we study the accuracy of the predictions for U1 = u · ex, k and νt, at t = 2.0,
t = 4.0, and t = 6.0, see Figures 12.5-12.15. In the plots the solid lines give the DNS
results from [MKM99]. The dot-dot-dashed lines are our results of the k/ε model. In the
log layer 50 / y+ / 140 the prediction for νt is good. For y+ ' 140, νt is significantly
overpredicted. The well-known failure of the k/ε model in the near-wall region y+ / 40
was already described in Section 3.4.2. The velocity profile is clearly underpredicted for
y+ / 120. This stems both from the numerical diffusivity of the scheme and from the
overprediction of νt in the near-wall region. Particularly at the first near-wall node, the
velocity is significantly underpredicted. Consequently, τw is significantly underpredicted
because matching is accomplished with a too small value for the velocity of the outer flow.
At t = 1.0 we obtain τw = 1.246 × 10−3, i.e., uτ = 0.0353 (instead of the theoretical
value uτ = 0.0395). Additional numerical tests have been performed for the corresponding
two-dimensional problem on much finer grids using a simple low Reynolds model in the near-
wall region, but with a much smaller end time. Our wall function procedure matches the
outer flow with the near-wall predictions for u, k and νt from (5.41) and (5.49), which are
valid also in the viscous sublayer. Moreover low Reynolds models are reliable for the fully
developed channel flow. Hence this approach is reasonable. The predictions for U and νt
are in much better agreement with the DNS data than the results for the three-dimensional
calculation presented here. Even in the viscous sublayer the results are good. However,
the plots are not shown here for lack of space and for sake of clarity. In three-dimensional
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problems a resolution of the near-wall region is often infeasible and only a relatively coarse
mesh can be afforded. Moreover, low Reynolds models are not very reliable in complex
flow configurations, see e.g. [DPR01], Chapter 6.

12.3. Quasi a priori testing of the SGS model

This section is dedicated to an investigation of our LES model. The aim is to isolate the
different constitutive blocks of the LES model, viz., residual stress model (eddy viscosity
SGS model, Galdi-Layton model), near-wall damping, explicit filtering technique, and wall
function approach. Moreover we attempt to isolate modelling from the numerical scheme
(DG(0), SDFEM). Thus we perform an a priori analysis of our LES model. Strictly speak-
ing, we only perform a ”quasi a priori testing” rather than a full a priori testing, as will be
explained in the sequel.
An a priori test uses DNS (or experimental) data to study directly the accuracy of an LES
model. This is a valuable tool for understanding a particular residual stress model. Such an
a priori testing for fully developed channel flow and fully developed pipe flow was accom-
plished e.g. by Härtel et al., see [HKUF94], Piomelli et al., cf. [PYA96] and Brun

and Friedrich, cf. [BF99]. In this thesis we will compare our results with those presented
by Brun and Friedrich. They considered a fully developed pipe flow at Reτ = 180. As
shown in [HKUF94], the quantities of interest (see below) behave quite similarly in channel
flow and in pipe flow. Given DNS data u(·, ti) at time instances ti (i = 1, . . . ,M) and a
space averaging filter 〈·〉∆, all SGS quantities of interest, e.g. Pr = −τ r : S(u), can be
computed numerically. Brun chose (∆r)+ = 28.0 = 4hx for the filter width in axial direc-
tion and (R∆φ)+ = 35.2 = 4hφ for the filter width in circumferential direction, R being the
radius of the pipe, and hx and hφ denoting the mesh width in the axial and circumferential
direction for the underlying DNS.
Härtel et al. proposed to split space filtered quantities f into a statistically station-
ary mean value 〈f〉H and a fluctuating part f ′′, f = 〈f〉H + f ′′, see [HKUF94]. Here the
operator 〈·〉H represents an averaging over wall-parallel planes and over time. Note that
Pr is often referred to as SGS dissipation and denoted alternatively by ε, although this
notation can be somewhat misleading. Then Pr ≡ ε can be decomposed into a statistically
stationary mean value εMS ≡ PMS

r and into a fluctuating part εFS ≡ PFSr , viz.,

Pr = PMS
r + PFSr(12.13)

with

εMS ≡ PMS
r = − 〈τ r〉H : 〈S(u)〉H , εFS ≡ PFSr = − 〈τ r : S(u)〉H − εMS .(12.14)

Figure 12.16 shows (εMS)+ ≡ εMSν/u4
τ and (εFS)+ ≡ εFSν/u4

τ for fully developed pipe
flow at Reτ = 180, given in [BF99], Figure 1. As shown in [HKUF94], Figure 8, εMS

and εFS resp. behave very similar in channel flow and in pipe flow. As pointed out in
[PYA96], Figure 4, details of the SGS dissipation depend on the type and the size of the
filter. Interestingly, Härtel et al. found that PFSr < 0 in the buffer layer indicating
backscattering there.
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Figure 12.10.: Profile for νt at t = 2.0
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Figure 12.11.: Profile for k at t = 2.0
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Figure 12.12.: Profile for νt at t = 4.0
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Figure 12.13.: Profile for k at t = 4.0
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Figure 12.14.: Profile for νt at t = 6.0
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140



12.3. Quasi a priori testing of the SGS model

y+

ep
si

lo
n+

0 25 50 75 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
epsilon-MS
epsilon-FS

Figure 12.16.: A priori testing for fully developed pipe flow ([BF99])

An a priori testing uses DNS (or experimental) data and is related to a well-resolved LES,
i.e., the flow field is resolved in all three directions. In the sequel, we focus on the situation
that only the wall-normal direction is properly resolved. The mesh width in streamwise
and spanwise direction is assumed to be relatively large. This approach will be referred to
as ”quasi a priori testing”. For details concerning grid requirements for LES on anisotropic
meshes see e.g. [ZBK95]. Such anisotropic meshes are used in applications when the
computer resources are limited. The quantity εMS , see (12.14), is related to the mean
strain rate, see e.g. [Sag01], p.235. Its dominant contribution stems from 〈∂u/∂y〉H . This
quantity is reasonably resolved in a ”quasi a priori testing”. However, streamwise and
spanwise fluctuations which contribute significantly to εFS cannot be resolved. So the aim
is to model εFS using 〈u(y)〉H . In our ”quasi a priori testing” we study a fully developed
channel flow at Reτ = 395. We use u = uRex, with uR being the RANS solution of the
fully developed channel flow, see (12.9). This can be regarded as the limit case hx � hy
and hz � hy, with hx, hy, hz denoting the mesh width in x, y, and z direction resp. It
will be shown in the following that the Smagorinsky model is a reasonable model for PMS

r

whereas the Iliescu-Layton model can be used to model PFSr .
In the sequel the following issues will be addressed.

• The behaviour of the Smagorinsky model (SM model) has been studied thoroughly
both in free shear flows and in wall-bounded flows. So far, numerical tests for the
Iliescu-Layton model (IL model) are restricted to free shear flows, viz., to the mixing
layer, see [Joh02]. Hence we will study the effect of the IL model in a wall-bounded
flow by accomplishing a ”quasi a priori testing” for a fully developed channel flow.

• A subsequent question is how the predictions for Pr are related to εMS and εFS ,
see (12.14). This includes the question whether it is possible to model εFS in terms
〈u(y)〉H . This is an issue of practical relevance, since in high Reynolds number
applications often only the wall-normal direction can be resolved properly.

• The IL model and also the widespread dynamic SM model use an explicit filtering
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12. Turbulent channel flow

technique for computing νt. Consequently it is worthwhile investigating the effect of
the filtering technique. In particular we are interested in whether the selected filtering
technique, viz., filtering by convolution or differential filtering, affects the predictions
for Pr.

• It is well-known that the SM model has to be damped in the near-wall region. To
be more precise, νt has to be multiplied with D(y+)2, with D(y+) being the van
Driest damping function, see (5.33). Generally speaking, if νt ∼ ∆α, then νt has to
be multiplied by D(y+)α. At a first glance, (4.34) suggests that νt ∼ ∆ for the IL
model. However, (A.7), (A.22), and (4.35) suggest that νt ∼ ∆3. This issue will
be studied numerically. Moreover we study whether a suitable damping exponent α
depends on the filtering technique.

• Finally we investigate the influence of filter size ∆ and mesh width in wall-normal
direction h. We also consider the numerical error in differential filtering. In particular
we study how this error contaminates the predictions for Pr.

For this purpose we introduce

g∆ ∗ uR a very accurate numerical approximation to g∆ ∗ uR using
the trapezoidal quadrature rule with equidistant grid spacing hc = 0.001.

RuR Solution of (12.15)-(12.16).
RhuR FEM solution of (12.15)-(12.16) on a structured equidistant grid with

(2N + 1)× (N + 1) nodes, N = 64, 128, 256, 512, h = 1/N .

Recall that uR denotes the RANS solution of the fully developed channel flow, see (12.9).
For the differential filtering we consider the problem of seeking u such that

−∆2

24
∇2u+ u = uR in Ω = (0, 6)× (0, 2) ,(12.15)

∇u · n = 0 at y = 0 and y = 2H, and periodic bcds. on Γ1,Γ2,(12.16)

see Figure 12.1. Motivated by the work of Geurts and Fröhlich, see [Geu01], we choose
∆ = 1/16 and ∆ = 1/32 for the filter width.

First let us compare both filtering methods by studying g∆ ∗ uR and RhuR. As the convo-
lution g∆ ∗ uR is computed on a very fine grid, we can assume that its numerical error is
negligible small. Regarding differential filtering, we have to distinguish (i) the numerical er-
ror of the finite element scheme, (ii) the error w.r.t ∆ and (iii) a modelling error stemming
from the homogeneous Neumann boundary condition. It is worthily explaining (ii) and
(iii). Regarding (ii), combining (A.22) and (A.25) reveals that the modelling error of dif-
ferential filtering in Rd is of formal order O(∆4). Concerning (iii), recall that for differential
filtering in a bounded domain Ω, an artificial homogeneous Neumann boundary condition
is imposed, see (4.15). This gives rise to an additional modelling error. To see this, we
extend uR by zero onto R which satisfies uR ∈ E(R). Recall that g∆ ∗ (duR/dy) ∈ C∞(R)
for all ∆ > 0. Obviously, there exists K0 > 0, s.t. duR/dy > K0 > 0 in (0,H/2), with H
being the channel half width. In particular, we have duR/dy ≈ u2

τ/ν for 0 < y < 10ν/uτ ,
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12.3. Quasi a priori testing of the SGS model

see (C.14). Thus there exist K1 > 0, ∆1 > 0, s.t. g∆ ∗ (duR/dy) ≥ K1 in (0,H/2) for all
0 < ∆ < ∆1. This is in contrast to the homogeneous Neumann boundary condition for
R(uR) resp. Rh(uR).

Figures 12.17 and 12.18 show g∆ ∗ uR and RhuR for ∆ = 1/16 and ∆ = 1/32 resp. In
Figures 12.19 and 12.20 we show g∆ ∗ g∆ ∗ uR and RhRhuR for ∆ = 1/16 and ∆ = 1/32
resp. Moreover we study the error eh,∆ = g∆ ∗uR−RhuR. In Figures 12.21-12.24 the error
in plus-units, i.e., non-dimensionalised by uτ , is given, viz., e+

h,∆ = eh,∆/uτ . In the captions
of Figures 12.21-12.22 we write eh,∆(uR) to indicate that the corresponding figures show
eh,∆(g∆ ∗uR,RhuR) = g∆ ∗uR−RhuR. Analogously, in the captions of Figures 12.23-12.24
eh,∆(uR) means that these figures show eh,∆(g∆∗g∆∗uR,RhRhuR) = g∆∗g∆∗uR−RhRhuR.
First we study eh,∆(g∆ ∗ uR,RhuR). Keeping in mind that uτ is small (uτ = 0.0395), it
can be seen that for approximately y+ > 70 the difference e+

h,∆ is small. Remote from
the wall the approximation is good, i.e., eh,∆ is small. However, in the near-wall region
y+ / 75 (∆ = 1/16) resp. y+ / 40 (∆ = 1/32) the error is relatively large. Discernibly, the
numerical error w.r.t. h goes to zero as h→ 0, i.e. RhuR → RuR as h→ 0. Thus as h→ 0
we have e+

h,∆ → e+
rem,∆ ≡ erem,∆/uτ , with erem,∆ = g∆ ∗ uR − RuR being the remaining

error. This is the sum of the ∆- error and the modelling error from the Neumann bcd. As
∆ is decreased by a factor two, so does the sum of ∆- error and modelling error.
Regarding explicit filtering for LES, the error eh,∆(g∆ ∗ g∆ ∗ uR,RhRhuR) is even more
important. For example, for the Iliescu-Layton model (see (4.34)) we have to evaluate
νt = Cq∆|u − u|. It can be seen from Figures 12.23-12.24 that the error eh,∆(g∆ ∗ g∆ ∗
uR,RhRhuR) is largest at the wall, i.e., for y+ = 0. The numerical error w.r.t. h goes
to zero as h → 0, and eh,∆(g∆ ∗ g∆ ∗ uR,RhRhuR) converges to the sum of ∆-error and
modelling error from the Neumann boundary condition. The influence of the Neumann
boundary condition on differential filtering can be seen clearly in Figure 12.20, giving rise
to a significant modelling error in close proximity of the wall. If ∆ is decreased by a factor
two, then the sum of ∆- error and modelling error is also diminished by a factor close to
two.
However, emphasis has to be placed on the fact that we are not interested in the case
∆ → 0, when applying differential filtering in practical LES computations. We are inter-
ested in a ”true LES”, i.e., ∆ is fixed and h→ 0, see [Geu01]. Fig. 12.21-12.24 show that
the remaining error is significantly large near the wall. Fig. 12.17 and 12.18 reveal that
RhuR overpredicts g∆ ∗ uR in the near-wall region. Interestingly, very close to the wall
the difference is smallest for the coarse grid h = 1/64. In this case the numerical error
counteracts the remaining error.

Next we consider the predictions for νt and Pr by the SM model and the IL model. First we
explain the captions of Figures 12.25-12.36. For the SM model we introduce the notation
νt(w) = (CS∆)2|dw/dy| and Pr(w) = νt(w)(dw/dy)2. We choose CS = 0.1, see [Pope00],
p.602. We write νt(uR) indicating that the corresponding figure shows νt(g∆ ∗ uR) and
νt(RhuR), see Figures 12.25-12.26. Similarly, Pr(uR) denotes Pr(g∆ ∗ uR) and Pr(RhuR),
see Figures 12.29-12.30 and 12.33-12.34. For the IL model we define νt(v, w) = Cq∆|v−w|
and Pr(v, w) = νt(v, w)(dv/dy)2. Here we select Cq = 0.1. We write νt(uR, uR) indicat-
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Figure 12.17.: g∆ ∗ uR and RhuR for
∆ = 1/16.
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Figure 12.18.: g∆ ∗ uR and RhuR for
∆ = 1/32.
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Figure 12.19.: g∆ ∗ g∆ ∗ uR and RhRhuR
for ∆ = 1/16.
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Figure 12.20.: g∆ ∗ g∆ ∗ uR and RhRhuR
for ∆ = 1/32.

y+

er
ro

r+

25 50 75 100

-1.5

-1

-0.5

0

h = 1/64
h = 1/128
h = 1/256
h = 1/512

Figure 12.21.: eh,∆(uR) for ∆ = 1/16.
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Figure 12.22.: eh,∆(uR) for ∆ = 1/32.
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Figure 12.23.: eh,∆(uR) for ∆ = 1/32.
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Figure 12.24.: eh,∆(uR) for ∆ = 1/32.

ing that the corresponding figure shows νt(g∆ ∗ uR, g∆ ∗ g∆ ∗ uR) and νt(RhuR,RhRhuR),
cf. Figures 12.27-12.28. Similarly, Pr(uR, uR) and Pr(uR, uR) denote Pr(uR, g∆ ∗ uR),
Pr(uR,RhuR) resp. Pr(g∆ ∗uR, g∆ ∗g∆ ∗uR), Pr(RhuR,RhRhuR), see Figures 12.31-12.32
and 12.35-12.36. As usual, we consider the non-dimensionalised quantities ν+

t = νtu
−1
τ H−1

and P+
r = Prν/u4

τ . Without any near-wall modification, for both SGS models P+
r is un-

physically large in the near-wall region compared to the a priori testing results from DNS
data, cf. [BF99]. Damping Pr in the vicinity of the wall is accomplished by using the van
Driest damping function D(y+) = 1− e−y+/26. If νt ∼ ∆α, then νt has to be multiplied by
D(y+)α. For the Smagorinsky model we have α = 2. Regarding the IL model with convo-
lution we study α = 1. Additional tests which are not shown here show that α = 2 for the
IL model with convolution is too large. If we choose α = 1 then the relative magnitude of
the two maxima for Pr is similar to the profile of εFS in Figure 12.16. For the IL model
with differential filtering first we study α = 3. Moreover, for the IL model with filtering by
convolution we choose Cq = 0.05 in order to obtain more suitably scaled plots.
First we neglect the effect of the filtering technique and focus on the predictions from fil-
tering by convolution. Thus we study only the solid lines in Figures 12.25-12.36. Obviously
the profiles for Pr(g∆ ∗ uR) in Figures 12.29 and 12.30 resemble the profile for εMS plotted
in Figure 12.16. However, compared with [BF99], the profile for Pr gives too low values in
the log layer and in the core region of the flow. This is at least in parts due to the fact that
we can perform only a quasi a priori testing here. The only non-vanishing contribution to
Pr is due to duR/dy. In a correct a priori testing all components ∂ui/∂xj contribute to
Pr (including the part linked to velocity fluctuations). Moreover it should be recalled that
our ”quasi a priori testing” is performed for Reτ = 395 whereas Reτ = 180 in [BF99]. At a
first glance, the predictions for Pr for the IL model, see Figures 12.31-12.32, look at least
qualitatively similar to εFS in Figure 12.16. This is in agreement with the notion in [BF99]
that scale similarity models are able to account for backscattering effects in the buffer layer.
Although νt for the IL model is non-negative, it yields a suprisingly good profile for εFS .
Considering the relative magnitude of the two maxima for Pr in Figures (12.31)-(12.32)
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12. Turbulent channel flow

suggests to select α = 1 for the IL model with filtering by convolution.
At least from a qualitative point of view the idea arises to use a combination of the
Smagorinsky model and the Iliescu-Layton model instead of using the former model solely.
Denote νt,SM and νt,IL the predictions for νt by the SM resp. IL model. Then νt,SM +νt,IL
yields a quite reasonable prediction for PMS

r + PFSr . Hence supplementing the standard
Smagorinsky model with the Iliescu-Layton model seems to be a significant improvement
over the standard SM model. This modification benefits from the fact that νt ≥ 0 for the IL
model. Hence the well-known numerical stability of the Smagorinsky model is preserved.
This can be expressed in an alternative manner: The success of the Smagorinsky model
originates in its ability to predict the global SGS dissipation correctly. Supplementing the
SM model with the IL model significantly reduces the deficiency of the Smagorinky model
to fail at predicting details of the SGS dissipation locally, see e.g. [PYA96], p.222. The
well-known alternative approach, the dynamic Smagorinsky model which allows νt < 0
locally, has the drawback of being numerically instable in some situations. Moreover, it is
worth mentioning that the Iliescu-Layton model is much more easy to implement than the
dynamic Smagorinsky model.

Now we have to study how the differential filtering technique effects the predictions for
Pr by the IL model, see Figures 12.31-12.32 and 12.35-12.36. It will turn out that it is
useful to study also Pr by the SM model, see Figures 12.29-12.30 and 12.33-12.34. In a first
step we investigate the results for h = 1/512. Then the numerical error w.r.t. h is small
enough. Interestingly, the profile for Pr is shifted towards the wall for both the SM and
the IL model. This is due to the modelling error stemming from the Neumann boundary
condition for differential filtering. As a remedy, we multiply Pr with D(y+) for both the
SM and the IL model, i.e., we choose α = 3 for the SM model and α = 4 for the IL
model. Then the near-wall error of differential filtering is diminished. Although this is an
ad-hoc solution, it works surprisingly well for this test case. Studying Figures 12.21-12.24
gives a motivation for this modification: These figures suggest that the sum of ∆-error and
modelling error from the Neumann boundary condition scales linearly with ∆. Therefore
we ”damp” this error by multiplication with D(y+). Of course, the goal of this additional
modification is to ensure that the local maximum for Pr for the IL model at y+ ≈ 7 is
smaller than the second maximum by a factor of approximately 3.5, cf. Figure 12.16.
In a second step we study the influence of the numerical error w.r.t. h on the predictions
for Pr by the IL model. The two local maxima and the minimum between both maxima
can only be resolved if h ≤ 1/256. Therefore the predictions for Pr become qualitatively
wrong if h ≥ 1/128. Recall that in wall-bounded flows the scaled velocity profile u+(y+)
has a universal behaviour. Thus we can infer that LES (with near-wall resolution) using
the IL model with differential filtering requires that the first node above the wall is located
closer than y+

δ = yδν/uτ ≈ 7 from the wall. Otherwise the modelling error is supplemented
by a significant numerical error, i.e., the numerical error is a significant contamination of
our scheme. According to Ghosal the numerical error can be interpreted as an additional
SGS dissipation due to the numerical scheme. Hence it can be seen from the results that
the Iliescu-Layton SGS model is completely or partially masked by the numerical error
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Figure 12.25.: SM, νt(uR), α = 2,
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Figure 12.26.: SM, νt(uR), α = 2,
∆ = 1/32.
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Figure 12.27.: IL, νt(uR, uR), α = 3,
∆ = 1/16.
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Figure 12.28.: IL, νt(uR, uR), α = 3,
∆ = 1/32.
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Figure 12.29.: SM, Pr(uR), α = 2,
∆ = 1/16.
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Figure 12.30.: SM, Pr(uR), α = 2,
∆ = 1/32.
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Figure 12.31.: IL, Pr(uR, uR), α = 3,
∆ = 1/16.
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Figure 12.32.: IL, Pr(uR, uR), α = 3,
∆ = 1/32.
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Figure 12.33.: SM, Pr(uR), α = 3,
∆ = 1/16.
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Figure 12.34.: SM, Pr(uR), α = 3,
∆ = 1/32.
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Figure 12.35.: IL, Pr(uR, uR), α = 4,
∆ = 1/16.
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Figure 12.36.: IL, Pr(uR, uR), α = 4,
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Figure 12.37.: A priori testing ([BF99]).
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Figure 12.38.: Quasi a priori testing.

unless the grid spacing is sufficiently fine.
Moreover, the results from ”quasi a priori testing” provide information regarding the choice
of Cq in the IL model. The goal is then to balance the relative magnitude of Pr for the
SM model and the IL model compared to the profiles for εMS and εFS in Figure 12.16. As
shown in Figure 12.38, Cq = 0.125 seems a suitable choice for this test case. Moreover, this
figure clearly demonstrates the close relation between εMS and εFS on the one hand and
Pr for the SM model and the IL model on the other.

Remark 12.1
The so-called dynamic Smagorinsky model also uses an explicit filtering technique called
the test-filter. The results of this section indicate that one has to be aware the numerical
and modelling error caused by the differential filtering technique for the test-filter. ♦

A priori testing of the wall function concept for LES

In Chapter 7 we proposed to match the LES solution with the RANS solution in the bound-
ary layer. Now we want to elaborate on this approach. First it can be seen from Figures
12.17-12.18 that even for the course filter width ∆ = 1/16, g∆ ∗ uR ≈ uR for y+ > 50.
Thus when matching is performed in the log-layer, our concept of matching the global LES
with the non-space filtered RANS solution (5.41) is reasonable. For the fine filter width
∆ = 1/64, the approximation is reasonable even for y+ > 30.
The RANS solution is statistically stationary and hence τw is statistically stationary. How-
ever, LES requires an instantaneous wall shear stress. For x ∈ ΓW the point x−yδn resides
on Γδ. Since the wall function approach requires u 6= 0 on Γδ (which is obviously fulfilled
for attached boundary layers), the modeled wall shear stress can be written

τw(x, t)tj = τw
u(x− yδn, t) · tj
||〈u(x− yδn, t)〉T ||

tj , j = 1, . . . , d− 1 .(12.17)

which correlates τw(x, t) and u(x − yδn, t), i.e., two quantities taken at two different lo-
cations in space but at the same point in time are correlated. 〈·〉T denotes a long time
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12. Turbulent channel flow

average. Modelling the correlation between wall shear stress and instantaneous space av-
eraged velocity field correctly is still an open problem. For a survey on recent models and
a detailed experimental investigation thereon see e.g. [MKP01]. For general problems of
merging LES for the outer flow with a RANS for the near-wall region in attached turbulent
boundary-layer flows we refer to [Bag98]. Moreover, it is worth pointing out that τw and
Cf are the quantities of interest for engineers. They need τw and not a value obtained from
filtered quantities like τw ≡ ν dUdy |y=0. Thus the value obtained for τw should either come
from a RANS (or from a DNS) in the wall adjacent region or from a LES with filter width
∆ = ∆(y)→ 0 as y → 0.

Conclusions and implications for the use of LES in a CFD code

A summary of the previous ”quasi a priori testing” for LES closes this chapter. The major
result is that a combination of the SM model and the IL model can describe Pr, i.e., the
transfer of kinetic energy from the filtered scales to the residual scales, in much better agree-
ment with results from a priori testing than the SM model solely. This suggests that this
combination is an interesting alternative residual stress model. Compared to the dynamic
SM model, it can be expected to have better numerical stability properties. Moreover it
can be implemented much easier into an existing CFD code than the dynamic SM model.
As a second result we should point out that the homogeneous Neumann boundary condition
in differential filtering gives rise to a significant modelling error near the wall for the IL
model. The numerical tests suggest that this error can be ”damped” with the van Driest
damping function D(y+). Multiplying νt for the IL model with D(y+)4 instead of D(y+)3 is
appropriate for this test case. However, in an a posteriori test the situation might be differ-
ent. In an a priori test we evaluate Pr(RhuR,RhRhuR) with Pr(v, u) = νt(v, u)(dv/dy)2.
Therefore the error due to the differential filtering appears both in νt and in (dv/dy)2. In
an a posteriori test we have to evaluate Pr(w,Rhw) with w being the solution of the LES
momentum equation. Then the error of differential filtering appears only in νt. (Of course,
w might be contaminated by other errors at the wall, but this is a different concern). Fi-
nally, balancing the contributions from the SM model and the IL model to Pr suggests
Cq = 0.125 for the IL model if CS = 0.1 is chosen for the SM model.
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13. Turbulent natural convection in an air filled square cavity

13.1. Introduction

In this chapter we consider natural convection in an air filled closed cavity at a low turbu-
lence level. In this context, the term ”low turbulence level” means that the flow does not
exhibit any visible transition in the boundary layer along the heated and cooled vertical
walls. This type of flow is of interest in several industrial applications like building venti-
lation, cooling of electrical equipment or films, and safety applications (e.g., heat transfer
from fires).
There are two kinds of standard test cases for natural convection, namely, (i) Rayleigh-
Bénard convection in a cavity which is heated from below and cooled on the top wall and
(ii) the flow in a cavity with two differentially heated side walls. Case (i) has been studied,
e.g., in [KD00], [WL94], and [PD98].
At the first glance, case (ii) seems to be less challenging compared to case (i). This stems
from the fact that the velocity field is relatively large only the proximity of the walls; re-
mote from the walls, the fluid is nearly at rest. However, Peng and Davidson point out
that the opposite holds: Regarding the turbulent processes involved, the Rayleigh-Bénard
problem seems to be less complicated. In turbulent Rayleigh-Bénard convection, there are
two distinct scales of motion, viz., the large convective rolls and turbulence generated pri-
marily in the wall boundary layers and advected by the large-scale motion. This makes
the flow configuration amenable to LES studies. Contrarily, in a cavity with two differen-
tially heated side walls, the flow pattern is much richer, see Figure 13.2 (from [TK00a]):
In the core region encircled recirculating flows are induced. Further problems arise near
the heated side walls: In the vicinity of the side walls temperature gradients normal to the
direction of gravity tend to result in the generation of vorticity (according to BVG theory,
see Subsection 3.3.2). This is supported by the LES with near-wall resolution performed
by Peng and Davidson, cf. [PD01b]. They report the appearance of coherent structures
(streaks), similar to those in a forced convection boundary layer but less elongated. The
near-wall small-scale instabilities interact with themselves and with mean flow gradients.
Thus a large span of scales occurs and interacts with each other, giving rise to complicated
turbulent processes.
Such a cavity with two differentially heated side walls has been studied experimentally by
Cheesewright et al. in 1986, for details see [CKZ86]. However, it became obvious that
their results are not accurate enough, in particular regarding the turbulence quantities.
Thus, a decade later, Tiam, Karayiannis, and Ampofo studied natural convection in a
vertical square cavity at a relatively low Rayleigh number Ra = 1.58×109. The experiment
revealed that the flow is overall low-turbulent, and does not exhibit any visible transition
in the boundary layer along the heated and cooled vertical walls. The flow configuration
used by Tiam et al. has been accepted as new benchmark test case for CFD for natural
convection, cf. [PD01b]. It should be appreciated that there are no DNS data for this flow,
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13. Turbulent natural convection in an air filled square cavity

stressing the fact that this is a really challenging flow problem.
We conclude this introduction by pointing out some further difficulties stemming from
the complicated physical processes involved. Firstly, during the solution process, the flow
undergoes a transition from laminar to turbulent which is computationally difficult, as
pointed out in [TODB98]. Regarding this issue, it is worth mentioning the corresponding
isothermal problem, viz., the so-called impulsively started driven cavity problem: In a two-
dimensional square cavity with zero body force term and no-slip boundary conditions on
bottom and side walls, the fluid motion is induced by sliding the upper side of the cavity
to the left at constant velocity in a direction parallel to the bottom wall. For numerical
results thereon, see e.g. [APQ02].
A further difficulty is that the eddy-viscosity assumption does not hold in the near-wall
region, see [TN98b]. Therefore the prediction for the skin friction coefficient might be not
very reliable. Moreover, Tieszen reports the presence of an adverse pressure gradient as
the flow approaches the corners for the case of a tall cavity, see [TODB98], p.290. If this
observation also holds for the square cavity, then near the corners the boundary-layer ap-
proximation can make troubles, see subsection 5.2.4. The flow in the corners of the cavity
can be considered as a flow over a surface with concave curvature in the limit of the radius
of curvature going to zero. If a flow enters a concave curve, then turbulence is amplified,
see Section 5.2. Models based on the eddy-viscosity hypothesis cannot describe this effect.
Finally, the low fluid velocities and the strong coupling between momentum, temperature,
and turbulence quantities can be expected to result in long iteration times until an at least
statistically steady state is reached, see [TODB98], p.290.

13.2. Description of the flow configuration

We focus on a vertical square cavity with two differentially heated side walls, studied exper-
imentally by Tiam and Karayiannis (see [TK00a]), and by Ampofo and Karayiannis

(see [AK02]). Both experiments were carried out in the same cavity; Ampofo reports that
the results for velocity and temperature agree excellently for both experiments, cf. [AK02],
p.6. The flow configuration and a sketch of the velocity field (from [TK00a]) is presented
in Figure 13.2. In the following, dimensional quantities are labelled by a tilde.
First we describe the domain Ω and the partitioning of its boundary Γ. The dimensions of
the cavity are 0.75 m× 0.75 m× 1.5 m, and thus Ω = (0, 0.75)× (0, 0.75)× (0, 1.5).

Part of Γ location boundary condition
Γh, Γc x̃ = 0 resp. x̃ = 0.75 m T̃ = 50◦C resp. T̃ = 10◦C isothermal
Γt, Γb ỹ = 0 resp. ỹ = 0.75 m highly conducting boundaries (see below)
Γf , Γr z̃ = 0 resp. z̃ = 1.5 m insulated

Figure 13.1.: Boundary conditions for natural convection in a closed cavity.

Secondly, we specify the boundary conditions, see Table 13.1. First, we regard the tempera-
ture equation. The vertical hot and cold wall of the cavity are isothermal at T̃h ≡ 50◦C and
T̃c ≡ 10◦C. The other boundary conditions require some explanation. Top and bottom

152



13.2. Description of the flow configuration

walls (made from 1.5mm mild steel) are highly conducting boundaries. Mathematically
this is described by a boundary condition of Robin type, viz.,

λ̃∇T̃ = α̃ ( T̃a − T̃ ) ,(13.1)

with T̃a being the ambient temperature (T̃a = 30◦C) and appropriate values for λ̃ and α̃.
Instead, as suggested by Tiam, the measured temperature distribution on the horizontal
walls was used as boundary condition in the numerical tests performed by Peng et al.,
cf. [PD00]. Finally, Γf and Γr are adiabatic.
In the numerical test presented in this thesis, the Dirichlet conditions on Γh Γc, Γt, and
Γb are replaced by using the wall iteration method for non-isothermal flow problems with
significant buoyancy forces.
For the velocity, the no-slip condition is imposed on Γ, which again is reformulated as a
wall stress boundary condition using the wall iteration concept for flows with significant
buoyancy forces.

bottom

y
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z

Γ

Γ Γ

Γ
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hot
wall

cold
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Figure 13.2.: Sketch of cavity and flow.

The Rayleigh number of the flow is given by Ra = g̃β̃(T̃h− T̃c)L̃3Pr/ν̃ with L̃ = 0.75m.
We obtain Ra = 1.58× 109 in agreement with Tiam, using

ν̃ = 15.3× 10−6 , ã = 21.86× 10−6 , λ̃ = 0.026 , P r = 0.70 , β̃ = 3.192× 10−3 .

(13.2)

Note that, strictly speaking, for ideal gases, β̃ is temperature dependent according to the
relation β̃ = 1/T̃ (with T̃ being given in K), cf. [KC93], p.398. The constant value chosen
for β̃ ensures the desired Rayleigh number.

Remark 13.1
There are several experimental studies with adiabatic horizontal walls. However, as re-
ported by Tiam, their results regarding turbulence quantities differ significantly, because
adiabatic boundary conditions on the horizontal walls are very difficult to realise in air filled
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13. Turbulent natural convection in an air filled square cavity

cavities. The large aspect ratio in the z̃ direction ensures that the flow can be assumed
to be two-dimensional, except near the side walls Γf and Γr. This is confirmed by the
experimental investigation by Tiam. ♦

Remark 13.2
Müller [Mue99] considered two-dimensional natural convection at Ra = 5.3 × 1010 in
an air filled vertical tall cavity of dimensions 0.5m × 2.5m, top and bottom wall being
adiabatic. He compared the numerical results from the k/ε model with experimental results
by Cheesewright et al., see [CKZ86]. Gritzki [Gri01] studied natural convection in
a three-dimensional unit cube with top and bottom wall again being adiabatic, without
comparing the results with experimental data. ♦

13.3. Testing the wall iteration concept

First we study the wall iteration method separately. Given the flow configuration presented
above, we consider the flow along the hot wall at ỹ/L̃ = 0.5. Recall that in this situation
the wall-normal direction is the x-direction in the global coordinate system. In the local
coordinate system, the wall-normal direction is the y-direction, as usual. In a similar vein,
we denote the streamwise component of the velocity field at the vertical walls with V , as
it is the y-component of u in the global coordinate system. Keeping this in mind should
avoid all confusions.
Recall that in the wall iteration procedure, for each grid node on ΓW , we have to solve
(6.7)-(6.10) numerically for given values for velocity V (yδ) and temperature Θ(yδ) at a
given wall distance yδ. Recall that yδ is the wall distance of the first mesh node above
the wall. Note that V (yδ) is denoted by U(yδ) in (6.7)-(6.10). The objective of the wall
iteration scheme (see Subsection 6.3) is to ensure reasonable predictions for certain surface
transfer coefficients even if the first node above the wall is located beyond the velocity
maximum, see Subsection 5.4.1. The distance of the velocity maximum from the wall,
denoted by ymax, is increasing in flow direction. In order to obtain a robust method we
have to ensure that the numerical solution of (6.7)-(6.10) yields accurate results if yδ is
varied over an interval around ymax.

Thus the aim of this section is to study the behaviour of the numerical solution of (6.7)-
(6.10) when varying yδ over an interval around ymax. Therefore we consider Table 13.3,
whose entries are explained in the sequel. The data for the numerical tests can be found
in the first three columns of the following table. The last two columns will be discussed
later. The first line containing data, e.g., has to be understood as follows: We choose
yδ = 1.0× 10−3, V (yδ) = 8.43× 10−2, and Θ(yδ) = 0.92 and then solve (6.7)-(6.10). These
values are taken from the experimental data by Ampofo et al., see [AK02].

Thus we solve (6.7)-(6.10) for eight different locations of yδ. The initial value problem
(6.12)-(6.15) is solved numerically using the implicit Euler method, see e.g. [Kre98], Section
10.2. On [0, yδ] we use an equidistant grid with 20 nodes. Numerical tests reveal that the
results cannot be improved when using more nodes. Note that for yδ ≤ 0.004 the wall
function concept is used, because the first near-wall point resides in the viscous sublayer.
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13.3. Testing the wall iteration concept

yδ = ỹδ/L̃ Ṽ (ỹδ)/Ũ0 θ = (T̃ − T̃c)/(T̃h − T̃c) τ̃w/Ũ
2
0 Nul

1.000× 10−3 8.430× 10−2 9.200× 10−1 2.043027× 10−3 6.000× 101

2.330× 10−3 1.457× 10−1 8.373× 10−1 1.515480× 10−3 5.237× 101

4.000× 10−3 1.308× 10−1 7.635× 10−1 1.516995× 10−3 4.839× 101

6.666× 10−3 2.127× 10−1 6.793× 10−1 1.459557× 10−3 5.020× 101

9.333× 10−3 2.081× 10−1 6.186× 10−1 1.531031× 10−3 5.334× 101

1.333× 10−2 1.745× 10−1 5.655× 10−1 1.645618× 10−3 5.518× 101

2.000× 10−2 1.308× 10−1 5.270× 10−1 2.030134× 10−3 5.815× 101

2.666× 10−2 9.180× 10−2 5.171× 10−1 2.396009× 10−3 6.023× 101

Figure 13.3.: Data and results for an a priori test of the wall iteration scheme.

We study (i) the predictions for V and Θ and (ii) the results concerning the wall function
method. First we are interested in the predictions for V and Θ, which are shown in Figures
13.4-13.7. The figures show the numerical solution of (6.7)-(6.10) for different locations of
yδ, which is denoted with d in the legend. The left figures show all choices for yδ whereas
the right plots focus on the near-wall region. Given yδ ≤ 0.0133, the profile for V is good.
For yδ ∈ {0.02, 0.0266} the velocity maximum is clearly overpredicted. Concerning the
temperature, the solutions for different choices for yδ are relatively close to each other.
Secondly, we study the predictions for U∗ and q̇, see (6.11). Their accuracy is of crucial
importance within the wall function approach, see the k/ε model II. Here, we consider
τw ≡ τ̃w/Ũ

2
0 with τw = U2

∗ instead of U∗. Moreover, instead of q̇ we study the so-called
local Nusselt number Nul, being defined as

Nul = − L̃

(T̃h − T̃c)

˜̇q
ρ̃0c̃p

,(13.3)

with dimensional quantities being defined in Section 1.1. From their experiments Tiam et

al. report τ̃w/Ũ2
0 = 0.00164 and Nul = 58 at ỹ/L̃ = 0.5. The numerical results for these

quantities are given in the last two columns of Table 13.3. Thus a certain line in the table has
to be read as follows: Given yδ, V (yδ) and Θ(yδ) from the first three columns, the numerical
solution procedure gives the values for τw and Nul specified in the fourth and fifth column
resp. The predictions for τw are reasonable for yδ ∈ (0.00233, 0.0133). As yδ increases, i.e.,
for yδ ∈ {0.02, 0.0266}, the error becomes significantly larger. Concerning Nul, the results
become better if yδ is not too close to the wall. Even for yδ ∈ {0.02, 0.0266} the predictions
for Nul are good. In the a posteriori testing in the next section we use the a priori
information regarding the location of ymax to create a mesh with yδ ∈ {0.00933, 0.0133}.
Then the a priori testing results of this section suggest that the predictions for both τw
and Nul are reasonable, at least at the side walls.
Finally we study the convergence behaviour of the Newton’s method. The convergence
history is given in Figure 13.8. The abscissa gives the iteration step whereas the ordinate
shows the following quantity being a measure for the convergence behaviour, viz.,√

(τn+1
w − τnw)2

(τnw)2 +
(q̇n+1 − q̇n)2

(q̇n)2 .(13.4)
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Figure 13.4.: V/U0 at y/L = 0.5
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Figure 13.5.: V/U0 at y/L = 0.5
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Figure 13.6.: T−Tc
Th−Tc at y/L = 0.5
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Figure 13.7.: T−Tc
Th−Tc at y/L = 0.5
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Figure 13.8.: Convergence history
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Figure 13.9.: Sketch of the DDM
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13.4. A posteriori testing for the k/ε model without DDM

Here the upper index n denotes the iteration step. The initial guess for the Newton’s
method becomes less accurate as the wall distance of the first wall-off node becomes larger.
This is the reason why the the iteration scheme takes more cycles when the wall distance
of the first wall-off node becomes larger.

13.4. A posteriori testing for the k/ε model without DDM

Numerical tests show that the results for the k/ε model do not change if we use the com-
putational domain Ω = (0, 0.75)3 instead of Ω = (0, 0.75)× (0, 0.75)× (0, 1.5). The com-
putations are performed on a mesh with 81× 65× 29 nodes being distributed equidistantly
in each coordinate direction. Hence the discrete problem has approximately 7× 1.5× 105

unknowns. We use a relatively large time step width ∆t = 1.0. Note that ∆t = 1.0
is approximately the characteristic time scale t̃0 formed from the characteristic length
scale H̃ = 0.75m and the characteristic velocity Ũsc = (g̃β̃(T̃h − T̃c)H̃)1/2 ≈ 0.9692ms−1,
viz., t̃0 = H̃(g̃β̃(T̃h − T̃c)H̃)−1/2 ≈ 0.7738s. For their LES, Peng and Davidson chose
∆t̃ = 0.013t̃0 ≈ 0.01, see [PD01b]. Regarding computations with the k/ε model, numerical
tests reveal that the results cannot be improved by using a time step width smaller than
∆t = 1.0. We use the decoupling and linearisation scheme for the k/ε model described in
Section 9.2.2. For the final time we select T = 200.0 and perform one linearisation cycle
per time step. For the temperature equation the shock-capturing scheme, see Section 10.3,
is applied.
First we study our scheme without applying the domain decomposition method. We inves-
tigate the following two variants. In both cases we select Ks = 25.0, Remin = 20.0.

V1 We use χ = 0 in (5.40), i.e., effects of stratification are neglected in the boundary
layer.

V2 We choose χ = 1 in (5.40). Then effects of stratification in the boundary layer are
taken into account. Moreover we ensure Remin ∈ [Remin,cut, 70.0] with Remin,cut =
7.0 using a cut-off technique.

First we focus on variant V1. In order to appraise the accuracy of the solution we start
with considering the predictions for the non-dimensional vertical velocity V/U0 and for the
non-dimensional temperature (T − Tc)/(Th − Tc) at three different positions y/L = 0.2,
y/L = 0.5, and y/L = 0.8. As a reference solution we choose the experimental results
by Ampofo and Karayiannis, see [AK02]. According to Ampofo, there is an excellent
agreement with the earlier results of Tiam and Karayiannis, see [TK00a]. In order to
appreciate the efforts of the whole research group, the reference data are labelled by ”Tiam
et al.”. Nonetheless it should be pointed out that the reference data have been provided
due to the kind support of Felix Ampofo.
The results are shown in Figures 13.10-13.15. First we investigate the predictions for V .
At y/L = 0.5 the prediction is reasonable although the thickness of the velocity boundary
layer is slightly overpredicted. The situation at y/L = 0.2 and y/L = 0.8 requires some
more explanation. It is worth recalling that the fluid motion is in clockwise direction. Thus
regarding the hot wall (x = 0) the near-wall fluid motion is directed upwards whereas on the
cold wall (x/L = 1.0) it points downwards. We focus on the cold wall. The discussion for
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13. Turbulent natural convection in an air filled square cavity

the hot wall is analogous. However, as will be discussed later, the predictions for the cold
wall are better than those for the hot wall. The reason is that the prediction of the solution
in the region near the bottom wall is complicated. Erroneous results near the bottom wall
are transported downstream with the fluid motion and deteriorate the results near the hot
wall. For y/L = 0.2 the predictions on the cold wall are good but for y/L = 0.8 they are
more erroneous. The reason is that y/L = 0.8 is near the upper right corner. As explained
before, both the boundary-layer approximation and the eddy-viscosity model fail in the
vicinity of corners. The error made in the corner highly affects the solution downstream at
y/L = 0.8. Therefore the recirculating flow in 0.75 ≤ x/L ≤ 0.9 at y/L = 0.8 cannot be
predicted correctly. Also details regarding the near-wall temperature profile for x/L ≥ 0.9
at y/L = 0.8 cannot be described correctly. One particular aspect of the model’s failure
in the corners are the two small vortices in the top-hot and in the bottom-cold corner of
the cavity, being reported by Tiam, p.855, which cannot be resolved in the present k/ε
computation. Downstream at y/L = 0.2 the situation is much better. The thickness of the
velocity boundary layer is predicted very well, but the maximum velocity is significantly
underpredicted. The recirculating flow at 0.85 ≤ x/L ≤ 0.9 can be resolved. Similarly,
details of the near-wall temperature profile are described quite reasonably. It is worthwhile
pointing out that the predictions for the mean temperature profiles in the cavity mid are
very reasonable.
Next we study the vertical temperature profile, as shown in Figure 13.18. Discernibly the
prediction is very satisfying, except the slight underprediction of the temperature maximum
resp. minimum near the top and bottom wall resp. It is worthily commenting on the
prediction of the vertical temperature profile in [Mue99], p.107. The results in [Mue99] are
very similar to those presented in [TODB98], Figure 8. This suggests that the reference data
by [CKZ86] suffer from experimental deficiencies, i.e., heat loss from the box. Hence the
prediction in [Mue99] can be expected to be much better than the reference data suggest.
Next we investigate the predictions for the characteristic surface transfer coefficients, i.e.,
skin friction coefficient Cf and local Nusselt number Nul, being defined as

Cf =
2τ̃w
Ũ2

0

, Nul = − L̃

(T̃h − T̃c)

˜̇qw
ρ̃0c̃p

.(13.5)

As experimental data for Cf are available only for the side walls, the results for top and
bottom wall are not shown in the plot. Moreover, in the figures, we have to modify the
definition for Cf and Nul in (13.5) on the top wall and on the cold wall by using a negative
sign there. This is done in order to use the same definition as given in [TK00a]. Note that
τ̃w and ˜̇qw are provided by the near-wall iteration and do not have to be computed explicitly.
The predictions for Cf and Nul along the cavity closure surface (clockwise), starting from
the lower hot corner, are presented in Figures 13.16-13.17. Therein, the parameter s is a
surface parameter, which describes the distance of a certain point at the surface from the
lower hot corner in clockwise direction. First we study the results for Cf . At a certain
distance downstream from the lower left corner at s/H = 0.0 and the upper right corner at
s/H = 2.0 the predictions are reasonable. In particular, the predictions at the cold wall for
2.6 ≤ s/H ≤ 2.9 are very good. However near the lower left corner at s/H = 0.0 and the
upper right corner at s/H = 2.0 discernibly Cf is mispredicted: The relatively slow growth
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of Cf in downstream direction cannot be described correctly. However, one should recall
that according to Tsuji and Nagano the eddy-viscosity assumption does not hold in the
near-wall region, see [TN98b]. This is an additional indication that we cannot expect the
prediction for Cf to be accurate due to several modelling errors as explained above.

Now we study the predictions for the local Nusselt number Nul. The predictions for the
side walls are qualitatively reasonable (except near the lower left corner at s/H = 0.0
and the upper right corner at s/H = 2.0). However, Nul is significantly overpredicted
at the side walls. At the top and bottom wall the predictions are poor. At the top wall
(1.0 ≤ s/H ≤ 2.0) Nul is significantly underpredicted and the qualitative behaviour is
mispredicted. At the bottom wall (3.0 ≤ s/H ≤ 4.0) the prediction becomes unreliable, as
Nul suffers from oscillations. Therefore the predictions near the bottom wall are erroneous
and this error influences the predictions for the hot wall, see above. Regarding the problems
near the top and bottom wall we have to recall that we impose a Dirichlet boundary
condition instead of a Robin boundary condition there. The problem with Robin boundary
conditions is that Karayiannis et al. do not specify how to choose λ̃ and α̃ in (13.1). A
further problem regarding the Robin boundary condition is that then Cf and Nul cannot
be obtained directly. However, as we shall see in the next section, the reason for the
misprediction of Nul is that effects of stratification have to be accounted in the boundary
layer.
Finally we look at the turbulent kinetic energy. The predictions are shown in Figures 13.19-
13.21. For y/L = 0.5 the prediction is reasonable, although the maximum for k at the cold
wall (x/L = 1.0) is spuriously overpredicted. Moreover it should be pointed out that the
profile for k is wider than the data predict. This is in agreement with the above notion
that the thickness of the velocity boundary layer is overpredicted at y/L = 0.5. Near the
top-cold and the bottom-hot corner the prediction is poor. At y/L = 0.2 the maximum for
k at x = 0 is significantly overpredicted by a factor larger than two. Similarly, at y/L = 0.8
the prediction for k at the cold wall (x/L = 1.0) is much too large. On the other hand,
for y/L = 0.2 the prediction for k near the cold wall (x/L = 1.0) is good. Similarly, for
y/L = 0.8 the prediction for k near the hot wall (x/L = 0.0) is reasonable. However, the
thickness of the profile is slightly overpredicted in both cases.

Next we study the results for variant V2. First we study the results for the vertical velocity
component V . The difference between the predictions for V2 and V1 is small. At the
side walls the velocity boundary layer is slightly wider for V2 than for V1. Regarding the
temperature, the difference is significant. It can be seen clearly from Figure 13.30 that the
prediction for the vertical velocity profile is not as good as for V1, see Figure 13.18. In
particular the predictions near the top and bottom wall are poor .
On the other hand, the results for the surface transfer coefficients Cf and Nul for V2 are
superior to those for V1. The prediction for Nul is given in Figure 13.29. For the side
walls (0 ≤ s/H ≤ 1 and 2 ≤ s/H ≤ 3) the results are similar to V1. On the top wall
(1 ≤ s/H ≤ 2) the prediction is qualitatively and quantitatively reasonable and much
better than for V2. Since g · n 6= 0 and ∇Θ · n 6= 0 in (5.40), Remin is altered in order
to take into account effects of stratification. Figure 13.29 reveals that the modification
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13. Turbulent natural convection in an air filled square cavity

(5.40) is a valuable improvement. On the bottom wall, the situation is more complicated.
Discernibly the solution exhibits small oscillations. From a qualitative point of view, the
prediction is much better than for model V1. However, the result is not satisfying. In order
to study the predictions for the bottom wall in more detail, different values for Remin, Ks

and Remin,cut have been tested. The oscillations for Nul are removed only if a larger value
for Remin is chosen. However, then the profile for Nul flatter than for V1. A qualitatively
satisfying prediction for Nul is obtained for Remin,cut = 2.0 (not shown here) at the cost
that the oscillations increase. Surprisingly, when applying a DDM, these oscillations vanish.
Thus we postpone the investigation of the predictions for Nul at the bottom wall to the
next section. The result for Cf is shown in Figure 13.28. In particular, the prediction at
the cold wall for 2.4 ≤ s/H ≤ 2.9 is remarkably accurate. This is at least in parts due to
the reasonable prediction for Nul on the top wall. Finally we study the predictions for k,
see Figure 13.31-13.33. The results are similar to those predicted for V1. However, it is
noteworthy that the profile for V2 is wider than for V1.

13.5. A posteriori testing for the k/ε model with DDM

In this section we apply the domain decomposition method presented in Chapter 11 to our
natural convection problem. For this purpose we divide the domain Ω into four subdomains
as shown in Figure 13.3. Concerning the interface function, instead of (11.9) we choose the
simplified variant

zk =
|b · nk|

2
+ ν +

√
ν ( c+ λ ) .(13.6)

It should be recalled that here ν denotes a non-constant diffusivity resp. viscosity, see Sec-
tion 9.2.3. This simplification is based on numerical tests for several advection-diffusion-
reaction type problems with ν being constant in Ω. In these tests, the convergence be-
haviour of the DDM was investigated for ν ∈ [10−7, 100] for both variants (11.9) and
(13.6). These tests reveal that the min(. . .) term in (11.9) is of crucial importance in order
to ensure a robust convergence w.r.t. ν primarily in the case c = 0. However, for instation-
ary problems c = 1/(∆t) with ∆t being the time step width. For our natural convection
problem using the k/ε model we have ||ν||min,j ≈ 10−5. Therefore (11.9) becomes

zk =
|b · nk|

2
+ max

j=1,2

||ν||min,j
Hj

(
1 +

√
C∞,j
||ν||min,j

Hj + 2
B∞,j√
||c ν||min,j

)
.(13.7)

Comparing (13.7) and (13.6) reveals that λ ≈ B∞,j . Moveover these tests show that for
fixed ν with ν ≥ 10−2 the convergence behaviour is relatively robust w.r.t. λ, see also
[Otto99], Section 4.7.
The aim of a DDM is to improve the performance of the finite-element scheme without
introducing an additional error due to the DDM. Thus we have to check whether the DDM
solution converges to the solution without DDM. Moreover we have to study the influence
of the parameters λ and θ. Recall that the relaxation parameter θ was introduced in (11.4)
and in (11.16) resp. It will turn out that the DDM predictions for Nul at the bottom wall
do not exhibit oscillations in contrast to the solution without DDM. This provides us the
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Figure 13.11.: T−Tc
Th−Tc at y

L = 0.2, V1.
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Figure 13.12.: V
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L = 0.5, V1.
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Figure 13.13.: T−Tc
Th−Tc at y

L = 0.5, V1.

x/L

V
/U

0

0 0.25 0.5 0.75 1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
V/U0 at y/L=0.8
Tiam et al.

Figure 13.14.: V
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L = 0.8, V1.
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Figure 13.15.: T−Tc
Th−Tc at y

L = 0.8, V1.
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Figure 13.16.: Cf from lower top
corner along surface clock-
wise, V1.
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Figure 13.17.: Nul from lower top
corner along surface clock-
wise, V1.
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Figure 13.18.: T−Tc
Th−Tc at x/L = 0.5, V1.
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Figure 13.22.: V
U0

at y
L = 0.2, V2.
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Figure 13.23.: T−Tc
Th−Tc at y

L = 0.2, V2.
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Figure 13.24.: V
U0

at y
L = 0.5, V2.
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Figure 13.25.: T−Tc
Th−Tc at y

L = 0.5, V2.
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Figure 13.26.: V
U0

at y
L = 0.8, V2.
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Figure 13.27.: T−Tc
Th−Tc at y

L = 0.8, V2.

163



13. Turbulent natural convection in an air filled square cavity

s/H

C
f
x

10
-3

0 1 2 3
0

1

2

3

4

Cf x 10-3

Tiam et al.

Figure 13.28.: Cf from lower top
corner along surface clock-
wise, V2.
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Figure 13.29.: Nul from lower top
corner along surface clock-
wise, V2.
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Figure 13.30.: T−Tc
Th−Tc at x/L = 0.5, V2.
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opportunity to study Neitzke’s modification (5.40) also for the bottom wall. A suitable
choice for Ks and Remin is Ks = 25.0, Remin = 20.0, see also [Sei03]. In order to ensure
Remin,cut ≤ Remin ≤ 70.0 with Remin,cut ∈ [2, 12], we apply a cutoff technique, see Section
9.2.2 and Section 9.3.2. Since Remin,cut cannot be determined from theoretical reasoning,
a suitable choice has to be found numerically. Hence we have to investigate the influence
of Remin,cut on the solution and seek the value which gives the best predictions for this
test case. We investigate the following two variants. In all cases we select Ks = 25.0 and
Remin = 20.0. Within each linearisation cycle (see Section 9.2.2), three iteration cycles for
the DDM are performed.

V3a We choose χ = 0 in (5.40), i.e., effects of stratification are neglected in the boundary
layer. Moreover we choose θ = 1.0 and λ = 1.0 for both the momentum equation and
the scalar equations, see (13.6).

V3b We select χ = 0, θ = 1.0 and λ = 100.0 for the momentum equation resp. λ = 10.0
for the scalar equations.

V4a We choose χ = 1 in (5.40). Then effects of stratification in the boundary layer are
taken into account. We ensure Remin ∈ [Remin,cut, 70.0] with Remin,cut = 2.0 using
a cut-off technique. Moreover we choose θ = 1.0 and λ = 100.0 for the momentum
equation resp. λ = 10.0 for the scalar equations.

V4b We use χ = 1 in (5.40) and Remin,cut = 7.0. For the DDM we use θ = 1.0 and
λ = 100.0 for the momentum equation resp. λ = 10.0 for the scalar equations.

First we investigate the accuracy of the DDM, i.e., we study whether the DDM solution is
close to the solution without DDM. We consider V3a and V3b in order to study the influ-
ence of the parameters θ and λ on the DDM. Numerical tests which are not shown here
show that the profiles for V3a and V3b collapse. Thus we restrict ourselves to considering
V3b.
The results for V3b are shown in Figures 13.34-13.45. The plots show the DDM results
(solid lines), the results without DDM (dash-dotted lines), and the experimental results
from Tiam et al. (dotted lines with symbols). The predictions for V are very satisfying,
cf. Figures 13.34,13.36, and 13.38. The results for k are also reasonable, see 13.43-13.45.
Concerning the temperature equation, surprisingly the oscillations for the predictions for
Nul at the bottom wall vanish, see Figure 13.41. It should be recalled that Nul is related
closely to q̇ (see (13.5)), which occurs on the right hand side of the Neumann boundary
condition for the temperature equation in the wall function procedure (see Section 6.2).
Thus it seems reasonable that the predictions for the temperature are altered if the oscil-
lations for Nul are removed. The vertical temperature profile is shown in Figure 13.42.
The deviation of the DDM solution from the solution without DDM in the lower part of
the cavity is obvious. Near the top wall both solutions collapse. This indicates that the
difference is due to the altered predictions for Nul at the bottom wall. This suggests that
the modelling error of the wall function procedure (numerical oscillations for Nul) has a
positive influence on the predictions for the vertical temperature profile in the case without
DDM and with χ = 0 (denoted V1 in the previous section). Thus there is hope that the
results for the vertical temperature profile can be improved when accounting for effects of
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13. Turbulent natural convection in an air filled square cavity

stratification in the boundary layer when using the DDM. Finally we study the predictions
for Cf . The agreement is excellent at the top wall and satisfying at the bottom wall, see
Figure 13.40. The deviation at the bottom wall stems at least in parts from the different
prections for Nul there. The coupling of momentum and temperature in the boundary
layer equations (see Section 6.3) implies that modified predictions for the temperature at
the bottom wall (see Figure 13.42) influence the predictions for Cf .

Remark 13.3
Due to the oscillations for Nul in the case without DDM, the convergence of the DDM-
solution to the solution without DDM is somehow slightly less than satisfying. Now homo-
geneous Neumann boundary conditions are imposed on the top and bottom wall instead of
Dirichlet boundary conditions. Then the convergence is excellent, see Figure 13.58. ♦

Now we activate (5.40) in order to account for effects of stratification in the boundary
layer. We start with considering V4a. The results are shown in Figures 13.46-13.57. First
we study the predictions for Nul, see Figure 13.53. At the top wall the prediction is close
to the solution for V2, see Figure 13.29. Recall that V2 is the non-DDM solution with
(5.40) but using a different cutoff for Remin. The prediction for Nul along the bottom wall
is also very reasonable. It should be pointed out here that the experimental results are
inevitably flawed due to inaccuracies and imperfections in the experimental setup. Thus
it is not clear how reliable details of the experimental data are. The results indicate that
the modification (5.40) gives a valuable, significant improvement regarding the predictions
for Nul. The profile for Cf is shown in Figure 13.40. At the bottom wall Cf is slightly
increased compared to the results without DDM, see Figure 13.28. The predictions for
momentum, temperature and turbulent kinetic energy are close to those for V2 and need
not being discussed.
Now we study the effect of the cutoff value for Remin. The results for V4b are also shown
in Figures 13.46-13.57. Figure 13.54 reveals that for V4b the prediction for the vertical
temperature profile is better than for V4a. On the other hand, the predictions for Cf and
Nul using V4a are superior to those from V4b, see Figures 13.52 and 13.53. Thus one
has to balance two aspects: If the focus is on the vertical velocity profile, than the results
recommend V4b, whereas more accurate predictions for Cf and Nul can be obtained using
V4a. Regarding the velocity profile (see Figures 13.46, 13.48, and 13.50) the results suggest
choosing V4a.

13.6. Appraisal of the k/ε model predictions

It is worthwhile summarising the main results regarding the k/ε model. A comparison of
the numerical results with experimental data reveals that the model predictions are very
reasonable. The choices for the model parameters, in particular Ks and Remin, can be
confirmed. This supports the improved wall function approach presented in this thesis.
It should be emphasised that the predictions for Nul can be improved significantly by
using Neitzke’s modification (5.40). The results for the surface transfer coefficients Cf
and Nul without resolving the near-wall region are remarkable. Moreover, the accuracy of
the DDM is excellent. From these results we can expect that the predictions are accurate
also for more complex flow problems including mixed convection, see e.g. [Sei03]. The
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computer ressources needed for real-life applications regarding three-dimensional room-air
flow problems are enormous. However, exploiting (i) the improved wall function scheme
and (ii) the DDM, there is hope that such problems can be solved with reasonable accuracy
on a cluster of workstations.

13.7. First results for the posteriori testing using LES

This section is devoted to the presentation of a few first LES results. LES predictions
for the fully developed isothermal channel flow using the stabilised finite-element method
were presented e.g. in [Jan99]. Several wall function schemes for LES have been tested
for isothermal flow problems, see e.g. [BBP96]. To the author’s best knowlegde, combin-
ing both a stabilised finite-element method and wall functions for LES has not yet been
accomplished for non-isothermal flows. We use Eidson’s modification for the Smagorinsky
model, see (9.19), with CS = 0.21. As initial solution we choose the solution of the k/ε
model at the final time T = 200.0. We choose ∆t = 0.1 for the time step width (which is
relatively large for a LES) and perform three linearisation cycles per time step.
Before studying the numerical results, it is worthwhile to recall some essentials regarding
LES and to point out the fundamental differences between LES and the k/ε model. For the
closed cavity flow under consideration, the corresponding laminar problem has a stationary
solution. In the turbulent case, there is a statistically stationary solution, i.e., statistically
averaged quantities become stationary. The k/ε model is a statistical turbulence model; it
gives predictions for the statistically averaged quantities. The k/ε model solution is indeed
stationary and no ensemble-averaging as a postprocess is necessary. Hence we can study
the solution at a certain time instance, viz., at t = 200.0. For the k/ε model, νt is relatively
large. Thus, ”the tendency for the flow equations to develop chaotic solutions is overcome
by the enhanced viscous dissipation” ([DPR01], p. 182). Moreover, as the k/ε model solu-
tion is stationary, only little care has to be taken regarding the fixed-point iteration scheme
for the non-linear term u · ∇u in the momentum equation. The simple iteration method
um,i−1 · ∇um,i (see Section 9.2.2) converges provided ν + νt is large enough (which is true
for the k/ε model). Therefore it is reasonable to choose only a few number of fixed-point
iteration cycles and to embed the fixed-point iteration in the time-discretisation scheme.
In LES, the situation is much more difficult. The aim of an LES is to be much closer to the
Navier-Stokes equations by resolving the random motion of the large-scale structures. The
solution of the Navier-Stokes equations is only statistically stationary and exhibits random
fluctuations. Thus for an LES, νt has to be large enough to prevent a blow up of the
FEM solution in finite time (see, e.g., [IJL03]), but it has to be small enough to preserve
the characteristic turbulent fluctuations. Since in an LES νt is significantly smaller than
for the k/ε model, it is not clear a priori whether the simple fixed-point iteration scheme
um,i−1 · ∇um,i is convergent or not. Concerning this issue, numerical tests reveal that we
need at least three iteration steps within each time step in order to obtain a statistically
stationary solution. However, a detailed investigation of the fixed-point scheme for LES
seems to be an important issue for future research.
A correct LES gives accurate predictions for both the statistically averaged quantities and
for the turbulent fluctuations. In this thesis we can only give results for the former. We
focus on the prediction for the vertical mean velocity profile V at y/L = 0.5 and for Cf
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Figure 13.34.: V
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Figure 13.35.: T−Tc
Th−Tc at y

L = 0.2, V3b.
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Figure 13.36.: V
U0

at y
L = 0.5, V3b.
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Figure 13.37.: T−Tc
Th−Tc at y

L = 0.5, V3b.
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Figure 13.38.: V
U0

at y
L = 0.8, V3b.
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Figure 13.39.: T−Tc
Th−Tc at y

L = 0.8, V3b.
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Figure 13.40.: Cf (V3b) from lower top
corner along surface clock-
wise.
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Figure 13.41.: Nul (V3b) from lower top
corner along surface clock-
wise.
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Figure 13.42.: T−Tc
Th−Tc at x/L = 0.5, V3b.
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Figure 13.46.: V
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at y
L = 0.2.
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Figure 13.47.: T−Tc
Th−Tc at y

L = 0.2.
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Figure 13.48.: V
U0

at y
L = 0.5.
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Figure 13.49.: T−Tc
Th−Tc at y

L = 0.5.
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Figure 13.50.: V
U0

at y
L = 0.8.
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Th−Tc at y

L = 0.8.
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Figure 13.52.: Cf from lower top
corner along surface clock-
wise.
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Figure 13.53.: Nul from lower top
corner along surface clock-
wise.
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Figure 13.54.: T−Tc
Th−Tc at x/L = 0.5.
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at y
L = 0.5 (left) and T−Tc

Th−Tc at x/L = 0.5 (right),
adiabatic boundary conditions on top and bottom wall.
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U0

at y
L = 0.5 (k/ε

model V4a and LES).
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Figure 13.60.: Cf from lower top corner
along hot wall (k/ε model
V4a and LES).

along the hot wall. In order to obtain a statistically mean solution, a time averaging filter is
used. Denote V (t, ·) the solution for V at time t. Then we introduce the long-time average

〈V 〉t0,N =
1
N

N−1∑
j=0

V (t0 + 10j∆t, ·) .(13.8)

During the first time steps, the LES solution differs widely from the initial k/ε solution
(not shown here). After this initial period, at t ≈ 210 the LES solution comes closer to
the k/ε solution (and hence to the experimental data). We study 〈V 〉216,5 and compare
the LES results with the k/ε predictions for variant V4a, see Figure 13.59. The maximum
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velocity for LES is closer to the experimental data than for the k/ε model. However, the
thickness of the boundary layer is significantly overpredicted and slightly wider than for the
k/ε model. This stems at least in parts from the well-known property of the Smagorinsky
model of being overdiffusive; the Smagorinsky model produces an excessive damping of
the large-scale structures. The non-physical undershoot of the LES solution beyond the
boundary layer might vanish for larger times.
Very interestingly, the LES predictions for Cf are significantly superior to those of the
k/ε model, see Figure 13.60. In particular, the predictions near the corners at s/H = 0
and s/H = 1 are much closer to the experimental data by Tiam et al. This result is
remarkable, since both the complex physical behaviour of the solution near the corners
and the numerous modelling approximations have to be appreciated. In contrast, the k/ε
model predictions near the corners are less than satisfying. This indicates that the failure
near the corners of the k/ε model with wall functions is due to the k/ε model and not due
to the wall function procedure. This interpretation is in full agreement with [Wilcox98],
p. 174. The LES predictions for Cf indicate that the wall-function scheme for LES is a
promosing strategy also for non-isothermal flow problems. Moreover the results suggest
that LES with the wall-function method does not necessarily suffer from all the flaws of
the k/ε model with wall-functions.
The results for the velocity and temperature fluctuations cannot be shown here. This is a
major subject of future research.

173



13. Turbulent natural convection in an air filled square cavity

174



14. Summary and future prospects

Computational fluid dynamics is an impressive subject to interdisciplinary research. It
has stimulated progress in a variety of disciplines, including computer hardware and pro-
gramming techniques, experimental and theoretical physics, mathematical analysis and
numerical algorithms. One major objective of CFD is to provide tools for engineering ap-
plications, which (i) make accurate flow predictions (ii) at acceptable computational costs.
Current trends in CFD focus on both points. Aspect (i) is to develop turbulence models
which yield accurate predictions at least for simple flow configurations. The second aspect
is to make these models amenable to more complex flow problems.
In our research code ParallelNS, the vast majority of the computational costs are needed
for assembling the discrete linear systems and for solving them. Our strategy is to pursue
both issues (i) and (ii) by combining two domain-decomposition methods, viz., a wall-
function procedure and an iteration-by-subdomains technique. The objective of the im-
proved wall function scheme is to avoid a large number of additional grid points for resolv-
ing the near-wall region. The aim of the iteration-by-subdomains method is to divide the
flow problem into a set of smaller problems which can be solved in parallel.
In this thesis, two turbulence models have been investigated, viz., the k/ε model and three
LES models. The numerical tests for the k/ε model have proved satisfactory, indicating
that this approach can be expected to yield reliable results also for more complex flow
problems. The application of this scheme to another typical indoor-air flow test case is in
progress, see [Sei03]. On the other hand, regarding LES, there is still a great demand for
intensive future research. The present results for the mean velocity field and for Cf are
promising and fuel optimism. The results indicate that LES with the wall-function scheme
does not necessarily suffer from all the deficiencies of the k/ε model with wall-functions
and that the wall-function scheme is a suitable tool for LES. In particular, the LES predic-
tions for Cf along the heated wall for a natural convection flow are significantly superior to
those for the k/ε model. However, it seems necessary to study also simpler test cases like
the fully developed channel flow and the mixing-layer in order to achieve a more profound
understanding of LES within our computational scheme. Moreover it is worthily study-
ing the natural convection flow in a closed cavity with adiabatic boundary conditions on
the top and bottom wall (instead of Dirichlet conditions), which simplifies the physics of
the problem considerably. Emphasis has to be placed on the prediction of the fluctuation
terms. These are prime objectives for future research.
Finally, it is worthwhile mentioning a few suggestions for improving the existing code. First
we consider the accuracy of our method. The boundary conditions for k and ε at the artifi-
cial inner boundary Γδ seem to be not appropriate in any case. A primary objective of our
improved wall function concept was to allow that the distance of Γδ from the wall can be
larger than for the classical wall function approach. However, the boundary condition for k
and ε on Γδ (see (5.49)) are valid only if Γδ resides in the log-layer. Thus the task is to find
a system of simple linear differential equations for velocity, temperature and k in order to
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impose a more sophisticated boundary condition at least for k on Γδ. Another aspect for
future research is to account for effects of baroclinic vorticity generation theory: If Γδ is
located in the log-layer but close to the buffer layer (see Table 5.7), then it is an interesting
idea to use (3.27) instead of (3.26). In a similar vein, a corresponding modification of the
LES model seems to be promising. Another interesting improvement is to use the k-ε-v2

model with a near-wall grid-refinement. However, anisotropic grids in the near-wall region
have not been investigated yet using our research code. Some problems might arise due
to the stabilisation technique. Finally it is worth studying a more accurate scheme for
the semidiscretisation in time. In particular, BDF-schemes seem to be interesting for our
purposes.
The other improvements concern the performance of the scheme. Emphasis has to be placed
on the fact that the fast solution of the arising linear systems (in particular, for the Oseen
problem) still requires strong research. Moreover, the significant computational costs for
assembling the PSPG terms recommend to choose finite-element spaces which satisfy the
discrete Babuska-Brezzi condition. Finally, it is worthwhile mentioning the strategy of a
nodal-based implementation of a stabilized finite-element method, which was devised by
Codina, see [Cod00].

176



Part III.

Appendix

177





A. Mathematical tools for residual stress modelling in LES

A.1. Fourier transformation, convolution and distributions

In this section we summarise some standard results regarding the Fourier transformation.

Definition A.1
Given f ∈ L1(Rd) we define

F(f(x)) ≡ f̂(k) ≡ (2π)−
d
2

∫
Rd

f(x)e−ix·kdx , ∀k ∈ Rd.

The function Ff ≡ f̂ is called the Fourier transform of f , the mapping F : f 7→ Ff is
called Fourier transformation.

Theorem A.1
Given f ∈ L1(Rd) we have that Ff ∈ C0(Rd). Moreover F : L1(Rd) 7→ C0(Rd) is a linear
and bounded (and consequently continuous) operator satisfying ||F|| ≤ (2π)−d/2.

Proof:
See [Wer95] p.164. ♦

Definition A.2
The space S(Rd) of C∞ functions in Rd rapidly decreasing at infinity is defined as

S(Rd) = { f ∈ C∞(Rd) : lim
|x|→∞

xαDβf(x) = 0 , ∀α, β ∈ Nd0 } .

A typical example for a function in S(Rd) is exp(−x2).

Theorem A.2
Let f ∈ S(Rd), let α ∈ Nd0. Then

(i) Ff ∈ C∞(Rd) and Dα(Ff) = (−i)|α|F(xαf).

(ii) F(Dαf) = i|α|kαFf

(iii) F(e−x
2/2) = e−k

2
/2

(iv) F : S(Rd) 7→ S(Rd) is an isomorphism. Its inverse operator is given by

F−1(f(k)) = (2π)−
d
2

∫
Rd

f(k)eix·kdk , ∀x ∈ Rd.
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(v) F satisfies the Plancherel equation∫
Rd

(Ff) (Fg) dk =
∫
Rd

f g dx, ∀f, g ∈ S(Rd).(A.1)

Proof:
See [Wer95]. pp.166 or alternatively [Tre67], pp.267. ♦

Since S(Rd) is dense in L2(Rd), F can be extended to an isometric operator F2 on L2(Rd),
see [Wer95] p.170., or alternatively, [Tre67], pp.270.

Theorem A.3
Let f ∈ Hm(Rd). Then for all |α| ≤ m

F(Dαf)(k) = (−i)|α|kαFf.

Proof:
See [Wer95] p.171. ♦

The second part of this section is devoted to an introduction to the theory of distributions.
Denote Ω an open subset of Rd. We introduce the following conventional notation, viz.,

D(Ω) ≡ C∞0 (Ω) , E(Ω) ≡ C∞(Ω) .

Definition A.3
A continuous linear form on D(Ω) is called a distribution. The set of all distributions is
denoted by D′(Ω). Moreover we write 〈T, φ〉 = Tφ.

As an example, consider the map L1
loc(Ω)→ D′(Ω), f → Tf given by

〈Tf , φ〉 ≡
∫

Ω
fφdx .

For f ∈ L1
loc(Ω), g ∈ C∞(Ω), φ ∈ D(Ω) we have (at least) gf ∈ L1

loc(Ω) and gφ ∈ D(Ω)
and therefore we have the following relation, viz.,

〈gf, φ〉 = 〈f, gφ〉 .

This can be regarded as a motivation for defining the multiplication of a distribution by a
C∞ function, see e.g. [Tre67], p.250.

Definition A.4
For T ∈ D′(Ω), g ∈ C∞(Ω) we define the distribution gT via

〈gT, φ〉 = 〈T, gφ〉 ∀φ ∈ D(Ω) .
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Let Ω1 ⊂ Rd be an open, bounded domain, let y ∈ Rd be held fixed, and denote Ω2 =
y + Ω1 ≡ { x + y,x ∈ Ω1 }. Let τy : L1

loc(Ω1) 7→ L1
loc(Ω2), f 7→ f(· − y) denote the

translation operator. Then we have

〈τyf, φ〉 =
∫

Ω2

f(x− y)φ(x)dx =
∫

Ω1

f(z)φ(x+ z)dx = 〈f, τ−yφ〉 .

This motivates the following definition (cf. [Tre67], p.296):

Definition A.5
For T ∈ D′(Ω1) we define the distribution τyT ∈ D′(Ω2) via

〈τyT, φ〉 = 〈T, τ−yφ〉 ∀φ ∈ D(Ω2) .

The derivation of a distribution is defined as follows, cf. [Hor66], pp.323:

Definition A.6
Given T ∈ D′(Ω), g ∈ C∞(Ω) we define the distribution DαT (α ∈ Nd) as

〈DαT, φ〉 ≡ (−1)|α|〈T,Dαφ〉 , ∀φ ∈ D(Ω) .

Next we introduce the restriction of a distribution, see [Hor66], p.317.

Definition A.7
1. Let U , Ω be two open subsets of R2 with U ⊂ Ω. Every function belonging to D(U)

can be considered as a function belonging to D(Ω). If T ∈ D′(Ω), then its restriction
to D(U) is the distribution T |U ∈ D′(U) defined by

〈T |U , φ〉 ≡ 〈T, φ〉 , ∀φ ∈ D(U) .

2. For T ∈ D′(Ω) the support of T is defined as

supp(T ) ≡ Ω \ { x ∈ Ω : There exists an open set U with x ∈ U and T |U = 0 } .

An important subset of D′(Ω) is characterised by the following theorem, see [Hor66], p.320.

E ′(Ω) = { T ∈ D′(Ω) : supp(T ) is compact a compact subset of Ω }.

Moreover we introduce S ′, being the (strong) dual space of S. The distributions belonging
to S ′ are referred to as tempered distributions in Rd, see [Tre67], p.272. The following
inclusion holds: E ′ ⊂ S ′ ⊂ D′. Next we introduce convolution of a distribution and a test
function, see [Tre67], p.287.

Definition A.8
For f ∈ L1

loc(R
d), φ ∈ D(Rd) we define

(f ∗ φ)(x) =
∫
Rd

f(x− y)φ(y)dy =
∫
Rd

f(z)φ(x− z) = 〈f, τxφ̌〉.

Here τx denotes the translation operator τxf ≡ f(x + ·) and we use f̌(y) ≡ f(−y). For
(i) T ∈ D′(Rd), φ ∈ D(Rd), (ii) T ∈ E ′(Rd), φ ∈ E(Rd) and (iii) T ∈ S ′(Rd), φ ∈ S(Rd)
resp. we define T ∗ φ(x) ≡ 〈T, τxφ̌〉.
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The following theorem precises the fact that you can smooth a ”rough” function by convo-
lution with a ”smooth” function, cf. [Tre67], pp.289,

Theorem A.4
For T ∈ D′(Rd), φ ∈ D(Rd) we have T ∗ φ ∈ E(Rd). If T ∈ E ′(Rd), φ ∈ E(Rd) then
T ∗ φ ∈ E(Rd). Given T ∈ E ′(Rd), φ ∈ D(Rd) then T ∗ φ ∈ D(Rd). For S ∈ S ′(Rd),
φ ∈ S(Rd) we have S ∗ f ∈ S(Rd). In all cases we have

Dα(S ∗ f) = (DαS) ∗ f = S ∗ (Dαf) .(A.2)

Convolution of distributions can be defined in the following cases, see [Tre67], p.293.

Definition A.9
Let T ∈ D′(Rd) , φ, ψ ∈ D(Rd). Then we have 〈T ∗ φ, ψ〉 = 〈T, φ̌ψ〉. For T ∈ D′(Rd),
S ∈ E ′(Rd) we define T ∗ S = S ∗ T via

〈T ∗ S, φ〉 = 〈T, Šφ〉 , with 〈Ť , φ〉 ≡ 〈T, φ̌〉 .

Given T ∈ E ′(Rd), S ∈ D′(Rd), we define T ∗ S = S ∗ T via

〈T ∗ S, φ〉 = 〈T, Šφ〉 .

Finally we define Fourier transformation in the space S ′, cf. [Tre67], p.275., [Hor66], p.411.

Definition A.10
Let T ∈ S ′(Rd). Then we define its Fourier transform F(T ) ≡ T̂ ∈ S ′(Rd) via

〈T̂ , g〉 = 〈T, ĝ〉 , g ∈ S(Rd) .

Now we can state the inverse Fourier formula for distributions, see e.g. [Hor66], pp.411:

Theorem A.5
The Fourier transformation is an isomorphism of S ′(Rd) onto S ′(Rd) satisfying FF(T ) =
Ť . Moreover for T ∈ S ′(Rd) we have

F(DαT ) = (−i)|α|xαFT .(A.3)

Remark A.1
Since Lp(Rd) ⊂ S ′(Rd), we can define the Fourier transform for all Lp-functions. But in
the case 2 < p ≤ ∞ the Fourier transform in general is not a function, but only a tempered
distribution. ♦

Finally we mention the following relation, cf. [Wla72] p.122. Let f ∈ S ′(Rd) and g ∈ E ′(Rd).
Then

F(f ∗ g) = F(f)F(g) .(A.4)
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A.2. Closure approximations for LES

This chapter is devoted to two closure approximations for the momentum and temperature
equation. Both approaches are based on the Fourier transform. We start with the term
〈u⊗ u〉∆, and write u = u+ u′. Since

u = g∆ ∗ u = g∆ ∗ (u+ u′) = g∆ ∗ u+ g∆ ∗ u′ ,(A.5)

Fourier transform gives (using A.4)

û(k) = ĝ∆(k)û(k) + ĝ∆(k)û′(k).(A.6)

Therefore û′ is given exactly by

û′ =
(

1
ĝ∆(k)

− 1
)
û(k).(A.7)

We introduce the abbreviation [v̂(k)?ŵ(k)]ij = v̂i(k)∗ŵj(k). Thus the Fourier transformed
terms in (4.28) read

F(〈u⊗ u〉∆) = ĝ∆(k)
[
û(k) ? û(k)

]
,(A.8)

F(〈u⊗ u′〉∆) = ĝ∆(k)
[
û(k) ?

[(
1

ĝ∆(k)
− 1
)
û(k)

]]
,(A.9)

F(〈u′ ⊗ u〉∆) = ĝ∆(k)
[[(

1
ĝ∆(k)

− 1
)
û(k)

]
? û(k)

]
,(A.10)

F(〈u′ ⊗ u′〉∆) = ĝ∆(k)
[[(

1
ĝ∆(k)

− 1
)
û(k)

]
?

[(
1

ĝ∆(k)
− 1
)
û(k)

]]
.(A.11)

Similarly, θ̂′ is given exactly by

θ̂′ =
(

1
ĝ∆(k)

− 1
)
θ̂(k).(A.12)

and hence we get

F(〈θ u〉∆) = ĝ∆(k)
[
θ̂(k) ∗ û(k)

]
,(A.13)

F(〈θ u′〉∆) = ĝ∆(k)
[
θ̂(k) ∗

[(
1

ĝ∆(k)
− 1
)
û(k)

]]
,(A.14)

F(〈θ′ u〉∆) = ĝ∆(k)
[[(

1
ĝ∆(k)

− 1
)
θ̂(k)

]
∗ û(k)

]
,(A.15)

F(〈θ′ u′〉∆) = ĝ∆(k)
[[(

1
ĝ∆(k)

− 1
)
θ̂(k)

]
∗
[(

1
ĝ∆(k)

− 1
)
û(k)

]]
.(A.16)

Equations (A.8)-(A.11) and (A.13)-(A.16) are the starting point for the two closure ap-
proximations that will be presented in the following. The key is how to approximate g∆(k)
and (g∆(k)−1)−1 by simpler functions. The conventional issue consists in expanding both
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terms in a Taylor series in ∆, see e.g. [Ald90]. Galdi and Layton proposed using a
rational or Pade approximation, see [GL00].
First we review the conventional strategy, which performs a Taylor approximation, viz.,

g∆(k) = 1− ∆2

4γ
k2 +Oformal(∆4) ,

1
g∆(k)

− 1 =
∆2

4γ
k2 +Oformal(∆4).(A.17)

Using this and (A.3) in (A.8)-(A.11) and taking inverse Fourier transforms yields

〈u⊗ u〉∆ = u⊗ u+
∆2

4γ
∇2 (u⊗ u) +Oformal(∆4) ,

〈u⊗ u′〉∆ = − ∆2

4γ
u⊗ (∇2u) +Oformal(∆4) ,

〈u′ ⊗ u〉∆ = − ∆2

4γ
(∇2u)⊗ u+Oformal(∆4) ,

〈u′ ⊗ u′〉∆ =
∆4

16γ2
(∇2u)⊗ (∇2u) +Oformal(∆6) .

Applying the relation (with the notation (∇V • ∇W )ij =
∑d

l=1
∂Vi
∂xl

∂Wj

∂xl
)

∇2(u⊗ u)ij = ∇2u⊗ u+ 2∇u • ∇u+ u⊗∇2u(A.18)

we finally get

〈u⊗ u〉∆ = u⊗ u+
∆2

2γ
∇u • ∇u+Oformal(∆4).(A.19)

Similarly, for the temperature equation we obtain using (A.3) in (A.13)-(A.16) and taking
inverse Fourier transforms

〈θ u〉∆ = θ u+
∆2

4γ
∇2
(
θ u
)

+Oformal(∆4) ,

〈θ u′〉∆ = − ∆2

4γ
θ (∇2u) +Oformal(∆4) ,

〈θ′ u〉∆ = − ∆2

4γ
(∇2θ) u+Oformal(∆4) ,

〈θ′ u′〉∆ =
∆4

16γ2
(∇2θ)(∇2u) +Oformal(∆6) .

Using the relation (where we used the notation (∇θ ◦ ∇u)j =
∑d

l=1
∂θ
∂xl

∂Uj
∂xl

)

∇2(θ u)i = (∇2θu+ 2∇θ ◦ ∇u+ θ∇2u)i(A.20)

we end up with

〈θ u〉∆ = θ u+
∆2

2γ
∇θ ◦ ∇u+Oformal(∆4).(A.21)
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Remark A.2
It is worth stressing the fact that in this approach the filter kernel has been expanded into
a Taylor series. Although leading to the same results this is in contrast to the approach by
Leonard and Clark, cf. [Ald90]. They expended u and u′ in a Taylor series, which is
not correct since u′ cannot be assumed to be regular enough.
Moreover the following fundamental difference between the Gaussian filter and its Taylor
approximation should be underlined: The Gaussian filter attenuates high frequencies (since
exp(−∆2

4γ ||k||
2
2)→ 0 as ||k|| → ∞). The Taylor approximation, however, increases high wave

number components due to the term ∆2(4γ)−1||k||22, as ∆2(4γ)−1||k||22 →∞ as ||k|| → ∞.
♦

Therefore Layton et al. looked for an approximation of the same order of accuracy for large
eddies (small |k|) but which attenuates the small eddies. Layton proposed to consider the
following Pade approximation to ĝ∆(k):

ĝ∆(k) =
1

1 + ∆2

4γ |k|2
+Oformal( ∆4

16γ2
|k|4) ,

1
ĝ∆(k)

− 1 =
∆2

4γ
|k|2 +Oformal( ∆4

16γ2
|k|4).

(A.22)

This approximation has the same formal accuracy. But it has the major advantage that
ĝ∆(k)→ 0 as |k| → ∞. Using (A.22) equations (A.8)-(A.11) become

F(〈u⊗ u〉∆) =
(

1 +
∆2

4γ
|k|2

)−1 [
û(k) ? û(k)

]
+ Oformal(∆4) ,

F(〈u⊗ u′〉∆) =
(

1 +
∆2

4γ
|k|2

)−1 [
û(k) ?

[
∆2

4γ
|k|2û(k)

]]
+ Oformal(∆4) ,

F(〈u′ ⊗ u〉∆) =
(

1 +
∆2

4γ
|k|2

)−1 [[∆2

4γ
|k|2û(k)

]
? û(k)

]
+ Oformal(∆4) ,

F(〈u′ ⊗ u′〉∆) =
(

1 +
∆2

4γ
|k|2

)−1 [[ ∆4

16γ2
|k|2û(k)

]
?
[
|k|2û(k)

]]
+ Oformal(∆6) .

Taking inverse Fourier transform gives :

〈u⊗ u〉∆ =
[
−∆2

4γ
∇2 + I

]−1

[u⊗ u] + Oformal(∆4) ,

〈u⊗ u′〉∆ = − ∆2

4γ

[
−∆2

4γ
∇2 + I

]−1 [
u⊗ (∇2u)

]
+ Oformal(∆4) ,

〈u′ ⊗ u〉∆ = − ∆2

4γ

[
−∆2

4γ
∇2 + I

]−1 [
(∇2u)⊗ u

]
+ Oformal(∆4) ,

〈u′ ⊗ u′〉∆ =
∆4

16γ2

[
−∆2

4γ
∇2 + I

]−1 [
(∇2u)⊗ (∇2u)

]
+ Oformal(∆6) .
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Thus we obtain

〈(u+ u′)⊗ (u+ u′)〉∆ = u⊗ u+
[
−∆2

4γ
∇2 + I

]−1(∆2

2γ
∇u • ∇u

)
+Oformal(∆4).

(A.23)

For the temperature equation we get (using (A.22))

F(〈θ u〉∆) =
(

1 +
∆2

4γ
|k|2

)−1 [
θ̂(k) ∗ û(k)

]
+ Oformal(∆4) ,

F(〈θ u′〉∆) =
(

1 +
∆2

4γ
|k|2

)−1 [
θ̂(k) ∗

[
∆2

4γ
|k|2û(k)

]]
+ Oformal(∆4) ,

F(〈θ′ u〉∆) =
(

1 +
∆2

4γ
|k|2

)−1 [[∆2

4γ
|k|2θ̂(k)

]
∗ û(k)

]
+ Oformal(∆4) ,

F(〈θ′ u′〉∆) =
(

1 +
∆2

4γ
|k|2

)−1 [[ ∆4

16γ2
|k|2θ̂(k)

]
∗
[
|k|2û(k)

]]
+ Oformal(∆6) .

Taking inverse Fourier transform gives :

〈θ u〉∆ =
[
−∆2

4γ
∇2 + I

]−1 [
θ u
]

+ Oformal(∆4) ,

〈θ u′〉∆ = − ∆2

4γ

[
−∆2

4γ
∇2 + I

]−1 [
θ(∇2u)

]
+ Oformal(∆4) ,

〈θ′ u〉∆ = − ∆2

4γ

[
−∆2

4γ
∇2 + I

]−1 [
(∇2θ)u

]
+ Oformal(∆4) ,

〈θ′ u′〉∆ =
∆4

16γ2

[
−∆2

4γ
∇2 + I

]−1 [
(∇2θ)(∇2u)

]
+ Oformal(∆6) .

and finally we obtain

〈(θ + θ′)⊗ (u+ u′)〉∆ = θ u+
[
−∆2

4γ
∇2 + I

]−1(∆2

2γ
∇θ ◦ ∇u

)
+Oformal(∆4).(A.24)

From (A.22) a further motivation for approximating filtering by convolution using a differ-
ential filter can be obtained:

F(g∆ ∗ u) = F(g∆)F(u) ≈ 1

1 + ||k||22
4γ ∆2

F(u) = F

([
−∆2

4γ
∇2 + I

]−1

u

)
.(A.25)
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B.1. Functional analytic fundamentals

In this section we introduce certain fundamental function spaces and recall some relations
between them, which are used in Chapter 8.
First we consider function spaces for the steady-state case, see e.g. [Alt92]. Denote

Dαφ(x) ≡ ∂|α|φ

∂xα1
1 . . . ∂xαdd

(x) , D(0,...,0)φ(x) ≡ φ(x)

where α is a multiindex, α = (α1, . . . , αd), αi ≥ 0, |α| = α1 + . . .+αd. Then we can define

C(Ω) ≡ { φ : Ω→ R | φ is continuous } ,
Cm(Ω) ≡ { φ : Ω→ R | Dαφ ∈ C(Ω), ∀ α : |α| ≤ m } .

C(Ω) is called space of continuous functions and Cm(Ω) is called space of m-times contin-
uously differentiable functions. Cm(Ω) is the set of functions in Cm(Ω), whose derivatives
can be extended continuously onto the boundary ∂Ω. The norm of Cm(Ω) is given by

||φ||Cm(Ω) ≡ sup
|α|≤m

sup
x∈Ω

|Dαφ(x)| .

Next we introduce the following spaces of Lebesque integrable functions with their norms:

Lp(Ω) ≡ {φ : Ω→ R |
∫

Ω
|φ(x)|p dx <∞} , ||φ||Lp(Ω) ≡

(∫
Ω
|φ(x)|p dx

) 1
p

,

L∞(Ω) ≡ {φ : Ω→ R | ess.supΩ |φ(x)| <∞} , ||φ||L∞(Ω) ≡ | ess.supΩ |φ(x)| .

Moreover, we need the Sobolev spaces Wm,p(Ω), viz.,

Wm,p(Ω) ≡ { φ ∈ Lp(Ω) | Dαφ ∈ Lp(Ω) , ∀ α : |α| ≤ m } .

The spaces Wm,p(Ω) are equipped with the following norms,

||φ||m,p,Ω ≡ ||φ||Wm,p(Ω) ≡

 ∑
|α|≤m

||Dαφ||pLp(Ω)

 1
p

,

||φ||Wm,∞(Ω) ≡
∑
|α|≤m

||Dαφ||L∞(Ω) .

In the case p = 2, we simply write Hm(Ω) instead of Wm,p(Ω) and omit the index p = 2 in
the corresponding norm. The spaces Hm−1/2(Γ) and Wm−1/p,p(Γ), m = 1, 2, 2 < p < ∞
consist of traces of functions in Hm(Ω) and Wm,p(Ω), resp., cf. [Ada75]. Now we summarise
some embedding properties and basic inequalities. The following lemma states how Lq

norms can be bounded by Sobolev norms, cf. [Tem77], p.158.
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Lemma B.1
Let Ω be a locally Lipschitz bounded domain in Rd, d=2,3. Let u ∈ Wm,p(Ω), m ≤ 1,
1 ≤ p <∞.

If
1
p
− m

d
=

1
q
> 0, then ||u||Lq(Ω) ≤ CLS,1(m, p, d,Ω)||u||Wm,p(Ω)

if
1
p
− m

d
= 0 , 1 ≤ q <∞, then ||u||Lq(Ω) ≤ CLS,2(m, p, d, q,Ω)||u||Wm,p(Ω)

if
1
p
− m

d
< 0, then u is almost everywhere equal to some

uc ∈ C0(Ω) s.t. ||uc||C0(Ω) ≤ CLS,3(m, p, d,Ω)||u||Wm,p(Ω)

In particular, from lemma B.1 we can infer (see [Tem77], p.159) for the case p = 2, m = 1

d = 2, ||u||Lq(Ω) ≤ C(q,Ω)||u||1,Ω , 1 ≤ q <∞(B.1)

d = 3, ||u||L6(Ω) ≤ C(Ω)||u||1,Ω .(B.2)

Next we recall Sobolev’s embedding theorem, cf. [Tem77], p. 160.

Lemma B.2
We assume that Ω is sufficiently smooth s.t. there exists a continuous linear prolongation
operator Π : Wm,p(Ω) −→Wm,p(Rd), d = 2, 3. Then the embedding

W 1,p(Ω) −→ Lq1(Ω)

is compact for any q1, 1 ≤ q1 <∞, if p ≥ d and for any q1 ∈ [1; d pd−p [, if 1 ≤ p < d.

Moreover we will need Rellich’s embedding theorem

Lemma B.3
Let Ω be a locally Lipschitz bounded domain in Rd, d=2,3. Then the embedding

Wm,p(Ω) −→Wn,p(Ω)

is compact for any m > n. Then we have

||u||Wn,p(Ω) ≤ CRelm,n||u||Wm,p(Ω) ∀u ∈ Wm,p(Ω) .

Proof:
See Zeidler, IIA, Corollary 21.15, p.239. ♦

Now we introduce the vector valued Lebesgue space L2(Ω) ≡ L2(Ω)d with scalar product
and norm

(u,v) ≡
d∑
i=1

∫
Ω
uivi dx , ||u||L2

(Ω)
=

(
d∑
i=1

||ui||2L2(Ω)

)1/2

.
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Additionally we define the expressions (∇u,∇v) and ||∇u||L2
(Ω)

by

||∇u||L2
(Ω)
≡

 d∑
i,j=1

||∂ui
∂xj
||2L2(Ω)

1/2

, (∇u,∇v) ≡
d∑

i,j=1

∫
Ω

∂ui
∂xj

∂vi
∂xj

dx .

Remark B.1
Some care must be taken, since the interpretation of the scalar product, which is denoted
by (·, ·) in any case, depends on its arguments. By the way, this is exactly the philosophy
of operator overloading in object orient programming languages. ♦

Moreover we need the following vector valued Sobolev spaces

Hm(Ω) ≡ Hm(Ω)d, with norm ||u||m,Ω ≡

 d∑
i=1

∑
|α|≤m

||Dαui||2L2(Ω)

1/2

.

Next we consider the following trilinear form

bΩ(u,v,w) =
∫

Ω
u ∇v w dx .(B.3)

Lemma B.4
Let Ω be a locally Lipschitz bounded domain in Rd, d=2,3. Then the trilinear form bΩ(·, ·, ·)
is trilinear continuous on H1(Ω)×H1(Ω)×H1(Ω), i.e. we have the following inequalities

|bΩ(u,v,w)| ≤ Cb||u||1,Ω||∇v||L2
(Ω)
||w||1,Ω ,(B.4)

|bΩ(u,v,w)| ≤ Cb||u||1,Ω||v||1,Ω||w||1,Ω .(B.5)

Proof:
See [Tem77], pp.163. ♦

Lemma B.5
For any u, v, w in H1(Ω) satisfying (i) ∇ · u = 0 and u · n = 0 on Γ or (ii) ∇ · u = 0
and v = w = 0 on Γ we have

bΩ(u,v,v) = 0 ,
bΩ(u,v,w) = − bΩ(u,w,v) .

Proof:
For the first equation

bΩ(u,v,v) =
d∑

i,j=1

∫
Ω
ui
∂vj
∂xi

vj dx =
d∑

i,j=1

∫
Ω
ui

1
2
∂v2

j

∂xi
dx(B.6)

= −
d∑

i,j=1

∫
Ω

1
2
∂ui
∂xi

v2
jdx +

d∑
i,j=1

∫
Γ

1
2
uiniv

2
jds = 0 .(B.7)
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To prove the second equation, we apply the first relation to the following expression:

0 = bΩ(u,v +w,v +w) = bΩ(u,v,w) + bΩ(u,w,v) .(B.8)

♦
Next we recall the definition and important properties of an evolution triple.

Definition B.1
An evolution triple X ⊂ H ⊂ X∗ is understood to be the following

1. (X, || · ||X) is a real Hilbert-space with dual space being denoted by (X∗, || · ||X∗),

2. (H, || · ||H) is a real Hilbert-space,

3. the embedding X ⊂ H is continuous, i.e.

||v||H ≤ Cevo||v||X ∀ v ∈ X

and X is dense in H.

According to Riesz’ theorem we identify H and H∗. If X ⊂ H is compact, then the inclusion
I : X ⊂ X∗ is also compact. Note that X ≡ H1(Ω), H ≡ L2(Ω) and X∗ ≡ H−1(Ω)
constitute an evolution triple.

Now we introduce the spaces of divergence free vector functions. Ldiv(Ω) is the closure of

{ φ ∈ C∞0 (Ω) : ∇ · φ = 0 }

in the topology induced by L2(Ω). Moreover

Hdiv(Ω) = { φ ∈H1
0(Ω) : ∇ · φ = 0 } .(B.9)

Then Hdiv(Ω) ⊂ Ldiv(Ω) ⊂Hdiv(Ω)∗ is an evolution triple, cf.[ZeiIV], Section 72.5.
Next we have to study traces of Sobolev functions. For w ∈ C∞(Ω) denote Tr : w 7→ w|Γ. If
Ω is Lipschitz-bounded, then there exists a uniquely determined extension Tr : H1(Ω) −→
H1/2(Γ), see e.g. [Gal94I], Chapter II 3. The trace inequality for w in H1(Ω) reads

||w||1/2,2,Γ ≤ CTr||w||1,Ω .(B.10)

Assume that Ω is Lipschitz-bounded. Denote n the outer normal vector to Γ. We study the
map Tr : u 7→ u|Γ ·n for u ∈ C∞(Ω)d. Then there exists a uniquely determined extension
Tr : Hdiv(Ω) −→ H−1/2(Γ), see [Tem77], pp.9. Given u ∈Hdiv(Ω) with ∇·u = 0 we have
the inequality

||u · n||−1/2,2,Γ ≤ CTr||u||1,Ω .(B.11)

Moreover we introduce a bilinear form 〈·, ·〉Γ. For u, v in H1(Ω) the following form is
well-defined and bilinear, viz.,

〈u, v〉Γ ≡
∫

Γ
uv ds .(B.12)
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It follows from Hölder inequality and (B.10) that 〈·, ·〉Γ is bounded.
The Poincare-Friedrich inequality, cf. [Tem77] Ch.1.1, Eq.(1.9) reads

||u||L2
(Ω)
≤ cPoi,0(Ω)||∇u||L2

(Ω)
∀ u ∈ H1

0(Ω) .(B.13)

Provided Ω has no axis of symmetry, the Poincare-Morrey inequality (see [Ver87],
Inequality (2.6), and references therein)

||u||L2
(Ω)
≤ cPoi(Ω)||∇u||L2

(Ω)
∀ u ∈ H1(Ω) with u · n = 0 on ∂Ω(B.14)

holds. Then we have the following inequality

||u||21,Ω = ||u||2
L2

(Ω)
+ ||∇u||2

L2
(Ω)
≤ (1 + c2

Poi(Ω))||∇u||2
L2

(Ω)
.(B.15)

Moreover we have the generalised Young’s inequality (cf. Galdi Cp.II, eq.(1.5))

ab ≤ ε aq

q
+

ε−q
∗/q bq

∗

q∗
, a, b, ε > 0 , q−1 + (q∗)−1 = 1.(B.16)

In the case that q = q∗ = 2 we get

ab ≤ ε a2

2
+

ε−1 b2

2
, a, b, ε > 0 .(B.17)

B.2. Analytical results for some turbulence models

In the following subsections some analytical results for some turbulence models will we
presented. In all cases the corresponding transient problem will be considered.

B.2.1. The k/ε model

For the k/ε model, there are no results concerning existence and uniqueness available.
From a physical and computational point of view, the positivity of k and ε are of prime
importance. Therefore Mohammadi proposed to consider another equivalent model, the
so called φ−θ model with θ ≡ kε−1 and φ ≡ ε2k−3. For the φ−θ model positive initial data
and positive Dirichlet boundary data are prescribed, for details see [Col99], p.38. Supposing
that a solution exists and is continuously differentiable, Mohammadi could show that k is
stricly positive, see [MP94] pp.65. Coletti considered a simplified problem for θ and φ by
taking νt ≡ 0 and considering (for the sake of simplicity) homogeneous Dirichlet boundary
conditions. Then he could show existence, uniqueness and non-negativity of the solution
of the reduced φ − θ model, see [Col99], theorem 3, p. 40. He also obtains an existence,
uniqueness and non-negativity result for the full φ−θ model, see [Col99], Theorem 5, p.41.

B.2.2. The Smagorinsky model

The Smagorinsky model was studied by Ladyzhenskaya [Lad67] and revised by John

[Joh02]. Existence and uniqueness in 3d can be proven even for large data and long time
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intervals. Moreover a stability result is available. Pares [Par92] investigated the existence
and uniqueness of a weak solution for a slightly different problem for the Smagorinsky
model: Homogeneous Dirichlet boundary conditions are prescribed only on a part of the
boundary, whereas on the rest of the boundary, slip with friction and penetration with
resistance boundary conditions are imposed.

B.2.3. The Iliescu-Layton model

Iliescu and Layton [IL98] proved the existence of at least one weak solution for a
certain variant of the Iliescu-Layton model. Layton and Lewandowski [LL03] showed
the existence of at least one weak solution of the Iliescu-Layton model, when filtering is
performed using the differential filtering technique of Stokes type.

B.2.4. The Taylor LES model

The analysis given by Ladyzhenskaya for the Smagorinsky model was extended to the Tay-
lor LES model augmented with the Smagorinsky model by Coletti [Col99]. His analysis
was revised in [Joh02]. Under the requirement that the Smagorinsky subgrid scale term
dominates the Taylor LES term Coletti could prove existence, uniqueness and stability of
a solution (for large data and long time intervals). However, in numerical experiments
the Taylor LES model is often not numerically stable unless a dominating Smagorinsky
term is added. Thus John points out that an analogous result cannot be expected for
a non-dominating Smagorinsky term, see [Joh02], Remark 5.2.2. Indeed, for a vanish-
ing Smagorinsky term Coletti could prove existence, uniqueness and stability of a strong
solution only for small data and ∂Ω being sufficiently smooth.

B.2.5. The Galdi-Layton model

John showed that the techniques used by Ladyzhenskaya and Coletti cannot be applied to
the analysis of the Galdi-Layton model, cf. [Joh02]. Berselli et al. [BGLI02] studied
the Galdi-Layton model without any additional eddy-viscosity term for the case Ω = (0, L)3

with periodic boundary conditions. They could prove existence and uniqueness of a solution
in a certain function space for small time intervals. John mentions that numerical tests
suggest that for the Galdi-Layton model without any eddy-viscosity SGS model, stable
long-time solutions for small ν cannot be expected, see [Joh02], p.63.
Moreover, Berselli and Grisanti [BG02] obtained a result concerning the modelling
error. They could prove that the solution of the Galdi-Layton model converges to that
of the Navier-Stokes equations (in some Sobolev spaces) as the filter width ∆ approaches
zero.
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C. Turbulent boundary-layer theory

This chapter is dedicated to a more detailed view at the turbulent boundary-layer equations.

C.1. Natural convection turbulent boundary layers

First we consider (5.27)-(5.28). In order to solve these equations, in Subsection 6.3 the
corresponding initial value problem (6.12)-(6.14) was introduced, viz. (for simplicity in the
sequel we omit the sub- and superscripts and use small letters)

− d

dy

(
(ν + νt)

du

dy

)
= − βθgx in (0, yδ) , u|y=0 = 0 , ν

du

dy
|y=0 = r ,(C.1)

− d

dy

(
(
ν

Pr
+

νt
Prt

)
dθ

dy

)
= 0 in (0, yδ) , θ|y=0 = θw , a

dθ

dy
|y=0 = s .(C.2)

where (r, s) is a parameter in R× R. Integrating (C.2) yields∫ y

0

d

dy′
(a+ at)

dθ

dy′
dy′ = (a+ at)

dθ

dy
= s .(C.3)

Thus (C.1)-(C.2) can be equivalently written as the following first order system

−dσ
dy

= − βgxθ in (0, yδ) , σ|y=0 = r ,(C.4)

du

dy
=

1
ν + νt

σ(y) in (0, yδ) , u|y=0 = 0 ,(C.5)

dθ

dy
=

1
a+ at

s in (0, yδ) , θ|y=0 = θw .(C.6)

We assume Neitzke’s model in (C.4)-(C.6), i.e., νt = uy/Remin and at = νtPr
−1
t . Using

z(y) =

 −σ(y)
u(y)
θ(y)

 , h(y, z) =

 −βgxθ(y)
(ν + νt)−1σ(y)

(a+ at)−1s

 ,

(C.4) -(C.6) can be written as

dz

dy
= h(y, z) in (0, yδ) , z(0) = (r, 0, θw)T .(C.7)

Remark C.1
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C. Turbulent boundary-layer theory

Before proceeding it is worthwhile pointing out a difficulty regarding (C.4)-(C.6) in a CFD
code. For this purpose we write (C.1) in dimensional coordinates:

−ρ̃0
d

dy

[
(ν̃ + ν̃t)

dũ

dy

]
= − ρ̃0β̃0

(
T̃ − T̃0

)
g̃ · ex .

The problem is to select a suitable reference temperature T̃0 for each x ∈ ΓW . The theo-
retical choice is T̃0 = T̃∞ being the free stream temperature, cf. [KC93], p.398. However,
in many CFD codes only T̃ |ΓW and T̃ |Γδ can be accessed easily. T∞ is often not available
unless the grid data structure is quite sophisticated. Hence there are two choices, viz., (i)
T̃0 = T̃ |ΓW and (ii) T̃0 = T̃ |Γδ . Strategy (i) seems to be more robust as T̃ |Γδ in method (ii)
depends on the solution process. In the numerical tests we used (i). Additional tests not
shown in this thesis revealed that the predictions for variant (i) are significantly superior
to those for variant (ii) for the natural convection flow in a closed cavity. ♦

Based on experimental investigations, see e.g. [Nei99] and [TK00a], we can assume that
u > 0 throughout the boundary layer. Now we can state the following lemma.

Lemma C.1
Suppose νt = uy/Remin and u > 0 on (0, yδ). For every given (r, s) in R × R the initial
value problem (C.7) has a uniquely determined solution.

Proof:
We prove the lemma by showing that (C.7) has a uniquely determined solution for every
given (r, s) in R × R. The notion that u > 0 on [0, yδ] ensures that ν + νt ≥ ν > 0
and a + at ≥ a > 0 in (0, yδ). Thus for each yδ > 0, h(y, z) is defined on the domain
D := (0, yδ)×R>0×R2 ⊂ R4. Obviously h(y, z) is continuous on D. Moreover D is convex
and for each s ∈ R the derivatives ∂hi/∂zj are continuous and bounded (1 ≤ i, j ≤ 3). Thus
h is Lipschitz-continuous in D w.r.t. z for each s ∈ R. According to the theory of ordinary
differential equations, for each (r, s) ∈ R2 (C.7) has a uniquely determined solution, which
can be extended on [0, yδ]. ♦
Now the model is simplified by assuming that ν + νt and a + at are given piecewise as in
(5.38)-(5.39). Denote yulam and yθlam the thickness of the viscous sublayer for momentum
and temperature equation resp., i.e.,

yulam ≡ max{ y | Re(y′) ≤ Remin ∀ y′ < y } ,(C.8)

yθlam ≡ max{ y | Re(y′) ≤ Prt
Pr

Remin ∀ y′ < y }(C.9)

with Re(y) = U(y)yν−1. Then we can give the following lemma.

Lemma C.2
Suppose (5.38)-(5.39) and u > 0 on (0, yδ). Then for every given (r, s) in R×R the initial
value problem (C.7) has a uniquely determined solution.

Proof:
We show that for every given (r, s) in R × R (C.7) has a uniquely determined solution, if
(5.38)-(5.39) are assumed. Obviously νt and at are piecewise continuously differentiable
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C.2. Forced convection boundary-layer equations in non-dimensional form

w.r.t. u on (0, yulam) and on (yulam, yδ) resp. on (0, yθlam) and on (yθlam, yδ) .
First we consider the following initial value problem: Seek ulam, θlam s.t.

− d

dy

(
ν
dulam

dy

)
= − βθgx in (0, yulam) , ulam|y=0 = 0 , ν

dulam

dy
|y=0 = r ,

(C.10)

− d

dy

(
a
dθlam

dy

)
= 0 in (0, yθlam) , θlam|y=0 = θw , a

dθlam

dy
|y=0 = s .(C.11)

In analogy to the proof of lemma C.1 there exists a uniquely determined solution, that can
be extended on [0, yulam] resp. on [0, yθlam].
Secondly we consider the following initial value problem: Seek ulog, θlog s.t.

− d

dy

(
ulogy

Remin

dulog

dy

)
= − βθloggx in (yulam, yδ)

− d

dy

(
ulogy

PrtRemin

dθlog

dy

)
= 0 in (yθlam, yδ)

with initial conditions

ulog|y=yulam
= ulam|y=yulam

,
ulogy

Remin

dulog

dy
|y=yulam

= ν
dulam

dy
|y=yulam

θlog|y=yθlam
= θlam|y=yθlam

,
ulogy

PrtRemin

dθlog

dy
|y=yθlam

=
ν

Pr

dθlam

dy
|y=yθlam

.

In analogy to the proof of lemma C.1 there exists a uniquely determined solution, that can
be extended on [yulam, yδ] resp. on [yθlam, yδ]. ♦
Finally, it is worth mentioning that a computational method should exploit the fact that
an analytic solution in the viscous sublayer can be found, see e.g. [Nei99], p.49 or (5.43).

C.2. Forced convection boundary-layer equations in non-dimensional form

In the case of forced convection, we have to solve (C.1)-(C.2) with vanishing buoyancy
term, i.e.,

− d

dy

(
(ν + νt)

du

dy

)
= 0 in (0, yδ) , u|y=0 = 0 , ν

du

dy
|y=0 = τw ,(C.12)

− d

dy

(
(
ν

Pr
+

νt
Prt

)
dθ

dy

)
= 0 in (0, yδ) , θ|y=0 = θw , a

dθ

dy
|y=0 = q̇/cp .(C.13)

First we derive the non-dimensional form of the forced convection boundary-layer equations.
For the velocity we start with

(ν + νt)
du

dy
= τw = u2

τ .(C.14)
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C. Turbulent boundary-layer theory

Using the following scaled variables

u+ =
u

uτ
, y+ =

uτy

ν
, ν+

t =
νt
ν
, θ+ =

cpuτ (θ − θw)
q̇

, a+
t =

a

ν
(C.15)

we obtain

(1 + ν+
t )

du+

dy+
= 1 ⇐⇒ u+ =

∫ y+

0

1
1 + ν+

t

dỹ+ .(C.16)

Analogously, the temperature equation

(a+ at)
dθ

dy
=

q̇

cp
(C.17)

can be rearranged to

(
1
Pr

+
ν+
t

Prt
)
dθ+

dy+
= 1 ⇐⇒ θ+ =

∫ y+

0

1
Pr−1 + a+

t

dỹ+ .(C.18)

Subtracting (C.18) from (C.16) gives (see also [DPR01], Eq. (4.4.39))

u+ − θ+ =
∫ y+

0

1
1 + ν+

t

dỹ+ −
∫ y+

0

1
Pr−1 + a+

t

dỹ+ .(C.19)

If Pr = 1 and Prt = 1 then the right hand side of (C.19) vanishes and hence u+ = θ+. In
indoor-air flow problems we have Pr = 0.7 and Prt ≈ 1 (in the boundary layer, see e.g.
[KC93], pp. 259). The effect of Pr = 0.7 < 1 is noticable only in the viscous sublayer.
As yulam and yθlam are small, the contribution of the viscous sublayer to the integrals in
(C.19) is small. Thus the right hand side of (C.19) in reasonably small in the log-layer
and hence in a good approximation u+ = θ+. This is also referred to as Reynolds analogy:
When suitably normalised, momentum and contaminent transport have the same profile,
see [DPR01], p.80. Therefore we only have to determine the profile for u explicitely and
then infer the profile for θ using the Reynolds analogy.

C.3. The universal log law by Prandtl and van Karman

The standard approach is to use a two-layer model, i.e., to choose ν+ νt = ν in the viscous
sublayer (0, yulam) and ν + νt = νt in the log-layer, see e.g. [KC93], pp. 202. Prandtl and
van Karman used the following model for νt:

νt = κ2y2|du
dy
| = uτκy ⇐⇒ ν+

t =
uτκy

ν
= κy+,

with κ = 0.4 being the van Karman constant. Note that in a forced convection turbulent
boundary layer du

dy > 0 for all y ∈ (0, δδ). In the viscous sublayer integrating (C.16) gives

u+ = y+ in ( 0 , yu,+lam ) .(C.20)
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C.4. A non-isothermal wall law for forced convection problems by Neitzke

In agreement with [Nei99] we use yu,+lam = 11.25. Alternatively, Kays and Crawford report
yu,+lam = 10.8, see [KC93], p.203. In the log-layer we have to solve

u+ =
1
κy+

in ( yu,+lam , δ+
δ ) , u+(yu,+lam) = yu,+lam = 11.25 .

The solution is given by

u+(y+) =
1
κ

ln(y+) +B in ( yu,+lam , δ+
δ ) .(C.21)

Using the condition that u+ is continuous at y+ = y+
lam yields B = 5.2. To this end, the

log law reads

u+(y+) = 2.5 ln(y+) + 5.2 in ( yu,+lam , δ+
δ ) .(C.22)

The temperature solution can be infered from (C.20) and (C.22) using Reynolds analogy, see
[DPR01] pp.80, or directly by integrating (C.18), see [KC93], pp.269. The latter approach
gives

u+(y+) =
{
y+, if y+ ≤ 10.8
2.44 ln(y+) + 5.0, if y+ > 10.8

,(C.23)

θ+(y+) =
{
Pr y+, if y+ ≤ 13.2
2.075 ln(y+) + 3.9, if y+ > 13.2

.(C.24)

C.4. A non-isothermal wall law for forced convection problems by Neitzke

C.4.1. The viscous sublayer

First we consider the viscous sublayer for the momentum equation. According to (5.38)-
(5.39) we use ν + νt ≈ ν in [0, yulam]. Note that the thickness yulam of this layer is given
implicitely by (C.8)-(C.9). Integrating (C.16) gives (C.20). Then, combining (C.8)-(C.9)
and (C.16) we get

Re = u+y+ = y+2 ≤ Remin =⇒ yu,+lam =
√
Remin

and thus ylam = νu−1
τ

√
Remin. This gives the first part of (5.41).

Regarding the heat transfer equation, integrating (C.16) gives the first equation in (C.24),
but with a different value for yθ,+lam, which is calculated as follows:

at ≤ a ⇔
νt
Prt

=
νu+y+

PrtRemin
=

νy+2

PrtRemin
≤ ν

Pr
⇔ yθ,+lam =

√
PrtPr−1Remin.(C.25)

Experiments show yθ,+lam = 8.0. Thus we infer Prt = 1.15 in the boundary layer.
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C. Turbulent boundary-layer theory

C.4.2. The log-layer

Neitzke’s model in (yulam, δδ) reads

νt =
uy

Remin
⇐⇒ ν+

t =
u+y+

Remin
.

Substituting this into (C.16), we arrive at the following ordinary differential equation to
be solved in (yu,+lam, δ

+
δ ):

Remin
1
y+

= u+du
+

dy+
in (

√
Remin, δ

+
δ ) , u+|

y+=Re
1/2
min

= Re
1/2
min .

Integration yields (with R ≡
√
Remin)

u+ = R

√
2 ln(

y+

R
) + 1 , in (

√
Remin, y

+
δ ) .(C.26)

The log-law for the heat equation (5.42) is derived using the Reynolds analogy. Obviously
both profiles are essentially the same but differently scaled.

198



D. Nomenclature

Upper-case Roman

Au(w) → (4.45)
Aθ(w, ϑ) → (4.45)
A+ van Driest constant, A+ = 26 → (5.32)
B log law constant B ∈ {5.0, 5.2} → (C.21)
C1 C1 = 1.44 → (3.35)
C2 C2 = 1.92 → (3.35)
CS Smagorinsky coefficient → (4.33)
Cq coefficient in the Iliescu-Layton model Cq = 0.17 → (4.33)
Ct Ct = 0.8 → (3.26)
Cθ coefficient in Neitzke’s law of the wall Cθ = PrRθ → (5.42)
Cµ Cµ = 0.09 → (3.22)
D(Ω) → Section A.1
D′(Ω) → Section A.1
D(y+) van Driest damping function → (5.33)
E(Ω) → Section A.1
E ′(Ω) → Section A.1
E(κ) energy-spectrum function → (2.4)
F(f) Fourier transform of f
G G = Ctβ

νt
Prt
g∇Θ → (3.26)

Gr Grashof number → Section 1.1
I identity operator
Ks parameter in the formula for Remin,n → Section 5.4.2
L characteristic lengthscale
Lu Lu ≡ −∇ · (ν∇u) + (b ·∇)u+ cu → (9.8)
LOs(u, p) LOs(u, p) = −∇ · (2νS(u)) + (a ·∇)u+ cu+∇p → (9.11)
L̃ characteristic lengthscale of the flow → Section 1.1
L11 longitudinal integral lengthscale → (2.5)
P non-dimensional mean pressure P = 〈p〉E → Section 3.1
P non-dimensional modified mean pressure P ≡ P ∗ → (3.1)
P∞ free stream pressure in the turbulent boundary layer
P ∗ non-dimensional modified mean pressure P ∗ = P + 2

3k → (3.1)
P rate of production of turbulent kinetic energy P = −〈u′ ⊗ u′〉E : S(U)
P rate of production of turbulent kinetic energy P = 2νtS(U) : S(U)

in RANS models with the eddy viscosity hypothesis
Pr rate of production of residual kinetic energy → (4.25)
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D. Nomenclature

Pθr modified rate of production of residual kinetic energy
that accounts for buoyancy effects → (4.37)

Pr Prandtl number, Pr = 0.70 for air → Section 1.1
Prt turbulent Prandtl number → Section 3.2.1
Prt SGS turbulent Prandtl number in LES → Section 4.4.3
Prk turbulent Prandtl number for turbulent kinetic energy

Prk = 1.0 → (3.23), (3.35)
Prε turbulent Prandtl number for dissipation Prε = 1.3 → Section 3.4, (3.35)
R regularization operator in LES → (4.15) resp. (7.1)-(7.2)
R

+ positive real numbers
Ra Rayleigh number → Section 1.1
Re Reynolds number → Section 1.1
Re in the near-wall region Re = U(y)yν−1 → Section 1.1
Remin,n coefficient in Neitzke’s algebraic turbulence model

→ Section 5.4.2, (5.38)-(5.39)
Reτ Reynolds number based on friction velocity and channel half

width H: Reτ = uτH/ν
Reδ∗ Reδ∗ = U∞δ

∗/ν → Section 5.1
Rif flux Richardson number → (3.19)
Rig gradient Richardson number → Section 5.4.2
Ru coefficient in Neitzke’s law of the wall Ru =

√
Remin,n = 6.25 → (5.41)

Rθ coefficient in Neitzke’s law of the wall Rθ = 8.0 → (5.42)
S(u) rate-of-strain tensor S(u) = 1

2

(
∇u+∇uT

)
→ Section 1.1

S(Rd) see Definition A.2
S ′(Rd) see Section A.1
S mean strain rate S =

√
2S(U) : S(U)

S S =
√

2S(U) : S(U)
St Stanton number → Section 5.1
T (l) rate of transfer of energy from eddies larger than l to those smaller than l →

Section 2.2
T̃ dimensional temperature → Section 1.1
T̃0 dimensional reference temperature → Section 1.1
T̃diff dimensional characteristic temperature difference → Section 1.1
Tr Trace operator, → Chapter B.
Tu turbulence intensity Tu = (u′∞

2)1/2/u∞
U non-dimensional mean velocity U = 〈u〉E → Section 3.1
U δ U δ = U |Γδ
U δ,t U δ,t = U δ − (U δ · n)n

U(yδ) U(yδ) = U δ ·U δ,t

||U δ,t||
U∞ free stream velocity in a turbulent boundary layer
Ũsc (dimensional) characteristic velocity → Section 1.1
U, V,W (ensemble averaged) mean velocity components in streamwise, wall-normal

and spanwise direction
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UBL streamwise velocity in Ωδ

U∗ an approximation for uτ in statistical modelling → Chapter 6
W∗ an approximation for uτ in LES → Section 7

Lower-case Roman

ã dimensional thermal diffusivity → Section 1.1
a non-dimensional thermal diffusivity → Section 1.1
at turbulent thermal diffusivity → (3.5), (4.36)
ae effective thermal diffusivity ae = a+ at
cf skin friction coefficient cf = 2τw/U2

∞ → Section 5.1
cp → Section 1.1
c̃p dimensional specific heat at constant pressure → Section 1.1
d space dimension (d = 2, 3)
d99 distance to the wall where U = 0.99U∞ → Section 5.1
ei unit-vector in the i-th coordinate direction
ex, ey, ez unit-vector in the x, y, z (resp.) coordinate direction
g non-dimensional gravitational acceleration → Section 1.1
gx gx = g · ex with ex pointing into the streamwise direction
g̃ dimensional gravitational acceleration → Section 1.1
g∆ filter kernel → (4.1)
h h ≡ uθ − uθ → (4.22)
hSGS (4.31)
h grid spacing
k turbulent kinetic energy k = 1

2〈u
′2〉E → (2.3)

k+ k+ ≡ ku−2
τ → (5.49)

kr residual kinetic energy kr = 1
2

∑d
i=1 τ

R
ii → (4.20)

l characteristic eddy size → Section 2.2
l0 lengthscale of the largest eddies → Section 2.2
lDI demarcation lengthscale between the inertial subrange (l > lDI)

and the dissipation range (l < lDI) → Section 2.2
lEI demarcation lengthscale between the energy-containing range

of eddies (l > lEI) and smaller eddies (l < lEI)→ Section 2.2
lm mixing length → (5.30), (3.21)
n outer unit normal vector to Γ → Section 1.2
p̃ dimensional pressure → Section 1.1
p′ non-dimensional fluctuating resp. residual pressure → Section 2.1 resp. (4.3)
p̃red dimensional reduced pressure → Section 1.1
pmod reduced mean pressure in LES, for simplicity denoted by p → (4.3)
q solution for pressure in LES, which is an approximation to p
q̇ heat-flux at surface, in W/m2, → Section 1.18
q̇V → Section 1.1
˜̇qV dimensional volume specific (external) heat source, in W/m3, → Section 1.1
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D. Nomenclature

ṡ heat-flux at surface in LES → Section 7.1.1
tj {tj}d−1

j=1 is a local orthonormal basis of the tangent space of Γ → Section 1.2
t non-dimensional time variable → Section 1.1
t̃ dimensional time variable → Section 1.1
u non-dimensional velocity → Section 1.1
u′ non-dimensional fluctuating resp. residual velocity → Section 2.1 resp. (4.3)
uin, uF non-dimensional inflow velocity
ũ dimensional velocity → Section 1.1
u in wall bounded flow: wall-parallel streamwise velocity component
u+ mean velocity normalized by the friction velocity u+ = U/uτ → Section 5.4.2
uτ friction velocity uτ =

√
τw → Section 5.1

u∗ velocity scale → (5.30)
v in wall bounded flow: wall-normal velocity component
w solution for velocity in LES, which is an approximation to u
w+
δ → (7.7)

w in wall bounded flow: wall-parallel spanwise velocity component
u′, v′, w′ fluctuating streamwise, wall-normal resp. spanwise component of the velocity

the near wall region
wδ,t → (7.6), (6.3)
x non-dimensional position variable → Section 1.1
x̃ dimensional position variable → Section 1.1
x in wall bounded flows: wall-parallel streamwise coordinate direction
x1 in wall bounded flows: x1 = x
x2 in wall bounded flows: x2 = y
x3 in wall bounded flows: x3 = z
y in wall bounded flows: wall-normal coordinate direction
yulam → Section C.1
yθlam → Section C.1
ymax distance from the wall where U has its maximum

in the natural convection case → Section 5.4.2
yulam thickness of the viscous momentum sublayer
yθlam thickness of the viscous temperature sublayer
y+ in wall bounded flow: distance from the wall in wall units, y+ = yδ−1

ν

yδ distance of point x in Γδ from ΓW
z in wall bounded flows: wall-parallel spanwise coordinate direction

Upper-case Greek

Γ Γ = ∂Ω → Section 1.1
ΓF forced convection inflow boundary, see (1.12) → Section 1.2
ΓW represents a solid impermeable wall, see (1.13) → Section 1.2
ΓW,D, ΓW,N → Section 1.18
ΓN see (1.14) → Section 1.2
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Γ−(u) see (1.15) → Section 1.2
Γ0(u) see (1.16) → Section 1.2
Γ+(u) see (1.17) → Section 1.2
Γδ artificial boundary consisting of mesh points with minimal positive distance

to ΓW , located primarily in the log-layer → Section 6.1
∆ filter width
∆x+ filter width (in wall units) in x direction
∆y+ filter width (in wall units) in y direction
∆z+ filter width (in wall units) in z direction
∆i filter width in the direction i
∆y filter width in the y-direction
∆m time step width ∆m = tm − tm−1

∆2 enthalpy thickness of temperature boundary layer → Section 5.1
Ω Ω ⊂ Rd a bounded domain → Section 1.1
Ωlayer boundary layer, Ωlayer = { x ∈ Ω | dist(x,ΓW ) < δlayer } → Section 5.1
Ωfree Ωfree = Ω \ Ωlayer → Section 5.1
Ωouter Ωouter = { x ∈ Ω | dist(x,ΓW ) > yδ } → Section 6.1
Ωδ Ωδ = { x ∈ Ω | dist(x,ΓW ) < yδ } → Section 6.1
Θ non-dimensional mean temperature → Section 3.1
Θ in near-wall region Θ = Θ(y) → Section 5.2
Θ(yδ) Θ(yδ) = Θ|Γδ
ΘBL mean temperature in Ωδ

Θw mean temperature of the wall, Θw = Θ|ΓW → Section 3.1

Lower-case Greek

β → Section 1.1
βj friction coefficient, see → Section 1.1, (1.13) (i)
β̃0 dimensional volume expansion coefficient → Section 1.1
γ γ = 6 constant appearing in the Gaussian filter
δlayer boundary layer thickness → Section 5.1
δν viscous lengthscale δν = ν

uτ
→ Section 5.2

δ∗ momentum thickness of a boundary layer → Section 5.1
ε rate of dissipation of turbulent kinetic energy ε = 2ν〈S(u′) : S(u′)〉E

→ Section 3.3
ε+ ε+ ≡ ενu−4

τ → (5.49)
η Kolmogorow lengthscale → Section 2.2
θ non-dimensional temperature → Section 1.1
θw non-dimensional wall temperature → (1.18)
θ′ non-dimensional fluctuating resp. residual temperature

→ Section 2.1 resp. Section 4.4
θin non-dimensional inflow temperature
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D. Nomenclature

θ+ normalized temperature in near-wall region θ+ ≡ cpuτ (Θw −Θ)q̇−1

→ Section 5.4.2
ϑ solution for temperature in LES, which is an approximation to θ
κ wavenumber vector
κ wavenumber
κ von Karman constant κ = 0.41
λ̃ dimensional thermal conduction coefficient → Section 1.1
µ̃ dimensional dynamic viscosity coefficient → Section 1.1
ν̃ dimensional kinematic viscosity → Section 1.1
ν non-dimensional kinematic viscosity → Section 1.1
νt turbulent viscosity → (3.4), (4.33)
νe effective viscosity νe = ν + νt
ρ̃ dimensional density → Section 1.1
ρ̃0 dimensional reference density ρ̃0 = ρ̃(T̃0) → Section 1.1
σ(u, p) stress tensor σ(u, p) = −pI + 2νS(u)
σt(u) see (1.13) → Section 1.2
τR residual (SGS) stress tensor τR = u⊗ u− u⊗ u → (4.19)
τ r anisotropic residual (SGS) stress tensor → (4.21)
τSGS → (4.30)
τw wall shear stress τw = νTr|ΓW∇U · n → Section 5.1
χ → (1.13)

Superscripts

u′ non-dimensional fluctuating resp. residual velocity → Section 2.1 resp. (4.3)
p′ non-dimensional fluctuating resp. residual pressure → Section 2.1 resp. (4.3)
θ′ non-dimensional fluctuating resp. residual temperature

→ Section 2.1 resp. Section 4.4
u non-dimensional space filtered velocity → (4.1)
p non-dimensional space filtered pressure → (4.1)
θ non-dimensional space filtered temperature → (4.1)
f̂ Fourier transform of f
fBL inner solution for f in Ωδ

Subscripts

fw fw = f |Γw resp. fw = Tr|Γwf
fδ fδ = f |Γδ resp. fδ = Tr|Γδf

Symbols

∂Ω boundary of Ω → Section 1.1

|u| |u|(x) =
√∑d

i=1 ui(x)2

||φ||∞,M L∞ norm ||φ||∞,M = esssupx∈M |φ(x)|
||u||∞,M L∞ norm ||u||∞,M = esssupx∈M |u(x)|
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||S(u)||F ||S||F =
√
S(u) : S(u)

〈. . .〉E ensemble average → (2.2)
〈u′ ⊗ u′〉E Reynolds stress tensor → Section 2.1
〈. . .〉∆ spatial average → (4.1)∫
. . . dσ (d-1) dimensional surface integral

a⊗ b (a⊗ b)ij = aibj
A : B A : B =

∑d
i,j=1AijBij

g∆ ∗ f convolution → (4.1)
∇U • ∇U (∇U • ∇U)ij =

∑d
l=1

∂Ui
∂xl

∂Uj
∂xl
→ (4.32)

∇Θ ◦ ∇U (∇Θ ◦ ∇U)j =
∑d

l=1
∂Θ
∂xl

∂Uj
∂xl
→ (4.32)

Abbreviations

DES Detached-eddy simulation
DNS Direct numerical simulation
k/ε model I → Section 6.1
k/ε model II → Section 6.2
k/ε model III → Section 6.3
k/ε model IIIa → Section 6.3
k/ε model IIIb → Section 6.3
IL IL model : Iliescu-Layton model → (4.34)
LES Large-eddy simulation
LES model I → Chapter 7
LES model II → Section 7.1
LES-NWM Large-eddy simulation with near-wall modelling
LES-NWR Large-eddy simulation with near-wall resolution
RANS Reynolds averaged Navier-Stokes equations
SGS subgrid scale → Section 4.3
SM SM model : Smagorinsky model → (4.33)
TKE turbulent kinetic energy → Section 4.4.2
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Schule:

Sep. 81 – Jun. 85 Kaland-Schule Lübeck (Grundschule)
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