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Chapter 1

Introduction

In practice one often faces the problem of reconstructing an unknown function
f from a finite set of discrete data. These data consist of data sites X =
{z1,...,zn} and data values f; = f(z;) ,1 <j < N, and the reconstruction
has to approximate the data values at the data sites. Moreover, in many
cases the data sites are scattered, i.e. they bear no regular structure at all.
In some applications, the data sites even come from a very high dimensional
space. Hence, for an unifying approach, methods have to be developed which
are capable of meeting these claims.

One possible way to reconstruct a function from discrete data is interpolation.
Suppose X = {z1,...,rx} C R is a set of distinct data sites and fi,..., fx
are certain data values which should be interpolated at the sites. In other
words, one is interested in finding a continuous function s : R — R with
s(xz;) = f;, 1 <j < N. At this point it is not necessary that the data values
{f;}, 1 < j < N, actually stem from a function f, but we will keep this in
mind for later reasons.

In the univariate case d = 1, a space of interpolating functions can be chosen
to consist of all polynomials p of degree at most N — 1. However, by a well-
known theorem of Mairhuber, if we are working in space dimension d > 2, it
is impossible to fix an N-dimensional function space beforehand which works
for all sets of V distinct data sites. The space of interpolating functions must
depend on the data sites. On the other hand, probably no one with some
experience in approximation theory would even in the univariate case try
to interpolate in one hundred thousand points with a polynomial of degree
99999.
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Hence one has to go away from polynomials and use another framework
in higher dimensions. A well-established technique called finite elements
triangulates the data sites and defines piecewise polynomial and compactly
supported functions locally on parts of the triangulations. This requires
triangulations, which are a serious problem in higher dimensions, and the
assembly of smooth functions from locally defined pieces requires a great
amount of additional work.

However, there is a remarkably beautiful theory, where all space dimensions
can be handled in the same way, without any triangulation needed, and where
the use of arbitarily smooth functions is no problem. It starts with a smooth
univariate function ¢ : [0,00) — R and the Euclidean distance ||z — y||2
of two vectors x,y € R? to define a multivariate radial basis function of the
form ¢(||z — y||2) on R? x RY. Then this function is shifted to the data sites
zj, 1 < j < N such that interpolation is done by the span of the functions
o(||]xr — z4]|2), 1 < j < N. This easily generates a data-dependent space of
functions of any number of variables and of any smoothness, if ¢ is chosen
properly, e.g. as the Gaussian ¢(r) = e

Radial basis functions have become an increasingly popular mathematical
discipline which started with the practical work of Hardy [12, T3] in 1971, and
with the theoretical work of Duchon [B [6, [7], and which developed in some
domain of mathematics and physics by for example Dyn [8, 9], Jackson [T4],
Powell [21], Buhmann [2 B, 4] and Schaback and Wendland [25], 27, BT]. Only
recently, two books on the subject have appeared (Buhmann [3], Wendland

[30]).

The theory of radial basis functions generalizes easily to the theory of re-
producing kernel Hilbert spaces of functions on domains €2, where kernels K
reproduce functions f in the Hilbert spaces H with inner products (-, )y via

f(@)=(f,K(z,"))y forall f € H, x €.

The connection to radial basis functions is made via K(x,y) = ¢(||z — y|2)
if there is Euclidean invariance in the Hilbert space H.

These reproducing kernels of Hilbert spaces of functions form the context of
this thesis, as indicated by part of the title. But since the kernels sometimes
are given without any Hilbert space background, we first focus on kernels
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themselves. They usually are conditionally positive definite of a certain order
m, but the cases m = 0 and m > 0 require different techniques. To compare
these two situations, and to overcome the differences will be the topic of the
next two chapters. Chapter 2 describes the standard setting of interpolation
problems using conditionally positive definite kernels, and it confines itself to
methods not using the Hilbert space background. We study the general case
m > 0 and check the spans and dimensions of spaces of functions occurring
there. Our main result will be on the linear independence of shifts even
in case m > 0. The next chapter then introduces Hilbert spaces, and we
explain how any given conditionally positive kernel defines a native Hilbert
space of functions in which it is reproducing in a certain way. Furthermore,
it relates the cases m = 0 and m > 0 by describing the transition from m > 0
to m = 0 via a change of the initial kernel to a “normalized” kernel. This
transition occurs in rather incomplete versions at various isolated places in
the literature, but since it is basic to what follows later, we provide a full
account of it here.

Chapters 4 and 5 are the core of the thesis. The main idea is to decompose
large interpolation problems into smaller ones by introducing data-dependent
kernels called power kernels because of their close relation to what is called
the power function in the classical theory. These new kernels must have
native Hilbert spaces along the lines of Chapter 3, and we show how those
are related to the native Hilbert space of the original kernel. Except for the
situation m > 0, which causes some (solvable) problems, it turns out that
there is an orthogonal decomposition of the original native Hilbert space,
involving the native space of the power kernel. Chapter 5 shows how to do
this decomposition recursively. It may be used to split large interpolation
problems into smaller ones with different kernels, and this was the main
background motivation for this work.



Chapter 2

Interpolation Problems

2.1 Kernels and radial basis functions

This preliminary chapter serves as an introduction for readers working in
applications. It describes kernels and radial basis functions as useful tools
for the construction of multivariate functions that satisfy certain specified
conditions, and it provides the guidelines for their use. We do this mainly by
standard methods of linear algebra. The following chapter will then provide
the Hilbert space background.

Definition 2.1 If a univariate real-valued function ¢ : R, +— R s used as a
symmetric multivariate function ® : R? x R? — R wvia

(2, y) = ([l — yll2) (2.1)

for all (xz,y) € R? x RY, then ¢ is called a radial basis function (RBF)
and ® will be called the associated kernel.

From Definition EZI] on, we use the notation ||.||; for the standard Eu-
clidean norm in R?, and thus the function ®(z,y) is independent of transla-
tions and rotations acting on both vectors z and y simultaneously.

In the following, we shall often write the argument of ¢ in 1) as r =
|z — y|2, as in Table ZI1
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Remarks

a) Any radial basis function ¢ is univariate as a function of r, but ®(z,y) =
o(r) = ¢(||x—yl|2) is multivariate as a function of the vectors x and y. If
the space dimension d is large, then this is a tremendous computational
advantage.

b) The use of the Euclidean norm leads to good invariance properties with
respect to the Euclidean geometry.

c¢) Since certain radial basis functions like ¢(r) = 0 are useless, and since
there is a vast variety of conceivable radial basis functions, we need
additional arguments for their classification.

| RBF | ¢ [m ]
poly-harmonic thin-plate spline o(r) = rzlog( ) 2
poly-harmonic spline o(r) = 2
multi-quadric o(r) = (1+r?)" 1
inverse multi-quadric o(r)=(1+r?)"1/2 0
Gaussian o(r) = exp(—r?) 0
Wendland Pr)=1—r)L(1+4r) | 0

Table 2.1: Conditionally positive definite radial basis functions of order m

We now ask whether arbitrary data specified at nodes z1, . .., zy in R? can be

interpolated by a function of the form s(z) = Zjvzl a;P(x,x;). The answer is

yes if the symmetric matrix Ag x = (@(xj, :pk)> is nonsingular. Our goal
ki

)

is to characterize the functions ® for which this matrix is positive definite.
Along the way we prove some theorems about the positive definiteness and
review a bit of matrix theory.

Definition 2.2 Let ) be a subset of R%. A function ® : QO x Q — R is called
positive semidefinite on Q, if for any finite set X = {x1,...,xn} of points
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in § the matriz Ae x = (P(z;, 1)), is positive semidefinite. i.e.

N N

OZTAq>7x()é = Z Zozjak@(xj,xk) >0 (2.2)

j=1 k=1
for all o = {ay,...,ay} in R And if, in addition,
a*Ag xa =0 implies a = 0

then we say that ® is (strictly) positive definite.

We may call such a ® rather a kernel than a function.

Note that in some older parts of the literature a function is called positive
definite when it is positive semidefinite in our notation. But we want to
align the notion of positive definiteness of functions to the notion of positive
definiteness of matrices, and we do not want to repeat bad notation just
because it is used in the literature.

In what follows, let P¢, denote the space of d—variate polynomials over R with
degree up to m — 1 or to order up to m. Note that P¢ = {0}. The dimension
of P4 will be denoted by @Q > 0. From chapter 3 on, we shall replace P¢
by a general ()-dimensional space of functions on R¢. This could also be
done in this chapter, but we wanted to stay close to the original definition of
conditional positive definiteness of order m, as follows:

Definition 2.3 Let Q be a set of R?. A function ® : Q x Q — R is called
conditionally positive semi-definite on ) of order m if for any finite
set of points X = {x1,...,znx} in Q and for all « = {ay,...,ay} in RY
satisfying the additional condition

N
Z a;p(x;) =0 for all p € P, (2.3)

j=1

the inequality (Z2) holds. A function ® will be called conditionally pos-
itive definite of order m, if the quadratic form in (Z3), defined on the
subspace of vectors a satisfying the above moment condition, is positive un-
less v s zero.
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Proposition 2.4 Every function that is conditionally positive (semi-)definite
function of order m is also conditionally positive (semi-)definite function of
order | > m.

A function which is conditionally positive (semi-)definite of order m = 0 is
positive (semi-)definite.

We need some statements about symmetric positive definite matrices later:

Lemma 2.5 If a symmetric matriz is positive definite, then its eigenvalues
are positive.

Proof: Let A be a symmetric positive definite matrix, and let A\ be one of
its eigenvalues. Then there exists a corresponding eigenvector V # 0 in RY.
Since V' # 0 then

0<VTAV =VIAV = \||V|2.

Hence X\ > 0. O

2.2 Interpolation of multivariate functions

Generally a discrete set X = {x1,..., 2y} of points in d—dimensional space
R? and real valued data f(z;),..., f(zy) are given, and the task is to con-
struct a continuous or sufficiently differentiable function s : R — R that
satisfies the interpolation equations

s(xzj) = f(z;), j=1,...,N (2.4)

If s depends linearly on /N parameters, these equations define a N x N system
of linear equations. We now let the interpolant s be a linear combination
of translates of a conditionally positive definite kernel (z,y) — ®(z,y) for
x,y € R% Written explicity, s has the form:

N

s(z) = Z a;®(z,2;), =R (2.5)

j=1

If we define Ax ¢ to be the N x N matrix that has the elements ®(x;, z;),
and fx to be the vector (f(z1),..., f(zyx))? in RY whose elements are the
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right hand sides of the interpolation equations (Z4)), and « to be the vector
(ay,...,an)T in RY, then the interpolation equations (Z4) provide the linear
system

AX7q>O[ = fx. (26)

For several important choices of ®, the matrix Ax ¢ is invertible under rather
mild conditions on the positions of the N interpolation points x1,...,zy. In
fact, this will hold by definition, if ® is positive definite.

However, there are well-defined and useful kernels for which the matrix Ax ¢
is not always invertible. One example is the thin plate spline basis function
é(r) = r*logr which was introduced by Duchon [5, 6]. If one data point lies
at the centre of the unit sphere and the others are distinct points on the unit
sphere, then one row and one column of Ay ¢ consist entirely of zeros and
thus Ax ¢ is singular. Fortunately, it is possible to remove this difficulty by
augmenting (ZZH) by adding a polynomial of degree at most one or of order at
most two. This leads to the notion of conditionally positive definite functions
of positive order m, as defined before.

In general, let py, ..., po be a basis of the space P¢ of polynomials of order
up to m on R%, i.e:

P4 = span {p1.....po} Q= dim P%:(m_dl”)-

Now we represent the interpolation function s in the form
N Q
sex(x) = Z a; Oz, x;) + Z Brpr(x). (2.7)
j=1 k=1
The interpolation conditions are then given by
N Q
fi =Y @i, x;) + Y Bupilwi), forall 1<i< N,
j=1 k=1
We add the following condition

N
Yo am(r) =0,1<k<Q (2.8)

j=1



CHAPTER 2. INTERPOLATION PROBLEMS 13

for the coefficients in order to bind the remaining degrees of freedom, and
to arrive at the condition (23) used in the definition of conditional positive
definiteness.

The two equations (1) and (.8) form the system

(e ) (5)-(F) 2

with
Axe = (P(@i 25))i<ij<n
Px = (p ( ))1<;<N 1<k<Q
fx = (flar),... flan))"
ax = (ay,...,ay)"
Bx = (ﬁl,m,ﬁQ) :

In case of m = 0 i.e. when the radial basis function ® is positive definite, the
interpolant sy x reduces to (Z3)) without applying the additional condition

Z3).

The general theory of the solvability of the interpolation problem is very well
developed and we only collect the basics here for later use. The interested
reader can look at the paper of Light [T5] and Powell [2T] for an enlarged
overview.

Proposition 2.6 The system (Z3) has a unique solution if the matriz Py
1s injective, and if ® is a conditionally positive definite function of order m.

Proof: We look at the homogeneous system of the form (Z3):

(e ) (5)=(5)

Then we have 0 = Ax gax + Px/3x, which implies % Ax sax+a%k PxBx =0
and PYax = 0 = ok Px , hence ok Ax sax = 0. Since Ax g is a conditionally
positive definite function we get ax = 0, and Px(3x = 0. And since Py is
injective then we finally have Sx = 0 . Since the homogeneous system has
only the trivial solution, the general system (Z9) is uniquely solvable. O
In the rest of this thesis, we shall always assume the hypotheses of
Proposition to be satisfied, unless stated otherwise.
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Proposition 2.7 If the polynomials in P4 satisfy the property
If peP? satisfies p(x;) =0 for allz; € X thenp =0
then Px 1s injective.

Proof:  Again, we assume P? = span {pi,...,pg} with dim P¢ = @,
and then all polynomials p € P? have the form p = Z?Zl Orpr for some
B=A{b1,...,00}. And Py is injective when Px(x = 0 implies Sx = 0. This
means that p(z;) = Zgzl Brpr(xj) = 0 for all 1 < j < N implies §; = 0 for
all 1 <k <@ or p=0. But this follows from our assumption. O

2.3 Lagrange form of interpolation

To rewrite an interpolant () in Lagrange form, we now introduce the
system

()= (i §) (56 -(3) e

with
~ A P
Aox = ( X,Tq> OX>
X

w

Vx(z) = (Uj(ff))1<j<Q
p(x) (pj(x))1<J<Q

Ux(z) = (u ())1<j<N

dx(r) = (‘P(I»xj))ngjgN'

The system (ZI0) is uniquely solvable due to the argument given in Propo-
sition 228 under the assumptions there. This allows us to rewrite the inter-
polant in the following way:

Proposition 2.8 Under the assumptions of Proposition[Z8, we can rewrite
the interpolant from (Z74) in the form

SfX ZUJ
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Proof: We start with the definition (7)) of the interpolant and do some
linear algebra:

N Q
spx (@) = Z%‘I’(%%)JrZﬁkpk(ﬂ?)

= ayx®x(z)+ ﬁxp(x)

(50) (55)
- (&) A“( )
(afdax+oPE . are) (1X0)
YAs x + B3 Px)Ux(x) + ok PxVx(z)

(v
(axAsx + B5x Px)Ux(2)
= XUX()

= > w@f)

Proposition 2.9 Under the assumptions of Proposition[Z0, there is a unique
Lagrange-type representation associated to the system (Z10) in X character-
1zed by

w(z)) = 0,1<j<N, 1<k<Q (2.12)
pe(x) = > u@)pi(z;), 1<k <Q. (2.13)
i=1

Proof: We start with the system (2I0):

AX7q>Ux(l’)+Pva(l’) = (Dx(]}) (214)
PiUx(z) = pla). (2.15)
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Hence, we have forx = x;, 1 <i< N

N Q
Zuj(xi)q)(%%‘)+Zpk($j)vk($z‘) = ®(zi, 7))

k=1

Z uj(z)pr(z;) = pr(x).

Then we conclude that since (210) is uniquely solvable, the equations u;(z;) =
9;; and vg(x;) = 0 must hold. O

And we get the uniqueness from

T
Theorem 2.10 The vector U(zx) = <u1(x), o ,uN(x)> formed by the val-

ues of the Lagrange basis functions u., ..., uyx of Proposition[Z38 at x € R?
coincides with the solution U*(x) of the conditional minimization problem

min {U)T(AX,@UX LDy (z) + B(z,x) | PLUx(z) = p(x)}. (2.16)

Proof: If (ZI6) is solved by Lagrange multiplier techniques, and if the
solution is written in a matrix form, then there exists a vector V3(x) =

T
<v{ (x),... ,'U]*V(x)> of Lagrange multipliers such that the system

AX7q> PX U;} o éx(l')
e ) () =% 247
T
holds for the solution Uk (z) = (u’{(:v), . ,u}(x)) of (2I6). This follows

from standard results in quadratic optimization. But the system (ZI7) is
the same as (ZI0) and uniquely solvable, thus the solutions must agree. O

Corollary 2.11 The equation PYUx(x) = p(x) implies that every polyno-
mial of P4 can be reproduced .

Proof: This equation is equivalent to p(x) = Zjvzl uj(x)py(z;) for all
1 < k < @, which is the same as (ZI3). Since a basis is reproduced, all
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elements of the space are reproduced. a

The results that we have collected up to now are
UZ(.I']) = (5@', 1 S ’l,j S N
vp(z;) = 0, I<j<N, 1<k<Q
pe(z) = Y ui(@)pe(zy), 1<k<Q
N .
spx(x) = Zj:l uj(r)f(z;), 1<j<N,

(2.18)

2.4 Stability of the solution

We now look at perturbations of the system (Z3) when the right-hand side
varies. In standard perturbation notation, this means

Ax o Px ax +Aax \ [ fx+Afx
(P§ 0)(ﬁx+Aﬁx)_( 0 ) (2:19)

Subtracting (Z9) from ZTJ) gives

(Aer BY (3 )= (85).
This implies
PiAax = 0,
AO(%}AX,@AO(X = Aog(AfX.
We denote T A v
Foy(Ax, 9) = Xog(i&)(,
Ly ={ax € Q\ {0} | Pfax =0}. (2.21)

With this notation we can define
)\min(Aq),X> = inf Fax (AX, <I>)7
acLlx

Since the quadratic form 04§AX, pQy is positive on Lx because Ag x is con-
ditionally positive definite, then from Lemma 5 we have

)\mm(Aq),)() > 0.

Thus we can give
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Proposition 2.12 The perturbation of the solution of (ZI9) has the prop-

erty
1

)\min(AX, <I>)
Proof: From the systems (Z9) and (Z20), we get

(AO(X)T14X7 @(AO()() = (A@X)T(Afx).

Now the kernel ® is conditionally positive definite, and Aax is in Lx. Then
from our definition of A, (A x) we see that

0< /\mm(Aq>7X)||AaX||§ < AOé§Aq>7xAOZX = (AO[)()T(Afx)

[Aax|ls < 1A fx||2.

holds. This implies the assertion. O

2.5 Inverses of interpolation matrices

The systems (Z9) and (ZI0) have the matrix

Ax o Px
PL 0
of which we only know that the upper left part defines a positive definite form

on a subspace. The full matrix itself has no apparent definiteness properties.
Here, we shall study properties of the inverse matrix

Bx, o Qxo
Q%a Cxo
where Bx ¢ is N X N, Qx¢ is @ X N, and Cx ¢ is ) X (). At this point it

is an interesting question to ask which matrices actually depend on ®. For
the solution of the standard system, we get

ax \ _ ( Bxe Qxo fx
ﬁX Q?@ CX , & 0
This system allows us to have the equations

ax = Bx efx (2.22)
Ox = Qkafx
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that will be very useful. The inversion property gives

In O _ Ax o Px Bx o Qxo
_ ( Ax oBx o + PXQ?@ Ax sQxo + PxCx o )
P§BX, @ PxQx.o '

Thus we arrive at

AX,@BX,@‘FPXQ;(,@ = Iy (2.23)
Ax eQxe + PxCxo = 0 (2.24)
PIBx. s = 0 (2.25)
PIQxs = Io (2.26)

We now multiply the equation (ZZZ3) by fx from the right side and o’ from
the left side. Then we get

aXAx eBx ofx = axfx — CY§PXQ§,<I>fX-

Now we replace the value of By, ¢ fx from [Z2ZZ) and use P¥ay = 0. Then
we get a nice equation

04§AX7<1>OZX = f;BX,¢fX- (227)

Lemma 2.13 The matriz Bx, ¢ is positive semidefinite.

Proof: Take an arbitrary vector fx and form the system (ZJ) with a
conditionally positive definite kernel ®. Then we have (Z217), and the addi-
tional condition (28) allows us to conclude f% Bx ¢ fx > 0forall fx € R O

The kernel of the matrix By, ¢ can be determined:

Theorem 2.14 fL By ofx is zero if and only if the vector fx is a vector of
values of a polynomial on X of order at most m. This is equivalent to the
fact that the interpolant s; x is a polynomial of order at most m.
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Proof: Let f¥Bx ofx = 0. Again, we use this fy and solve the system
&3) with it to get a coefficient vector ax satisfying (Z8). From Z2217), we
get O[§AX7<I>OZX = 0, and since ¢ is conditionally positive definite, we get
ay = 0. Using (Z3), we get Px(3x = fx. Hence, fx is a vector of values of
a polynomial of order at most m, and unique interpolation implies that s x
is exactly this polynomial.

To prove the converse, let fx be a vector of values of a polynomial p of order
at most m on X. Then interpolation via the system (2.8) leads to p = sy x
and ax = 0. Since (ZZ1) holds, we get the result f%Bx ¢fx = 0. But this
could have followed directly from (Z23]) and (Z23). O

Hence, Bx, ¢ has () vanishing eigenvalues, and N — () eingenvalues are posi-
tive.

The system (Z3) causes ax = By [fx to satisfy Pfax = 0 for every fx €
R?. That means, it must satisfy P;BX@fX = 0 for all fx € R? which is
equivalent to the condition PYBx ¢ = 0. The symmetry of Bx ¢ yields the
new condition

BX,QPX == O

associated to the matrix Bx ¢. This is another way of expressing (Z23]) or
one direction of Theorem ZT4

Remarks

a) With a notation to become better known in the next chapter, we can
describe the “energy” of an interpolant sy y solving the system (E3)
as ||s;x||% = akAxeax. This is related to the matrix By g in the
following way. We have

Isrxlls = axAxoax = ax fx

due to Pyayx = 0. If we multiply the equation (Z2Z2) by f%, we get
f;;OéX = f;BX,@fX- Thus

||3f,X||§> = fxBx.ofx
generalizes the obvious identity
Isg.x 3 = akAxpax = fx(Axe)™ fx

which holds in case m = 0.
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b) If we multiply ([Z23) from the left with BY 5, we get
By ¢Ax.eBxae + Bx s PxQk s = Bxa-
If we now use (ZZH), then
B ¢AxeBxe = Bx
¢) If we multiply (Z24)) from the left with BY 5, we get
B)T(@AX@QX@ + B)T(@PXCX,Q =0.
Using (Z20) again, we get
B o Ax0Qxe =0. (2.28)
d) If we multiply (Z24) from the left with Q% 4, we get
QX oAx0Qx0 + Q% oPxCxo =0
Using (Z28), we get

Cxo = QxeAxeQx0. (2.29)

At this point, there is no indication that any of the submatrices of the inverse
does not depend on P.

Finally, we look at the problem of interpolation in Lagrange form by compo-
nents of the vector Uy (x) given with the system (2I0). We take the same
notation of the inverse matrix. Then we get

(V)= (ge &) (),

Ux(r) = BxePx(z)+ Qxep() (2.30)
Vx(z) = Q%oPx(x)+ Cxop(z). (2.31)

Thus,
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Now we use (ZZ3J) and multiply it from the left with Ux(2)” and from the
right with ®x(y). Then we get

Ux(ﬂﬂ)TAX,@BX,cbq)X(y) + Ux (x)TPXng)(I)X(y) = UX(x)T(I)X(y)-
If we use (Z30) and (ZTIH), we get
Ux(2)" AxeUx (y)—Ux(2)" Ax s Qx.ep(y)+p" (2)Q% 6 Px (y) = Ux (2)" Px (y).
If we replace the value of UL (x) from [Z30) we get

Ux ()" AxeUx (y) — Ux (2)" Ax 6 Qx.0p(y) + p" (2)Q% 6 Px (y)
= % (2)Bxa®x(y) + " (2)Q% o1 (y)-
Hence,
Ux(2)"AxoUx(y) = @%(2)Bxae®x(y)
+Ux (2)" Ax,0Qx,0p(Y)-
This is still somewhat unsymmetric, but we can insert (230) into the final
term again, use (Z28) and ([Z29) to arrive at a symmetric kernel

Ux(z)"AxoUx(y) = ®%(2)Bxe®Px(y)
+p(x)"Cx op(y)

(2.32)

which might be worth investigating.

2.6 Space decompositions

Here we want to derive some properties of the span of spaces spanned by
the Lagrange basis function Ux(x) and the complementary vector Vx(x) of
functions.

As before, let ® be a conditionally positive definite function on 2 of
order m, and let P¢ the space of d-variate polynomials of order up to m with
dimension (). Furthermore, we keep our standard hypothesis relating m and
X as stated after Proposition

We define some linear spaces by :

U* = span {u;...,uy} with dim U* =N
V* = span {v;...,vg} with dim V* <Q
P* = span {p...,pg} with dim P*=Q

W* = span {®(zy,-),...,P(zn, )} with dim W* < N.
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The first dimension equation dim U* = N follows from the linear indepen-
dence of Lagrange bases, while dim P* = () is true by definition. Our goal
here is to prove

and it is hypothesized that the dimension of that space is N + ). This
question is not addressed in the literature. In case m = 0 we have U* = W*
with dimension N and there is nothing to do. Thus we assume m > 0 in this
section.

For handling the additional condition for positive order m, we define Lx as
in (ZZI) by
N
Ly ={a €R" | > ap(x;) =0 forall pePi}. (2.33)

i=1

With these notions and hypotheses, one can define the interpolation space
as

S* = ]P)Zl + {i Oéjq)(l'j, ) | o € Lx} (234)

j=1

and some mappings by
T fe(f(z)..., f(zn))
N
L+ Tfe > () f(z))
j=1

N Q
j=1 k=1

where o € Lx and 3 € R? are solution vectors of the system (ZX) when we
replace fx by T'(f) there. Then the mappings have the domains and ranges

I, : RYN — U*
I, : RY — S*

Lemma 2.15 We have I, = I5.
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Proof: It is easy to start with the definition of the map I :

N Q
L(Tf) = Zaj@x(-, ;) + Zﬁkpk(')

- a§@X(-)T+ﬁ§p(-)
() (%)
= (5) A (T0)
(okAex+BYPE , okPx) ( %E; >
= (akdsx + BXPOUx () +ak Py V()
(

Q§A<I>,X + ﬁ;Pg)UX(')
fUx ()

= > u(f()

— LT

Lemma 2.16 The maps I, and I, are isomorphisms RY — U* and RY —
S*=U".

Proof: We first prove that the map [; is injective. If I;(Tf) = 0, we use
the Lagrange property u;(z;) = d; to get I;(T'f)(x;) = f(z;) = 0 for all j,
thus T'f = 0. Consequently, also I5 is injective. Furthermore, the mapping
I; clearly is surjective, again due to the Lagrange property. Thus both maps
are isomorphisms between RY and U* C S*. For the surjectivity of I,, take
some s in S* and interpolate its values fy := T'(s) using the system (ZH).
Since interpolation is unique, we get s(z) = s;x(z) for all z € Q. Then
s(z) = Iy(fx)(x) = [1(T(s))(z) = s(x) for all z € Q, and s is in the range of
I; and I,. Finally, this proves U* = S*. O
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Corollary 2.17 We have
dim S* =N = dim U™.

Lemma 2.18 We have

Proof: From the map P : RY — R? we conclude
N = dim RY = dim kern(P%) + dim PL(R9).

Since our general assumptions following Proposition imply rank Py =
Q < N, we have dim (PL(R?)) = Q. Hence

dim kern(Py) = dim Ly = N — Q.

Theorem 2.19 We have

Proof: We look at the system (EZI0). Since the full matrix Ag x is non-
singular (invertible), then the space that is spanned by the components of
Ux(z) and Vx(z) equals the space that is spanned by ®x(z) and p(x). This
means

U+ V*=W*+4 P~

The next step would be to prove that
dim (U*+V*) = dim (W*+ P*) = N 4+ Q.

This is not easy, because it requires a proof that functions in W* are linearly
independent and the sum in W* 4+ P* is direct. It is an open problem to
prove this in general.

To end this chapter, we give a partial proof in case of translation-invariant
Fourier-transformable kernels.
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In particular, our first goal is to prove that dim W* = N. This requires
to prove that the functions ®(zy,.),...,®(xy,.) are linearly independent
over (). For that, we specialize to the case where ¢ : R, — R is a univariate
real-valued function used as a symmetric (conditionally) positive multivariate
function @ : R x R? — R via ®(x,y) = ¢(||x — y||2) for all (z,y) € R x R?
in order to employ for our proof the analysis of Fourier. First, we will define
the Fourier transform of a function as

Definition 2.20 For f € L, and w € R? we define its Fourier transform by

~

fla) = @m=" | f(w)e™ @ dw

And we define the inverse Fourier transform by

flz)=@m) "2 | flw)e™ “do.
Rd

To reach our proof, we have to modify the notion of the Schwartz space § is
the sense of this definition:

Definition 2.21 For m € Ny the set of all functions v € S which satify
v(w) = o(||wl|5") for ||w|l2 — 0 will be denoted by S,,. i.e:

Sm={r€8 | 7w)=o(llwl3"), forall |lw|>— 0}.
Now we give this theorem

Theorem 2.22 Let ¢ : R, — R be a univariate real-valued function used
as a symmetric (conditionally) positive definite multivariate function ® :
R? x RY — R via ®(z,y) = o(||x — yl|2) for all (z,y) € R x R? such that ¢
exists. Then the functions ®(xq,.),...,®(zy,.) are linearly independent on
R,

Proof: Let {ay,...,an} € RY be such that

N
Z Oéj@(l’j, ) =0
j=1

and we will prove that o; =0 for all 1 < j < N. We then have

N N
0= Z@jq)(xj,w) = Zajqﬁ(ﬂxj — wl|2) for all w € R%.
j=1

j=1
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For every test function v € SN C(R?\ {0}), we have

N
= > asélle ~ i)
Then v
D=0= [ ST o

since 7 is in C5°(R?\ {0}). Then we get for all w # 0

N
([ 112)(w) Y~ e = 0.
j=1

—

Since ¢(||.||2) > 0 (because ® is (conditionally) positive definite), then
N
for all w € R? : Z aje’“"Txf =0.
j=1

But since the e=®"% are linearly independent over any open set, we get
a; = 0.

]
Now we want to prove that the sum of W* and P* is direct. For that we use
this lemma:

Lemma 2.23 Let p be a polynomial of degre less than m. Then for every
test function v € S,,, we have

/R @A) =0,

Proof: Let us assume that p has the representation p(z) = Z\nl < O
Then

[ @At = 3 ai [ o))

n|<m

= > ai M [ Dny(w)da
nl<m Re

= (2> a,i " Dy(0)

| <m

= 0
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because v is in S,,,. O

Proposition 2.24 Let ¢ : R, — R be a univariate real-valued function
used as a symmetric (conditionally) positive definite multivariate function
d: R x R — R via ®(x,y) = ¢(||lx — yll2) for all (z,y) € RY x R such
that ngS exists. Then under the preceding notation, the sum of W* and P* 1is
direct.

Proof: We just must prove that the Zjvzl a;P(-, z;) is never a polynomial.
For that, we suppose that we have

> ag@(;) = ().

J=1

Then for all w € R?, we have
N
> " ao(llw — z4l2) = p(w).
j=1

If we choose a test function v in the space S,, N C5(R?\ {0}), we get for all
w € RY

/Rd p(z)7(x)dxr = /Rd Z&jqﬁ(ﬂx — %Hz):y\(x)dw

Using Lemma 223 this vanishes, and we get
N
~ o —iwTx;
0=0= [ BL1)) 30 ase ")
j=1

since 7 is in C5°(R?\ {0}). Then we get for all w # 0

N

OI-l12) (@) D~ e = =0,

j=1

and the rest of the proof proceeds like in the previous theorem. a
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Corollary 2.25 Let ¢ : R, — R be a univariate real-valued function used
as a symmetric (conditionally) positive definite multivariate function ® :
RY x R? — R via ®(z,y) = ¢(||z — yl|2) for all (z,y) € R x R such that ¢
exists. Then under the preceding notation, we have

dim V* = Q.

Proof: From and Z24 one now knows that the sum of W* and P*
is direct. Hence, applying 219, one gets dim U* + dim V* = dim W* +
dim P* = N + Q. Since dim U* = N then we get dim V* = Q. O



Chapter 3

Native Hilbert spaces for kernels

In the previous chapters, the discussion focused on the general interpolation
problem in a context of Linear Algebra. Here, we look at the background
in Functional Analysis. On one hand, all Hilbert spaces of functions with
continuous point evaluation lead to a positive semidefinite kernel, but, on
the other hand, all conditionally positive definite kernels are (in a somewhat
generalized sense) reproducing kernels in a specific Hilbert space called the
native space for the given kernel.

Consequently, the first section of the chapter proceeds from a Hilbert space
of functions to its reproducing kernel, while the second section starts from a
kernel and constructs its native Hilbert space. The results are mainly taken
from the literature and compiled here for use in the following chapters.

Then we describe the transition from a conditionally positive definite kernel
to an unconditionally positive definite kernel, and characterize their related
native spaces. This is done in two steps, and the new kernels are called the
normalized and the extended kernel. The first case is closely related to the
power kernels of the next chapter.

3.1 Reproducing kernel Hilbert spaces

Let  be some domain in R¢.

Definition 3.1 Let H be a space of functions f : 2 — R. We define the
point evaluation functionals §, for f at x € Q by 0.(f) = f(x). Then all
0, are in the algebraic dual space of H for all x € ).

30
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Theorem 3.2 Let H be a (real) Hilbert function space over Q) with an inner
product (.,.)g, and assume that all 0, for x € Q are continuous, i.e. they are
in the topological dual space H*. Then, for all x € ), there exists a unique
element k(x,-) € H such that the reproduction equation

(f k(z, ) m = f(x) = 6.(f) for allz € Q, f e H (3.1)
holds.

Proof: The Riesz representation theorem for Hilbert spaces gives the exis-
tence and the uniqueness of the function k(z, -). O

Definition 3.3 Let H be a real Hilbert space of functions f : Q2 — R. A
function k : 2 x Q — R s called reproducing kernel for H if

a) k(xz,) € H for all x € Q

b) f(x) = (f,k(w,.))H for all f € H and x € Q.
A Hilbert space with a reproducing kernel is called a reproducing kernel
Hilbert space.

Theorem 3.4 Let H be a (real) Hilbert function space over Q with a repro-
ducing kernel k. Then the kernel has the properties

a. k(zx,y) = (k(z,-),k(y,-))n for all z,y € Q

b. k(z,y) =k(y,x) forallz,yecQ

c. k(z,z) =|k(z,)||% >0 forallz €Q

d. |k(z,y)| < VE(z,2)\VE(y,y) for all 2,y € Q.

Proof: The reproduction property (BI) implies
(k(y7 ')7 k(LC, ))H = k(y,l’) for all T,y € Qa

and then all assertions follow from the properties of the real-valued inner
product on H. In particular, the final assertion is the Cauchy-Schwarz in-
equality. O
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Proposition 3.5 If a reproducing kernel k of a Hilbert space H exists, then
it 1s uniquely determined.

Proof: Suppose that there exist two reproducing kernels ®; and ®,. Then
we have from the definition

(f, O, (z,.) — Bo(z, .))H —Oforall feH, zcQ.

If we set f = ®y(z,.)—Py(x,.) then we get || Py (z,.)—Po(x,.)||% = 0 for all z €
0, hence &, = &,. O

Theorem 3.6 Let be H a Hilbert space of functions f : 0 — R. Then the
following statements are equivalent:

a)- The point evaluation functionals are continuous, i.e. in H*.

b)- H has a reproducing kernel k.

Proof: a)- to b)- : This is Theorem B2

b)- to a)- : From 6,(f) = (f,k(x, )) and the continuity of the inner
H
product in H it immediately follows that ¢, is continuous. O

Theorem 3.7 Let H be a (real) Hilbert function space over ) with con-
tinuous point evaluations. Then the unique reproducing kernel k of H is a
positive semi-definite function in the sense of Definition 2. If, in addition,
all selections of finitely many point-evaluation functionals in H* are linearly
independent over H, then k is positive definite.

Proof: We select N € N and N different points z1,...,xy in €. Let

aq,...,ay be arbitrary real numbers. Then we have
N N N N
S gk a) = 0> aey(ka, ), k(ag,))e
i=1 j=1 i=1 j=1
N N
= (Zaik(xia')azajk(xﬁ’))
i=1 j=1 I

N
= | ekl )
i=1

>0 .
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Now suppose that & is not strictly positive definite. Then there exist N

distinct points 1, ..., 2y in Q and a nonzero vector o in RY such that
N N N
SO awagh(enay) = 0= |3 aik(a, ).
i=1 j=1 i=1

Thus we have sz\il a;k(x;,-) = 0 as a function in H. From the reproduction
property, we get

0 = (f,z&zk(l'z, ))

H

for all f € H. This shows that the set of point-evaluation functionals
Ozqs- -+, 0zy 1s linearly dependent. a

The following observation will be the starting point of the next section, be-
cause it allows to define an inner product, given a positive definite kernel.

Corollary 3.8 Let H be a real Hilbert space of functions on some domain (2,
and let point evaluations be continuous and linearly independent, such that
a positive definite reproducing kernel k exists uniquely. Then the coefficients
o, B of functions of the form

N

fla) = ash(a,ay), g(e) = Y ke )

k=1

are uniquely determined, and an inner product can be defined by

(f,9) = Z Z o Bk (5, yr)-

j=1 k=1
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This inner product coincides with (f, g)u, and thus it has a continuous ex-
tension to all of H.

Proof: This follows easily by using property a) of Theorem B4 and evalu-
ating the inner product like in the proof of Theorem B O

An early source of further information on reproducing kernel Hilbert spaces
is Meschkowski [20].

3.2 Native spaces

The previous section has shown that each Hilbert space H of functions on
some domain (2, which is useful for interpolation, i.e. if it has continuous and
linearly independent point evaluations, leads to a positive definite function
k being the unique reproducing kernel of H.

Our goal now is to turn this upside down: For each positive definite function
® on some domain ) it turns out that there is a Hilbert space Ny, which
will be called the native space for ®, such that ® is the reproducing kernel
of Hgy. Of course, we need as much information as possible about this space,
because it is necessary to know the underlying Hilbert space in order to assess
the optimality properties of the reconstruction process.

This one-to-one correspondence of positive definite functions and reproducing
kernels of Hilbert spaces is nice and useful, but it omits some very important
kernels, namely the ones which are conditionally positive definite of some
positive order m, like the multiquadric and the thin-plate spline. Thus one
needs an extension of the theory of reproducing kernel Hilbert spaces that
allows a one-to-one correspondence to conditionally positive definite kernels
via a generalized notion of the reproduction property. For more information
about the association of a Hilbert space to each conditionally positive definite
function we must go back to the analysis of Madych and Nelson [I'7, [I8) [T9).
The practical advantage of all of this is that all useful conditionally positive
definite functions ®, which were constructed without any relation to a Hilbert
space, can be investigated thoroughly within their native space, once the
latter is defined and characterized. The native space, in the conditionally
positive definite case, turns out to be a Hilbert space plus a finite-dimensional
space.
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Thus this section begins with the construction of the native space associated
to a (not necessary radial) basis function or kernel. Starting from the kernels
themselves, the general construction of native spaces is carried out for both
the unconditionally and the conditionally positive definite case. The first step
is to define suitable pre-Hilbert spaces, the second step is their completion,
and then we have the Hilbert spaces we want, and which form part of the
native space.

For unconditionally positive definite kernels, we could follow the argument
from Corollary B.8 to define an inner product which can be extended to a full
Hilbert space by completion. But we want to handle the conditional positive
definite case, which is not covered by the previous chapter.

We start with a slight generalization of Definition 223, replacing P¢ with a
general subspace P:

Definition 3.9 Let Q be a subset of RY, and let P be a finite-dimensional
subspace of continuous real-valued functions on ). A function ® : QxQ — R
15 called conditionally positive semi-definite on () with respect to P, if for
any finite set of points X = {x1,...,xn} in Q and for all o = {ay,...,ay}
in RN satisfying the additional condition

N

Z@jp(xj) =0 forallpe P (3.2)

j=1

the inequality (Z2) holds. A function ® will be called conditionally pos-
itive definite with respect to P, if the quadratic form in (Z2), defined on
the subspace of vectors « satisfying the above moment condition, is positive
unless o 1s zero.

From here on, and until the end of the dissertation, let & : 2 x 2 — R be a
conditionally positive definite kernel with respect to P. We remark that the
considerations in Chapter 1 remain true if we use the above generalization.
In analogy to the previous chapters, we shall always assume interpolation sets
X = {x1,...,zx} to contain a P-unisolvent subset, i.e. there is no nonzero
function p € P which vanishes on all of X.

The key point now is to take (B:2) to define a space of functionals first.
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Definition 3.10 We define the space of all linear functionals Lp(SY) with
finite support in Q) that vanish on P,i.e:

Lp(Q) = {dax | Aax(f) = Z%‘f(%‘)» Aax(P) = {0}}, (3.3)

where arbitrary finite sets X = {z1,...,xn} C Q and coefficient vectors
a={ai,...,an} € RY are allowed within the definition, provided that they

satisfy (Z2).

A functional \, x € Lp(2) is supported on the finite subset X = {z1,...,zx}
of ), has the coefficients o € RY and satisfies (B2). Note that N, o and X
can vary freely under this constraint.

Proposition 3.11 Let ® : () x Q2 — R be a conditionally positive definite
kernel with respect to P. If we define the bilinear form

N M
Maxs Agy)e = N Ay @2, y) = D 0> 0B (a), i) (3.4)

j=1 k=1

on Lp(S2) for arbitrary Ao x, A\g,y in Lp(2), then the space Lp(§2) becomes a
pre-Hilbert space equipped with the inner product (.,.)s.

Proof: By elementary calculations. a

We could go to a Hilbert space completion of Lp(Q2) immediately, but we
postpone this step a little while.

The space Lp(f?) is a fine pre-Hilbert space, but it contains functionals, not
functions. We want a pre-Hilbert space of functions instead. An easy way to
go from functionals to functions is to define

N

Prox () = Nox®(,2) = Y ay®(,a5) (3.5)

j=1
for arbitrary functionals A, x € Lp(2). This can be written via a linear map

S@ . LP(Q) — S@(LP(Q))

Aax — frax () =N xP(,2) (3.6)
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which yields functions on €2 which have point evaluations, but we do not know
whether the point evaluations will turn out to be continuous in our future
native space. In particular, point evaluations are generally not contained in
Lp(Q2) unless P is the zero space, and thus we must be careful to apply point
evaluation functionals to fy, ,. Instead, we should apply functionals of the
form \gy € Lp(£2) to fi, , in order to get the fundamental identity

)‘ﬁ,Y(f)\a,X) = )\gvy(Scp()\a’)()) = ()\@y, )\a7x)q> for all )‘Q,Xv )\@y € LP(Q)
(3.7)
Since point evaluations need not be continuous in case of conditionally pos-
itive kernels of positive order (or, more generally, for the case P # {0}), we
need a workaround for point evaluations.

Assumption 3.12 For our finite-dimensional space P of functions on €2
there is a fized finite subset Z = {z,...,29} of Q and a (Lagrange) basis
D1, .. .,pg of P which satisfies

Q

() =mp@)() = Y0 (Ip(z).

j=1
forallp € P and p;i(z;) =6, for all1 <i,5 < Q = dim P.

Such aset Z = {z1,..., 20} C Q is often called unisolvent for P. We assume
the above hypothesis from now on.

Definition 3.13 On any space H of functions on ) we define a projector
Tp H—P by

Q
(7e(N) @) =D pu@)f(2) forallweQ, feH.

Then f — mp(f) always vanishes on Z.

Definition 3.14 For each x € 2 let 6,y € Lp(Q2) be the functional defined
by
o) = (6 = T (@), ) ()
= f(z) —7p(f)(z) forall f € H, x € Q.
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This is a very useful variation of the standard point evaluation ¢, at x which
is not in Lp(£2) while d(,) is. In addition, we have
d(f)=0forall z, € Z, fe H (3.8)
because py(z;) =0, 1 < j,k < Q.
Lemma 3.15 a)- For all functions f on Q we have
J€P <=6 (f) =0 forall x €.

b)- PN{fa.x : dax € Lp(Q)} = {0}.

Proof: a) This follows immediately from Assumption and Definition
514
b) Let fy, , be a function in PN {fy, , : dax € Lp(2)}. Then

f/\aX EP - >\CVX f)‘aX Z&Jf/\aX x]

N N
— ZZaakCD (g, z;) =0

Jj=1j=1

or since A\, x € Lp(£2), we conclude A\, x = 0. Hence, fy, , = 0. O

Now we can define the map

R@VQ . LP(Q) — R@yQ(Lp(Q))

Roo(ax)(@) = <)\a7x, 5@))@ forallz € Q Ay € Lp(@) 9

where now Re o(Lp(§2)) is a space of functions on 2 vanishing in the points
21y -5 RQ-
>From the equation (B7) we get

Lemma 3.16 The mapping Re o can be expressed as

Ro0(ax) (@) = 8 (frax )
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Note that we distinguish between S of (B8] and R . Both maps result in
functions on 2. But usually

Ro0(Aax)(2) = 0@) (faa x) 7 02(frex) = fro x () = Sa(Aax)(z)  (3.10)

unless P = {0}, @ = 0, though both sides are well-defined. The left-hand
side of this non-equality will extend to the closure of Rg o(L,(2)), while the
right-hand side does not extend easily. The left-hand side always vanishes
on the points 21, ..., 2g, while the right-hand side does not necessarily have
this property. However, both sides differ only by a function in P.

Theorem 3.17 For all A\, x, \gy € Lp(Q2) we have the fundamental prop-
erty

Aoy Bog(ax) = (s Asr)e = Aa (frux )
Proof: For all A\, x,A\gy € Lp(£2) we use Lemma to get
/\6,Y<R<I>,Q(/\a,X)(')> = )\ﬂ,Y(
= 2y (Prx ) = Aar (1))
(

= Mgy iajq)(.,xj»—)\g,Y(WP(an,x)(-»

J=1

M N
= Z Z O[jﬁi@(yiv xj)

-
I

N
<
I

—

= )\Oé,Xy Aﬁ,Y)@

because 7p(fi, ) € P and Mgy € Lp(Q2). O

Note the similarity between (BX) and Theorem BI17

Theorem 3.18 The map Req is injective on Lp(§2).
Proof: Take A\, x = Agy € Lp(Q2) in Theorem BTT to get

Mo (RaoAax)() = [Aax]3 = 0.

This proves the assertion. a
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Definition 3.19 We can define an inner product on the space Re o(Lp(§2))
by

<R<I>,Q()\a,X)a R@,Q()\ﬁ,Y))q) = (Aa,x, Agy)o for all \y x, Agy € Lp(Q)

which turns the space Ro o(Lp(S2)) into a pre-Hilbert space which is isometric
to Lp(Q2) via Req. In both spaces we use the same notion for the inner
product.

In Theorems BT1 and in Definition BTt is allowed to use Sg ¢ instead
of Ry o. However, this replacement fails from now on, because now we want
to go from pre-Hilbert spaces to Hilbert spaces by abstract completion.

Definition 3.20 The completions of the two pre-Hilbert spaces Lp()) and

Ro o(Lp(S2)) with inner products (., .)o are denoted by Lo p(2) and Re o(Le p(£2)),
respectively. The new inner products are also denoted by (.,.)e for simplic-

ity, and the continuous extension of the isometry Re o to the closures will be
denoted by Ro .

The continuous linear functionals 6,y € Lp(Q2) for all z € Q extend continu-
osly to Lo p(2) with the same notation. Furthermore, Theorem B.T7 extends
to the closures to yield

a(Roa(B)) = (a, B)e for all a, B € Lo p(Q). (3.11)

In particular, we can use this identity to interpret an abstract element Re o(3) €
Roa(Ls p(€2)) as a function via

R@J}(ﬁ)(l‘) = 5@)(7?@7@(5)) = (5@),&)@ for all x € Q, ﬁ € ‘C(p,P(Q).
(3.12)
In this sense, the abstract space Re o(Lo p(§2)) is a space of functions on
2 which vanish on Z. If such a function g € R a(Le p(2)) is written as
g = R@VQ(ﬁ) with ﬁ € ,C<1>7P(Q), then

Hence, after this technical interlude, we are able to define the native space
of the conditionally positive definite kernel ® as
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Definition 3.21 The native space to a symmetric kernel ® which is condi-
tionally positive definite on 2 with respect to P is defined by

N@(Q) = Rq;vg(ﬁqnp(g)) + P (314)

Lemma 3.22 The sum Roa(Le p(2)) + P of spaces of functions on ) is
direct.

Proof: Any function p € P which is also in R o(Le p(2)) must vanish on
Z. Since Z is unisolvent for P, the function p must be zero. O

Lemma 3.23 For all functions [ € No(Q) we have

f—7p(f) € Roa(Las r(S2)).

Proof: If we write f = g+ p with p € P and g € Rea(Ls p(2)), we find

mp(f) =7mp(g+p) =7p(9) +7p(p) =p=f —9,

and thus f — 7p(f) = g € Roo(Lo.r()). O

Definition 3.24 The native space Ng(§2) has a semi-inner product defined
as

(f, 9@ = (Ran(f —7p(f)), Raalg — mp(9)))e for all f,g € No(Q),

(P, Nw) =0 forallp € P.
Definition and Lemma allow us to ensure that

1f vt = Ilf = 7p(f)lle for all f € No(Q).

Note that ||f||¢ is undefined for f € Ng(Q) if ® is Conditionally positive
definite kernel.

To derive further properties of the native space, we need to include a general-
ized notation of the reproduction equation (BIl). We do this first by sticking
to the original kernel ®, while the next section provides a new kernel which
allows a somewhat nicer reproduction formula.
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We use the isometry property of Rg o to get
(a,0))e = <R@7Q(OJ), R¢7Q(5(m)))q> forall o € Lo p(R2), x € Q. (3.15)

With Lemma we can take an arbitrary f € Ng(Q2) and insert o :=
Reo(f = mp(f)) to find

(Raalf =mr(f).0w)e = (RealRaa(f —mr(£): Realw))

= <f - 7TP(f)a,R/‘:I>,§2(5(:zc))>q)
= (f—mp(f))(2)

for all & € Lo p(R2), x € Q, using (BTF). This proves

(3.16)

Theorem 3.25 Every function f in the native space Ng(Q2) of conditionally
positive definite function ® on a some domain ) with respect to a finite-
dimensional function space P has the representation

f@) = (mp(f)(x) + (f = 7p(f), Roaldw))e
= (mp(N))(@) + (f;Re.0(0@))ns@-

for all x € €.

This is very much like a Taylor formula. Furthermore, the above reproduc-
tion formula suggests to use the function Re 0(d())(y) = 9 Raen(d)) as a
kernel. We shall do this in the next section. Before that, we still have to
look at the dual space of the native space:

Theorem 3.26 The functionals which are continuous on N () are ezactly
those which vanish on P and coincide with functionals from Lo p(2) on
Roa(Lae p()). Thus the dual space No(Q)* of No(Q) can be identified with
Roa(Le p()), defining the values of functionals from the latter space to be
zero on P.

Proof: Let A be a continuous linear functional on Ng(f2). Then there is a
nonnegative constant C' such that

A Rea(B) +p)| < ClRea(B) + plnve@ = CllRea(B)le

forall pe P and all § € L p(2). Thus A vanishes on P and coincides with
a continuous linear functional on R4 o(Le p(2)). O
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We now generalize the reproduction formula to general functionals:

Theorem 3.27 For all elements o € Ng(Q)* = Lo p(Q) and all functions
f € No(Q) we have

of) = alf =me()

|
X
&
o)
o
:_/
Kh
|
3
)
=
g

Ra.0(), [)Ne(©)-

Proof: Use Theorem B26) Lemma B23 equation (BII)) and the isometry
property of Rg q. O

We end with the general formulation of the standard orthogonality condition
stating that an interpolant is always orthogonal to the error function:

Theorem 3.28 Define the space
SX@ =P+ {Rq>7Q()\a7X> : )‘04X € LP(Q)}

for a fized finite set X satisfying the hypotheses of Proposition [Z8l. By the
second chapter, this is the space spanned by all interpolants to functions [ €
No(Q) by functions from P and translates of ®. Then the sum

No(©) = Sxo +{f € No(Q) : f(X) ={0}}

is orthogonal with respect to (.,.)n,(@). In particular, if sy x o interpolates f
on X using Y, then

= SfX,® J—/\fq>(Q) SX,<I> (3 17)
1R = If = spxalim@ + 1srxellin @

Proof: Take an f € Ng(Q2) with f(X) ={0} and an s = p+ Re o(Aax) €
SX@ with )\a,X € LP(Q) Then

(f, 3)/\/@(9) = (f—7p(f),s —7p(s))e
(f - WP(f)7Rq>,Q()\a,X))q>
/\a,X(f - WP(f))

Sa,x(f) ~ Aax(mr(f))
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]
Note that it is in general not valid to replace (.,.)xs @) by (.,.)s here, not
even for the term || f — s¢ x.o||. The reason is that f —ssx ¢ = (Id—7x)(f),
with sfxe = 7x, is not necessarily of the form g — wp(g) with g € Ng(9),
and this is equivalent to the fact that mp(f — 7mx(f)) does not necessarily
vanish, because the two projectors mx and 7p do not necessarily commute.
However, if Z C X, one has ||f — sy x oo = ||/ — sf.x.0/ap) because the
above argument does not fail.

Another similar pitfall occurs when interpolating a function f € Ng(Q) with
f(Z) = {0}, e.g. a function from R¢ o(Le p(£2)). Then the interpolant sy x
will not necessarily lie in Ry o(Lp(€2)) or vanish on Z unless Z C X.

3.3 Normalized kernels

We keep all notations of the preceding section.

Definition 3.29 We define a kernel function h : 2 x 0 — R by
h(z,y) = ) Re.a(0w) = (Ra.(0@))(y) for all z,y € Q.

This kernel will be called the normalization of .

Note that we can take Rg o here and do not need the continuous extension
Ra.0, because the functionals d(,) and () are in Lp(€2).

Proposition 3.30 From (Z13) and (Z173) we get another representation of
h(.,.) by

h(l‘, y) = (5@), 5(y)>q> = (R@,Q(é(x))a R‘P,Q((s(y))),/\/lp for all T,y € Q.

furthermore

Tp (h(,x)) =0 forallzx e Q. O

Proposition 3.31 The function h(.,.) satisfies the property

h(l‘,y) = (h($7 ')7 h‘(vy))CD for all T,y € Q.
Proof: This combines Proposition B30 and Definition O
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Proposition 3.32 Let ® be a conditionally positive definite kernel on ().
Under the preceding assumptions, the function h(z,y) = (0(z),0u))s can be
erpressed as

Q Q
h(l‘,y) = Z z]a Zpk(y)q)(xwzk)

j=1 k=1

QR Q
+Zzp] Z],Zk)

7j=1 k=1
= <Id - 7Tp> (Id - 7Tp>ycl>(x, Y)
for all x,y € Q.
Proof: We start with the form of h in Proposition B30 and get

h(zy) = (5@), 5<y)>

<I>
Q
— ij Z]) Zpk‘(y)@(x,Zk)
k=1
+ Z me)pk(y)cb(zj, )
Jj=1 k=1
from () and Definition BI4 ]

Our reason for giving some of the details here is that we need to observe
from (B8) that for all 1 < & < @ we have h(., z;) = 0 because py,...,pg is
a Lagrange basis for P with respect to the points 21, ..., 2.

We now can rewrite Theorem £.25] in a simpler form:

Theorem 3.33 For all functions f € Ng(2), and under the assumption
[Z13, we have

fla) = @r(f)@) + (h(e,).f)  foralle Q.0
Na(Q)
Theorem 3.34 The bilinear form (.,.)n, defines an inner product on the
Hilbert space

Mo =NoN{f €Ns(Q): f(z) =0, 1<k <Q}
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which has h(.,.) as reproducing kernel.

Proof: The space Mg coincides with Re (Lo p(§2)) due to Lemma
Thus it is a Hilbert space under (., .) which is isometric via R¢ o to Lo p(€2).
But for all g € Reoo(Le p(£2)) we get from Theorem and Lemma
that

9(2) = (9,h(z, Do = (9, h(z, D

holds for all = € 2. The inner products (.,.)s and (.,.)x; @) coincide on this
Hilbert subspace of the native space for . O

Since h is a reproducing kernel, it is a positive semidefinite function due to
Theorem B if the point evaluation functionals are continuous. But we can
prove more:

Proposition 3.35 The function h is unconditionally positive definite on €0\
Z.

Proof: Let A\, x = {a1,...,an} € Lp(f2) be a functional with the support
X =A{zy,...,zp} CQ\ Z. Then the functional defined as A\, x(Id — wp) €
Lp(£2) is supported on 2 and vanishes on P. Hence if we look at the quadratic
form of the function h we get for all z and y in 2

NN bz, y) = (AQ,X(Id - m)x (AQ,X(M - Wp))ycb(l', y) > 0.

Thus h is positive semi-definite. We now assume A\j, (A}, xh(z,y) = 0. Then
Aa.x(Id — mp) = 0 because P is conditionally positive definite. Thus, for all
functions f on {2 we have

M Q
0=Dax(Td=7p)() = D ay(f(as) = Y pilay)f ()
M Q M
= Y apflay) = 3 1) (3 cmela)
j=1 k=1 Jj=1

Then, we get automatically

M

> af(w) = i f(zx) < > Oéjpk(%')>-

j=1 k=1 7j=1
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And since the functional A, x is supported on X € Q\Z, we have Z;‘il a;p(z;) =
0 for all k, 0 < k < Q. This implies A\, x € Lp(£2). Hence,

Aax(Id—mp) = AgxId = 0 implies A\, x = 0.

Corollary 3.36 Using Theorem and Proposition [Z.33, the space Mg
is the native space of the unconditionally positive kernel h(.,.) on Q\ Z. O

We add a result concerning continuity of functions from the native space:

Proposition 3.37 Let & : Q2 xQ — R be a continuous conditionally positive
definite function on ) with respect to a space P of continuous functions on
Q, and assume [ZIA Then all functions f in Reo(Le p(2)) are continuous
on €.

Proof: Since ® and all functions in P are continuous, then applying (B:23])
one can deduce

@) = fW) = |mef@) + (f = 70(F). Road) |
—mp(f) () = (£ = 7p(f), Ragd) |

< e (@) = 7p )] +1(f = 7p(f), Raad — Rl ) |
Q

< Z k(@) — Py f (21)]
k=1

+f = 7p(f)lle| Re,0d(w) — Roady)) e

If the final expression is continuous in = and y, then f is continuous on (2.
But we have

|Re00(z) — Roodu)lls = [[Readwlld + [[Ready) |l — 2h(z,y)

and this is continuous due to Proposition B.32 a
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3.4 Extended kernels

In the previous section, we started from a conditionally positive definite
kernel ® on ) with respect to P and we constructed a native space Ng(Q2) for
® on which the normalized kernel function A(.,.) is a generalized reproducing
kernel in the sense of Theorem The native space for ®, however, was
not a Hilbert space, because it carried only a semi-inner product. The new
kernel had a native Hilbert space, but on Q\ Z, where Z was a unisolvent set
for P. This calls for a new kernel ®p, now unconditionally positive definite
on all of , such that the native space Ng(£2) of ® coincides as a vector space
with the native space of ®p, carrying now an inner product that is closely
related to the previous semi-inner product (.,.)q.

Definition 3.38 Under the assumptions made so far, we pick a fized unisol-
vent set Z = {z1,...,2q} for P and a Lagrange basis p1,...,pg of P. Then

we define o
(£.9), = D Feglz)

k=1

Q
Sp(w,y) = h(z,y)+ > nl@ny)

for all functions f,g € No(Q) and all z,y € Q.

At this point, one is tempted to use ® instead of h in the above definition of
the kernel, in order to avoid the point set Z to enter into the kernel. However,
it turns out that one has difficulties proving positive definiteness in that case.

Theorem 3.39 The native space No(Q2) to a conditionally positive definite
kernel ® on 0 with respect to P carries the inner product

(fv g)q)P = (f7 g)N@(Q) + <f7 g)P
= (f =g =7r(@)e + (ne(f).7r(9))
for all g, f € No(Q). Under this inner product, the decomposition of the

native space No(QY) of ® in (FI4) is an orthogonal decomposition. The
bilinear forms (., .)ao, (.,-)op, and (., . )nm() coincide on Reo(Le p(£2)).
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Proof:
The bilinear form (., .)s, is positive definite because for an [ € Ng(2) with
(f, f)o, = 0 we have

Q
0= (f.Hop = (£ Nraiey + D @)
k=1
But then (f, f)ap@ = 0 and f € P, and f(2;) = 0 hence f = 0. Thus
(.,.)op is positive definite. The rest is simple. O

Theorem 3.40 The native space No(Q2) to a conditionally positive definite
kernel ® with respect to a finite-dimensional subspace P is a Hilbert space
with the extended kernel ®p from Definition [Z.38 as reproducing kernel, if
the inner product (.,.)o, from Theorem [Z39 is used.

Proof: For proving the reproducing kernel property, we have

(f;®p(x; ))ep = (f;®p(x, )na@ + (f; ®p(2,.))p
Q

= (fh(@, Dnae +0+ ) fa)h(z, z)
Q

Q
+ 3 (=) D m(@)mi(z)
=1

k=1
Q
= f(2) = 7p(f)(@) +0+ ) f(z)pu(2)

— f). )

From the reproduction property and Theorem we then know that ®p is
positive semidefinite. To prove positive definiteness, we take a set of points
Y = {y,...,yn} € Q\ Z and vectors 3 = (By,...,0u) € RM and v =
(71, --,7g) € R?. Then we look at the quadratic form

M M Q Q
Z BiBrk®p(yj, yx) + 2 Z Z Bime®p(y;, z1) + Z Vie®r (2, 2x)
Jk=1 j=1 k=1 G k=1
M
= > Bilh(y;ye) +0+0+

jk=1
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Q QR M Q
+Z Z BB (y)pu(yr) + QZZZ@’M% y;)pi(2k)
=1 j,k=1 =1 j=1 k=1
Q
+Z Z Vivepi(z5)pi(zx)
=1 j,k=1

M
= Z BBk (y;, yi) +
J =
Q /M Q 2
+> <Z Bipi(y;) + Z %ZN(%))
=1 \j= =
2
S SUUURARD 3] RS SR
7,k=1
and this is nonnegative, since h is positive definite on Q \ Z due to Theorem

If the quadratic form is zero, then we use Theorem again to
conclude that (3 vanishes. Finally, also v must vanish. a

Proposition 3.41 The interpolation associated to ®p does in general not
coincide with the interpolation associated to P.

Proof: An interpolating function sp to some function f € Ng(f2) in data
points x1,...,xy and associated to ®p has the form

N
x) = Z a;Pp(x, x))
j=1

with no additional conditions on the coefficients. Then we rewrite the inter-
polant as

SP(];) = Z Oéjq)p(l', l’j)

N Q N
= Z a;h(z,x;) + Zpl(lﬁ) Z a;pi(z;)

N
=M
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:lQ N Q N

=Y n@) Yz, ) = Y (x,w) Y api(ey)
_Q " N ) Q -

+ D p@) @z 2m) D apmlay) + ) vm(w)
myl=1 =1 =1

N Q

= Z a;P(x,x;) — Z O (2, )y

=1 =1
Q N Q

+ Zpl(x) (’Yl - Z&j@(zla 95]) + Z (21, 2m) 7. )

= sp(x) —mp(sp(x)) +mp(sp(z)).

The part sp(x) — mp(sp(x)) must necessarily be in Re o(Lo p(€2)), and its
coefficients will necessarily satisfy the constraints

N Q
> apla;) = wp(z) =0,
j=1 =1

which can also be read off the definition of the ~, after putting in the basis
of the functions p,,. It turns out that the interpolant uses functions ®(z, -)
unless all 7, = 0. But when inserting z; into the definition of sp, we see that
sp(2;) = 7, holds. Thus it cannot be expected that all of the v, vanish, if the
set Z is not contained in X = {zy,...,zn}. O

Corollary 3.42 In contrast to the previous theorem, the interpolation asso-
ciated to Pp does coincide with the interpolation associated to ®, if the data
points include the point set Z.

Proof: Under the above additional assumption, the proof argument of the
preceding theorem shows that the interpolant with respect to ®p is of the
same form as the one with respect to ®. Since the latter is unique, the two
interpolants coincide. a
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Corollary 3.43 If the data point set X = {x1,...,xx} for interpolation
includes the point set Z, the interpolant sy x to some function f € Ng(Q)
on the data X with respect to ® or ®p can be calculated as follows:

1. Calculate w(f). This interpolates f on Z.

2. Interpolate f—m(f) in X\ Z using the kernels ®p or h with no functions
from P added, and with no conditions on the coefficients. Call the
resulting function s.

3. Then s+ m(f) = sy x is the solution.

Proof: Clearly, the function s is an interpolant to f — 7(f) on X \ Z, and
it vanishes on Z. Thus s 4+ 7(f) interpolates f on all of X. It lies in the
same interpolation subspace as sy x since it uses nothing else than functions
from P and from the span of the functions ®(-,z;) with z; € X. The addi-
tional conditions on the coefficients must automatically be satisfied because
everything lies in the native space. Thus s+7(f) must coincide with sy x. O



Chapter 4

Power kernels

This chapter introduces another class of kernels. These are data—dependent,
and in the next chapter they will allow to split larger interpolation problems
into smaller ones. They originate from [23] and are closely related to what
is called the power function in the literature. The latter associates to each
point x and each fixed set of points X = {xy,...,zx} of a domain ) and
each quasi-interpolation process f —— s;x the norm Px(z) of the error
functional f —— f(z) — sy x(x) with respect to the native space Ng(f2)
equipped with the bilinear form (., .), (@) Where @ is a conditionally positive
definite function. Note that the power function can be associated to almost
every linear process of approximation or interpolation.

Throughout this chapter, we assume that the function ® : 2 x Q@ — R is
conditionally positive definite on R? with respect to some finite-dimensional
space P of functions on R<.

Looking at the definition of the power function, for example in (|23, 24,
30]), we define a bilinear form which will be denoted by Kx : @ x Q@ — R
generated from a given conditionally positive definite kernel ® and which
characterizes the power function. Several properties of this bilinear form will
be presented, and in particular, it turns out to be a positive definite “power”
kernel on Q \ X. The final chapter of this thesis will then apply the power
kernel to solve large interpolation problems recursively.

93



CHAPTER 4. POWER KERNELS 54

4.1 Construction of power kernels

In this section, we replay the same analysis that we used in the preceding
definition of the native space to create and define a new kernel which will be
denoted as Kx for a set of points X = {z1,...,2n}.

For the rest of this thesis, we assume Z C X to avoid compli-
cations like in Theorem [B.471.

The starting point is to define on 2 C R the point evaluation functional J,
for all x in ) on a space H of functions on €2 as in Definition Bl by

3.(f) = f(x), for all z € Q.

Let & : Q2 x 2 — R be a conditionally positive definite kernel on €2 with
respect to a finite-dimensional space P, as in Definition For this kernel,
we define the native space Ng(Q2) as in Definition BZI] using the bilinear
forms arising from (B4]) and Definition BT

Definition 4.1 Let X = {xy,...,zn} be a set of points in Q and let Ux be
the vector of Lagrange basis functions as defined in Proposition [Z29. Then,
we define a projector wx on any space H of functions on Q) by

N

mx(f)(z) = Zuj((:c)f(xj) =:s;x(x), forallzeQ, feH.

For all sets of points X = {x1,...,zx} C Q and corresponding Lagrange-

type basis uf, ..., ux from Proposition 20, we define

Definition 4.2 For each x € Q we define 6, x € Lp(§2) as

dox(f) = flx) —mx(f)(z) = f(x) — sy x(x) for all f € H.

As we already showed for the functionals d(,) from Definition B.T4, this is a
very useful variation

box(F) = F(2) = mx(H)(@) = (8 = D uf @), ) ().
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of the standard point evaluation at = defined for all functions f on 2. From
([ZI3) and B3)) we conclude that d, x is in Lp(Q2). Furthermore, we have

0z;x = 0 forall z; € X. (4.1)
Now we can invoke the map of (B)to define a function Kx as
Definition 4.3 We define the power kernel Kx(.,.) of ® with respect to
X ={x,...,xn} forallz,y € Q by
Kx(z,y) = 0y x Ro 0(dz,x)-
Note that R o(d, x) is always a well-defined function on €2, but the functions
(So.0(dex))(y) = 0 xP(s,9)
= (Id—7x)i®P(z,y)
N
= ‘D(x y) = 2= uy(z) (x5, y)

(R0 x))(y) = ( ) (R, n() x)
; (Id—ﬂp)‘i[d—ﬂx)iq)(s,t)
5y,X(Rd>,Q(5z,X)) = (Id—ﬂx)s(ld—ﬂx)iq)(s,t)

will usually be different as functions of y. We introduce a notation for the
first case above:

Definition 4.4 We define the functions f, x on € by

fex(y) = 03 x®(s,9) = (Se.0(de.x))(¥)
= O(z,y) - Zz L ui (2)@(xi, y)
= P(z,y) - Ux(2)Px(y)
for all y € Q, with ®x = {®(xy,.),...,P(zyN,.)} from (ZI0) and Ux =
{uy,...,un} from Proposition [Z4

Later, we shall make frequent use of the fact that Re (0, x) and S¢ (6, x) =
fz.x just differ by a function from P.

Proposition 4.5 If the conditionally positive kernel ® s continuous on €,
and if all functions from P are continuous on (), then the functions f, x
are continuous on Q. They always are in the native space Ng(2) because of
5%)( € LP(Q)

Proof: Since the qu are continuous and ® is continuous, then the functions
fz x are also continuous on (2. O
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4.2 Properties of power kernels

Proposition 4.6 There are other representations of Kx(.,.) as

Kx(v,y) = (51)(,53;)()4)

(Re,0(02,x), Ro.0(0y,x))e (4.2)
= (Scb Q( ) Se 9(5 ))
(foxs fo, x)q) for all x,y € Q.

Proof: This follows from Theorem B.I7 Definition B3 from the isometry

property of Rg o, and from the fact that the difference of R (9, x) and

So.0(0zx) = fux is a function from P. O

Furthermore, due to (EI), we have

Corollary 4.7 Since u;* (x;) = 6;; for all 1 < j < N, we have for all x €
Kx(z,z;) = Kx(zj,x) = 0.

Proposition 4.8 Under the preceding assumptions, the function Kx(z,y) =
(0z,x,0y.x)o can be expressed as

Kx(l', y) = 5;,X5;,X®(T7 3)

N N
= P(z,y) — Zulx(x) Ty Z (x,x;)
i=1 j=1

Proof: This is just (f2) inserted into (B4). O

Definition 4.9 For any pointwise continuous linear interpolation or approz-
imation process in normed linear spaces, the power function is the pointwise
norm of the error functional.
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Theorem 4.10 For the interpolation process using a conditional positive
definite function ® on a set X of interpolation data, the power function Px
s given by

Pi(z) = Kx(x,2) for all z € Q.

Proof: Note that the pointwise error functional is just ¢, x due to Definition
We then evaluate the definition of the power function as

Pi(@) = 0. x|%
= Kx(z,2)

using Proposition O

The relation of the power function and the power kernel to the interpolation
process can be based on the following representation of the interpolation
error:

Proposition 4.11 Under the above assumptions, the interpolation error to
any f € No(Q) at any point x € Q can be written as

f(x) — sy x () = qum((dx )) ff_ﬂp((ff;))(b
(S2.0(02,x), [ne(©)- (43)
= (fa:x, )NQ(Q)

Proof: We use Theorem to get

orx(f) = [f(x) —spx(x)
= 5m,X(f_7TP(f))
= (Roo(0zx),f—7p(f))s
= (R‘i’ﬂ(éﬂax)a f)Ncp(Q)

for all f € Ng(Q2) and all z € Q. The assertion then follows from the fact
that Re (0, x) and Sg 0(0.x) = fz.x just differ by a function from P. O

Note that in ([@3) we have to distinguish between (.,.)s and (.,.)n; @) care-
fully, while in (E2)) we could get away with (.,.)¢ alone.
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Proposition 4.12 For all x,y € R the function Kx(-,-) can be written in
the form

Ex(x,y) = fox(y) —p" (y)Vx(2).
ie. Kx(a,y) = ®x(z,y) — Ux(2)®x(y) — p' (y)Vx(2).
Here, we used the notation of (Z10).
Proof: From the system (ZI0) we have

AxoUx(7) + PxVx(x) = ®x(z), forall z € R
PiUx(z) = p(z), forall z € R

Then

Ux (y)Ax,oUx (z) + U (y) PxVx(z) = Ux(y)®x(z)
Ui(y)Px = p'(y)

and
P () Vx(z) = U (y)®x (x) — Ux (y) Ax o Ux (). (4.4)

From Proposition we conclude

Kx(z.y) = ®(@,y) = 3w (@)(y,;) = 3w (y)@(w,21)

— Uz (2)®x(y) — p" (y)Vx(x)

= fx,X(y _pT(y)VX(x)v for all €,y € Rd'

Corollary 4.13 Under the above assumptions, the interpolation error to any
f € No(Q) at any point x € Q can be written as

f@) —spx(@) = (Kx(2,-), [)na@)- (4.5)
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Proof: Just combine the two preceding propositions. a

Proposition 4.14 For all x,y € R? the function Kx(-,-) can be written in
the form :
Kx(z,y) = fox(y) — 8f.x,x (1)

Proof: Let x and y be in R%. Then
KX (l‘, y) = 6;,)(5;,)((1)(37 t)
= 5Z,Xfx,X (t)
= Jox(¥) = spxx(¥)-

From these two representations we can deduce the strange identity

spox(y) =p" (y)Vx ()

showing a polynomial in y times a function of x vanishing on all points of X.

Proposition 4.15 The function Ky satisfies the property

Kx(z,.), Kx(y,.) = Kx(z,y)
Na ()

for all x,y in €.
Proof: From ({3) for the function Kx(.,y) we get
(Kx(.y), fm,X)Ncp(Q) = Kx(z,y) - SKX(-yy)vX(l')'
Since Kx(z;,y) =0for all 1 < j < N, we then get
(KX(-7y>>fz,X)/\/¢(Q) = Kx(l',y) (46)
We now substitute the value of f, x from Proposition ELT4 into (EZ6). We get

Kx(ey) = (Kx(.9), fox()

Na (Q)

Kx(., z,.)+s )
X x(@,.) + 5, x.x(.) o)

(K. Ex(
_ (KX(.,y),Kx(% -)>N¢(m * <KX("y)’sfzvX’X('))qu(m
( ( y) KX(x

Kx(., ,.))
Noo(@)
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using that sy,  x(.) is a function in P. O

Applying the Cauchy-Schwarz inequality to Proposition ELTH we get

Proposition 4.16 The power kernel Kx and the power function Px satisfy
the property
|Kx(z,y)| < Px(x)Px(y) for all x,y € Q.

Proposition 4.17 The kernel Kx (-, ) is an unconditionally positive definite
function on 2\ X.

Proof: We take any discrete point set Y = {y,...,yn} € 2\ X and any

vector 3 = (01, ..., Ou) and we consider the quadratic form defined as
M M M M
Z Z BiBrKx (yj yk) = Z Z BiBe(fy;. x5 fynx)o
j=1 k=1 j=1 k=1
M M
= (D _Bifyx: Y Bfux)e
j=1 k=1

M

= 1> Bify,xla
j=1

> 0.

This proves that Kx(-,-) is a positive semi-definite function on €.
We now suppose Z;‘il S BBk K x (3, ) = 0. Then

M M
0 = BBk K x (Y5, yk)

j=1 k=1
M

= 1> Bifyxllz,

j=1

0 = Z ﬁjfijX(')

=1

<
Il

Bi®(y; ) = Y B > ui (y;) @, )

M
1 j=1 k=1

M=

J
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M N
Z Bi®(y;,.) + Z VP (g, ).
=1 k=1

with v, = — Z;‘il Biui (y;) for all 1 < k < N. We now look at the quadratic
form with respect to ® where the coefficients at y; are 3;, and at z;, are 7, for
all1 <7< M and 1<k < N. That means, we use the quadratic form of ®
on Z ={xy,...,TN,Y1,--.,yn With the coefficients a = {ay,...,anim} =

{717"'77N7517~--7ﬁM} to get

M+N M+N

Z Z a;ap®(z;, 2) = 0.

j=1 k=1

To check that these coefficients «; are admissible in the sense of the equation
B2), we evaluate them on a function p € P in order to get

M+N
> ap(zn) = Zﬁjp v +pr )
i=1 —
N M
= Zﬁjp W) =2 > A )
k=1 j=1
M
= ZM SDIACHIEN)
7j=1
= 0.
Then o € Lp(Q2), and we conclude that « =0 and 5=~ = 0. O

4.3 Native spaces of power kernels

In the previous chapter we have shown that each Hilbert space setting of a
recovery problem leads to a specific positive semidefinite function acting as a
reproducing kernel. We also showed a partially converse result: each positive
definite kernel is the reproducing kernel of a Hilbert space of functions. Since
we have proven in Proposition ELT1 that the power kernel Ky is positive
definite on Q2 \ X, we now can apply this result to get a native Hilbert space
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for Kx. However, we want to relate this space as closely to the native space
of ® as we can.

We know from Proposition ELT7 that Ky is a symmetric unconditionally
positive definite kernel on the set 2\ X. Because we are in the unconditional
situation, we can cut the argument from the previous chapter somewhat short
and look directly at the space

Lk, (2\ X) = span {Kx(.,y) 1y e Q\ X}

and equip it with a bilinear form

M s M S
<ZO4]'KX(-,3/J'),Z@<KX ) 2k ) = ZZ%@:KX Yj» Zk)-
j=1 k=1

j=1 k=1

with Y = {y1,...,yn} C Q\ X, Z = {z1,...,25} € Q\ X and a =
(ala"'vaM)a B:(ﬁla"'aﬁS)'

The previous chapter now implies

Proposition 4.18 Let Ky : Q\ X x Q\ X — R be the symmetric uncondi-
tionally positive definite power kernel. Then the bilinear form (., .)k, defines
an inner product on Lx(Q\ X). Furthermore, the space Lx(2\ X)is a pre-
Hilbert space with the reproducing kernel Kx. O

The completion Lk, (2\ X) of this pre-Hilbert function space with respect
to the norm ||.|| g, is the first candidate for a Hilbert space with reproducing
kernel K.

Definition 4.19 The native space for the symmetric unconditionally posi-
tive definite function Kx on Q\ X is given by

Nice (Q\ X) = Lo (2\ X) = closy . (LKX(Q \ X)).

equipped with the inner product (., .)n by extension to the completion, and
the reproducing property

f(y> = (f7 KX(y7'))KX
forall f € N, (Q\ X), y € Q\ X.
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Here, the reproduction equation directly shows how to interpret an abstract
element from the closure as a function.

Note that the reproduction equation implies that all functions from the native
space of K x will formally vanish on X. Thus they can be extended from Q\ X
to functions on (), the reproduction equation being valid there. We shall use
this extension in the rest of this thesis, without further mentioning.

Now we want to relate the two native spaces and the norms ||.||s, ||.||a%©)
and ||.|| k. For that we start with a function g in Lx (€2 \ X) written as

= aKx(x,y) (4.7)

for all z € Q\ X with an arbitrary o € RM and a set Y = {y,...,yn} C
Q\ X. Then,

M
g(x) = Z&KX x, ;)

T
I
<
I
I
i
I

]:1 k=1
N
= Zal (@, u1) Zuj( <Zal %,yl)

=1 _]]‘;1 =
—Zq) X, Ty <Z(xluk )

= N 1=1
+Zu. (x)zq)(x],xk Zoquk U

7=1 k=1 =

We denote .
Br = Z oy (yy) (4.8)
=1
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for all 1 <k < N and we denote

N
- Zﬁk@(x7xk)7 gY Zal xT yl (49)
k=1

g(x) = gy(x) —gx(x) = S uf(@)gy(a;) + S0, u () gx ()
= (9v —gx)(@) = 2,4 f (2)(gy — gx)(z;)
= (9v —9x)(z) — x (7).

Sgv—gx,

(4.10)
This equation also proves that gy — gx lies in N (2), because the other two
functions are in that space. We even have gy — gx € Ro o(Lp(€2)). To prove
this, we have to check the moment equations

iarp(yr) - iﬁkp(wk)
= f: a i uit (y,)plwi) — é Bp(ar,)
ST ST SEVEY
= Z@p (:) Zﬁkp ()

O.

After this technical interlude we can calculate the value of the norm of

(R

M
Z ra Kx (Y, Y1)

=1

r<Z]_V[:Oé1KX (Y 1 )
(0 = 020 Zu () (gv = 9x) (7))

lgllie, =

||M§ ||M§ WME
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= i%(gy - gx)(yr) - iﬁj (gY - 9X>(xj)

M N
= > agy(y) + Y Bigx(x;)
r=1 j=1

M N
— Z argx (Yr) — Z Bigy ().
r=1 j=1

If we substitute the value of gy and gx from (), then we get

M

M N
HgH%(X = ZargY(yr)_Zar Bk@(xkayr)
r=1 k=1

r=1
M N

N
—ZarZﬁjq)(%',yr) + Bigx(z;)
r=1  j=1 j=1
= gy — gxll3-
The standard orthogonality property of interpolants from (BI7) then yields
lgy —9xl3 = llgv — 9x3s 0

HgY —gx — Sgy—gx,Xsz\/@(Q) + ||89Y_9X=X||3\/¢(Q)
Hg”/z\fq,(g) + ||Syy—9X,X||/2\fq>(Q)'

We summarize:

Proposition 4.20 The norm ||.||xy of the native space Nk, of Kx can be
expressed via

lgll7ex = gy = 9x1ls = 9l Ra @) + 8oy —oxx|Ru@ for allg € LKx(f(l\X;
4.11
with the functions gy and gx as defined in ({{-9), satisfying the identity

9 =9y —9x — Sgy—gx.X-
Furthermore,

Licy (Q\ X) C (Id — 7x)(Roo(Lp(Q))). O (4.12)
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The term s,, 4, x is unexpected in (fI1l), and we should show that it does
not vanish in general. We have

gy (z;) — gx(z;) = f;az@(wj,yz) —]i:ﬁk@(%wk)
= lioq@(x],yl) - iﬁ;aluk (Y1) ®(j, z)
= g}az <¢’(%,yz) - i}@(w@(%wﬁ) (4.13)
= iazim(%)vz(yz)
e Tu

with notation as in (2I0). This shows that s,, _,, x coincides with a function
from P, but it is not necessarily zero.

Our goal now is to prove the converse inclusion to ([EIZ). We take a function
f € Roa(Lp(S2)) and represent the interpolation error as

M N
f=six = Z - ®(.,y,) — Z'Vr@(xla )
r=1 =1

with disjoint sets X = {x1,..., 25}, Y = {v1,...,yn} and vectors a € RM
and v € RY such that their composition is in Lp(Q), i.e.

M N
> ap(y) = > wp(x,.) =0 forall p € P,
r=1

=1

From the definition of f — s x, we have the vectors a and 7. Then we
define gy and gy from ([£9) with 5 from ([8). Then a function g is well
defined from (E7), and it will finally also satisfy (ELI0)). Then we have

9y =9+ 9x + Sgy—gx.X

and
M

f=spx =9+ 9x + Sgy—gx.x — 27r®($l, ).
=1
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Now we denote
M

5:=gx + Sgy—gx, X — Z’yTCI)(xr, ).
r=1

The function 5 lies in the space Sx spanned by P and the functions ®(-, z;)
for z; € X. We want to prove that its coefficients are in Lp(€2). For this, we
can focus on the function gx — S°M_ ~,®(x,,.) and its coefficients because
everything is correct for s, 4. x. We get

= Z Z Olzuk (y)p(x) Z Yrp(r)
N
= Z o Z up (yo)p(ek) Z Vep(ar)

Furthermore, for all 1 < 7 < N we have
0= (f—srx)(x;) = g(x;) + 5(x;) = 5(x;).

because g(z;) = M. o, Kx(x;,y,) = 0. Thus 5 interpolates zero data and
must vanish. Then f —s;x =g and f — sy x € Lx(22\ X) hold. Thus we

have proven
L, (Q\ X)=(Id—7x)(Roa(Lp(£2))). (4.14)

Theorem 4.21 The native space for the symmetric unconditionally positive
definite power kernel Kx on Q\ X is exactly the Hilbert space

N (Q\ X) = (Id — 7x)(Ra(La p(2)) = (Id — 7x)(Id — 7p)(Ns(S2)).

Proof: In principle, we want to take the closure of the identity (EEI4), but
we have to be careful with the different inner products.
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If all functions of Lk, (Q2\ X) are extended to (2, then it is clear that the
space Ly, (Q\ X) isin (Id — 7x)(Reoo(Le p(Q))). Due to (II) we have

gl = lgllis@ forall g € Lx(2\ X).

Then we have, starting with the definition of the closure,

Nk (Q\X) = closy . (LKX (Q\ X))
S clos). |y, (LKX (Q\X ))

= clos| |y, @ ((Id —7x)(Rea(Lp((2))))
= (Id—r7x)(Rsa(Lsr(2)))

without trouble, since Id — mx is an orthogonal projector. Thus
Nix (Q\ X) € (Id — 7x)(Re,a(La,p(12))).

Now we do the converse. Assume that there is an abstract function f €
Roo(Lep(2)) C No(Q) such that f — sy x is orthogonal to Ly, (2 \ X)
with respect to the inner product (.,.)n, (). We take a function g from
Lk, (2\ X) and write it as in (7). This implies

0 = (f—srx:9)Ne@
M

= (f — SfX, ZOZZKX('ayl))Nq»(Q)

=1
M

= Zal(f — Sf.X, KX(’ayl))Ncp(Q)

= D alf = s5x fuxX)ve(@
lzl

= > al(f = sp.x) W) = $p-s; . x(01)
=1

= > alf —spx) W)

Since the points y; are arbitrary from Q\ X and the coefficients are arbitrary,
we conclude that f — s;x = 0 on all of 2. Thus the closure of Lx, (©2\ X)
in (Id — 7x)(Raen(Le,p(§2))) with respect to (.,.)n, () is the full space. O
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Corollary 4.22 The native space Nk (Q\ X) for Kx can be written as
Ny (N X) ={f e No() = f(X) = {0}}.

Proof: We have to show that any f from Ng(Q) with f(X) = {0} is of the
form f = g — mx(g) with some g € Reo (Lo p(2)). To this end, we define
g:=f—1p(f) € Roa(Ls p(2)) and look at

g—7x(g) = f—mp(f)—7mx(f—7p(f))
= f—mp(f) —nx(f) +7x(7p(f))
;—Wp(f)—OJrWP(f)

Corollary 4.23 If we define Sx := mx(No(2)) similarly to (2-34) and The-
orem [Z28, the decomposition

No(Q) = Sx + N (2 X)

is orthogonal with respect to (., .)ny(Q)-
Proof: See Theorem and use Corollary O

Proposition 4.24 If ¢ is an positive definite kernel, we have

lgll7ey = llgllg for all g € N, (2\ X).

Proof: We use the argument of [I3) to see that s,,_,, x is in P. Hence
its (semi-)norm is zero by definition. O

Note again that the proof shows that the assertion cannot be extended in
general to the conditionally positive definite case, because s,, 4, x does not
necessarily vanish.

We add a representation for the power function which is well-known in the
literature:
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Proposition 4.25 The power function value Px(x) is given by
Px(z) = sup{f(z) : f € No(Q), [[flnuie) <1, f(X)={0}} for all z € Q.

Recall that we always assume X to contain the P-unisolvent subset Z.

Proof: Since Proposition LTT] yields the error bound
[f(2) = sy x(2)] < Px(2)]| fllvw@

for all f € Ng(9), the sup exists. Then we define the function Qx on  as

Qx(z) =sup{f(z) : f € No(Q), fllnwe <1, f(X) ={0}} >0.

Then, from

|[F ()] < Px (@) fllnao +\Z|’u o)1 (;)]

we get

Qx(x) < Px(z).
If Px(z) = 0, then Qx(z) = 0 = Px(z). If Px(x) # 0, then we define a
function ¢, on 2 as g,(y) = Kx(z,y)/Px(z) such that g, € Rea(Lp(S)).
Then we get g,(x) = Px(x) and its norm is bounded by

loelXe@ = I1Kx(z, )a/Pk(2)
= Kx(z,7)/Px(z)
=1

?

where

g:(x) = Px(z) < sup{f(z) : f € No(Q), [[fllnva@ <1, f(X) ={0}} = Qx(2).

hence
Px(z) < Qx(x).

Thus Px(z) = Qx(z) . O

We end this section by pointing out a few connections to the previous chapter.
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Theorem 4.26 In case of a conditionally positive definite kernel ® with
respect to some finite-dimensional space P, the power kernel Py is precisely
the kernel h arising in the previous section.

Proof:  The Lagrange basis functions p;,...,pg for P with respect to
Z are exactly the Lagrange basis functions us,...,uq for interpolation on
X = Z, and the interpolation is purely polynomial. Thus the kernels / and
Py coincide, as follows from their representations in Proposition and
Theorem O

Theorem 4.27 The power kernel K;};P assoctated to the extended kernel ®p
according to Definition [Z38 coincides with the power kernel K% associated
to @, provided that the data set X = {z1,...,xn} for interpolation contains
the set Z which is unisolvent for P.

Proof: By Corollary we know that the Lagrangian bases of interpo-
lation with respect to the two kernels ® and ®p coincide. Thus the power
kernels coincide. O

Corollary 4.28 Under the above assumptions, the transition from ® to the
power kernel Kx does not need the bypass via the kernels h or ®p of the
previous chapter.

Figures BT B2 and show the plots of the power function Px(z), the
power kernel Kx(z,y) and its contours as a function of x with a fixed point
y = (0,0)7, when the data points in X are given via the MATLAB command

meshgrid (-3:2:3 , -3:2:3).

We chose as radial basis functions the Gaussian (Figure ETl), the inverse
multiquadric (Figure EE2)) and Wendland’s C? function (Figure E3)). The
scales ¢ in the sense ¢.(r) := ¢(r/c) were 1, 1, and 5, respectively.
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Figure 4.1: Power function, power kernel and its contours for the Gaussian.
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Figure 4.2: Power function, power kernel and its contours for the inverse
multiquadric
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Figure 4.3: Power function, power kernel and its contours for the Wendland
C? function



Chapter 5

Applications

5.1 Multistage interpolation

We are given a set X = {z1,...,zx} of pairwise distinct points xq,...,zy
in a set O C R?, and a real-valued function f with f : Q CR? - R, d > 1.
We take a conditionally positive definite continuous kernel & : Q x Q — R
with respect to a finite-dimensional subspace P. To avoid complications as
in Theorem BTl we shall always assume Z C X in the rest of this chapter.

Then we denote the resulting interpolant to f by sy x4, making the depen-
dence on f, X, and ® transparent. For all functions f € N3(S2) we define
the residual function or error function gs on ) by

gr:x— f(x) = spxe(r).

We now interpolate the function g; on a new finite set ¥ of points from
2\ X using Kx, and denote the interpolant to gy on Y associated to Kx by
Sg;,Y,Kx- We remark that for all 7; € X with 1 < j < N we have g(z;) =0
and sy, v,y (7;) = 0. Then we conclude that for all € X UY

(f = srx0 = sopcy ) (@) = 0
which means
(97 = supvacx ) (@) = 0.

We want to find a relation between the interpolants sy x e + S¢; v,k and
sfxuy,e to f at all points in X UY. The uniqueness of the interpolant for
data on X UY with centers in X UY proves the following

73
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Proposition 5.1 Under the preceding assumptions, the interpolant of ® on
X UY 1is representable as

SfXUY. e = Sfx.@ T Sgpv,Kx- U
Note that this requires Z C X to be correct, if no further arguments are

there.

Proposition 5.2 If ¢ is a positive definite kernel, then the power function
Pxuy e 1s given by
Pxuvie = Pyiy-

Proof: We use the Proposition for Pxuye and for Py g, . Then, with
Proposition 2241 we get
Pxove =sup{f(z): f € Na(Q), |fllna@ <1, f(XUY)={0}}
and
Py = sup{f(z): f € Ny, [fllxx <1, f(Y)={0}}
= sup{f(z) : f € Ny, [[flnay <1, f(Y)={0}}

= su - x) gENs(Q), lg —7mx(9)]le <1
~ s {lg—mxtopi: §NOR bl |

< sup{f(z): f € No(Q), [[fllnw <1, f(XUY)={0}}

= Pxuv,e.

The inequality sign follows from the fact that every g — mx(g) of the third
line is some f in the fourth line. The other inequality follows from Corollary
H22 when we take any f from the fourth line and define g := f with 7x(f) =
mx(g) = 0 for the third line. O

Corollary 5.3 If ® is a positive definite kernel, we have
|f(@) = spxove(@)] < P flle for all f € No(9Q).

Proposition 5.4 If ¢ is an unconditionally positive definite kernel, then for
finite sets X, Y with X NY = () we have

(Kx0)yy, = Kxove,

where we indicated the appropriate “mother” kernels in the notation.
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Proof: The native space of the right-hand side is
{f eNa(Q) = f(XUY) ={0}},

while the native space for the left-hand side is the same:

{f €ENkyo + fY)={0}} ={f€Np : f(XUY)={0}}.
If f is an element of that space, the two reproduction properties are

f(x) = (f, Kxuve(z,"))e
f(l‘) = (f7 (KX@)Y,KX@ (x7 ’))KX@

and by Proposition 224 we can use any of the inner products (.,.)s, (.,-)kx.e
and (.,.)k .y here. Now by uniqueness of reproducing kernels, the assertion
follows first on Q2 \ (X UY'), but since both kernels vanish on X UY', we are
done. O

Corollary 5.5 Let ® be an unconditionally positive definite kernel, and let
X, Y satisfy the general assumptions above. Then there are orthogonal de-
compositions

N@(Q) - SX,<I> + NKX@(Q\X)
SX,CP + SY,KX + '/V‘(KX,Q)Y,KX@ ((Q \ X) \ Y)
= Sxure + N2\ (XUY))

with respect to the inner product (.,.)e of No(Q).
Proof: We use Corollary and Propositions Bl and B4 O

So far, we have made a step from X to X UY. We now want to do a sequence
of such steps.

Assumption 5.6 We assume to have a kernel ® on Q which is conditionally
positive definite with respect to some finite-dimensional space P of functions
on Q, and we want to interpolate a function f € Ng(). We start with a
finite set X of data points which contains a P-unisolvent subset Z.
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1. Start a recursion with

g =0
@0 = &
XQ . X
Jo = = $5x00

f—sixe
and do the following for j =0,1,2,...:

2. LetY; C Q; :=Q\ Xj be a finite set. Define

Qi1 = Ky, positive definite on €);
Xim = X;UY; D X;
Qi = Q\ X C
fir = S5 = spyen
J = J+1 and repeat.

Note that from the second step on we have unconditional positive definite-
ness, while the first step from &, := & to ®; := Kx has the complications
we encountered around Proposition

Proposition 5.7 Using Proposition [{.24 we get for all j > 1
Hf”é] = HfHé],l = ”fHé]72 =...= Hf”él = ”fH%{J + ”Sgyng7X7q>H%{3'
with gy and gx from ({{-9).

Corollary 5.8 The native space N<I>j+1 of ®;41 can be expressed as
No,.. = No, N {f| f(X;) ={0}} for all j > 0.

Proof: This follows from Proposition b7 and Corollary O

We need the recursive power kernel form of our kernels:

Proposition 5.9 The kernels have the property

q)j—i—l = ((Dj)y]._l’q)j fOT‘ Gll] > 1.
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Proof: From Proposition B4 we conclude

Qi1 = Kxjo

|
|
c
>
|
1=l

= ((Dj)y

j-1,25 "

We can always write the function f; in the form
fj = fj — Sf].’yj’q;.j+1 —+ Sfj,Yj,‘I)j+1 = fj+1 + Sfj,Yj,‘I)j+1 fOI‘ all] Z O (51)

Proposition .24l together with the orthogonality property of the interpolation
allows us to write

||f]||%>j+1 = ||fj+1||?{>]‘+1 + ||Sfj7}/jaq>j+1||éj+1

= |I£;l3, for all j > 0. (5.2)

Using (B2), a summation gives

Corollary 5.10 Under the hypotheses of b8, we have

J
”fl”éﬁ = ”fj+1Héj+1 _'_ Z ”Sf'ryyryq>r+1|’%>r+1 for a'llj Z 0

r=1

Lemma 5.11 Under the hypotheses of [, we can generalize Proposition
27 to get

Sf X0 = S£x,0 + 8f,v,0,,, for all j > 0.

Proof: Both sides interpolate f on X;;; = X; UY; using these points as
centers. Since we assumed Z C X, we can use the argument of the proof for
Proposition Bl again to get the assertion. O

Corollary 5.12 Under the hypotheses of 28, we get

fi=1—s1x;0
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Proof: We will prove it by induction. The assertion is true for j = 0. If it
holds for j, we use Lemma BTl to get

f]+1 = f] - 8fj7Yj7¢j+1

= [ = S£x0 = S50,
= f_8f7Xj+1,‘I>'

Corollary 5.13 Under the hypotheses of 28, we get
j—1

S£.X;,0 = Sfx0 + Z S fo Y@y JOr all j > 0.
r=0

Proof: It is true for 7 = 0. If it holds for j, we get by Lemma BTT the

result
SEXjp® = SEX;e T SfY e
J—1

= S£Y;%51 T SEX® T E S fr Yo, ®rp1
r=0

j
= Sf,x,<1>+§ S Y, ®py1 -
r=0

Proposition 5.14 Under Assumption[bf, we generalize the result of Propo-
sition 24 to get

Px,.0,(x) = Py, o, () for all j > 1.
Corollary 5.15 Under Assumption [28, we have

Px,.1.0,(x) = Px,,, @ (v) for all j > 1.
Proof: Proposition implies that

PXJ'-H,‘I)J' = PYj,KXj = Py].’q;.j_H, for all] Z 0.
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Proposition 5.16 Under the preceding assumption [id and for all x € §);

we have
|f() = sp.x;0()| < Px; o, ()| fi-1lle, -

Proof: We start with the definition of f; to get

|f](ZL‘)| = |fj—1($) = Sfio1,X-1,®; ($)|
< Py, e, (@)]fi-1lle;
Using Proposition BT and Corollary we get

PY]’—17q>]'(x) = PX]'@J'—l(x)
PXj7q>1 (l’)

Then
|fi(@)] < Px; 0, (2)[[ fj-1ll@: -

Theorem 5.17 If ¢ is a positive definite kernel then

|f(z) = spx;0(@)] < Pxj e (2)||f — s5x0le

Proof: Using Corollary until order 7 — 1 we get the equation

=2
13, = 1 f5ald,y = 1AlE = D Issveen s,
r=1

for all 7 > 2. We can go one step further, using

olle; — 0 — 5f0,Y0,P1 1|9, f0,Y0,®111d,
ol = 1o = sl + sl
||f1||<1>1 + ||8f0,Yo,‘1>1||<1>1

to get

-2
||f]_1||él = ||f0||§>1 - Z ||8f7"ay7"7¢7‘+1||é7‘ S ||f - Sf,X,‘I)Hél'
r=0

If ® is unconditionally positive definite, we can replace the norm by ||.|/¢.

Thus the assertion is proven via Proposition B.16

O
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However, the proof shows that the error bound of the previous theorem is
weaker than the result of Proposition

Using Corollary B0 one can write down an orthogonal decomposition of the
native space related to the above construction.

5.2 Recursive constructions

In this subsection, we will study the effect when we add a single data point
to the recovery problem .

Let X = {xy,...,xn} be aset of N > @ > 1 pairwise distinct points in 2,
and we consider a “new” point z € Q\ X. We define a system of the form
(Z3) with the notation taken from (ZI0) by

Ax o Px(2) Px Ux (z) Px(z)
L (2) ®(z,2) pl(z) Wi(z) | = @(z,2) (5.3)
P{ p(z) 0 V3 (x) p(x)
with ®x(z) = <¢)(:vj,z))1§j§N , p(2) = (pk(z)>1§k§Q. We now subtract

(3)) and the system (ZI0):

(M ()= (0%),

(B ) (B0
- e ()
- () (R0)

Ux(z) = Ux(x) = Wx(2)Ux(2)
V(@) = Vx(x) = Wx(2)Vx(2).

Then we get

*

and conclude
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Lemma 5.18 The value of W} (z) is given by:

_ Kx(z,2)

W) = o)

Proof: First we calculate the value of ®(z, z), using the system (E3) and
applying (B.4).
B(z,2) = Oy (2)Ux(2) + ®(2,2)Wx(2) +p' (2)Vx(2)
= 0% (2)(Ux(@) = Wi(:)Ux(2)) + Oz, 2)Wx(2)

" (2) (Ve (@) = Wi (2)Vx (=)
= (PR ()Ux(2) + P (2)Vx(@))
~Wi(2) (@5 (2)Ux () +p" (Vi (2) = 0(2,2))

We conclude then :

. o D(x,2) — oL
Wx(z) = d(z,2) — L (2)Ux(2) — pT(2)Vx(2)
Kx(z,2)

Kx(z,2)

where we used Proposition O

Theorem 5.19 Adding a point z to the data set X C 2, the power kernel
Kxugzy for the point set X U {z} is given by

Kx(z,2)Kx(z,v)
Kx(z,2) '

KXU{Z}(J’" y) = KX(xa y) -
Proof: For the set X U{z} and using (12) and (B3), the value of Kxy(.

is given by

Kxugy(z,y) = ®(a,y) - ((U;)T(x),w;(z)> ( q‘f’é(?i)) )

—(Vx)" (2)p(y)
= O(z,y) — (Ux)"(2)Px(y) — Wi(2)®(, 2)
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(R @)

= Ba.y) — (Ux(e) = W ()U2(2)) B.(y) — Wi () B(a 2)
~(Vx(a) - Wi (@)V2(2)) (o)

= (2e,y) - UL @)®u(y) - VE(@)p(y) )

Wi () (@, 2) = UZ(2)2u(y) = VE (2)p(v) )
= KX(:Evy) - W)*((Z)KX(Zvy)

And from (BI8) we will have

KXU{Z}(xay) = Kx(l',y) -

Corollary 5.20 For a set X = {z1,...,xn} of points in Q and z € Q\ X,
the power function for X U{z} is given by
K% (z, 2)
P? = P2(z) — X2
XU{z} (:L‘) X(x) P)Q((Z)

Corollary 5.21 For all x € Q and for all z € Q\ X we have
PRy (x) < P (). O
This also follows from Proposition

Proposition 5.22 For a set of points X = {xy,...,2y} € Q and Z =
{z1,...,2m} € Q\ X we denote Xog := X , Xy = X U{z,..., 2} for
1< k<M. Then we have

M—-1

P}, (2) = P, (2) = )

k=0

Proof: We apply (20) for all sets X = X U {z1,..., 21} = X1 U {2}
recursively. O

P)%k(zkﬂ)



CHAPTER 5. APPLICATIONS 83

Proposition 5.23 The sequence <P)2(M (x)) converges in R, if we add
M>1
infinitely many distinct points zq, za, . .. from Q\ X to X.

Proof: By Proposition B.22 the sequence is decreasing and bounded from
below. O

5.3 Recursive greedy interpolation

In this section we want to to prove a fundamental theorem about the native
space norms of interpolants. Let ® be conditionally positive definite on {2,
and assume X = {x1,..., 2N} to be a set in 2 which contains a P-unisolvent
subset. Furthermore, let € Q\ X be given, and let f be a fixed function
in the native space Ng(9).

Theorem 5.24 The native space norm of interpolants can be recursively
written as

flo) = (et

2 o 2
155 x0te} [Ne @) = 181X I Nw @) + ( Px(2)

Proof: We will divide the proof in two parts. First, we prove the theo-
rem for unconditionally positive definite kernels, and then for conditionally
positive definite kernels.

Case 1: ® unconditionally positive definite

Suppose that ® is a positive definite kernel. Then we introduce the system
AX, o CI’X(JU) ax(ilf) _ Ix (5 4)
% (z) O(z,x) a(r) f(x) '

where ®% (z)(z) = (®(z, 2;))1<<n, a(z) € RY, and f§ = (f(2;))i1<j<n. And
we want to compare it with the system () in the special form

Ax ofx = fx. (5.5)
Hence, from (54) and (E5) we get

Ax ofx = fx 5.6)
Ax pax(z) + Px(x)a(x) = fx (5.7)
oL (v)ax(z) + ®(z,2)a(z) = f(z). 5.8)
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First we observe from (&)
s xR = lsrxlle = Bx fx.
Then we set (B6) equal to (1) and see that
Ax ofx = Ax, sax(z) + @x(x)a(x)

Ox = ax () + a(z) Ay 4 Ox (x)
where we get
ax(z) = PBx — oz(x)A)_(lq)@X(x)

Piax(v) = spx(x) — a(x) Py Ax 4 Px(2).
We now replace the value of ax(z) in (B8] to get
fle) = @x(v)ax(z) + O(z,z)a(z)
— 0%(2)(Bx — ()47 4 0x(2)) + O(w,)a(2)
= 0% (2)3x + a(@) (D@, 7) — Pk (2) A7 4 0x (7))
= syx() + o(z) Px(2)
where we used Theorem EET0 and Proposition Thus we have

ale) = f(x)p;%f§3X(x>' (5.9)

The native space norm of the interpolant for {z} U X then is by (B4

sl = (28 ) ()
= ax(@)fx +a(@)f(x)
= (0% - a@)O% (@) AT} ) x + al@)f(x)
= Bifx+a@)(f(@) - k(@) AR fx)
= lspxln + o) (f(2) - O5 (@) A o fx).
If we insert the value of a/(z) from (), then we get

s i = Do o + 2 e (£(0) = 85 @45 ).

(5.10)
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From (EX) we find
spx (@) = By Px(z) = Py (2) Ax ¢ fx.
Then we get

s Baier = orxliagen + L (1(0) = (o)

= syl + (F2p )

and we can replace ||.||n, @) by ||| here.
Case 2 : ® conditionally positive definite

For a conditionally positive definite kernel ® we now introduce the system

Ax ¢ Px(x) Px ax(r) Ix
% (z) @(z,2) p'(x) az) | =| fl=) (5.11)
Py pla) 0 bx (x) 0

with similar notation as above, and with notation from (), but for general
P of dimension @, including p(z) := (p1(x), ..., pg(x))" for a basis py, ..., pg
for P. We now do the subtraction of (EI1]) and

A ax . AX,<I> Px ax _ Ix
XU )\ PL 0 bx )\ 0

to get
Ae(Bin i ) = o (%)
(vt ) = o (50

We conclude then

(00) = () @i (55)) 6o



CHAPTER 5. APPLICATIONS

For simplification we denote

ax (z) x = ax
bx(z) )7 ¥ bx

: i ) : ( 3 >
@ €Tr) = s g .
x(@) ( p() Ix 0
We now start from the system (&I1]), and we use ([5:[2]) to get

flz) = Ox(r)ax(z) + (z, x)alx
= O(z,z)a(x

With

we again get

f(x) = spx(x)
PX(z)

We evaluate the native space norm of the enlarged interpolant as

ax () g Ix
Isrxutatim@ = a(z) f(x)
bx(l') 0

= a(@)f(@) +Fx(@)" fx

- M@ﬂ@+(m—a(@z%¢ﬁx
)&%
)

a(r) =

— ok fx +a(@)f(@) - ale
= lsrx i@ + @) (f@) = 57x(@)).

Ay Lofx

86

(5.13)
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Then we insert the value of o(z) from (BI3)) to get

(F) = s1.x())

2 _ 2
Issx0tIve @ = I5r.xINa@) + PI(a)

Corollary 5.25 The power function Px can be expressed in the form

Px(x) = lIsg, x.x0tet I Na) = 157 xx 1 Ra o)

Proof: We just apply the preceding Thoerem for f = fax € No(Q)
and use .14 and 0

Proposition 5.26 Assume that for a given interpolant sy x to a function
f € Ns(Q) at a point set X = {x1,...,xn} we calculate a new point xy,1 €
Q\ X by

(f = spx) (@)l = If = spxlloon-
Then this “greedy method” has the convergence property

i I = spxyl% = 0.

Proof: We have from the proposition (224)

flTny1) = s5xy ($N+1))2.

s Vi = s I = (
Pxy(wn+1)

Since uniform boundedness Px, (rn11) < [|Pxylloo < |[Pxglloe =: C follows
from Proposition 25 we conclude

Flanen) = spxw @)l <O (s Ra@ = Isnxs )
17 =spxalBe < € (lspnsa B ~ sy o)

00 M
S sl £ Y (sl — lssxa i)
N=0

N=0
SOUF = srxali < Cliflnvae
N=0

IN

AN
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due to orthogonality. Thus we conclude

i I = spxyl% = 0.

88
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